1 /**
2  * AMCC SoC PPC4xx Crypto Driver
3  *
4  * Copyright (c) 2008 Applied Micro Circuits Corporation.
5  * All rights reserved. James Hsiao <jhsiao@amcc.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * This file implements AMCC crypto offload Linux device driver for use with
18  * Linux CryptoAPI.
19  */
20 
21 #include <linux/kernel.h>
22 #include <linux/interrupt.h>
23 #include <linux/spinlock_types.h>
24 #include <linux/random.h>
25 #include <linux/scatterlist.h>
26 #include <linux/crypto.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/platform_device.h>
29 #include <linux/init.h>
30 #include <linux/module.h>
31 #include <linux/of_address.h>
32 #include <linux/of_irq.h>
33 #include <linux/of_platform.h>
34 #include <linux/slab.h>
35 #include <asm/dcr.h>
36 #include <asm/dcr-regs.h>
37 #include <asm/cacheflush.h>
38 #include <crypto/aead.h>
39 #include <crypto/aes.h>
40 #include <crypto/ctr.h>
41 #include <crypto/gcm.h>
42 #include <crypto/sha.h>
43 #include <crypto/rng.h>
44 #include <crypto/scatterwalk.h>
45 #include <crypto/skcipher.h>
46 #include <crypto/internal/aead.h>
47 #include <crypto/internal/rng.h>
48 #include <crypto/internal/skcipher.h>
49 #include "crypto4xx_reg_def.h"
50 #include "crypto4xx_core.h"
51 #include "crypto4xx_sa.h"
52 #include "crypto4xx_trng.h"
53 
54 #define PPC4XX_SEC_VERSION_STR			"0.5"
55 
56 /**
57  * PPC4xx Crypto Engine Initialization Routine
58  */
59 static void crypto4xx_hw_init(struct crypto4xx_device *dev)
60 {
61 	union ce_ring_size ring_size;
62 	union ce_ring_control ring_ctrl;
63 	union ce_part_ring_size part_ring_size;
64 	union ce_io_threshold io_threshold;
65 	u32 rand_num;
66 	union ce_pe_dma_cfg pe_dma_cfg;
67 	u32 device_ctrl;
68 
69 	writel(PPC4XX_BYTE_ORDER, dev->ce_base + CRYPTO4XX_BYTE_ORDER_CFG);
70 	/* setup pe dma, include reset sg, pdr and pe, then release reset */
71 	pe_dma_cfg.w = 0;
72 	pe_dma_cfg.bf.bo_sgpd_en = 1;
73 	pe_dma_cfg.bf.bo_data_en = 0;
74 	pe_dma_cfg.bf.bo_sa_en = 1;
75 	pe_dma_cfg.bf.bo_pd_en = 1;
76 	pe_dma_cfg.bf.dynamic_sa_en = 1;
77 	pe_dma_cfg.bf.reset_sg = 1;
78 	pe_dma_cfg.bf.reset_pdr = 1;
79 	pe_dma_cfg.bf.reset_pe = 1;
80 	writel(pe_dma_cfg.w, dev->ce_base + CRYPTO4XX_PE_DMA_CFG);
81 	/* un reset pe,sg and pdr */
82 	pe_dma_cfg.bf.pe_mode = 0;
83 	pe_dma_cfg.bf.reset_sg = 0;
84 	pe_dma_cfg.bf.reset_pdr = 0;
85 	pe_dma_cfg.bf.reset_pe = 0;
86 	pe_dma_cfg.bf.bo_td_en = 0;
87 	writel(pe_dma_cfg.w, dev->ce_base + CRYPTO4XX_PE_DMA_CFG);
88 	writel(dev->pdr_pa, dev->ce_base + CRYPTO4XX_PDR_BASE);
89 	writel(dev->pdr_pa, dev->ce_base + CRYPTO4XX_RDR_BASE);
90 	writel(PPC4XX_PRNG_CTRL_AUTO_EN, dev->ce_base + CRYPTO4XX_PRNG_CTRL);
91 	get_random_bytes(&rand_num, sizeof(rand_num));
92 	writel(rand_num, dev->ce_base + CRYPTO4XX_PRNG_SEED_L);
93 	get_random_bytes(&rand_num, sizeof(rand_num));
94 	writel(rand_num, dev->ce_base + CRYPTO4XX_PRNG_SEED_H);
95 	ring_size.w = 0;
96 	ring_size.bf.ring_offset = PPC4XX_PD_SIZE;
97 	ring_size.bf.ring_size   = PPC4XX_NUM_PD;
98 	writel(ring_size.w, dev->ce_base + CRYPTO4XX_RING_SIZE);
99 	ring_ctrl.w = 0;
100 	writel(ring_ctrl.w, dev->ce_base + CRYPTO4XX_RING_CTRL);
101 	device_ctrl = readl(dev->ce_base + CRYPTO4XX_DEVICE_CTRL);
102 	device_ctrl |= PPC4XX_DC_3DES_EN;
103 	writel(device_ctrl, dev->ce_base + CRYPTO4XX_DEVICE_CTRL);
104 	writel(dev->gdr_pa, dev->ce_base + CRYPTO4XX_GATH_RING_BASE);
105 	writel(dev->sdr_pa, dev->ce_base + CRYPTO4XX_SCAT_RING_BASE);
106 	part_ring_size.w = 0;
107 	part_ring_size.bf.sdr_size = PPC4XX_SDR_SIZE;
108 	part_ring_size.bf.gdr_size = PPC4XX_GDR_SIZE;
109 	writel(part_ring_size.w, dev->ce_base + CRYPTO4XX_PART_RING_SIZE);
110 	writel(PPC4XX_SD_BUFFER_SIZE, dev->ce_base + CRYPTO4XX_PART_RING_CFG);
111 	io_threshold.w = 0;
112 	io_threshold.bf.output_threshold = PPC4XX_OUTPUT_THRESHOLD;
113 	io_threshold.bf.input_threshold  = PPC4XX_INPUT_THRESHOLD;
114 	writel(io_threshold.w, dev->ce_base + CRYPTO4XX_IO_THRESHOLD);
115 	writel(0, dev->ce_base + CRYPTO4XX_PDR_BASE_UADDR);
116 	writel(0, dev->ce_base + CRYPTO4XX_RDR_BASE_UADDR);
117 	writel(0, dev->ce_base + CRYPTO4XX_PKT_SRC_UADDR);
118 	writel(0, dev->ce_base + CRYPTO4XX_PKT_DEST_UADDR);
119 	writel(0, dev->ce_base + CRYPTO4XX_SA_UADDR);
120 	writel(0, dev->ce_base + CRYPTO4XX_GATH_RING_BASE_UADDR);
121 	writel(0, dev->ce_base + CRYPTO4XX_SCAT_RING_BASE_UADDR);
122 	/* un reset pe,sg and pdr */
123 	pe_dma_cfg.bf.pe_mode = 1;
124 	pe_dma_cfg.bf.reset_sg = 0;
125 	pe_dma_cfg.bf.reset_pdr = 0;
126 	pe_dma_cfg.bf.reset_pe = 0;
127 	pe_dma_cfg.bf.bo_td_en = 0;
128 	writel(pe_dma_cfg.w, dev->ce_base + CRYPTO4XX_PE_DMA_CFG);
129 	/*clear all pending interrupt*/
130 	writel(PPC4XX_INTERRUPT_CLR, dev->ce_base + CRYPTO4XX_INT_CLR);
131 	writel(PPC4XX_INT_DESCR_CNT, dev->ce_base + CRYPTO4XX_INT_DESCR_CNT);
132 	writel(PPC4XX_INT_DESCR_CNT, dev->ce_base + CRYPTO4XX_INT_DESCR_CNT);
133 	writel(PPC4XX_INT_CFG, dev->ce_base + CRYPTO4XX_INT_CFG);
134 	if (dev->is_revb) {
135 		writel(PPC4XX_INT_TIMEOUT_CNT_REVB << 10,
136 		       dev->ce_base + CRYPTO4XX_INT_TIMEOUT_CNT);
137 		writel(PPC4XX_PD_DONE_INT | PPC4XX_TMO_ERR_INT,
138 		       dev->ce_base + CRYPTO4XX_INT_EN);
139 	} else {
140 		writel(PPC4XX_PD_DONE_INT, dev->ce_base + CRYPTO4XX_INT_EN);
141 	}
142 }
143 
144 int crypto4xx_alloc_sa(struct crypto4xx_ctx *ctx, u32 size)
145 {
146 	ctx->sa_in = kcalloc(size, 4, GFP_ATOMIC);
147 	if (ctx->sa_in == NULL)
148 		return -ENOMEM;
149 
150 	ctx->sa_out = kcalloc(size, 4, GFP_ATOMIC);
151 	if (ctx->sa_out == NULL) {
152 		kfree(ctx->sa_in);
153 		ctx->sa_in = NULL;
154 		return -ENOMEM;
155 	}
156 
157 	ctx->sa_len = size;
158 
159 	return 0;
160 }
161 
162 void crypto4xx_free_sa(struct crypto4xx_ctx *ctx)
163 {
164 	kfree(ctx->sa_in);
165 	ctx->sa_in = NULL;
166 	kfree(ctx->sa_out);
167 	ctx->sa_out = NULL;
168 	ctx->sa_len = 0;
169 }
170 
171 /**
172  * alloc memory for the gather ring
173  * no need to alloc buf for the ring
174  * gdr_tail, gdr_head and gdr_count are initialized by this function
175  */
176 static u32 crypto4xx_build_pdr(struct crypto4xx_device *dev)
177 {
178 	int i;
179 	dev->pdr = dma_alloc_coherent(dev->core_dev->device,
180 				      sizeof(struct ce_pd) * PPC4XX_NUM_PD,
181 				      &dev->pdr_pa, GFP_ATOMIC);
182 	if (!dev->pdr)
183 		return -ENOMEM;
184 
185 	dev->pdr_uinfo = kcalloc(PPC4XX_NUM_PD, sizeof(struct pd_uinfo),
186 				 GFP_KERNEL);
187 	if (!dev->pdr_uinfo) {
188 		dma_free_coherent(dev->core_dev->device,
189 				  sizeof(struct ce_pd) * PPC4XX_NUM_PD,
190 				  dev->pdr,
191 				  dev->pdr_pa);
192 		return -ENOMEM;
193 	}
194 	memset(dev->pdr, 0, sizeof(struct ce_pd) * PPC4XX_NUM_PD);
195 	dev->shadow_sa_pool = dma_alloc_coherent(dev->core_dev->device,
196 				   sizeof(union shadow_sa_buf) * PPC4XX_NUM_PD,
197 				   &dev->shadow_sa_pool_pa,
198 				   GFP_ATOMIC);
199 	if (!dev->shadow_sa_pool)
200 		return -ENOMEM;
201 
202 	dev->shadow_sr_pool = dma_alloc_coherent(dev->core_dev->device,
203 			 sizeof(struct sa_state_record) * PPC4XX_NUM_PD,
204 			 &dev->shadow_sr_pool_pa, GFP_ATOMIC);
205 	if (!dev->shadow_sr_pool)
206 		return -ENOMEM;
207 	for (i = 0; i < PPC4XX_NUM_PD; i++) {
208 		struct ce_pd *pd = &dev->pdr[i];
209 		struct pd_uinfo *pd_uinfo = &dev->pdr_uinfo[i];
210 
211 		pd->sa = dev->shadow_sa_pool_pa +
212 			sizeof(union shadow_sa_buf) * i;
213 
214 		/* alloc 256 bytes which is enough for any kind of dynamic sa */
215 		pd_uinfo->sa_va = &dev->shadow_sa_pool[i].sa;
216 
217 		/* alloc state record */
218 		pd_uinfo->sr_va = &dev->shadow_sr_pool[i];
219 		pd_uinfo->sr_pa = dev->shadow_sr_pool_pa +
220 		    sizeof(struct sa_state_record) * i;
221 	}
222 
223 	return 0;
224 }
225 
226 static void crypto4xx_destroy_pdr(struct crypto4xx_device *dev)
227 {
228 	if (dev->pdr)
229 		dma_free_coherent(dev->core_dev->device,
230 				  sizeof(struct ce_pd) * PPC4XX_NUM_PD,
231 				  dev->pdr, dev->pdr_pa);
232 
233 	if (dev->shadow_sa_pool)
234 		dma_free_coherent(dev->core_dev->device,
235 			sizeof(union shadow_sa_buf) * PPC4XX_NUM_PD,
236 			dev->shadow_sa_pool, dev->shadow_sa_pool_pa);
237 
238 	if (dev->shadow_sr_pool)
239 		dma_free_coherent(dev->core_dev->device,
240 			sizeof(struct sa_state_record) * PPC4XX_NUM_PD,
241 			dev->shadow_sr_pool, dev->shadow_sr_pool_pa);
242 
243 	kfree(dev->pdr_uinfo);
244 }
245 
246 static u32 crypto4xx_get_pd_from_pdr_nolock(struct crypto4xx_device *dev)
247 {
248 	u32 retval;
249 	u32 tmp;
250 
251 	retval = dev->pdr_head;
252 	tmp = (dev->pdr_head + 1) % PPC4XX_NUM_PD;
253 
254 	if (tmp == dev->pdr_tail)
255 		return ERING_WAS_FULL;
256 
257 	dev->pdr_head = tmp;
258 
259 	return retval;
260 }
261 
262 static u32 crypto4xx_put_pd_to_pdr(struct crypto4xx_device *dev, u32 idx)
263 {
264 	struct pd_uinfo *pd_uinfo = &dev->pdr_uinfo[idx];
265 	u32 tail;
266 	unsigned long flags;
267 
268 	spin_lock_irqsave(&dev->core_dev->lock, flags);
269 	pd_uinfo->state = PD_ENTRY_FREE;
270 
271 	if (dev->pdr_tail != PPC4XX_LAST_PD)
272 		dev->pdr_tail++;
273 	else
274 		dev->pdr_tail = 0;
275 	tail = dev->pdr_tail;
276 	spin_unlock_irqrestore(&dev->core_dev->lock, flags);
277 
278 	return tail;
279 }
280 
281 /**
282  * alloc memory for the gather ring
283  * no need to alloc buf for the ring
284  * gdr_tail, gdr_head and gdr_count are initialized by this function
285  */
286 static u32 crypto4xx_build_gdr(struct crypto4xx_device *dev)
287 {
288 	dev->gdr = dma_alloc_coherent(dev->core_dev->device,
289 				      sizeof(struct ce_gd) * PPC4XX_NUM_GD,
290 				      &dev->gdr_pa, GFP_ATOMIC);
291 	if (!dev->gdr)
292 		return -ENOMEM;
293 
294 	return 0;
295 }
296 
297 static inline void crypto4xx_destroy_gdr(struct crypto4xx_device *dev)
298 {
299 	dma_free_coherent(dev->core_dev->device,
300 			  sizeof(struct ce_gd) * PPC4XX_NUM_GD,
301 			  dev->gdr, dev->gdr_pa);
302 }
303 
304 /*
305  * when this function is called.
306  * preemption or interrupt must be disabled
307  */
308 static u32 crypto4xx_get_n_gd(struct crypto4xx_device *dev, int n)
309 {
310 	u32 retval;
311 	u32 tmp;
312 
313 	if (n >= PPC4XX_NUM_GD)
314 		return ERING_WAS_FULL;
315 
316 	retval = dev->gdr_head;
317 	tmp = (dev->gdr_head + n) % PPC4XX_NUM_GD;
318 	if (dev->gdr_head > dev->gdr_tail) {
319 		if (tmp < dev->gdr_head && tmp >= dev->gdr_tail)
320 			return ERING_WAS_FULL;
321 	} else if (dev->gdr_head < dev->gdr_tail) {
322 		if (tmp < dev->gdr_head || tmp >= dev->gdr_tail)
323 			return ERING_WAS_FULL;
324 	}
325 	dev->gdr_head = tmp;
326 
327 	return retval;
328 }
329 
330 static u32 crypto4xx_put_gd_to_gdr(struct crypto4xx_device *dev)
331 {
332 	unsigned long flags;
333 
334 	spin_lock_irqsave(&dev->core_dev->lock, flags);
335 	if (dev->gdr_tail == dev->gdr_head) {
336 		spin_unlock_irqrestore(&dev->core_dev->lock, flags);
337 		return 0;
338 	}
339 
340 	if (dev->gdr_tail != PPC4XX_LAST_GD)
341 		dev->gdr_tail++;
342 	else
343 		dev->gdr_tail = 0;
344 
345 	spin_unlock_irqrestore(&dev->core_dev->lock, flags);
346 
347 	return 0;
348 }
349 
350 static inline struct ce_gd *crypto4xx_get_gdp(struct crypto4xx_device *dev,
351 					      dma_addr_t *gd_dma, u32 idx)
352 {
353 	*gd_dma = dev->gdr_pa + sizeof(struct ce_gd) * idx;
354 
355 	return &dev->gdr[idx];
356 }
357 
358 /**
359  * alloc memory for the scatter ring
360  * need to alloc buf for the ring
361  * sdr_tail, sdr_head and sdr_count are initialized by this function
362  */
363 static u32 crypto4xx_build_sdr(struct crypto4xx_device *dev)
364 {
365 	int i;
366 
367 	/* alloc memory for scatter descriptor ring */
368 	dev->sdr = dma_alloc_coherent(dev->core_dev->device,
369 				      sizeof(struct ce_sd) * PPC4XX_NUM_SD,
370 				      &dev->sdr_pa, GFP_ATOMIC);
371 	if (!dev->sdr)
372 		return -ENOMEM;
373 
374 	dev->scatter_buffer_va =
375 		dma_alloc_coherent(dev->core_dev->device,
376 			PPC4XX_SD_BUFFER_SIZE * PPC4XX_NUM_SD,
377 			&dev->scatter_buffer_pa, GFP_ATOMIC);
378 	if (!dev->scatter_buffer_va) {
379 		dma_free_coherent(dev->core_dev->device,
380 				  sizeof(struct ce_sd) * PPC4XX_NUM_SD,
381 				  dev->sdr, dev->sdr_pa);
382 		return -ENOMEM;
383 	}
384 
385 	for (i = 0; i < PPC4XX_NUM_SD; i++) {
386 		dev->sdr[i].ptr = dev->scatter_buffer_pa +
387 				  PPC4XX_SD_BUFFER_SIZE * i;
388 	}
389 
390 	return 0;
391 }
392 
393 static void crypto4xx_destroy_sdr(struct crypto4xx_device *dev)
394 {
395 	if (dev->sdr)
396 		dma_free_coherent(dev->core_dev->device,
397 				  sizeof(struct ce_sd) * PPC4XX_NUM_SD,
398 				  dev->sdr, dev->sdr_pa);
399 
400 	if (dev->scatter_buffer_va)
401 		dma_free_coherent(dev->core_dev->device,
402 				  PPC4XX_SD_BUFFER_SIZE * PPC4XX_NUM_SD,
403 				  dev->scatter_buffer_va,
404 				  dev->scatter_buffer_pa);
405 }
406 
407 /*
408  * when this function is called.
409  * preemption or interrupt must be disabled
410  */
411 static u32 crypto4xx_get_n_sd(struct crypto4xx_device *dev, int n)
412 {
413 	u32 retval;
414 	u32 tmp;
415 
416 	if (n >= PPC4XX_NUM_SD)
417 		return ERING_WAS_FULL;
418 
419 	retval = dev->sdr_head;
420 	tmp = (dev->sdr_head + n) % PPC4XX_NUM_SD;
421 	if (dev->sdr_head > dev->gdr_tail) {
422 		if (tmp < dev->sdr_head && tmp >= dev->sdr_tail)
423 			return ERING_WAS_FULL;
424 	} else if (dev->sdr_head < dev->sdr_tail) {
425 		if (tmp < dev->sdr_head || tmp >= dev->sdr_tail)
426 			return ERING_WAS_FULL;
427 	} /* the head = tail, or empty case is already take cared */
428 	dev->sdr_head = tmp;
429 
430 	return retval;
431 }
432 
433 static u32 crypto4xx_put_sd_to_sdr(struct crypto4xx_device *dev)
434 {
435 	unsigned long flags;
436 
437 	spin_lock_irqsave(&dev->core_dev->lock, flags);
438 	if (dev->sdr_tail == dev->sdr_head) {
439 		spin_unlock_irqrestore(&dev->core_dev->lock, flags);
440 		return 0;
441 	}
442 	if (dev->sdr_tail != PPC4XX_LAST_SD)
443 		dev->sdr_tail++;
444 	else
445 		dev->sdr_tail = 0;
446 	spin_unlock_irqrestore(&dev->core_dev->lock, flags);
447 
448 	return 0;
449 }
450 
451 static inline struct ce_sd *crypto4xx_get_sdp(struct crypto4xx_device *dev,
452 					      dma_addr_t *sd_dma, u32 idx)
453 {
454 	*sd_dma = dev->sdr_pa + sizeof(struct ce_sd) * idx;
455 
456 	return &dev->sdr[idx];
457 }
458 
459 static void crypto4xx_copy_pkt_to_dst(struct crypto4xx_device *dev,
460 				      struct ce_pd *pd,
461 				      struct pd_uinfo *pd_uinfo,
462 				      u32 nbytes,
463 				      struct scatterlist *dst)
464 {
465 	unsigned int first_sd = pd_uinfo->first_sd;
466 	unsigned int last_sd;
467 	unsigned int overflow = 0;
468 	unsigned int to_copy;
469 	unsigned int dst_start = 0;
470 
471 	/*
472 	 * Because the scatter buffers are all neatly organized in one
473 	 * big continuous ringbuffer; scatterwalk_map_and_copy() can
474 	 * be instructed to copy a range of buffers in one go.
475 	 */
476 
477 	last_sd = (first_sd + pd_uinfo->num_sd);
478 	if (last_sd > PPC4XX_LAST_SD) {
479 		last_sd = PPC4XX_LAST_SD;
480 		overflow = last_sd % PPC4XX_NUM_SD;
481 	}
482 
483 	while (nbytes) {
484 		void *buf = dev->scatter_buffer_va +
485 			first_sd * PPC4XX_SD_BUFFER_SIZE;
486 
487 		to_copy = min(nbytes, PPC4XX_SD_BUFFER_SIZE *
488 				      (1 + last_sd - first_sd));
489 		scatterwalk_map_and_copy(buf, dst, dst_start, to_copy, 1);
490 		nbytes -= to_copy;
491 
492 		if (overflow) {
493 			first_sd = 0;
494 			last_sd = overflow;
495 			dst_start += to_copy;
496 			overflow = 0;
497 		}
498 	}
499 }
500 
501 static void crypto4xx_copy_digest_to_dst(void *dst,
502 					struct pd_uinfo *pd_uinfo,
503 					struct crypto4xx_ctx *ctx)
504 {
505 	struct dynamic_sa_ctl *sa = (struct dynamic_sa_ctl *) ctx->sa_in;
506 
507 	if (sa->sa_command_0.bf.hash_alg == SA_HASH_ALG_SHA1) {
508 		memcpy(dst, pd_uinfo->sr_va->save_digest,
509 		       SA_HASH_ALG_SHA1_DIGEST_SIZE);
510 	}
511 }
512 
513 static void crypto4xx_ret_sg_desc(struct crypto4xx_device *dev,
514 				  struct pd_uinfo *pd_uinfo)
515 {
516 	int i;
517 	if (pd_uinfo->num_gd) {
518 		for (i = 0; i < pd_uinfo->num_gd; i++)
519 			crypto4xx_put_gd_to_gdr(dev);
520 		pd_uinfo->first_gd = 0xffffffff;
521 		pd_uinfo->num_gd = 0;
522 	}
523 	if (pd_uinfo->num_sd) {
524 		for (i = 0; i < pd_uinfo->num_sd; i++)
525 			crypto4xx_put_sd_to_sdr(dev);
526 
527 		pd_uinfo->first_sd = 0xffffffff;
528 		pd_uinfo->num_sd = 0;
529 	}
530 }
531 
532 static void crypto4xx_cipher_done(struct crypto4xx_device *dev,
533 				     struct pd_uinfo *pd_uinfo,
534 				     struct ce_pd *pd)
535 {
536 	struct skcipher_request *req;
537 	struct scatterlist *dst;
538 	dma_addr_t addr;
539 
540 	req = skcipher_request_cast(pd_uinfo->async_req);
541 
542 	if (pd_uinfo->using_sd) {
543 		crypto4xx_copy_pkt_to_dst(dev, pd, pd_uinfo,
544 					  req->cryptlen, req->dst);
545 	} else {
546 		dst = pd_uinfo->dest_va;
547 		addr = dma_map_page(dev->core_dev->device, sg_page(dst),
548 				    dst->offset, dst->length, DMA_FROM_DEVICE);
549 	}
550 
551 	if (pd_uinfo->sa_va->sa_command_0.bf.save_iv == SA_SAVE_IV) {
552 		struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
553 
554 		crypto4xx_memcpy_from_le32((u32 *)req->iv,
555 			pd_uinfo->sr_va->save_iv,
556 			crypto_skcipher_ivsize(skcipher));
557 	}
558 
559 	crypto4xx_ret_sg_desc(dev, pd_uinfo);
560 
561 	if (pd_uinfo->state & PD_ENTRY_BUSY)
562 		skcipher_request_complete(req, -EINPROGRESS);
563 	skcipher_request_complete(req, 0);
564 }
565 
566 static void crypto4xx_ahash_done(struct crypto4xx_device *dev,
567 				struct pd_uinfo *pd_uinfo)
568 {
569 	struct crypto4xx_ctx *ctx;
570 	struct ahash_request *ahash_req;
571 
572 	ahash_req = ahash_request_cast(pd_uinfo->async_req);
573 	ctx  = crypto_tfm_ctx(ahash_req->base.tfm);
574 
575 	crypto4xx_copy_digest_to_dst(ahash_req->result, pd_uinfo,
576 				     crypto_tfm_ctx(ahash_req->base.tfm));
577 	crypto4xx_ret_sg_desc(dev, pd_uinfo);
578 
579 	if (pd_uinfo->state & PD_ENTRY_BUSY)
580 		ahash_request_complete(ahash_req, -EINPROGRESS);
581 	ahash_request_complete(ahash_req, 0);
582 }
583 
584 static void crypto4xx_aead_done(struct crypto4xx_device *dev,
585 				struct pd_uinfo *pd_uinfo,
586 				struct ce_pd *pd)
587 {
588 	struct aead_request *aead_req = container_of(pd_uinfo->async_req,
589 		struct aead_request, base);
590 	struct scatterlist *dst = pd_uinfo->dest_va;
591 	size_t cp_len = crypto_aead_authsize(
592 		crypto_aead_reqtfm(aead_req));
593 	u32 icv[AES_BLOCK_SIZE];
594 	int err = 0;
595 
596 	if (pd_uinfo->using_sd) {
597 		crypto4xx_copy_pkt_to_dst(dev, pd, pd_uinfo,
598 					  pd->pd_ctl_len.bf.pkt_len,
599 					  dst);
600 	} else {
601 		dma_unmap_page(dev->core_dev->device, pd->dest, dst->length,
602 				DMA_FROM_DEVICE);
603 	}
604 
605 	if (pd_uinfo->sa_va->sa_command_0.bf.dir == DIR_OUTBOUND) {
606 		/* append icv at the end */
607 		crypto4xx_memcpy_from_le32(icv, pd_uinfo->sr_va->save_digest,
608 					   sizeof(icv));
609 
610 		scatterwalk_map_and_copy(icv, dst, aead_req->cryptlen,
611 					 cp_len, 1);
612 	} else {
613 		/* check icv at the end */
614 		scatterwalk_map_and_copy(icv, aead_req->src,
615 			aead_req->assoclen + aead_req->cryptlen -
616 			cp_len, cp_len, 0);
617 
618 		crypto4xx_memcpy_from_le32(icv, icv, sizeof(icv));
619 
620 		if (crypto_memneq(icv, pd_uinfo->sr_va->save_digest, cp_len))
621 			err = -EBADMSG;
622 	}
623 
624 	crypto4xx_ret_sg_desc(dev, pd_uinfo);
625 
626 	if (pd->pd_ctl.bf.status & 0xff) {
627 		if (!__ratelimit(&dev->aead_ratelimit)) {
628 			if (pd->pd_ctl.bf.status & 2)
629 				pr_err("pad fail error\n");
630 			if (pd->pd_ctl.bf.status & 4)
631 				pr_err("seqnum fail\n");
632 			if (pd->pd_ctl.bf.status & 8)
633 				pr_err("error _notify\n");
634 			pr_err("aead return err status = 0x%02x\n",
635 				pd->pd_ctl.bf.status & 0xff);
636 			pr_err("pd pad_ctl = 0x%08x\n",
637 				pd->pd_ctl.bf.pd_pad_ctl);
638 		}
639 		err = -EINVAL;
640 	}
641 
642 	if (pd_uinfo->state & PD_ENTRY_BUSY)
643 		aead_request_complete(aead_req, -EINPROGRESS);
644 
645 	aead_request_complete(aead_req, err);
646 }
647 
648 static void crypto4xx_pd_done(struct crypto4xx_device *dev, u32 idx)
649 {
650 	struct ce_pd *pd = &dev->pdr[idx];
651 	struct pd_uinfo *pd_uinfo = &dev->pdr_uinfo[idx];
652 
653 	switch (crypto_tfm_alg_type(pd_uinfo->async_req->tfm)) {
654 	case CRYPTO_ALG_TYPE_SKCIPHER:
655 		crypto4xx_cipher_done(dev, pd_uinfo, pd);
656 		break;
657 	case CRYPTO_ALG_TYPE_AEAD:
658 		crypto4xx_aead_done(dev, pd_uinfo, pd);
659 		break;
660 	case CRYPTO_ALG_TYPE_AHASH:
661 		crypto4xx_ahash_done(dev, pd_uinfo);
662 		break;
663 	}
664 }
665 
666 static void crypto4xx_stop_all(struct crypto4xx_core_device *core_dev)
667 {
668 	crypto4xx_destroy_pdr(core_dev->dev);
669 	crypto4xx_destroy_gdr(core_dev->dev);
670 	crypto4xx_destroy_sdr(core_dev->dev);
671 	iounmap(core_dev->dev->ce_base);
672 	kfree(core_dev->dev);
673 	kfree(core_dev);
674 }
675 
676 static u32 get_next_gd(u32 current)
677 {
678 	if (current != PPC4XX_LAST_GD)
679 		return current + 1;
680 	else
681 		return 0;
682 }
683 
684 static u32 get_next_sd(u32 current)
685 {
686 	if (current != PPC4XX_LAST_SD)
687 		return current + 1;
688 	else
689 		return 0;
690 }
691 
692 int crypto4xx_build_pd(struct crypto_async_request *req,
693 		       struct crypto4xx_ctx *ctx,
694 		       struct scatterlist *src,
695 		       struct scatterlist *dst,
696 		       const unsigned int datalen,
697 		       const __le32 *iv, const u32 iv_len,
698 		       const struct dynamic_sa_ctl *req_sa,
699 		       const unsigned int sa_len,
700 		       const unsigned int assoclen,
701 		       struct scatterlist *_dst)
702 {
703 	struct crypto4xx_device *dev = ctx->dev;
704 	struct dynamic_sa_ctl *sa;
705 	struct ce_gd *gd;
706 	struct ce_pd *pd;
707 	u32 num_gd, num_sd;
708 	u32 fst_gd = 0xffffffff;
709 	u32 fst_sd = 0xffffffff;
710 	u32 pd_entry;
711 	unsigned long flags;
712 	struct pd_uinfo *pd_uinfo;
713 	unsigned int nbytes = datalen;
714 	size_t offset_to_sr_ptr;
715 	u32 gd_idx = 0;
716 	int tmp;
717 	bool is_busy;
718 
719 	/* figure how many gd are needed */
720 	tmp = sg_nents_for_len(src, assoclen + datalen);
721 	if (tmp < 0) {
722 		dev_err(dev->core_dev->device, "Invalid number of src SG.\n");
723 		return tmp;
724 	}
725 	if (tmp == 1)
726 		tmp = 0;
727 	num_gd = tmp;
728 
729 	if (assoclen) {
730 		nbytes += assoclen;
731 		dst = scatterwalk_ffwd(_dst, dst, assoclen);
732 	}
733 
734 	/* figure how many sd are needed */
735 	if (sg_is_last(dst)) {
736 		num_sd = 0;
737 	} else {
738 		if (datalen > PPC4XX_SD_BUFFER_SIZE) {
739 			num_sd = datalen / PPC4XX_SD_BUFFER_SIZE;
740 			if (datalen % PPC4XX_SD_BUFFER_SIZE)
741 				num_sd++;
742 		} else {
743 			num_sd = 1;
744 		}
745 	}
746 
747 	/*
748 	 * The follow section of code needs to be protected
749 	 * The gather ring and scatter ring needs to be consecutive
750 	 * In case of run out of any kind of descriptor, the descriptor
751 	 * already got must be return the original place.
752 	 */
753 	spin_lock_irqsave(&dev->core_dev->lock, flags);
754 	/*
755 	 * Let the caller know to slow down, once more than 13/16ths = 81%
756 	 * of the available data contexts are being used simultaneously.
757 	 *
758 	 * With PPC4XX_NUM_PD = 256, this will leave a "backlog queue" for
759 	 * 31 more contexts. Before new requests have to be rejected.
760 	 */
761 	if (req->flags & CRYPTO_TFM_REQ_MAY_BACKLOG) {
762 		is_busy = ((dev->pdr_head - dev->pdr_tail) % PPC4XX_NUM_PD) >=
763 			((PPC4XX_NUM_PD * 13) / 16);
764 	} else {
765 		/*
766 		 * To fix contention issues between ipsec (no blacklog) and
767 		 * dm-crypto (backlog) reserve 32 entries for "no backlog"
768 		 * data contexts.
769 		 */
770 		is_busy = ((dev->pdr_head - dev->pdr_tail) % PPC4XX_NUM_PD) >=
771 			((PPC4XX_NUM_PD * 15) / 16);
772 
773 		if (is_busy) {
774 			spin_unlock_irqrestore(&dev->core_dev->lock, flags);
775 			return -EBUSY;
776 		}
777 	}
778 
779 	if (num_gd) {
780 		fst_gd = crypto4xx_get_n_gd(dev, num_gd);
781 		if (fst_gd == ERING_WAS_FULL) {
782 			spin_unlock_irqrestore(&dev->core_dev->lock, flags);
783 			return -EAGAIN;
784 		}
785 	}
786 	if (num_sd) {
787 		fst_sd = crypto4xx_get_n_sd(dev, num_sd);
788 		if (fst_sd == ERING_WAS_FULL) {
789 			if (num_gd)
790 				dev->gdr_head = fst_gd;
791 			spin_unlock_irqrestore(&dev->core_dev->lock, flags);
792 			return -EAGAIN;
793 		}
794 	}
795 	pd_entry = crypto4xx_get_pd_from_pdr_nolock(dev);
796 	if (pd_entry == ERING_WAS_FULL) {
797 		if (num_gd)
798 			dev->gdr_head = fst_gd;
799 		if (num_sd)
800 			dev->sdr_head = fst_sd;
801 		spin_unlock_irqrestore(&dev->core_dev->lock, flags);
802 		return -EAGAIN;
803 	}
804 	spin_unlock_irqrestore(&dev->core_dev->lock, flags);
805 
806 	pd = &dev->pdr[pd_entry];
807 	pd->sa_len = sa_len;
808 
809 	pd_uinfo = &dev->pdr_uinfo[pd_entry];
810 	pd_uinfo->async_req = req;
811 	pd_uinfo->num_gd = num_gd;
812 	pd_uinfo->num_sd = num_sd;
813 
814 	if (iv_len)
815 		memcpy(pd_uinfo->sr_va->save_iv, iv, iv_len);
816 
817 	sa = pd_uinfo->sa_va;
818 	memcpy(sa, req_sa, sa_len * 4);
819 
820 	sa->sa_command_1.bf.hash_crypto_offset = (assoclen >> 2);
821 	offset_to_sr_ptr = get_dynamic_sa_offset_state_ptr_field(sa);
822 	*(u32 *)((unsigned long)sa + offset_to_sr_ptr) = pd_uinfo->sr_pa;
823 
824 	if (num_gd) {
825 		dma_addr_t gd_dma;
826 		struct scatterlist *sg;
827 
828 		/* get first gd we are going to use */
829 		gd_idx = fst_gd;
830 		pd_uinfo->first_gd = fst_gd;
831 		pd_uinfo->num_gd = num_gd;
832 		gd = crypto4xx_get_gdp(dev, &gd_dma, gd_idx);
833 		pd->src = gd_dma;
834 		/* enable gather */
835 		sa->sa_command_0.bf.gather = 1;
836 		/* walk the sg, and setup gather array */
837 
838 		sg = src;
839 		while (nbytes) {
840 			size_t len;
841 
842 			len = min(sg->length, nbytes);
843 			gd->ptr = dma_map_page(dev->core_dev->device,
844 				sg_page(sg), sg->offset, len, DMA_TO_DEVICE);
845 			gd->ctl_len.len = len;
846 			gd->ctl_len.done = 0;
847 			gd->ctl_len.ready = 1;
848 			if (len >= nbytes)
849 				break;
850 
851 			nbytes -= sg->length;
852 			gd_idx = get_next_gd(gd_idx);
853 			gd = crypto4xx_get_gdp(dev, &gd_dma, gd_idx);
854 			sg = sg_next(sg);
855 		}
856 	} else {
857 		pd->src = (u32)dma_map_page(dev->core_dev->device, sg_page(src),
858 				src->offset, min(nbytes, src->length),
859 				DMA_TO_DEVICE);
860 		/*
861 		 * Disable gather in sa command
862 		 */
863 		sa->sa_command_0.bf.gather = 0;
864 		/*
865 		 * Indicate gather array is not used
866 		 */
867 		pd_uinfo->first_gd = 0xffffffff;
868 		pd_uinfo->num_gd = 0;
869 	}
870 	if (sg_is_last(dst)) {
871 		/*
872 		 * we know application give us dst a whole piece of memory
873 		 * no need to use scatter ring.
874 		 */
875 		pd_uinfo->using_sd = 0;
876 		pd_uinfo->first_sd = 0xffffffff;
877 		pd_uinfo->num_sd = 0;
878 		pd_uinfo->dest_va = dst;
879 		sa->sa_command_0.bf.scatter = 0;
880 		pd->dest = (u32)dma_map_page(dev->core_dev->device,
881 					     sg_page(dst), dst->offset,
882 					     min(datalen, dst->length),
883 					     DMA_TO_DEVICE);
884 	} else {
885 		dma_addr_t sd_dma;
886 		struct ce_sd *sd = NULL;
887 
888 		u32 sd_idx = fst_sd;
889 		nbytes = datalen;
890 		sa->sa_command_0.bf.scatter = 1;
891 		pd_uinfo->using_sd = 1;
892 		pd_uinfo->dest_va = dst;
893 		pd_uinfo->first_sd = fst_sd;
894 		pd_uinfo->num_sd = num_sd;
895 		sd = crypto4xx_get_sdp(dev, &sd_dma, sd_idx);
896 		pd->dest = sd_dma;
897 		/* setup scatter descriptor */
898 		sd->ctl.done = 0;
899 		sd->ctl.rdy = 1;
900 		/* sd->ptr should be setup by sd_init routine*/
901 		if (nbytes >= PPC4XX_SD_BUFFER_SIZE)
902 			nbytes -= PPC4XX_SD_BUFFER_SIZE;
903 		else
904 			nbytes = 0;
905 		while (nbytes) {
906 			sd_idx = get_next_sd(sd_idx);
907 			sd = crypto4xx_get_sdp(dev, &sd_dma, sd_idx);
908 			/* setup scatter descriptor */
909 			sd->ctl.done = 0;
910 			sd->ctl.rdy = 1;
911 			if (nbytes >= PPC4XX_SD_BUFFER_SIZE) {
912 				nbytes -= PPC4XX_SD_BUFFER_SIZE;
913 			} else {
914 				/*
915 				 * SD entry can hold PPC4XX_SD_BUFFER_SIZE,
916 				 * which is more than nbytes, so done.
917 				 */
918 				nbytes = 0;
919 			}
920 		}
921 	}
922 
923 	pd->pd_ctl.w = PD_CTL_HOST_READY |
924 		((crypto_tfm_alg_type(req->tfm) == CRYPTO_ALG_TYPE_AHASH) |
925 		 (crypto_tfm_alg_type(req->tfm) == CRYPTO_ALG_TYPE_AEAD) ?
926 			PD_CTL_HASH_FINAL : 0);
927 	pd->pd_ctl_len.w = 0x00400000 | (assoclen + datalen);
928 	pd_uinfo->state = PD_ENTRY_INUSE | (is_busy ? PD_ENTRY_BUSY : 0);
929 
930 	wmb();
931 	/* write any value to push engine to read a pd */
932 	writel(0, dev->ce_base + CRYPTO4XX_INT_DESCR_RD);
933 	writel(1, dev->ce_base + CRYPTO4XX_INT_DESCR_RD);
934 	return is_busy ? -EBUSY : -EINPROGRESS;
935 }
936 
937 /**
938  * Algorithm Registration Functions
939  */
940 static void crypto4xx_ctx_init(struct crypto4xx_alg *amcc_alg,
941 			       struct crypto4xx_ctx *ctx)
942 {
943 	ctx->dev = amcc_alg->dev;
944 	ctx->sa_in = NULL;
945 	ctx->sa_out = NULL;
946 	ctx->sa_len = 0;
947 }
948 
949 static int crypto4xx_sk_init(struct crypto_skcipher *sk)
950 {
951 	struct skcipher_alg *alg = crypto_skcipher_alg(sk);
952 	struct crypto4xx_alg *amcc_alg;
953 	struct crypto4xx_ctx *ctx =  crypto_skcipher_ctx(sk);
954 
955 	if (alg->base.cra_flags & CRYPTO_ALG_NEED_FALLBACK) {
956 		ctx->sw_cipher.cipher =
957 			crypto_alloc_skcipher(alg->base.cra_name, 0,
958 					      CRYPTO_ALG_NEED_FALLBACK |
959 					      CRYPTO_ALG_ASYNC);
960 		if (IS_ERR(ctx->sw_cipher.cipher))
961 			return PTR_ERR(ctx->sw_cipher.cipher);
962 
963 		crypto_skcipher_set_reqsize(sk,
964 			sizeof(struct skcipher_request) + 32 +
965 			crypto_skcipher_reqsize(ctx->sw_cipher.cipher));
966 	}
967 
968 	amcc_alg = container_of(alg, struct crypto4xx_alg, alg.u.cipher);
969 	crypto4xx_ctx_init(amcc_alg, ctx);
970 	return 0;
971 }
972 
973 static void crypto4xx_common_exit(struct crypto4xx_ctx *ctx)
974 {
975 	crypto4xx_free_sa(ctx);
976 }
977 
978 static void crypto4xx_sk_exit(struct crypto_skcipher *sk)
979 {
980 	struct crypto4xx_ctx *ctx =  crypto_skcipher_ctx(sk);
981 
982 	crypto4xx_common_exit(ctx);
983 	if (ctx->sw_cipher.cipher)
984 		crypto_free_skcipher(ctx->sw_cipher.cipher);
985 }
986 
987 static int crypto4xx_aead_init(struct crypto_aead *tfm)
988 {
989 	struct aead_alg *alg = crypto_aead_alg(tfm);
990 	struct crypto4xx_ctx *ctx = crypto_aead_ctx(tfm);
991 	struct crypto4xx_alg *amcc_alg;
992 
993 	ctx->sw_cipher.aead = crypto_alloc_aead(alg->base.cra_name, 0,
994 						CRYPTO_ALG_NEED_FALLBACK |
995 						CRYPTO_ALG_ASYNC);
996 	if (IS_ERR(ctx->sw_cipher.aead))
997 		return PTR_ERR(ctx->sw_cipher.aead);
998 
999 	amcc_alg = container_of(alg, struct crypto4xx_alg, alg.u.aead);
1000 	crypto4xx_ctx_init(amcc_alg, ctx);
1001 	crypto_aead_set_reqsize(tfm, max(sizeof(struct aead_request) + 32 +
1002 				crypto_aead_reqsize(ctx->sw_cipher.aead),
1003 				sizeof(struct crypto4xx_aead_reqctx)));
1004 	return 0;
1005 }
1006 
1007 static void crypto4xx_aead_exit(struct crypto_aead *tfm)
1008 {
1009 	struct crypto4xx_ctx *ctx = crypto_aead_ctx(tfm);
1010 
1011 	crypto4xx_common_exit(ctx);
1012 	crypto_free_aead(ctx->sw_cipher.aead);
1013 }
1014 
1015 static int crypto4xx_register_alg(struct crypto4xx_device *sec_dev,
1016 				  struct crypto4xx_alg_common *crypto_alg,
1017 				  int array_size)
1018 {
1019 	struct crypto4xx_alg *alg;
1020 	int i;
1021 	int rc = 0;
1022 
1023 	for (i = 0; i < array_size; i++) {
1024 		alg = kzalloc(sizeof(struct crypto4xx_alg), GFP_KERNEL);
1025 		if (!alg)
1026 			return -ENOMEM;
1027 
1028 		alg->alg = crypto_alg[i];
1029 		alg->dev = sec_dev;
1030 
1031 		switch (alg->alg.type) {
1032 		case CRYPTO_ALG_TYPE_AEAD:
1033 			rc = crypto_register_aead(&alg->alg.u.aead);
1034 			break;
1035 
1036 		case CRYPTO_ALG_TYPE_AHASH:
1037 			rc = crypto_register_ahash(&alg->alg.u.hash);
1038 			break;
1039 
1040 		case CRYPTO_ALG_TYPE_RNG:
1041 			rc = crypto_register_rng(&alg->alg.u.rng);
1042 			break;
1043 
1044 		default:
1045 			rc = crypto_register_skcipher(&alg->alg.u.cipher);
1046 			break;
1047 		}
1048 
1049 		if (rc)
1050 			kfree(alg);
1051 		else
1052 			list_add_tail(&alg->entry, &sec_dev->alg_list);
1053 	}
1054 
1055 	return 0;
1056 }
1057 
1058 static void crypto4xx_unregister_alg(struct crypto4xx_device *sec_dev)
1059 {
1060 	struct crypto4xx_alg *alg, *tmp;
1061 
1062 	list_for_each_entry_safe(alg, tmp, &sec_dev->alg_list, entry) {
1063 		list_del(&alg->entry);
1064 		switch (alg->alg.type) {
1065 		case CRYPTO_ALG_TYPE_AHASH:
1066 			crypto_unregister_ahash(&alg->alg.u.hash);
1067 			break;
1068 
1069 		case CRYPTO_ALG_TYPE_AEAD:
1070 			crypto_unregister_aead(&alg->alg.u.aead);
1071 			break;
1072 
1073 		case CRYPTO_ALG_TYPE_RNG:
1074 			crypto_unregister_rng(&alg->alg.u.rng);
1075 			break;
1076 
1077 		default:
1078 			crypto_unregister_skcipher(&alg->alg.u.cipher);
1079 		}
1080 		kfree(alg);
1081 	}
1082 }
1083 
1084 static void crypto4xx_bh_tasklet_cb(unsigned long data)
1085 {
1086 	struct device *dev = (struct device *)data;
1087 	struct crypto4xx_core_device *core_dev = dev_get_drvdata(dev);
1088 	struct pd_uinfo *pd_uinfo;
1089 	struct ce_pd *pd;
1090 	u32 tail = core_dev->dev->pdr_tail;
1091 	u32 head = core_dev->dev->pdr_head;
1092 
1093 	do {
1094 		pd_uinfo = &core_dev->dev->pdr_uinfo[tail];
1095 		pd = &core_dev->dev->pdr[tail];
1096 		if ((pd_uinfo->state & PD_ENTRY_INUSE) &&
1097 		     ((READ_ONCE(pd->pd_ctl.w) &
1098 		       (PD_CTL_PE_DONE | PD_CTL_HOST_READY)) ==
1099 		       PD_CTL_PE_DONE)) {
1100 			crypto4xx_pd_done(core_dev->dev, tail);
1101 			tail = crypto4xx_put_pd_to_pdr(core_dev->dev, tail);
1102 		} else {
1103 			/* if tail not done, break */
1104 			break;
1105 		}
1106 	} while (head != tail);
1107 }
1108 
1109 /**
1110  * Top Half of isr.
1111  */
1112 static inline irqreturn_t crypto4xx_interrupt_handler(int irq, void *data,
1113 						      u32 clr_val)
1114 {
1115 	struct device *dev = (struct device *)data;
1116 	struct crypto4xx_core_device *core_dev = dev_get_drvdata(dev);
1117 
1118 	writel(clr_val, core_dev->dev->ce_base + CRYPTO4XX_INT_CLR);
1119 	tasklet_schedule(&core_dev->tasklet);
1120 
1121 	return IRQ_HANDLED;
1122 }
1123 
1124 static irqreturn_t crypto4xx_ce_interrupt_handler(int irq, void *data)
1125 {
1126 	return crypto4xx_interrupt_handler(irq, data, PPC4XX_INTERRUPT_CLR);
1127 }
1128 
1129 static irqreturn_t crypto4xx_ce_interrupt_handler_revb(int irq, void *data)
1130 {
1131 	return crypto4xx_interrupt_handler(irq, data, PPC4XX_INTERRUPT_CLR |
1132 		PPC4XX_TMO_ERR_INT);
1133 }
1134 
1135 static int ppc4xx_prng_data_read(struct crypto4xx_device *dev,
1136 				 u8 *data, unsigned int max)
1137 {
1138 	unsigned int i, curr = 0;
1139 	u32 val[2];
1140 
1141 	do {
1142 		/* trigger PRN generation */
1143 		writel(PPC4XX_PRNG_CTRL_AUTO_EN,
1144 		       dev->ce_base + CRYPTO4XX_PRNG_CTRL);
1145 
1146 		for (i = 0; i < 1024; i++) {
1147 			/* usually 19 iterations are enough */
1148 			if ((readl(dev->ce_base + CRYPTO4XX_PRNG_STAT) &
1149 			     CRYPTO4XX_PRNG_STAT_BUSY))
1150 				continue;
1151 
1152 			val[0] = readl_be(dev->ce_base + CRYPTO4XX_PRNG_RES_0);
1153 			val[1] = readl_be(dev->ce_base + CRYPTO4XX_PRNG_RES_1);
1154 			break;
1155 		}
1156 		if (i == 1024)
1157 			return -ETIMEDOUT;
1158 
1159 		if ((max - curr) >= 8) {
1160 			memcpy(data, &val, 8);
1161 			data += 8;
1162 			curr += 8;
1163 		} else {
1164 			/* copy only remaining bytes */
1165 			memcpy(data, &val, max - curr);
1166 			break;
1167 		}
1168 	} while (curr < max);
1169 
1170 	return curr;
1171 }
1172 
1173 static int crypto4xx_prng_generate(struct crypto_rng *tfm,
1174 				   const u8 *src, unsigned int slen,
1175 				   u8 *dstn, unsigned int dlen)
1176 {
1177 	struct rng_alg *alg = crypto_rng_alg(tfm);
1178 	struct crypto4xx_alg *amcc_alg;
1179 	struct crypto4xx_device *dev;
1180 	int ret;
1181 
1182 	amcc_alg = container_of(alg, struct crypto4xx_alg, alg.u.rng);
1183 	dev = amcc_alg->dev;
1184 
1185 	mutex_lock(&dev->core_dev->rng_lock);
1186 	ret = ppc4xx_prng_data_read(dev, dstn, dlen);
1187 	mutex_unlock(&dev->core_dev->rng_lock);
1188 	return ret;
1189 }
1190 
1191 
1192 static int crypto4xx_prng_seed(struct crypto_rng *tfm, const u8 *seed,
1193 			unsigned int slen)
1194 {
1195 	return 0;
1196 }
1197 
1198 /**
1199  * Supported Crypto Algorithms
1200  */
1201 static struct crypto4xx_alg_common crypto4xx_alg[] = {
1202 	/* Crypto AES modes */
1203 	{ .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = {
1204 		.base = {
1205 			.cra_name = "cbc(aes)",
1206 			.cra_driver_name = "cbc-aes-ppc4xx",
1207 			.cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
1208 			.cra_flags = CRYPTO_ALG_ASYNC |
1209 				CRYPTO_ALG_KERN_DRIVER_ONLY,
1210 			.cra_blocksize = AES_BLOCK_SIZE,
1211 			.cra_ctxsize = sizeof(struct crypto4xx_ctx),
1212 			.cra_module = THIS_MODULE,
1213 		},
1214 		.min_keysize = AES_MIN_KEY_SIZE,
1215 		.max_keysize = AES_MAX_KEY_SIZE,
1216 		.ivsize	= AES_IV_SIZE,
1217 		.setkey = crypto4xx_setkey_aes_cbc,
1218 		.encrypt = crypto4xx_encrypt_iv,
1219 		.decrypt = crypto4xx_decrypt_iv,
1220 		.init = crypto4xx_sk_init,
1221 		.exit = crypto4xx_sk_exit,
1222 	} },
1223 	{ .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = {
1224 		.base = {
1225 			.cra_name = "cfb(aes)",
1226 			.cra_driver_name = "cfb-aes-ppc4xx",
1227 			.cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
1228 			.cra_flags = CRYPTO_ALG_ASYNC |
1229 				CRYPTO_ALG_KERN_DRIVER_ONLY,
1230 			.cra_blocksize = AES_BLOCK_SIZE,
1231 			.cra_ctxsize = sizeof(struct crypto4xx_ctx),
1232 			.cra_module = THIS_MODULE,
1233 		},
1234 		.min_keysize = AES_MIN_KEY_SIZE,
1235 		.max_keysize = AES_MAX_KEY_SIZE,
1236 		.ivsize	= AES_IV_SIZE,
1237 		.setkey	= crypto4xx_setkey_aes_cfb,
1238 		.encrypt = crypto4xx_encrypt_iv,
1239 		.decrypt = crypto4xx_decrypt_iv,
1240 		.init = crypto4xx_sk_init,
1241 		.exit = crypto4xx_sk_exit,
1242 	} },
1243 	{ .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = {
1244 		.base = {
1245 			.cra_name = "ctr(aes)",
1246 			.cra_driver_name = "ctr-aes-ppc4xx",
1247 			.cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
1248 			.cra_flags = CRYPTO_ALG_NEED_FALLBACK |
1249 				CRYPTO_ALG_ASYNC |
1250 				CRYPTO_ALG_KERN_DRIVER_ONLY,
1251 			.cra_blocksize = AES_BLOCK_SIZE,
1252 			.cra_ctxsize = sizeof(struct crypto4xx_ctx),
1253 			.cra_module = THIS_MODULE,
1254 		},
1255 		.min_keysize = AES_MIN_KEY_SIZE,
1256 		.max_keysize = AES_MAX_KEY_SIZE,
1257 		.ivsize	= AES_IV_SIZE,
1258 		.setkey	= crypto4xx_setkey_aes_ctr,
1259 		.encrypt = crypto4xx_encrypt_ctr,
1260 		.decrypt = crypto4xx_decrypt_ctr,
1261 		.init = crypto4xx_sk_init,
1262 		.exit = crypto4xx_sk_exit,
1263 	} },
1264 	{ .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = {
1265 		.base = {
1266 			.cra_name = "rfc3686(ctr(aes))",
1267 			.cra_driver_name = "rfc3686-ctr-aes-ppc4xx",
1268 			.cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
1269 			.cra_flags = CRYPTO_ALG_ASYNC |
1270 				CRYPTO_ALG_KERN_DRIVER_ONLY,
1271 			.cra_blocksize = AES_BLOCK_SIZE,
1272 			.cra_ctxsize = sizeof(struct crypto4xx_ctx),
1273 			.cra_module = THIS_MODULE,
1274 		},
1275 		.min_keysize = AES_MIN_KEY_SIZE + CTR_RFC3686_NONCE_SIZE,
1276 		.max_keysize = AES_MAX_KEY_SIZE + CTR_RFC3686_NONCE_SIZE,
1277 		.ivsize	= CTR_RFC3686_IV_SIZE,
1278 		.setkey = crypto4xx_setkey_rfc3686,
1279 		.encrypt = crypto4xx_rfc3686_encrypt,
1280 		.decrypt = crypto4xx_rfc3686_decrypt,
1281 		.init = crypto4xx_sk_init,
1282 		.exit = crypto4xx_sk_exit,
1283 	} },
1284 	{ .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = {
1285 		.base = {
1286 			.cra_name = "ecb(aes)",
1287 			.cra_driver_name = "ecb-aes-ppc4xx",
1288 			.cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
1289 			.cra_flags = CRYPTO_ALG_ASYNC |
1290 				CRYPTO_ALG_KERN_DRIVER_ONLY,
1291 			.cra_blocksize = AES_BLOCK_SIZE,
1292 			.cra_ctxsize = sizeof(struct crypto4xx_ctx),
1293 			.cra_module = THIS_MODULE,
1294 		},
1295 		.min_keysize = AES_MIN_KEY_SIZE,
1296 		.max_keysize = AES_MAX_KEY_SIZE,
1297 		.setkey	= crypto4xx_setkey_aes_ecb,
1298 		.encrypt = crypto4xx_encrypt_noiv,
1299 		.decrypt = crypto4xx_decrypt_noiv,
1300 		.init = crypto4xx_sk_init,
1301 		.exit = crypto4xx_sk_exit,
1302 	} },
1303 	{ .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = {
1304 		.base = {
1305 			.cra_name = "ofb(aes)",
1306 			.cra_driver_name = "ofb-aes-ppc4xx",
1307 			.cra_priority = CRYPTO4XX_CRYPTO_PRIORITY,
1308 			.cra_flags = CRYPTO_ALG_ASYNC |
1309 				CRYPTO_ALG_KERN_DRIVER_ONLY,
1310 			.cra_blocksize = AES_BLOCK_SIZE,
1311 			.cra_ctxsize = sizeof(struct crypto4xx_ctx),
1312 			.cra_module = THIS_MODULE,
1313 		},
1314 		.min_keysize = AES_MIN_KEY_SIZE,
1315 		.max_keysize = AES_MAX_KEY_SIZE,
1316 		.ivsize	= AES_IV_SIZE,
1317 		.setkey	= crypto4xx_setkey_aes_ofb,
1318 		.encrypt = crypto4xx_encrypt_iv,
1319 		.decrypt = crypto4xx_decrypt_iv,
1320 		.init = crypto4xx_sk_init,
1321 		.exit = crypto4xx_sk_exit,
1322 	} },
1323 
1324 	/* AEAD */
1325 	{ .type = CRYPTO_ALG_TYPE_AEAD, .u.aead = {
1326 		.setkey		= crypto4xx_setkey_aes_ccm,
1327 		.setauthsize	= crypto4xx_setauthsize_aead,
1328 		.encrypt	= crypto4xx_encrypt_aes_ccm,
1329 		.decrypt	= crypto4xx_decrypt_aes_ccm,
1330 		.init		= crypto4xx_aead_init,
1331 		.exit		= crypto4xx_aead_exit,
1332 		.ivsize		= AES_BLOCK_SIZE,
1333 		.maxauthsize    = 16,
1334 		.base = {
1335 			.cra_name	= "ccm(aes)",
1336 			.cra_driver_name = "ccm-aes-ppc4xx",
1337 			.cra_priority	= CRYPTO4XX_CRYPTO_PRIORITY,
1338 			.cra_flags	= CRYPTO_ALG_ASYNC |
1339 					  CRYPTO_ALG_NEED_FALLBACK |
1340 					  CRYPTO_ALG_KERN_DRIVER_ONLY,
1341 			.cra_blocksize	= 1,
1342 			.cra_ctxsize	= sizeof(struct crypto4xx_ctx),
1343 			.cra_module	= THIS_MODULE,
1344 		},
1345 	} },
1346 	{ .type = CRYPTO_ALG_TYPE_AEAD, .u.aead = {
1347 		.setkey		= crypto4xx_setkey_aes_gcm,
1348 		.setauthsize	= crypto4xx_setauthsize_aead,
1349 		.encrypt	= crypto4xx_encrypt_aes_gcm,
1350 		.decrypt	= crypto4xx_decrypt_aes_gcm,
1351 		.init		= crypto4xx_aead_init,
1352 		.exit		= crypto4xx_aead_exit,
1353 		.ivsize		= GCM_AES_IV_SIZE,
1354 		.maxauthsize	= 16,
1355 		.base = {
1356 			.cra_name	= "gcm(aes)",
1357 			.cra_driver_name = "gcm-aes-ppc4xx",
1358 			.cra_priority	= CRYPTO4XX_CRYPTO_PRIORITY,
1359 			.cra_flags	= CRYPTO_ALG_ASYNC |
1360 					  CRYPTO_ALG_NEED_FALLBACK |
1361 					  CRYPTO_ALG_KERN_DRIVER_ONLY,
1362 			.cra_blocksize	= 1,
1363 			.cra_ctxsize	= sizeof(struct crypto4xx_ctx),
1364 			.cra_module	= THIS_MODULE,
1365 		},
1366 	} },
1367 	{ .type = CRYPTO_ALG_TYPE_RNG, .u.rng = {
1368 		.base = {
1369 			.cra_name		= "stdrng",
1370 			.cra_driver_name        = "crypto4xx_rng",
1371 			.cra_priority		= 300,
1372 			.cra_ctxsize		= 0,
1373 			.cra_module		= THIS_MODULE,
1374 		},
1375 		.generate               = crypto4xx_prng_generate,
1376 		.seed                   = crypto4xx_prng_seed,
1377 		.seedsize               = 0,
1378 	} },
1379 };
1380 
1381 /**
1382  * Module Initialization Routine
1383  */
1384 static int crypto4xx_probe(struct platform_device *ofdev)
1385 {
1386 	int rc;
1387 	struct resource res;
1388 	struct device *dev = &ofdev->dev;
1389 	struct crypto4xx_core_device *core_dev;
1390 	u32 pvr;
1391 	bool is_revb = true;
1392 
1393 	rc = of_address_to_resource(ofdev->dev.of_node, 0, &res);
1394 	if (rc)
1395 		return -ENODEV;
1396 
1397 	if (of_find_compatible_node(NULL, NULL, "amcc,ppc460ex-crypto")) {
1398 		mtdcri(SDR0, PPC460EX_SDR0_SRST,
1399 		       mfdcri(SDR0, PPC460EX_SDR0_SRST) | PPC460EX_CE_RESET);
1400 		mtdcri(SDR0, PPC460EX_SDR0_SRST,
1401 		       mfdcri(SDR0, PPC460EX_SDR0_SRST) & ~PPC460EX_CE_RESET);
1402 	} else if (of_find_compatible_node(NULL, NULL,
1403 			"amcc,ppc405ex-crypto")) {
1404 		mtdcri(SDR0, PPC405EX_SDR0_SRST,
1405 		       mfdcri(SDR0, PPC405EX_SDR0_SRST) | PPC405EX_CE_RESET);
1406 		mtdcri(SDR0, PPC405EX_SDR0_SRST,
1407 		       mfdcri(SDR0, PPC405EX_SDR0_SRST) & ~PPC405EX_CE_RESET);
1408 		is_revb = false;
1409 	} else if (of_find_compatible_node(NULL, NULL,
1410 			"amcc,ppc460sx-crypto")) {
1411 		mtdcri(SDR0, PPC460SX_SDR0_SRST,
1412 		       mfdcri(SDR0, PPC460SX_SDR0_SRST) | PPC460SX_CE_RESET);
1413 		mtdcri(SDR0, PPC460SX_SDR0_SRST,
1414 		       mfdcri(SDR0, PPC460SX_SDR0_SRST) & ~PPC460SX_CE_RESET);
1415 	} else {
1416 		printk(KERN_ERR "Crypto Function Not supported!\n");
1417 		return -EINVAL;
1418 	}
1419 
1420 	core_dev = kzalloc(sizeof(struct crypto4xx_core_device), GFP_KERNEL);
1421 	if (!core_dev)
1422 		return -ENOMEM;
1423 
1424 	dev_set_drvdata(dev, core_dev);
1425 	core_dev->ofdev = ofdev;
1426 	core_dev->dev = kzalloc(sizeof(struct crypto4xx_device), GFP_KERNEL);
1427 	rc = -ENOMEM;
1428 	if (!core_dev->dev)
1429 		goto err_alloc_dev;
1430 
1431 	/*
1432 	 * Older version of 460EX/GT have a hardware bug.
1433 	 * Hence they do not support H/W based security intr coalescing
1434 	 */
1435 	pvr = mfspr(SPRN_PVR);
1436 	if (is_revb && ((pvr >> 4) == 0x130218A)) {
1437 		u32 min = PVR_MIN(pvr);
1438 
1439 		if (min < 4) {
1440 			dev_info(dev, "RevA detected - disable interrupt coalescing\n");
1441 			is_revb = false;
1442 		}
1443 	}
1444 
1445 	core_dev->dev->core_dev = core_dev;
1446 	core_dev->dev->is_revb = is_revb;
1447 	core_dev->device = dev;
1448 	mutex_init(&core_dev->rng_lock);
1449 	spin_lock_init(&core_dev->lock);
1450 	INIT_LIST_HEAD(&core_dev->dev->alg_list);
1451 	ratelimit_default_init(&core_dev->dev->aead_ratelimit);
1452 	rc = crypto4xx_build_pdr(core_dev->dev);
1453 	if (rc)
1454 		goto err_build_pdr;
1455 
1456 	rc = crypto4xx_build_gdr(core_dev->dev);
1457 	if (rc)
1458 		goto err_build_pdr;
1459 
1460 	rc = crypto4xx_build_sdr(core_dev->dev);
1461 	if (rc)
1462 		goto err_build_sdr;
1463 
1464 	/* Init tasklet for bottom half processing */
1465 	tasklet_init(&core_dev->tasklet, crypto4xx_bh_tasklet_cb,
1466 		     (unsigned long) dev);
1467 
1468 	core_dev->dev->ce_base = of_iomap(ofdev->dev.of_node, 0);
1469 	if (!core_dev->dev->ce_base) {
1470 		dev_err(dev, "failed to of_iomap\n");
1471 		rc = -ENOMEM;
1472 		goto err_iomap;
1473 	}
1474 
1475 	/* Register for Crypto isr, Crypto Engine IRQ */
1476 	core_dev->irq = irq_of_parse_and_map(ofdev->dev.of_node, 0);
1477 	rc = request_irq(core_dev->irq, is_revb ?
1478 			 crypto4xx_ce_interrupt_handler_revb :
1479 			 crypto4xx_ce_interrupt_handler, 0,
1480 			 KBUILD_MODNAME, dev);
1481 	if (rc)
1482 		goto err_request_irq;
1483 
1484 	/* need to setup pdr, rdr, gdr and sdr before this */
1485 	crypto4xx_hw_init(core_dev->dev);
1486 
1487 	/* Register security algorithms with Linux CryptoAPI */
1488 	rc = crypto4xx_register_alg(core_dev->dev, crypto4xx_alg,
1489 			       ARRAY_SIZE(crypto4xx_alg));
1490 	if (rc)
1491 		goto err_start_dev;
1492 
1493 	ppc4xx_trng_probe(core_dev);
1494 	return 0;
1495 
1496 err_start_dev:
1497 	free_irq(core_dev->irq, dev);
1498 err_request_irq:
1499 	irq_dispose_mapping(core_dev->irq);
1500 	iounmap(core_dev->dev->ce_base);
1501 err_iomap:
1502 	tasklet_kill(&core_dev->tasklet);
1503 err_build_sdr:
1504 	crypto4xx_destroy_sdr(core_dev->dev);
1505 	crypto4xx_destroy_gdr(core_dev->dev);
1506 err_build_pdr:
1507 	crypto4xx_destroy_pdr(core_dev->dev);
1508 	kfree(core_dev->dev);
1509 err_alloc_dev:
1510 	kfree(core_dev);
1511 
1512 	return rc;
1513 }
1514 
1515 static int crypto4xx_remove(struct platform_device *ofdev)
1516 {
1517 	struct device *dev = &ofdev->dev;
1518 	struct crypto4xx_core_device *core_dev = dev_get_drvdata(dev);
1519 
1520 	ppc4xx_trng_remove(core_dev);
1521 
1522 	free_irq(core_dev->irq, dev);
1523 	irq_dispose_mapping(core_dev->irq);
1524 
1525 	tasklet_kill(&core_dev->tasklet);
1526 	/* Un-register with Linux CryptoAPI */
1527 	crypto4xx_unregister_alg(core_dev->dev);
1528 	mutex_destroy(&core_dev->rng_lock);
1529 	/* Free all allocated memory */
1530 	crypto4xx_stop_all(core_dev);
1531 
1532 	return 0;
1533 }
1534 
1535 static const struct of_device_id crypto4xx_match[] = {
1536 	{ .compatible      = "amcc,ppc4xx-crypto",},
1537 	{ },
1538 };
1539 MODULE_DEVICE_TABLE(of, crypto4xx_match);
1540 
1541 static struct platform_driver crypto4xx_driver = {
1542 	.driver = {
1543 		.name = KBUILD_MODNAME,
1544 		.of_match_table = crypto4xx_match,
1545 	},
1546 	.probe		= crypto4xx_probe,
1547 	.remove		= crypto4xx_remove,
1548 };
1549 
1550 module_platform_driver(crypto4xx_driver);
1551 
1552 MODULE_LICENSE("GPL");
1553 MODULE_AUTHOR("James Hsiao <jhsiao@amcc.com>");
1554 MODULE_DESCRIPTION("Driver for AMCC PPC4xx crypto accelerator");
1555