1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /**
3  * AMCC SoC PPC4xx Crypto Driver
4  *
5  * Copyright (c) 2008 Applied Micro Circuits Corporation.
6  * All rights reserved. James Hsiao <jhsiao@amcc.com>
7  *
8  * This file implements the Linux crypto algorithms.
9  */
10 
11 #include <linux/kernel.h>
12 #include <linux/interrupt.h>
13 #include <linux/spinlock_types.h>
14 #include <linux/scatterlist.h>
15 #include <linux/crypto.h>
16 #include <linux/hash.h>
17 #include <crypto/internal/hash.h>
18 #include <linux/dma-mapping.h>
19 #include <crypto/algapi.h>
20 #include <crypto/aead.h>
21 #include <crypto/aes.h>
22 #include <crypto/gcm.h>
23 #include <crypto/sha.h>
24 #include <crypto/ctr.h>
25 #include <crypto/skcipher.h>
26 #include "crypto4xx_reg_def.h"
27 #include "crypto4xx_core.h"
28 #include "crypto4xx_sa.h"
29 
30 static void set_dynamic_sa_command_0(struct dynamic_sa_ctl *sa, u32 save_h,
31 				     u32 save_iv, u32 ld_h, u32 ld_iv,
32 				     u32 hdr_proc, u32 h, u32 c, u32 pad_type,
33 				     u32 op_grp, u32 op, u32 dir)
34 {
35 	sa->sa_command_0.w = 0;
36 	sa->sa_command_0.bf.save_hash_state = save_h;
37 	sa->sa_command_0.bf.save_iv = save_iv;
38 	sa->sa_command_0.bf.load_hash_state = ld_h;
39 	sa->sa_command_0.bf.load_iv = ld_iv;
40 	sa->sa_command_0.bf.hdr_proc = hdr_proc;
41 	sa->sa_command_0.bf.hash_alg = h;
42 	sa->sa_command_0.bf.cipher_alg = c;
43 	sa->sa_command_0.bf.pad_type = pad_type & 3;
44 	sa->sa_command_0.bf.extend_pad = pad_type >> 2;
45 	sa->sa_command_0.bf.op_group = op_grp;
46 	sa->sa_command_0.bf.opcode = op;
47 	sa->sa_command_0.bf.dir = dir;
48 }
49 
50 static void set_dynamic_sa_command_1(struct dynamic_sa_ctl *sa, u32 cm,
51 				     u32 hmac_mc, u32 cfb, u32 esn,
52 				     u32 sn_mask, u32 mute, u32 cp_pad,
53 				     u32 cp_pay, u32 cp_hdr)
54 {
55 	sa->sa_command_1.w = 0;
56 	sa->sa_command_1.bf.crypto_mode31 = (cm & 4) >> 2;
57 	sa->sa_command_1.bf.crypto_mode9_8 = cm & 3;
58 	sa->sa_command_1.bf.feedback_mode = cfb,
59 	sa->sa_command_1.bf.sa_rev = 1;
60 	sa->sa_command_1.bf.hmac_muting = hmac_mc;
61 	sa->sa_command_1.bf.extended_seq_num = esn;
62 	sa->sa_command_1.bf.seq_num_mask = sn_mask;
63 	sa->sa_command_1.bf.mutable_bit_proc = mute;
64 	sa->sa_command_1.bf.copy_pad = cp_pad;
65 	sa->sa_command_1.bf.copy_payload = cp_pay;
66 	sa->sa_command_1.bf.copy_hdr = cp_hdr;
67 }
68 
69 static inline int crypto4xx_crypt(struct skcipher_request *req,
70 				  const unsigned int ivlen, bool decrypt,
71 				  bool check_blocksize)
72 {
73 	struct crypto_skcipher *cipher = crypto_skcipher_reqtfm(req);
74 	struct crypto4xx_ctx *ctx = crypto_skcipher_ctx(cipher);
75 	__le32 iv[AES_IV_SIZE];
76 
77 	if (check_blocksize && !IS_ALIGNED(req->cryptlen, AES_BLOCK_SIZE))
78 		return -EINVAL;
79 
80 	if (ivlen)
81 		crypto4xx_memcpy_to_le32(iv, req->iv, ivlen);
82 
83 	return crypto4xx_build_pd(&req->base, ctx, req->src, req->dst,
84 		req->cryptlen, iv, ivlen, decrypt ? ctx->sa_in : ctx->sa_out,
85 		ctx->sa_len, 0, NULL);
86 }
87 
88 int crypto4xx_encrypt_noiv_block(struct skcipher_request *req)
89 {
90 	return crypto4xx_crypt(req, 0, false, true);
91 }
92 
93 int crypto4xx_encrypt_iv_stream(struct skcipher_request *req)
94 {
95 	return crypto4xx_crypt(req, AES_IV_SIZE, false, false);
96 }
97 
98 int crypto4xx_decrypt_noiv_block(struct skcipher_request *req)
99 {
100 	return crypto4xx_crypt(req, 0, true, true);
101 }
102 
103 int crypto4xx_decrypt_iv_stream(struct skcipher_request *req)
104 {
105 	return crypto4xx_crypt(req, AES_IV_SIZE, true, false);
106 }
107 
108 int crypto4xx_encrypt_iv_block(struct skcipher_request *req)
109 {
110 	return crypto4xx_crypt(req, AES_IV_SIZE, false, true);
111 }
112 
113 int crypto4xx_decrypt_iv_block(struct skcipher_request *req)
114 {
115 	return crypto4xx_crypt(req, AES_IV_SIZE, true, true);
116 }
117 
118 /**
119  * AES Functions
120  */
121 static int crypto4xx_setkey_aes(struct crypto_skcipher *cipher,
122 				const u8 *key,
123 				unsigned int keylen,
124 				unsigned char cm,
125 				u8 fb)
126 {
127 	struct crypto4xx_ctx *ctx = crypto_skcipher_ctx(cipher);
128 	struct dynamic_sa_ctl *sa;
129 	int    rc;
130 
131 	if (keylen != AES_KEYSIZE_256 &&
132 		keylen != AES_KEYSIZE_192 && keylen != AES_KEYSIZE_128) {
133 		crypto_skcipher_set_flags(cipher,
134 				CRYPTO_TFM_RES_BAD_KEY_LEN);
135 		return -EINVAL;
136 	}
137 
138 	/* Create SA */
139 	if (ctx->sa_in || ctx->sa_out)
140 		crypto4xx_free_sa(ctx);
141 
142 	rc = crypto4xx_alloc_sa(ctx, SA_AES128_LEN + (keylen-16) / 4);
143 	if (rc)
144 		return rc;
145 
146 	/* Setup SA */
147 	sa = ctx->sa_in;
148 
149 	set_dynamic_sa_command_0(sa, SA_NOT_SAVE_HASH, (cm == CRYPTO_MODE_ECB ?
150 				 SA_NOT_SAVE_IV : SA_SAVE_IV),
151 				 SA_NOT_LOAD_HASH, (cm == CRYPTO_MODE_ECB ?
152 				 SA_LOAD_IV_FROM_SA : SA_LOAD_IV_FROM_STATE),
153 				 SA_NO_HEADER_PROC, SA_HASH_ALG_NULL,
154 				 SA_CIPHER_ALG_AES, SA_PAD_TYPE_ZERO,
155 				 SA_OP_GROUP_BASIC, SA_OPCODE_DECRYPT,
156 				 DIR_INBOUND);
157 
158 	set_dynamic_sa_command_1(sa, cm, SA_HASH_MODE_HASH,
159 				 fb, SA_EXTENDED_SN_OFF,
160 				 SA_SEQ_MASK_OFF, SA_MC_ENABLE,
161 				 SA_NOT_COPY_PAD, SA_NOT_COPY_PAYLOAD,
162 				 SA_NOT_COPY_HDR);
163 	crypto4xx_memcpy_to_le32(get_dynamic_sa_key_field(sa),
164 				 key, keylen);
165 	sa->sa_contents.w = SA_AES_CONTENTS | (keylen << 2);
166 	sa->sa_command_1.bf.key_len = keylen >> 3;
167 
168 	memcpy(ctx->sa_out, ctx->sa_in, ctx->sa_len * 4);
169 	sa = ctx->sa_out;
170 	sa->sa_command_0.bf.dir = DIR_OUTBOUND;
171 	/*
172 	 * SA_OPCODE_ENCRYPT is the same value as SA_OPCODE_DECRYPT.
173 	 * it's the DIR_(IN|OUT)BOUND that matters
174 	 */
175 	sa->sa_command_0.bf.opcode = SA_OPCODE_ENCRYPT;
176 
177 	return 0;
178 }
179 
180 int crypto4xx_setkey_aes_cbc(struct crypto_skcipher *cipher,
181 			     const u8 *key, unsigned int keylen)
182 {
183 	return crypto4xx_setkey_aes(cipher, key, keylen, CRYPTO_MODE_CBC,
184 				    CRYPTO_FEEDBACK_MODE_NO_FB);
185 }
186 
187 int crypto4xx_setkey_aes_cfb(struct crypto_skcipher *cipher,
188 			     const u8 *key, unsigned int keylen)
189 {
190 	return crypto4xx_setkey_aes(cipher, key, keylen, CRYPTO_MODE_CFB,
191 				    CRYPTO_FEEDBACK_MODE_128BIT_CFB);
192 }
193 
194 int crypto4xx_setkey_aes_ecb(struct crypto_skcipher *cipher,
195 			     const u8 *key, unsigned int keylen)
196 {
197 	return crypto4xx_setkey_aes(cipher, key, keylen, CRYPTO_MODE_ECB,
198 				    CRYPTO_FEEDBACK_MODE_NO_FB);
199 }
200 
201 int crypto4xx_setkey_aes_ofb(struct crypto_skcipher *cipher,
202 			     const u8 *key, unsigned int keylen)
203 {
204 	return crypto4xx_setkey_aes(cipher, key, keylen, CRYPTO_MODE_OFB,
205 				    CRYPTO_FEEDBACK_MODE_64BIT_OFB);
206 }
207 
208 int crypto4xx_setkey_rfc3686(struct crypto_skcipher *cipher,
209 			     const u8 *key, unsigned int keylen)
210 {
211 	struct crypto4xx_ctx *ctx = crypto_skcipher_ctx(cipher);
212 	int rc;
213 
214 	rc = crypto4xx_setkey_aes(cipher, key, keylen - CTR_RFC3686_NONCE_SIZE,
215 		CRYPTO_MODE_CTR, CRYPTO_FEEDBACK_MODE_NO_FB);
216 	if (rc)
217 		return rc;
218 
219 	ctx->iv_nonce = cpu_to_le32p((u32 *)&key[keylen -
220 						 CTR_RFC3686_NONCE_SIZE]);
221 
222 	return 0;
223 }
224 
225 int crypto4xx_rfc3686_encrypt(struct skcipher_request *req)
226 {
227 	struct crypto_skcipher *cipher = crypto_skcipher_reqtfm(req);
228 	struct crypto4xx_ctx *ctx = crypto_skcipher_ctx(cipher);
229 	__le32 iv[AES_IV_SIZE / 4] = {
230 		ctx->iv_nonce,
231 		cpu_to_le32p((u32 *) req->iv),
232 		cpu_to_le32p((u32 *) (req->iv + 4)),
233 		cpu_to_le32(1) };
234 
235 	return crypto4xx_build_pd(&req->base, ctx, req->src, req->dst,
236 				  req->cryptlen, iv, AES_IV_SIZE,
237 				  ctx->sa_out, ctx->sa_len, 0, NULL);
238 }
239 
240 int crypto4xx_rfc3686_decrypt(struct skcipher_request *req)
241 {
242 	struct crypto_skcipher *cipher = crypto_skcipher_reqtfm(req);
243 	struct crypto4xx_ctx *ctx = crypto_skcipher_ctx(cipher);
244 	__le32 iv[AES_IV_SIZE / 4] = {
245 		ctx->iv_nonce,
246 		cpu_to_le32p((u32 *) req->iv),
247 		cpu_to_le32p((u32 *) (req->iv + 4)),
248 		cpu_to_le32(1) };
249 
250 	return crypto4xx_build_pd(&req->base, ctx, req->src, req->dst,
251 				  req->cryptlen, iv, AES_IV_SIZE,
252 				  ctx->sa_out, ctx->sa_len, 0, NULL);
253 }
254 
255 static int
256 crypto4xx_ctr_crypt(struct skcipher_request *req, bool encrypt)
257 {
258 	struct crypto_skcipher *cipher = crypto_skcipher_reqtfm(req);
259 	struct crypto4xx_ctx *ctx = crypto_skcipher_ctx(cipher);
260 	size_t iv_len = crypto_skcipher_ivsize(cipher);
261 	unsigned int counter = be32_to_cpup((__be32 *)(req->iv + iv_len - 4));
262 	unsigned int nblks = ALIGN(req->cryptlen, AES_BLOCK_SIZE) /
263 			AES_BLOCK_SIZE;
264 
265 	/*
266 	 * The hardware uses only the last 32-bits as the counter while the
267 	 * kernel tests (aes_ctr_enc_tv_template[4] for example) expect that
268 	 * the whole IV is a counter.  So fallback if the counter is going to
269 	 * overlow.
270 	 */
271 	if (counter + nblks < counter) {
272 		SYNC_SKCIPHER_REQUEST_ON_STACK(subreq, ctx->sw_cipher.cipher);
273 		int ret;
274 
275 		skcipher_request_set_sync_tfm(subreq, ctx->sw_cipher.cipher);
276 		skcipher_request_set_callback(subreq, req->base.flags,
277 			NULL, NULL);
278 		skcipher_request_set_crypt(subreq, req->src, req->dst,
279 			req->cryptlen, req->iv);
280 		ret = encrypt ? crypto_skcipher_encrypt(subreq)
281 			: crypto_skcipher_decrypt(subreq);
282 		skcipher_request_zero(subreq);
283 		return ret;
284 	}
285 
286 	return encrypt ? crypto4xx_encrypt_iv_stream(req)
287 		       : crypto4xx_decrypt_iv_stream(req);
288 }
289 
290 static int crypto4xx_sk_setup_fallback(struct crypto4xx_ctx *ctx,
291 				       struct crypto_skcipher *cipher,
292 				       const u8 *key,
293 				       unsigned int keylen)
294 {
295 	int rc;
296 
297 	crypto_sync_skcipher_clear_flags(ctx->sw_cipher.cipher,
298 				    CRYPTO_TFM_REQ_MASK);
299 	crypto_sync_skcipher_set_flags(ctx->sw_cipher.cipher,
300 		crypto_skcipher_get_flags(cipher) & CRYPTO_TFM_REQ_MASK);
301 	rc = crypto_sync_skcipher_setkey(ctx->sw_cipher.cipher, key, keylen);
302 	crypto_skcipher_clear_flags(cipher, CRYPTO_TFM_RES_MASK);
303 	crypto_skcipher_set_flags(cipher,
304 		crypto_sync_skcipher_get_flags(ctx->sw_cipher.cipher) &
305 			CRYPTO_TFM_RES_MASK);
306 
307 	return rc;
308 }
309 
310 int crypto4xx_setkey_aes_ctr(struct crypto_skcipher *cipher,
311 			     const u8 *key, unsigned int keylen)
312 {
313 	struct crypto4xx_ctx *ctx = crypto_skcipher_ctx(cipher);
314 	int rc;
315 
316 	rc = crypto4xx_sk_setup_fallback(ctx, cipher, key, keylen);
317 	if (rc)
318 		return rc;
319 
320 	return crypto4xx_setkey_aes(cipher, key, keylen,
321 		CRYPTO_MODE_CTR, CRYPTO_FEEDBACK_MODE_NO_FB);
322 }
323 
324 int crypto4xx_encrypt_ctr(struct skcipher_request *req)
325 {
326 	return crypto4xx_ctr_crypt(req, true);
327 }
328 
329 int crypto4xx_decrypt_ctr(struct skcipher_request *req)
330 {
331 	return crypto4xx_ctr_crypt(req, false);
332 }
333 
334 static inline bool crypto4xx_aead_need_fallback(struct aead_request *req,
335 						unsigned int len,
336 						bool is_ccm, bool decrypt)
337 {
338 	struct crypto_aead *aead = crypto_aead_reqtfm(req);
339 
340 	/* authsize has to be a multiple of 4 */
341 	if (aead->authsize & 3)
342 		return true;
343 
344 	/*
345 	 * hardware does not handle cases where plaintext
346 	 * is less than a block.
347 	 */
348 	if (len < AES_BLOCK_SIZE)
349 		return true;
350 
351 	/* assoc len needs to be a multiple of 4 and <= 1020 */
352 	if (req->assoclen & 0x3 || req->assoclen > 1020)
353 		return true;
354 
355 	/* CCM supports only counter field length of 2 and 4 bytes */
356 	if (is_ccm && !(req->iv[0] == 1 || req->iv[0] == 3))
357 		return true;
358 
359 	return false;
360 }
361 
362 static int crypto4xx_aead_fallback(struct aead_request *req,
363 	struct crypto4xx_ctx *ctx, bool do_decrypt)
364 {
365 	struct aead_request *subreq = aead_request_ctx(req);
366 
367 	aead_request_set_tfm(subreq, ctx->sw_cipher.aead);
368 	aead_request_set_callback(subreq, req->base.flags,
369 				  req->base.complete, req->base.data);
370 	aead_request_set_crypt(subreq, req->src, req->dst, req->cryptlen,
371 			       req->iv);
372 	aead_request_set_ad(subreq, req->assoclen);
373 	return do_decrypt ? crypto_aead_decrypt(subreq) :
374 			    crypto_aead_encrypt(subreq);
375 }
376 
377 static int crypto4xx_aead_setup_fallback(struct crypto4xx_ctx *ctx,
378 					 struct crypto_aead *cipher,
379 					 const u8 *key,
380 					 unsigned int keylen)
381 {
382 	int rc;
383 
384 	crypto_aead_clear_flags(ctx->sw_cipher.aead, CRYPTO_TFM_REQ_MASK);
385 	crypto_aead_set_flags(ctx->sw_cipher.aead,
386 		crypto_aead_get_flags(cipher) & CRYPTO_TFM_REQ_MASK);
387 	rc = crypto_aead_setkey(ctx->sw_cipher.aead, key, keylen);
388 	crypto_aead_clear_flags(cipher, CRYPTO_TFM_RES_MASK);
389 	crypto_aead_set_flags(cipher,
390 		crypto_aead_get_flags(ctx->sw_cipher.aead) &
391 			CRYPTO_TFM_RES_MASK);
392 
393 	return rc;
394 }
395 
396 /**
397  * AES-CCM Functions
398  */
399 
400 int crypto4xx_setkey_aes_ccm(struct crypto_aead *cipher, const u8 *key,
401 			     unsigned int keylen)
402 {
403 	struct crypto_tfm *tfm = crypto_aead_tfm(cipher);
404 	struct crypto4xx_ctx *ctx = crypto_tfm_ctx(tfm);
405 	struct dynamic_sa_ctl *sa;
406 	int rc = 0;
407 
408 	rc = crypto4xx_aead_setup_fallback(ctx, cipher, key, keylen);
409 	if (rc)
410 		return rc;
411 
412 	if (ctx->sa_in || ctx->sa_out)
413 		crypto4xx_free_sa(ctx);
414 
415 	rc = crypto4xx_alloc_sa(ctx, SA_AES128_CCM_LEN + (keylen - 16) / 4);
416 	if (rc)
417 		return rc;
418 
419 	/* Setup SA */
420 	sa = (struct dynamic_sa_ctl *) ctx->sa_in;
421 	sa->sa_contents.w = SA_AES_CCM_CONTENTS | (keylen << 2);
422 
423 	set_dynamic_sa_command_0(sa, SA_SAVE_HASH, SA_NOT_SAVE_IV,
424 				 SA_LOAD_HASH_FROM_SA, SA_LOAD_IV_FROM_STATE,
425 				 SA_NO_HEADER_PROC, SA_HASH_ALG_CBC_MAC,
426 				 SA_CIPHER_ALG_AES,
427 				 SA_PAD_TYPE_ZERO, SA_OP_GROUP_BASIC,
428 				 SA_OPCODE_HASH_DECRYPT, DIR_INBOUND);
429 
430 	set_dynamic_sa_command_1(sa, CRYPTO_MODE_CTR, SA_HASH_MODE_HASH,
431 				 CRYPTO_FEEDBACK_MODE_NO_FB, SA_EXTENDED_SN_OFF,
432 				 SA_SEQ_MASK_OFF, SA_MC_ENABLE,
433 				 SA_NOT_COPY_PAD, SA_COPY_PAYLOAD,
434 				 SA_NOT_COPY_HDR);
435 
436 	sa->sa_command_1.bf.key_len = keylen >> 3;
437 
438 	crypto4xx_memcpy_to_le32(get_dynamic_sa_key_field(sa), key, keylen);
439 
440 	memcpy(ctx->sa_out, ctx->sa_in, ctx->sa_len * 4);
441 	sa = (struct dynamic_sa_ctl *) ctx->sa_out;
442 
443 	set_dynamic_sa_command_0(sa, SA_SAVE_HASH, SA_NOT_SAVE_IV,
444 				 SA_LOAD_HASH_FROM_SA, SA_LOAD_IV_FROM_STATE,
445 				 SA_NO_HEADER_PROC, SA_HASH_ALG_CBC_MAC,
446 				 SA_CIPHER_ALG_AES,
447 				 SA_PAD_TYPE_ZERO, SA_OP_GROUP_BASIC,
448 				 SA_OPCODE_ENCRYPT_HASH, DIR_OUTBOUND);
449 
450 	set_dynamic_sa_command_1(sa, CRYPTO_MODE_CTR, SA_HASH_MODE_HASH,
451 				 CRYPTO_FEEDBACK_MODE_NO_FB, SA_EXTENDED_SN_OFF,
452 				 SA_SEQ_MASK_OFF, SA_MC_ENABLE,
453 				 SA_COPY_PAD, SA_COPY_PAYLOAD,
454 				 SA_NOT_COPY_HDR);
455 
456 	sa->sa_command_1.bf.key_len = keylen >> 3;
457 	return 0;
458 }
459 
460 static int crypto4xx_crypt_aes_ccm(struct aead_request *req, bool decrypt)
461 {
462 	struct crypto4xx_ctx *ctx  = crypto_tfm_ctx(req->base.tfm);
463 	struct crypto4xx_aead_reqctx *rctx = aead_request_ctx(req);
464 	struct crypto_aead *aead = crypto_aead_reqtfm(req);
465 	__le32 iv[16];
466 	u32 tmp_sa[SA_AES128_CCM_LEN + 4];
467 	struct dynamic_sa_ctl *sa = (struct dynamic_sa_ctl *)tmp_sa;
468 	unsigned int len = req->cryptlen;
469 
470 	if (decrypt)
471 		len -= crypto_aead_authsize(aead);
472 
473 	if (crypto4xx_aead_need_fallback(req, len, true, decrypt))
474 		return crypto4xx_aead_fallback(req, ctx, decrypt);
475 
476 	memcpy(tmp_sa, decrypt ? ctx->sa_in : ctx->sa_out, ctx->sa_len * 4);
477 	sa->sa_command_0.bf.digest_len = crypto_aead_authsize(aead) >> 2;
478 
479 	if (req->iv[0] == 1) {
480 		/* CRYPTO_MODE_AES_ICM */
481 		sa->sa_command_1.bf.crypto_mode9_8 = 1;
482 	}
483 
484 	iv[3] = cpu_to_le32(0);
485 	crypto4xx_memcpy_to_le32(iv, req->iv, 16 - (req->iv[0] + 1));
486 
487 	return crypto4xx_build_pd(&req->base, ctx, req->src, req->dst,
488 				  len, iv, sizeof(iv),
489 				  sa, ctx->sa_len, req->assoclen, rctx->dst);
490 }
491 
492 int crypto4xx_encrypt_aes_ccm(struct aead_request *req)
493 {
494 	return crypto4xx_crypt_aes_ccm(req, false);
495 }
496 
497 int crypto4xx_decrypt_aes_ccm(struct aead_request *req)
498 {
499 	return crypto4xx_crypt_aes_ccm(req, true);
500 }
501 
502 int crypto4xx_setauthsize_aead(struct crypto_aead *cipher,
503 			       unsigned int authsize)
504 {
505 	struct crypto_tfm *tfm = crypto_aead_tfm(cipher);
506 	struct crypto4xx_ctx *ctx = crypto_tfm_ctx(tfm);
507 
508 	return crypto_aead_setauthsize(ctx->sw_cipher.aead, authsize);
509 }
510 
511 /**
512  * AES-GCM Functions
513  */
514 
515 static int crypto4xx_aes_gcm_validate_keylen(unsigned int keylen)
516 {
517 	switch (keylen) {
518 	case 16:
519 	case 24:
520 	case 32:
521 		return 0;
522 	default:
523 		return -EINVAL;
524 	}
525 }
526 
527 static int crypto4xx_compute_gcm_hash_key_sw(__le32 *hash_start, const u8 *key,
528 					     unsigned int keylen)
529 {
530 	struct crypto_aes_ctx ctx;
531 	uint8_t src[16] = { 0 };
532 	int rc;
533 
534 	rc = aes_expandkey(&ctx, key, keylen);
535 	if (rc) {
536 		pr_err("aes_expandkey() failed: %d\n", rc);
537 		return rc;
538 	}
539 
540 	aes_encrypt(&ctx, src, src);
541 	crypto4xx_memcpy_to_le32(hash_start, src, 16);
542 	memzero_explicit(&ctx, sizeof(ctx));
543 	return 0;
544 }
545 
546 int crypto4xx_setkey_aes_gcm(struct crypto_aead *cipher,
547 			     const u8 *key, unsigned int keylen)
548 {
549 	struct crypto_tfm *tfm = crypto_aead_tfm(cipher);
550 	struct crypto4xx_ctx *ctx = crypto_tfm_ctx(tfm);
551 	struct dynamic_sa_ctl *sa;
552 	int    rc = 0;
553 
554 	if (crypto4xx_aes_gcm_validate_keylen(keylen) != 0) {
555 		crypto_aead_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
556 		return -EINVAL;
557 	}
558 
559 	rc = crypto4xx_aead_setup_fallback(ctx, cipher, key, keylen);
560 	if (rc)
561 		return rc;
562 
563 	if (ctx->sa_in || ctx->sa_out)
564 		crypto4xx_free_sa(ctx);
565 
566 	rc = crypto4xx_alloc_sa(ctx, SA_AES128_GCM_LEN + (keylen - 16) / 4);
567 	if (rc)
568 		return rc;
569 
570 	sa  = (struct dynamic_sa_ctl *) ctx->sa_in;
571 
572 	sa->sa_contents.w = SA_AES_GCM_CONTENTS | (keylen << 2);
573 	set_dynamic_sa_command_0(sa, SA_SAVE_HASH, SA_NOT_SAVE_IV,
574 				 SA_LOAD_HASH_FROM_SA, SA_LOAD_IV_FROM_STATE,
575 				 SA_NO_HEADER_PROC, SA_HASH_ALG_GHASH,
576 				 SA_CIPHER_ALG_AES, SA_PAD_TYPE_ZERO,
577 				 SA_OP_GROUP_BASIC, SA_OPCODE_HASH_DECRYPT,
578 				 DIR_INBOUND);
579 	set_dynamic_sa_command_1(sa, CRYPTO_MODE_CTR, SA_HASH_MODE_HASH,
580 				 CRYPTO_FEEDBACK_MODE_NO_FB, SA_EXTENDED_SN_OFF,
581 				 SA_SEQ_MASK_ON, SA_MC_DISABLE,
582 				 SA_NOT_COPY_PAD, SA_COPY_PAYLOAD,
583 				 SA_NOT_COPY_HDR);
584 
585 	sa->sa_command_1.bf.key_len = keylen >> 3;
586 
587 	crypto4xx_memcpy_to_le32(get_dynamic_sa_key_field(sa),
588 				 key, keylen);
589 
590 	rc = crypto4xx_compute_gcm_hash_key_sw(get_dynamic_sa_inner_digest(sa),
591 		key, keylen);
592 	if (rc) {
593 		pr_err("GCM hash key setting failed = %d\n", rc);
594 		goto err;
595 	}
596 
597 	memcpy(ctx->sa_out, ctx->sa_in, ctx->sa_len * 4);
598 	sa = (struct dynamic_sa_ctl *) ctx->sa_out;
599 	sa->sa_command_0.bf.dir = DIR_OUTBOUND;
600 	sa->sa_command_0.bf.opcode = SA_OPCODE_ENCRYPT_HASH;
601 
602 	return 0;
603 err:
604 	crypto4xx_free_sa(ctx);
605 	return rc;
606 }
607 
608 static inline int crypto4xx_crypt_aes_gcm(struct aead_request *req,
609 					  bool decrypt)
610 {
611 	struct crypto4xx_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
612 	struct crypto4xx_aead_reqctx *rctx = aead_request_ctx(req);
613 	__le32 iv[4];
614 	unsigned int len = req->cryptlen;
615 
616 	if (decrypt)
617 		len -= crypto_aead_authsize(crypto_aead_reqtfm(req));
618 
619 	if (crypto4xx_aead_need_fallback(req, len, false, decrypt))
620 		return crypto4xx_aead_fallback(req, ctx, decrypt);
621 
622 	crypto4xx_memcpy_to_le32(iv, req->iv, GCM_AES_IV_SIZE);
623 	iv[3] = cpu_to_le32(1);
624 
625 	return crypto4xx_build_pd(&req->base, ctx, req->src, req->dst,
626 				  len, iv, sizeof(iv),
627 				  decrypt ? ctx->sa_in : ctx->sa_out,
628 				  ctx->sa_len, req->assoclen, rctx->dst);
629 }
630 
631 int crypto4xx_encrypt_aes_gcm(struct aead_request *req)
632 {
633 	return crypto4xx_crypt_aes_gcm(req, false);
634 }
635 
636 int crypto4xx_decrypt_aes_gcm(struct aead_request *req)
637 {
638 	return crypto4xx_crypt_aes_gcm(req, true);
639 }
640 
641 /**
642  * HASH SHA1 Functions
643  */
644 static int crypto4xx_hash_alg_init(struct crypto_tfm *tfm,
645 				   unsigned int sa_len,
646 				   unsigned char ha,
647 				   unsigned char hm)
648 {
649 	struct crypto_alg *alg = tfm->__crt_alg;
650 	struct crypto4xx_alg *my_alg;
651 	struct crypto4xx_ctx *ctx = crypto_tfm_ctx(tfm);
652 	struct dynamic_sa_hash160 *sa;
653 	int rc;
654 
655 	my_alg = container_of(__crypto_ahash_alg(alg), struct crypto4xx_alg,
656 			      alg.u.hash);
657 	ctx->dev   = my_alg->dev;
658 
659 	/* Create SA */
660 	if (ctx->sa_in || ctx->sa_out)
661 		crypto4xx_free_sa(ctx);
662 
663 	rc = crypto4xx_alloc_sa(ctx, sa_len);
664 	if (rc)
665 		return rc;
666 
667 	crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
668 				 sizeof(struct crypto4xx_ctx));
669 	sa = (struct dynamic_sa_hash160 *)ctx->sa_in;
670 	set_dynamic_sa_command_0(&sa->ctrl, SA_SAVE_HASH, SA_NOT_SAVE_IV,
671 				 SA_NOT_LOAD_HASH, SA_LOAD_IV_FROM_SA,
672 				 SA_NO_HEADER_PROC, ha, SA_CIPHER_ALG_NULL,
673 				 SA_PAD_TYPE_ZERO, SA_OP_GROUP_BASIC,
674 				 SA_OPCODE_HASH, DIR_INBOUND);
675 	set_dynamic_sa_command_1(&sa->ctrl, 0, SA_HASH_MODE_HASH,
676 				 CRYPTO_FEEDBACK_MODE_NO_FB, SA_EXTENDED_SN_OFF,
677 				 SA_SEQ_MASK_OFF, SA_MC_ENABLE,
678 				 SA_NOT_COPY_PAD, SA_NOT_COPY_PAYLOAD,
679 				 SA_NOT_COPY_HDR);
680 	/* Need to zero hash digest in SA */
681 	memset(sa->inner_digest, 0, sizeof(sa->inner_digest));
682 	memset(sa->outer_digest, 0, sizeof(sa->outer_digest));
683 
684 	return 0;
685 }
686 
687 int crypto4xx_hash_init(struct ahash_request *req)
688 {
689 	struct crypto4xx_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
690 	int ds;
691 	struct dynamic_sa_ctl *sa;
692 
693 	sa = ctx->sa_in;
694 	ds = crypto_ahash_digestsize(
695 			__crypto_ahash_cast(req->base.tfm));
696 	sa->sa_command_0.bf.digest_len = ds >> 2;
697 	sa->sa_command_0.bf.load_hash_state = SA_LOAD_HASH_FROM_SA;
698 
699 	return 0;
700 }
701 
702 int crypto4xx_hash_update(struct ahash_request *req)
703 {
704 	struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
705 	struct crypto4xx_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
706 	struct scatterlist dst;
707 	unsigned int ds = crypto_ahash_digestsize(ahash);
708 
709 	sg_init_one(&dst, req->result, ds);
710 
711 	return crypto4xx_build_pd(&req->base, ctx, req->src, &dst,
712 				  req->nbytes, NULL, 0, ctx->sa_in,
713 				  ctx->sa_len, 0, NULL);
714 }
715 
716 int crypto4xx_hash_final(struct ahash_request *req)
717 {
718 	return 0;
719 }
720 
721 int crypto4xx_hash_digest(struct ahash_request *req)
722 {
723 	struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
724 	struct crypto4xx_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
725 	struct scatterlist dst;
726 	unsigned int ds = crypto_ahash_digestsize(ahash);
727 
728 	sg_init_one(&dst, req->result, ds);
729 
730 	return crypto4xx_build_pd(&req->base, ctx, req->src, &dst,
731 				  req->nbytes, NULL, 0, ctx->sa_in,
732 				  ctx->sa_len, 0, NULL);
733 }
734 
735 /**
736  * SHA1 Algorithm
737  */
738 int crypto4xx_sha1_alg_init(struct crypto_tfm *tfm)
739 {
740 	return crypto4xx_hash_alg_init(tfm, SA_HASH160_LEN, SA_HASH_ALG_SHA1,
741 				       SA_HASH_MODE_HASH);
742 }
743