xref: /openbmc/linux/drivers/cpuidle/governors/menu.c (revision f97cee494dc92395a668445bcd24d34c89f4ff8c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * menu.c - the menu idle governor
4  *
5  * Copyright (C) 2006-2007 Adam Belay <abelay@novell.com>
6  * Copyright (C) 2009 Intel Corporation
7  * Author:
8  *        Arjan van de Ven <arjan@linux.intel.com>
9  */
10 
11 #include <linux/kernel.h>
12 #include <linux/cpuidle.h>
13 #include <linux/time.h>
14 #include <linux/ktime.h>
15 #include <linux/hrtimer.h>
16 #include <linux/tick.h>
17 #include <linux/sched.h>
18 #include <linux/sched/loadavg.h>
19 #include <linux/sched/stat.h>
20 #include <linux/math64.h>
21 
22 #define BUCKETS 12
23 #define INTERVAL_SHIFT 3
24 #define INTERVALS (1UL << INTERVAL_SHIFT)
25 #define RESOLUTION 1024
26 #define DECAY 8
27 #define MAX_INTERESTING (50000 * NSEC_PER_USEC)
28 
29 /*
30  * Concepts and ideas behind the menu governor
31  *
32  * For the menu governor, there are 3 decision factors for picking a C
33  * state:
34  * 1) Energy break even point
35  * 2) Performance impact
36  * 3) Latency tolerance (from pmqos infrastructure)
37  * These these three factors are treated independently.
38  *
39  * Energy break even point
40  * -----------------------
41  * C state entry and exit have an energy cost, and a certain amount of time in
42  * the  C state is required to actually break even on this cost. CPUIDLE
43  * provides us this duration in the "target_residency" field. So all that we
44  * need is a good prediction of how long we'll be idle. Like the traditional
45  * menu governor, we start with the actual known "next timer event" time.
46  *
47  * Since there are other source of wakeups (interrupts for example) than
48  * the next timer event, this estimation is rather optimistic. To get a
49  * more realistic estimate, a correction factor is applied to the estimate,
50  * that is based on historic behavior. For example, if in the past the actual
51  * duration always was 50% of the next timer tick, the correction factor will
52  * be 0.5.
53  *
54  * menu uses a running average for this correction factor, however it uses a
55  * set of factors, not just a single factor. This stems from the realization
56  * that the ratio is dependent on the order of magnitude of the expected
57  * duration; if we expect 500 milliseconds of idle time the likelihood of
58  * getting an interrupt very early is much higher than if we expect 50 micro
59  * seconds of idle time. A second independent factor that has big impact on
60  * the actual factor is if there is (disk) IO outstanding or not.
61  * (as a special twist, we consider every sleep longer than 50 milliseconds
62  * as perfect; there are no power gains for sleeping longer than this)
63  *
64  * For these two reasons we keep an array of 12 independent factors, that gets
65  * indexed based on the magnitude of the expected duration as well as the
66  * "is IO outstanding" property.
67  *
68  * Repeatable-interval-detector
69  * ----------------------------
70  * There are some cases where "next timer" is a completely unusable predictor:
71  * Those cases where the interval is fixed, for example due to hardware
72  * interrupt mitigation, but also due to fixed transfer rate devices such as
73  * mice.
74  * For this, we use a different predictor: We track the duration of the last 8
75  * intervals and if the stand deviation of these 8 intervals is below a
76  * threshold value, we use the average of these intervals as prediction.
77  *
78  * Limiting Performance Impact
79  * ---------------------------
80  * C states, especially those with large exit latencies, can have a real
81  * noticeable impact on workloads, which is not acceptable for most sysadmins,
82  * and in addition, less performance has a power price of its own.
83  *
84  * As a general rule of thumb, menu assumes that the following heuristic
85  * holds:
86  *     The busier the system, the less impact of C states is acceptable
87  *
88  * This rule-of-thumb is implemented using a performance-multiplier:
89  * If the exit latency times the performance multiplier is longer than
90  * the predicted duration, the C state is not considered a candidate
91  * for selection due to a too high performance impact. So the higher
92  * this multiplier is, the longer we need to be idle to pick a deep C
93  * state, and thus the less likely a busy CPU will hit such a deep
94  * C state.
95  *
96  * Two factors are used in determing this multiplier:
97  * a value of 10 is added for each point of "per cpu load average" we have.
98  * a value of 5 points is added for each process that is waiting for
99  * IO on this CPU.
100  * (these values are experimentally determined)
101  *
102  * The load average factor gives a longer term (few seconds) input to the
103  * decision, while the iowait value gives a cpu local instantanious input.
104  * The iowait factor may look low, but realize that this is also already
105  * represented in the system load average.
106  *
107  */
108 
109 struct menu_device {
110 	int             needs_update;
111 	int             tick_wakeup;
112 
113 	u64		next_timer_ns;
114 	unsigned int	bucket;
115 	unsigned int	correction_factor[BUCKETS];
116 	unsigned int	intervals[INTERVALS];
117 	int		interval_ptr;
118 };
119 
120 static inline int which_bucket(u64 duration_ns, unsigned long nr_iowaiters)
121 {
122 	int bucket = 0;
123 
124 	/*
125 	 * We keep two groups of stats; one with no
126 	 * IO pending, one without.
127 	 * This allows us to calculate
128 	 * E(duration)|iowait
129 	 */
130 	if (nr_iowaiters)
131 		bucket = BUCKETS/2;
132 
133 	if (duration_ns < 10ULL * NSEC_PER_USEC)
134 		return bucket;
135 	if (duration_ns < 100ULL * NSEC_PER_USEC)
136 		return bucket + 1;
137 	if (duration_ns < 1000ULL * NSEC_PER_USEC)
138 		return bucket + 2;
139 	if (duration_ns < 10000ULL * NSEC_PER_USEC)
140 		return bucket + 3;
141 	if (duration_ns < 100000ULL * NSEC_PER_USEC)
142 		return bucket + 4;
143 	return bucket + 5;
144 }
145 
146 /*
147  * Return a multiplier for the exit latency that is intended
148  * to take performance requirements into account.
149  * The more performance critical we estimate the system
150  * to be, the higher this multiplier, and thus the higher
151  * the barrier to go to an expensive C state.
152  */
153 static inline int performance_multiplier(unsigned long nr_iowaiters)
154 {
155 	/* for IO wait tasks (per cpu!) we add 10x each */
156 	return 1 + 10 * nr_iowaiters;
157 }
158 
159 static DEFINE_PER_CPU(struct menu_device, menu_devices);
160 
161 static void menu_update(struct cpuidle_driver *drv, struct cpuidle_device *dev);
162 
163 /*
164  * Try detecting repeating patterns by keeping track of the last 8
165  * intervals, and checking if the standard deviation of that set
166  * of points is below a threshold. If it is... then use the
167  * average of these 8 points as the estimated value.
168  */
169 static unsigned int get_typical_interval(struct menu_device *data,
170 					 unsigned int predicted_us)
171 {
172 	int i, divisor;
173 	unsigned int min, max, thresh, avg;
174 	uint64_t sum, variance;
175 
176 	thresh = INT_MAX; /* Discard outliers above this value */
177 
178 again:
179 
180 	/* First calculate the average of past intervals */
181 	min = UINT_MAX;
182 	max = 0;
183 	sum = 0;
184 	divisor = 0;
185 	for (i = 0; i < INTERVALS; i++) {
186 		unsigned int value = data->intervals[i];
187 		if (value <= thresh) {
188 			sum += value;
189 			divisor++;
190 			if (value > max)
191 				max = value;
192 
193 			if (value < min)
194 				min = value;
195 		}
196 	}
197 
198 	/*
199 	 * If the result of the computation is going to be discarded anyway,
200 	 * avoid the computation altogether.
201 	 */
202 	if (min >= predicted_us)
203 		return UINT_MAX;
204 
205 	if (divisor == INTERVALS)
206 		avg = sum >> INTERVAL_SHIFT;
207 	else
208 		avg = div_u64(sum, divisor);
209 
210 	/* Then try to determine variance */
211 	variance = 0;
212 	for (i = 0; i < INTERVALS; i++) {
213 		unsigned int value = data->intervals[i];
214 		if (value <= thresh) {
215 			int64_t diff = (int64_t)value - avg;
216 			variance += diff * diff;
217 		}
218 	}
219 	if (divisor == INTERVALS)
220 		variance >>= INTERVAL_SHIFT;
221 	else
222 		do_div(variance, divisor);
223 
224 	/*
225 	 * The typical interval is obtained when standard deviation is
226 	 * small (stddev <= 20 us, variance <= 400 us^2) or standard
227 	 * deviation is small compared to the average interval (avg >
228 	 * 6*stddev, avg^2 > 36*variance). The average is smaller than
229 	 * UINT_MAX aka U32_MAX, so computing its square does not
230 	 * overflow a u64. We simply reject this candidate average if
231 	 * the standard deviation is greater than 715 s (which is
232 	 * rather unlikely).
233 	 *
234 	 * Use this result only if there is no timer to wake us up sooner.
235 	 */
236 	if (likely(variance <= U64_MAX/36)) {
237 		if ((((u64)avg*avg > variance*36) && (divisor * 4 >= INTERVALS * 3))
238 							|| variance <= 400) {
239 			return avg;
240 		}
241 	}
242 
243 	/*
244 	 * If we have outliers to the upside in our distribution, discard
245 	 * those by setting the threshold to exclude these outliers, then
246 	 * calculate the average and standard deviation again. Once we get
247 	 * down to the bottom 3/4 of our samples, stop excluding samples.
248 	 *
249 	 * This can deal with workloads that have long pauses interspersed
250 	 * with sporadic activity with a bunch of short pauses.
251 	 */
252 	if ((divisor * 4) <= INTERVALS * 3)
253 		return UINT_MAX;
254 
255 	thresh = max - 1;
256 	goto again;
257 }
258 
259 /**
260  * menu_select - selects the next idle state to enter
261  * @drv: cpuidle driver containing state data
262  * @dev: the CPU
263  * @stop_tick: indication on whether or not to stop the tick
264  */
265 static int menu_select(struct cpuidle_driver *drv, struct cpuidle_device *dev,
266 		       bool *stop_tick)
267 {
268 	struct menu_device *data = this_cpu_ptr(&menu_devices);
269 	s64 latency_req = cpuidle_governor_latency_req(dev->cpu);
270 	unsigned int predicted_us;
271 	u64 predicted_ns;
272 	u64 interactivity_req;
273 	unsigned long nr_iowaiters;
274 	ktime_t delta_next;
275 	int i, idx;
276 
277 	if (data->needs_update) {
278 		menu_update(drv, dev);
279 		data->needs_update = 0;
280 	}
281 
282 	/* determine the expected residency time, round up */
283 	data->next_timer_ns = tick_nohz_get_sleep_length(&delta_next);
284 
285 	nr_iowaiters = nr_iowait_cpu(dev->cpu);
286 	data->bucket = which_bucket(data->next_timer_ns, nr_iowaiters);
287 
288 	if (unlikely(drv->state_count <= 1 || latency_req == 0) ||
289 	    ((data->next_timer_ns < drv->states[1].target_residency_ns ||
290 	      latency_req < drv->states[1].exit_latency_ns) &&
291 	     !dev->states_usage[0].disable)) {
292 		/*
293 		 * In this case state[0] will be used no matter what, so return
294 		 * it right away and keep the tick running if state[0] is a
295 		 * polling one.
296 		 */
297 		*stop_tick = !(drv->states[0].flags & CPUIDLE_FLAG_POLLING);
298 		return 0;
299 	}
300 
301 	/* Round up the result for half microseconds. */
302 	predicted_us = div_u64(data->next_timer_ns *
303 			       data->correction_factor[data->bucket] +
304 			       (RESOLUTION * DECAY * NSEC_PER_USEC) / 2,
305 			       RESOLUTION * DECAY * NSEC_PER_USEC);
306 	/* Use the lowest expected idle interval to pick the idle state. */
307 	predicted_ns = (u64)min(predicted_us,
308 				get_typical_interval(data, predicted_us)) *
309 				NSEC_PER_USEC;
310 
311 	if (tick_nohz_tick_stopped()) {
312 		/*
313 		 * If the tick is already stopped, the cost of possible short
314 		 * idle duration misprediction is much higher, because the CPU
315 		 * may be stuck in a shallow idle state for a long time as a
316 		 * result of it.  In that case say we might mispredict and use
317 		 * the known time till the closest timer event for the idle
318 		 * state selection.
319 		 */
320 		if (predicted_ns < TICK_NSEC)
321 			predicted_ns = delta_next;
322 	} else {
323 		/*
324 		 * Use the performance multiplier and the user-configurable
325 		 * latency_req to determine the maximum exit latency.
326 		 */
327 		interactivity_req = div64_u64(predicted_ns,
328 					      performance_multiplier(nr_iowaiters));
329 		if (latency_req > interactivity_req)
330 			latency_req = interactivity_req;
331 	}
332 
333 	/*
334 	 * Find the idle state with the lowest power while satisfying
335 	 * our constraints.
336 	 */
337 	idx = -1;
338 	for (i = 0; i < drv->state_count; i++) {
339 		struct cpuidle_state *s = &drv->states[i];
340 
341 		if (dev->states_usage[i].disable)
342 			continue;
343 
344 		if (idx == -1)
345 			idx = i; /* first enabled state */
346 
347 		if (s->target_residency_ns > predicted_ns) {
348 			/*
349 			 * Use a physical idle state, not busy polling, unless
350 			 * a timer is going to trigger soon enough.
351 			 */
352 			if ((drv->states[idx].flags & CPUIDLE_FLAG_POLLING) &&
353 			    s->exit_latency_ns <= latency_req &&
354 			    s->target_residency_ns <= data->next_timer_ns) {
355 				predicted_ns = s->target_residency_ns;
356 				idx = i;
357 				break;
358 			}
359 			if (predicted_ns < TICK_NSEC)
360 				break;
361 
362 			if (!tick_nohz_tick_stopped()) {
363 				/*
364 				 * If the state selected so far is shallow,
365 				 * waking up early won't hurt, so retain the
366 				 * tick in that case and let the governor run
367 				 * again in the next iteration of the loop.
368 				 */
369 				predicted_ns = drv->states[idx].target_residency_ns;
370 				break;
371 			}
372 
373 			/*
374 			 * If the state selected so far is shallow and this
375 			 * state's target residency matches the time till the
376 			 * closest timer event, select this one to avoid getting
377 			 * stuck in the shallow one for too long.
378 			 */
379 			if (drv->states[idx].target_residency_ns < TICK_NSEC &&
380 			    s->target_residency_ns <= delta_next)
381 				idx = i;
382 
383 			return idx;
384 		}
385 		if (s->exit_latency_ns > latency_req)
386 			break;
387 
388 		idx = i;
389 	}
390 
391 	if (idx == -1)
392 		idx = 0; /* No states enabled. Must use 0. */
393 
394 	/*
395 	 * Don't stop the tick if the selected state is a polling one or if the
396 	 * expected idle duration is shorter than the tick period length.
397 	 */
398 	if (((drv->states[idx].flags & CPUIDLE_FLAG_POLLING) ||
399 	     predicted_ns < TICK_NSEC) && !tick_nohz_tick_stopped()) {
400 		*stop_tick = false;
401 
402 		if (idx > 0 && drv->states[idx].target_residency_ns > delta_next) {
403 			/*
404 			 * The tick is not going to be stopped and the target
405 			 * residency of the state to be returned is not within
406 			 * the time until the next timer event including the
407 			 * tick, so try to correct that.
408 			 */
409 			for (i = idx - 1; i >= 0; i--) {
410 				if (dev->states_usage[i].disable)
411 					continue;
412 
413 				idx = i;
414 				if (drv->states[i].target_residency_ns <= delta_next)
415 					break;
416 			}
417 		}
418 	}
419 
420 	return idx;
421 }
422 
423 /**
424  * menu_reflect - records that data structures need update
425  * @dev: the CPU
426  * @index: the index of actual entered state
427  *
428  * NOTE: it's important to be fast here because this operation will add to
429  *       the overall exit latency.
430  */
431 static void menu_reflect(struct cpuidle_device *dev, int index)
432 {
433 	struct menu_device *data = this_cpu_ptr(&menu_devices);
434 
435 	dev->last_state_idx = index;
436 	data->needs_update = 1;
437 	data->tick_wakeup = tick_nohz_idle_got_tick();
438 }
439 
440 /**
441  * menu_update - attempts to guess what happened after entry
442  * @drv: cpuidle driver containing state data
443  * @dev: the CPU
444  */
445 static void menu_update(struct cpuidle_driver *drv, struct cpuidle_device *dev)
446 {
447 	struct menu_device *data = this_cpu_ptr(&menu_devices);
448 	int last_idx = dev->last_state_idx;
449 	struct cpuidle_state *target = &drv->states[last_idx];
450 	u64 measured_ns;
451 	unsigned int new_factor;
452 
453 	/*
454 	 * Try to figure out how much time passed between entry to low
455 	 * power state and occurrence of the wakeup event.
456 	 *
457 	 * If the entered idle state didn't support residency measurements,
458 	 * we use them anyway if they are short, and if long,
459 	 * truncate to the whole expected time.
460 	 *
461 	 * Any measured amount of time will include the exit latency.
462 	 * Since we are interested in when the wakeup begun, not when it
463 	 * was completed, we must subtract the exit latency. However, if
464 	 * the measured amount of time is less than the exit latency,
465 	 * assume the state was never reached and the exit latency is 0.
466 	 */
467 
468 	if (data->tick_wakeup && data->next_timer_ns > TICK_NSEC) {
469 		/*
470 		 * The nohz code said that there wouldn't be any events within
471 		 * the tick boundary (if the tick was stopped), but the idle
472 		 * duration predictor had a differing opinion.  Since the CPU
473 		 * was woken up by a tick (that wasn't stopped after all), the
474 		 * predictor was not quite right, so assume that the CPU could
475 		 * have been idle long (but not forever) to help the idle
476 		 * duration predictor do a better job next time.
477 		 */
478 		measured_ns = 9 * MAX_INTERESTING / 10;
479 	} else if ((drv->states[last_idx].flags & CPUIDLE_FLAG_POLLING) &&
480 		   dev->poll_time_limit) {
481 		/*
482 		 * The CPU exited the "polling" state due to a time limit, so
483 		 * the idle duration prediction leading to the selection of that
484 		 * state was inaccurate.  If a better prediction had been made,
485 		 * the CPU might have been woken up from idle by the next timer.
486 		 * Assume that to be the case.
487 		 */
488 		measured_ns = data->next_timer_ns;
489 	} else {
490 		/* measured value */
491 		measured_ns = dev->last_residency_ns;
492 
493 		/* Deduct exit latency */
494 		if (measured_ns > 2 * target->exit_latency_ns)
495 			measured_ns -= target->exit_latency_ns;
496 		else
497 			measured_ns /= 2;
498 	}
499 
500 	/* Make sure our coefficients do not exceed unity */
501 	if (measured_ns > data->next_timer_ns)
502 		measured_ns = data->next_timer_ns;
503 
504 	/* Update our correction ratio */
505 	new_factor = data->correction_factor[data->bucket];
506 	new_factor -= new_factor / DECAY;
507 
508 	if (data->next_timer_ns > 0 && measured_ns < MAX_INTERESTING)
509 		new_factor += div64_u64(RESOLUTION * measured_ns,
510 					data->next_timer_ns);
511 	else
512 		/*
513 		 * we were idle so long that we count it as a perfect
514 		 * prediction
515 		 */
516 		new_factor += RESOLUTION;
517 
518 	/*
519 	 * We don't want 0 as factor; we always want at least
520 	 * a tiny bit of estimated time. Fortunately, due to rounding,
521 	 * new_factor will stay nonzero regardless of measured_us values
522 	 * and the compiler can eliminate this test as long as DECAY > 1.
523 	 */
524 	if (DECAY == 1 && unlikely(new_factor == 0))
525 		new_factor = 1;
526 
527 	data->correction_factor[data->bucket] = new_factor;
528 
529 	/* update the repeating-pattern data */
530 	data->intervals[data->interval_ptr++] = ktime_to_us(measured_ns);
531 	if (data->interval_ptr >= INTERVALS)
532 		data->interval_ptr = 0;
533 }
534 
535 /**
536  * menu_enable_device - scans a CPU's states and does setup
537  * @drv: cpuidle driver
538  * @dev: the CPU
539  */
540 static int menu_enable_device(struct cpuidle_driver *drv,
541 				struct cpuidle_device *dev)
542 {
543 	struct menu_device *data = &per_cpu(menu_devices, dev->cpu);
544 	int i;
545 
546 	memset(data, 0, sizeof(struct menu_device));
547 
548 	/*
549 	 * if the correction factor is 0 (eg first time init or cpu hotplug
550 	 * etc), we actually want to start out with a unity factor.
551 	 */
552 	for(i = 0; i < BUCKETS; i++)
553 		data->correction_factor[i] = RESOLUTION * DECAY;
554 
555 	return 0;
556 }
557 
558 static struct cpuidle_governor menu_governor = {
559 	.name =		"menu",
560 	.rating =	20,
561 	.enable =	menu_enable_device,
562 	.select =	menu_select,
563 	.reflect =	menu_reflect,
564 };
565 
566 /**
567  * init_menu - initializes the governor
568  */
569 static int __init init_menu(void)
570 {
571 	return cpuidle_register_governor(&menu_governor);
572 }
573 
574 postcore_initcall(init_menu);
575