xref: /openbmc/linux/drivers/cpuidle/governors/menu.c (revision ae40e94f)
1 /*
2  * menu.c - the menu idle governor
3  *
4  * Copyright (C) 2006-2007 Adam Belay <abelay@novell.com>
5  * Copyright (C) 2009 Intel Corporation
6  * Author:
7  *        Arjan van de Ven <arjan@linux.intel.com>
8  *
9  * This code is licenced under the GPL version 2 as described
10  * in the COPYING file that acompanies the Linux Kernel.
11  */
12 
13 #include <linux/kernel.h>
14 #include <linux/cpuidle.h>
15 #include <linux/time.h>
16 #include <linux/ktime.h>
17 #include <linux/hrtimer.h>
18 #include <linux/tick.h>
19 #include <linux/sched.h>
20 #include <linux/sched/loadavg.h>
21 #include <linux/sched/stat.h>
22 #include <linux/math64.h>
23 
24 /*
25  * Please note when changing the tuning values:
26  * If (MAX_INTERESTING-1) * RESOLUTION > UINT_MAX, the result of
27  * a scaling operation multiplication may overflow on 32 bit platforms.
28  * In that case, #define RESOLUTION as ULL to get 64 bit result:
29  * #define RESOLUTION 1024ULL
30  *
31  * The default values do not overflow.
32  */
33 #define BUCKETS 12
34 #define INTERVAL_SHIFT 3
35 #define INTERVALS (1UL << INTERVAL_SHIFT)
36 #define RESOLUTION 1024
37 #define DECAY 8
38 #define MAX_INTERESTING 50000
39 
40 
41 /*
42  * Concepts and ideas behind the menu governor
43  *
44  * For the menu governor, there are 3 decision factors for picking a C
45  * state:
46  * 1) Energy break even point
47  * 2) Performance impact
48  * 3) Latency tolerance (from pmqos infrastructure)
49  * These these three factors are treated independently.
50  *
51  * Energy break even point
52  * -----------------------
53  * C state entry and exit have an energy cost, and a certain amount of time in
54  * the  C state is required to actually break even on this cost. CPUIDLE
55  * provides us this duration in the "target_residency" field. So all that we
56  * need is a good prediction of how long we'll be idle. Like the traditional
57  * menu governor, we start with the actual known "next timer event" time.
58  *
59  * Since there are other source of wakeups (interrupts for example) than
60  * the next timer event, this estimation is rather optimistic. To get a
61  * more realistic estimate, a correction factor is applied to the estimate,
62  * that is based on historic behavior. For example, if in the past the actual
63  * duration always was 50% of the next timer tick, the correction factor will
64  * be 0.5.
65  *
66  * menu uses a running average for this correction factor, however it uses a
67  * set of factors, not just a single factor. This stems from the realization
68  * that the ratio is dependent on the order of magnitude of the expected
69  * duration; if we expect 500 milliseconds of idle time the likelihood of
70  * getting an interrupt very early is much higher than if we expect 50 micro
71  * seconds of idle time. A second independent factor that has big impact on
72  * the actual factor is if there is (disk) IO outstanding or not.
73  * (as a special twist, we consider every sleep longer than 50 milliseconds
74  * as perfect; there are no power gains for sleeping longer than this)
75  *
76  * For these two reasons we keep an array of 12 independent factors, that gets
77  * indexed based on the magnitude of the expected duration as well as the
78  * "is IO outstanding" property.
79  *
80  * Repeatable-interval-detector
81  * ----------------------------
82  * There are some cases where "next timer" is a completely unusable predictor:
83  * Those cases where the interval is fixed, for example due to hardware
84  * interrupt mitigation, but also due to fixed transfer rate devices such as
85  * mice.
86  * For this, we use a different predictor: We track the duration of the last 8
87  * intervals and if the stand deviation of these 8 intervals is below a
88  * threshold value, we use the average of these intervals as prediction.
89  *
90  * Limiting Performance Impact
91  * ---------------------------
92  * C states, especially those with large exit latencies, can have a real
93  * noticeable impact on workloads, which is not acceptable for most sysadmins,
94  * and in addition, less performance has a power price of its own.
95  *
96  * As a general rule of thumb, menu assumes that the following heuristic
97  * holds:
98  *     The busier the system, the less impact of C states is acceptable
99  *
100  * This rule-of-thumb is implemented using a performance-multiplier:
101  * If the exit latency times the performance multiplier is longer than
102  * the predicted duration, the C state is not considered a candidate
103  * for selection due to a too high performance impact. So the higher
104  * this multiplier is, the longer we need to be idle to pick a deep C
105  * state, and thus the less likely a busy CPU will hit such a deep
106  * C state.
107  *
108  * Two factors are used in determing this multiplier:
109  * a value of 10 is added for each point of "per cpu load average" we have.
110  * a value of 5 points is added for each process that is waiting for
111  * IO on this CPU.
112  * (these values are experimentally determined)
113  *
114  * The load average factor gives a longer term (few seconds) input to the
115  * decision, while the iowait value gives a cpu local instantanious input.
116  * The iowait factor may look low, but realize that this is also already
117  * represented in the system load average.
118  *
119  */
120 
121 struct menu_device {
122 	int		last_state_idx;
123 	int             needs_update;
124 	int             tick_wakeup;
125 
126 	unsigned int	next_timer_us;
127 	unsigned int	bucket;
128 	unsigned int	correction_factor[BUCKETS];
129 	unsigned int	intervals[INTERVALS];
130 	int		interval_ptr;
131 };
132 
133 static inline int which_bucket(unsigned int duration, unsigned long nr_iowaiters)
134 {
135 	int bucket = 0;
136 
137 	/*
138 	 * We keep two groups of stats; one with no
139 	 * IO pending, one without.
140 	 * This allows us to calculate
141 	 * E(duration)|iowait
142 	 */
143 	if (nr_iowaiters)
144 		bucket = BUCKETS/2;
145 
146 	if (duration < 10)
147 		return bucket;
148 	if (duration < 100)
149 		return bucket + 1;
150 	if (duration < 1000)
151 		return bucket + 2;
152 	if (duration < 10000)
153 		return bucket + 3;
154 	if (duration < 100000)
155 		return bucket + 4;
156 	return bucket + 5;
157 }
158 
159 /*
160  * Return a multiplier for the exit latency that is intended
161  * to take performance requirements into account.
162  * The more performance critical we estimate the system
163  * to be, the higher this multiplier, and thus the higher
164  * the barrier to go to an expensive C state.
165  */
166 static inline int performance_multiplier(unsigned long nr_iowaiters)
167 {
168 	/* for IO wait tasks (per cpu!) we add 10x each */
169 	return 1 + 10 * nr_iowaiters;
170 }
171 
172 static DEFINE_PER_CPU(struct menu_device, menu_devices);
173 
174 static void menu_update(struct cpuidle_driver *drv, struct cpuidle_device *dev);
175 
176 /*
177  * Try detecting repeating patterns by keeping track of the last 8
178  * intervals, and checking if the standard deviation of that set
179  * of points is below a threshold. If it is... then use the
180  * average of these 8 points as the estimated value.
181  */
182 static unsigned int get_typical_interval(struct menu_device *data,
183 					 unsigned int predicted_us)
184 {
185 	int i, divisor;
186 	unsigned int min, max, thresh, avg;
187 	uint64_t sum, variance;
188 
189 	thresh = INT_MAX; /* Discard outliers above this value */
190 
191 again:
192 
193 	/* First calculate the average of past intervals */
194 	min = UINT_MAX;
195 	max = 0;
196 	sum = 0;
197 	divisor = 0;
198 	for (i = 0; i < INTERVALS; i++) {
199 		unsigned int value = data->intervals[i];
200 		if (value <= thresh) {
201 			sum += value;
202 			divisor++;
203 			if (value > max)
204 				max = value;
205 
206 			if (value < min)
207 				min = value;
208 		}
209 	}
210 
211 	/*
212 	 * If the result of the computation is going to be discarded anyway,
213 	 * avoid the computation altogether.
214 	 */
215 	if (min >= predicted_us)
216 		return UINT_MAX;
217 
218 	if (divisor == INTERVALS)
219 		avg = sum >> INTERVAL_SHIFT;
220 	else
221 		avg = div_u64(sum, divisor);
222 
223 	/* Then try to determine variance */
224 	variance = 0;
225 	for (i = 0; i < INTERVALS; i++) {
226 		unsigned int value = data->intervals[i];
227 		if (value <= thresh) {
228 			int64_t diff = (int64_t)value - avg;
229 			variance += diff * diff;
230 		}
231 	}
232 	if (divisor == INTERVALS)
233 		variance >>= INTERVAL_SHIFT;
234 	else
235 		do_div(variance, divisor);
236 
237 	/*
238 	 * The typical interval is obtained when standard deviation is
239 	 * small (stddev <= 20 us, variance <= 400 us^2) or standard
240 	 * deviation is small compared to the average interval (avg >
241 	 * 6*stddev, avg^2 > 36*variance). The average is smaller than
242 	 * UINT_MAX aka U32_MAX, so computing its square does not
243 	 * overflow a u64. We simply reject this candidate average if
244 	 * the standard deviation is greater than 715 s (which is
245 	 * rather unlikely).
246 	 *
247 	 * Use this result only if there is no timer to wake us up sooner.
248 	 */
249 	if (likely(variance <= U64_MAX/36)) {
250 		if ((((u64)avg*avg > variance*36) && (divisor * 4 >= INTERVALS * 3))
251 							|| variance <= 400) {
252 			return avg;
253 		}
254 	}
255 
256 	/*
257 	 * If we have outliers to the upside in our distribution, discard
258 	 * those by setting the threshold to exclude these outliers, then
259 	 * calculate the average and standard deviation again. Once we get
260 	 * down to the bottom 3/4 of our samples, stop excluding samples.
261 	 *
262 	 * This can deal with workloads that have long pauses interspersed
263 	 * with sporadic activity with a bunch of short pauses.
264 	 */
265 	if ((divisor * 4) <= INTERVALS * 3)
266 		return UINT_MAX;
267 
268 	thresh = max - 1;
269 	goto again;
270 }
271 
272 /**
273  * menu_select - selects the next idle state to enter
274  * @drv: cpuidle driver containing state data
275  * @dev: the CPU
276  * @stop_tick: indication on whether or not to stop the tick
277  */
278 static int menu_select(struct cpuidle_driver *drv, struct cpuidle_device *dev,
279 		       bool *stop_tick)
280 {
281 	struct menu_device *data = this_cpu_ptr(&menu_devices);
282 	int latency_req = cpuidle_governor_latency_req(dev->cpu);
283 	int i;
284 	int idx;
285 	unsigned int interactivity_req;
286 	unsigned int predicted_us;
287 	unsigned long nr_iowaiters;
288 	ktime_t delta_next;
289 
290 	if (data->needs_update) {
291 		menu_update(drv, dev);
292 		data->needs_update = 0;
293 	}
294 
295 	/* determine the expected residency time, round up */
296 	data->next_timer_us = ktime_to_us(tick_nohz_get_sleep_length(&delta_next));
297 
298 	nr_iowaiters = nr_iowait_cpu(dev->cpu);
299 	data->bucket = which_bucket(data->next_timer_us, nr_iowaiters);
300 
301 	if (unlikely(drv->state_count <= 1 || latency_req == 0) ||
302 	    ((data->next_timer_us < drv->states[1].target_residency ||
303 	      latency_req < drv->states[1].exit_latency) &&
304 	     !drv->states[0].disabled && !dev->states_usage[0].disable)) {
305 		/*
306 		 * In this case state[0] will be used no matter what, so return
307 		 * it right away and keep the tick running.
308 		 */
309 		*stop_tick = false;
310 		return 0;
311 	}
312 
313 	/*
314 	 * Force the result of multiplication to be 64 bits even if both
315 	 * operands are 32 bits.
316 	 * Make sure to round up for half microseconds.
317 	 */
318 	predicted_us = DIV_ROUND_CLOSEST_ULL((uint64_t)data->next_timer_us *
319 					 data->correction_factor[data->bucket],
320 					 RESOLUTION * DECAY);
321 	/*
322 	 * Use the lowest expected idle interval to pick the idle state.
323 	 */
324 	predicted_us = min(predicted_us, get_typical_interval(data, predicted_us));
325 
326 	if (tick_nohz_tick_stopped()) {
327 		/*
328 		 * If the tick is already stopped, the cost of possible short
329 		 * idle duration misprediction is much higher, because the CPU
330 		 * may be stuck in a shallow idle state for a long time as a
331 		 * result of it.  In that case say we might mispredict and use
332 		 * the known time till the closest timer event for the idle
333 		 * state selection.
334 		 */
335 		if (predicted_us < TICK_USEC)
336 			predicted_us = ktime_to_us(delta_next);
337 	} else {
338 		/*
339 		 * Use the performance multiplier and the user-configurable
340 		 * latency_req to determine the maximum exit latency.
341 		 */
342 		interactivity_req = predicted_us / performance_multiplier(nr_iowaiters);
343 		if (latency_req > interactivity_req)
344 			latency_req = interactivity_req;
345 	}
346 
347 	/*
348 	 * Find the idle state with the lowest power while satisfying
349 	 * our constraints.
350 	 */
351 	idx = -1;
352 	for (i = 0; i < drv->state_count; i++) {
353 		struct cpuidle_state *s = &drv->states[i];
354 		struct cpuidle_state_usage *su = &dev->states_usage[i];
355 
356 		if (s->disabled || su->disable)
357 			continue;
358 
359 		if (idx == -1)
360 			idx = i; /* first enabled state */
361 
362 		if (s->target_residency > predicted_us) {
363 			/*
364 			 * Use a physical idle state, not busy polling, unless
365 			 * a timer is going to trigger soon enough.
366 			 */
367 			if ((drv->states[idx].flags & CPUIDLE_FLAG_POLLING) &&
368 			    s->exit_latency <= latency_req &&
369 			    s->target_residency <= data->next_timer_us) {
370 				predicted_us = s->target_residency;
371 				idx = i;
372 				break;
373 			}
374 			if (predicted_us < TICK_USEC)
375 				break;
376 
377 			if (!tick_nohz_tick_stopped()) {
378 				/*
379 				 * If the state selected so far is shallow,
380 				 * waking up early won't hurt, so retain the
381 				 * tick in that case and let the governor run
382 				 * again in the next iteration of the loop.
383 				 */
384 				predicted_us = drv->states[idx].target_residency;
385 				break;
386 			}
387 
388 			/*
389 			 * If the state selected so far is shallow and this
390 			 * state's target residency matches the time till the
391 			 * closest timer event, select this one to avoid getting
392 			 * stuck in the shallow one for too long.
393 			 */
394 			if (drv->states[idx].target_residency < TICK_USEC &&
395 			    s->target_residency <= ktime_to_us(delta_next))
396 				idx = i;
397 
398 			return idx;
399 		}
400 		if (s->exit_latency > latency_req) {
401 			/*
402 			 * If we break out of the loop for latency reasons, use
403 			 * the target residency of the selected state as the
404 			 * expected idle duration so that the tick is retained
405 			 * as long as that target residency is low enough.
406 			 */
407 			predicted_us = drv->states[idx].target_residency;
408 			break;
409 		}
410 		idx = i;
411 	}
412 
413 	if (idx == -1)
414 		idx = 0; /* No states enabled. Must use 0. */
415 
416 	/*
417 	 * Don't stop the tick if the selected state is a polling one or if the
418 	 * expected idle duration is shorter than the tick period length.
419 	 */
420 	if (((drv->states[idx].flags & CPUIDLE_FLAG_POLLING) ||
421 	     predicted_us < TICK_USEC) && !tick_nohz_tick_stopped()) {
422 		unsigned int delta_next_us = ktime_to_us(delta_next);
423 
424 		*stop_tick = false;
425 
426 		if (idx > 0 && drv->states[idx].target_residency > delta_next_us) {
427 			/*
428 			 * The tick is not going to be stopped and the target
429 			 * residency of the state to be returned is not within
430 			 * the time until the next timer event including the
431 			 * tick, so try to correct that.
432 			 */
433 			for (i = idx - 1; i >= 0; i--) {
434 				if (drv->states[i].disabled ||
435 				    dev->states_usage[i].disable)
436 					continue;
437 
438 				idx = i;
439 				if (drv->states[i].target_residency <= delta_next_us)
440 					break;
441 			}
442 		}
443 	}
444 
445 	return idx;
446 }
447 
448 /**
449  * menu_reflect - records that data structures need update
450  * @dev: the CPU
451  * @index: the index of actual entered state
452  *
453  * NOTE: it's important to be fast here because this operation will add to
454  *       the overall exit latency.
455  */
456 static void menu_reflect(struct cpuidle_device *dev, int index)
457 {
458 	struct menu_device *data = this_cpu_ptr(&menu_devices);
459 
460 	data->last_state_idx = index;
461 	data->needs_update = 1;
462 	data->tick_wakeup = tick_nohz_idle_got_tick();
463 }
464 
465 /**
466  * menu_update - attempts to guess what happened after entry
467  * @drv: cpuidle driver containing state data
468  * @dev: the CPU
469  */
470 static void menu_update(struct cpuidle_driver *drv, struct cpuidle_device *dev)
471 {
472 	struct menu_device *data = this_cpu_ptr(&menu_devices);
473 	int last_idx = data->last_state_idx;
474 	struct cpuidle_state *target = &drv->states[last_idx];
475 	unsigned int measured_us;
476 	unsigned int new_factor;
477 
478 	/*
479 	 * Try to figure out how much time passed between entry to low
480 	 * power state and occurrence of the wakeup event.
481 	 *
482 	 * If the entered idle state didn't support residency measurements,
483 	 * we use them anyway if they are short, and if long,
484 	 * truncate to the whole expected time.
485 	 *
486 	 * Any measured amount of time will include the exit latency.
487 	 * Since we are interested in when the wakeup begun, not when it
488 	 * was completed, we must subtract the exit latency. However, if
489 	 * the measured amount of time is less than the exit latency,
490 	 * assume the state was never reached and the exit latency is 0.
491 	 */
492 
493 	if (data->tick_wakeup && data->next_timer_us > TICK_USEC) {
494 		/*
495 		 * The nohz code said that there wouldn't be any events within
496 		 * the tick boundary (if the tick was stopped), but the idle
497 		 * duration predictor had a differing opinion.  Since the CPU
498 		 * was woken up by a tick (that wasn't stopped after all), the
499 		 * predictor was not quite right, so assume that the CPU could
500 		 * have been idle long (but not forever) to help the idle
501 		 * duration predictor do a better job next time.
502 		 */
503 		measured_us = 9 * MAX_INTERESTING / 10;
504 	} else if ((drv->states[last_idx].flags & CPUIDLE_FLAG_POLLING) &&
505 		   dev->poll_time_limit) {
506 		/*
507 		 * The CPU exited the "polling" state due to a time limit, so
508 		 * the idle duration prediction leading to the selection of that
509 		 * state was inaccurate.  If a better prediction had been made,
510 		 * the CPU might have been woken up from idle by the next timer.
511 		 * Assume that to be the case.
512 		 */
513 		measured_us = data->next_timer_us;
514 	} else {
515 		/* measured value */
516 		measured_us = dev->last_residency;
517 
518 		/* Deduct exit latency */
519 		if (measured_us > 2 * target->exit_latency)
520 			measured_us -= target->exit_latency;
521 		else
522 			measured_us /= 2;
523 	}
524 
525 	/* Make sure our coefficients do not exceed unity */
526 	if (measured_us > data->next_timer_us)
527 		measured_us = data->next_timer_us;
528 
529 	/* Update our correction ratio */
530 	new_factor = data->correction_factor[data->bucket];
531 	new_factor -= new_factor / DECAY;
532 
533 	if (data->next_timer_us > 0 && measured_us < MAX_INTERESTING)
534 		new_factor += RESOLUTION * measured_us / data->next_timer_us;
535 	else
536 		/*
537 		 * we were idle so long that we count it as a perfect
538 		 * prediction
539 		 */
540 		new_factor += RESOLUTION;
541 
542 	/*
543 	 * We don't want 0 as factor; we always want at least
544 	 * a tiny bit of estimated time. Fortunately, due to rounding,
545 	 * new_factor will stay nonzero regardless of measured_us values
546 	 * and the compiler can eliminate this test as long as DECAY > 1.
547 	 */
548 	if (DECAY == 1 && unlikely(new_factor == 0))
549 		new_factor = 1;
550 
551 	data->correction_factor[data->bucket] = new_factor;
552 
553 	/* update the repeating-pattern data */
554 	data->intervals[data->interval_ptr++] = measured_us;
555 	if (data->interval_ptr >= INTERVALS)
556 		data->interval_ptr = 0;
557 }
558 
559 /**
560  * menu_enable_device - scans a CPU's states and does setup
561  * @drv: cpuidle driver
562  * @dev: the CPU
563  */
564 static int menu_enable_device(struct cpuidle_driver *drv,
565 				struct cpuidle_device *dev)
566 {
567 	struct menu_device *data = &per_cpu(menu_devices, dev->cpu);
568 	int i;
569 
570 	memset(data, 0, sizeof(struct menu_device));
571 
572 	/*
573 	 * if the correction factor is 0 (eg first time init or cpu hotplug
574 	 * etc), we actually want to start out with a unity factor.
575 	 */
576 	for(i = 0; i < BUCKETS; i++)
577 		data->correction_factor[i] = RESOLUTION * DECAY;
578 
579 	return 0;
580 }
581 
582 static struct cpuidle_governor menu_governor = {
583 	.name =		"menu",
584 	.rating =	20,
585 	.enable =	menu_enable_device,
586 	.select =	menu_select,
587 	.reflect =	menu_reflect,
588 };
589 
590 /**
591  * init_menu - initializes the governor
592  */
593 static int __init init_menu(void)
594 {
595 	return cpuidle_register_governor(&menu_governor);
596 }
597 
598 postcore_initcall(init_menu);
599