xref: /openbmc/linux/drivers/cpuidle/governors/menu.c (revision a09d2831)
1 /*
2  * menu.c - the menu idle governor
3  *
4  * Copyright (C) 2006-2007 Adam Belay <abelay@novell.com>
5  * Copyright (C) 2009 Intel Corporation
6  * Author:
7  *        Arjan van de Ven <arjan@linux.intel.com>
8  *
9  * This code is licenced under the GPL version 2 as described
10  * in the COPYING file that acompanies the Linux Kernel.
11  */
12 
13 #include <linux/kernel.h>
14 #include <linux/cpuidle.h>
15 #include <linux/pm_qos_params.h>
16 #include <linux/time.h>
17 #include <linux/ktime.h>
18 #include <linux/hrtimer.h>
19 #include <linux/tick.h>
20 #include <linux/sched.h>
21 #include <linux/math64.h>
22 
23 #define BUCKETS 12
24 #define RESOLUTION 1024
25 #define DECAY 4
26 #define MAX_INTERESTING 50000
27 
28 /*
29  * Concepts and ideas behind the menu governor
30  *
31  * For the menu governor, there are 3 decision factors for picking a C
32  * state:
33  * 1) Energy break even point
34  * 2) Performance impact
35  * 3) Latency tolerance (from pmqos infrastructure)
36  * These these three factors are treated independently.
37  *
38  * Energy break even point
39  * -----------------------
40  * C state entry and exit have an energy cost, and a certain amount of time in
41  * the  C state is required to actually break even on this cost. CPUIDLE
42  * provides us this duration in the "target_residency" field. So all that we
43  * need is a good prediction of how long we'll be idle. Like the traditional
44  * menu governor, we start with the actual known "next timer event" time.
45  *
46  * Since there are other source of wakeups (interrupts for example) than
47  * the next timer event, this estimation is rather optimistic. To get a
48  * more realistic estimate, a correction factor is applied to the estimate,
49  * that is based on historic behavior. For example, if in the past the actual
50  * duration always was 50% of the next timer tick, the correction factor will
51  * be 0.5.
52  *
53  * menu uses a running average for this correction factor, however it uses a
54  * set of factors, not just a single factor. This stems from the realization
55  * that the ratio is dependent on the order of magnitude of the expected
56  * duration; if we expect 500 milliseconds of idle time the likelihood of
57  * getting an interrupt very early is much higher than if we expect 50 micro
58  * seconds of idle time. A second independent factor that has big impact on
59  * the actual factor is if there is (disk) IO outstanding or not.
60  * (as a special twist, we consider every sleep longer than 50 milliseconds
61  * as perfect; there are no power gains for sleeping longer than this)
62  *
63  * For these two reasons we keep an array of 12 independent factors, that gets
64  * indexed based on the magnitude of the expected duration as well as the
65  * "is IO outstanding" property.
66  *
67  * Limiting Performance Impact
68  * ---------------------------
69  * C states, especially those with large exit latencies, can have a real
70  * noticable impact on workloads, which is not acceptable for most sysadmins,
71  * and in addition, less performance has a power price of its own.
72  *
73  * As a general rule of thumb, menu assumes that the following heuristic
74  * holds:
75  *     The busier the system, the less impact of C states is acceptable
76  *
77  * This rule-of-thumb is implemented using a performance-multiplier:
78  * If the exit latency times the performance multiplier is longer than
79  * the predicted duration, the C state is not considered a candidate
80  * for selection due to a too high performance impact. So the higher
81  * this multiplier is, the longer we need to be idle to pick a deep C
82  * state, and thus the less likely a busy CPU will hit such a deep
83  * C state.
84  *
85  * Two factors are used in determing this multiplier:
86  * a value of 10 is added for each point of "per cpu load average" we have.
87  * a value of 5 points is added for each process that is waiting for
88  * IO on this CPU.
89  * (these values are experimentally determined)
90  *
91  * The load average factor gives a longer term (few seconds) input to the
92  * decision, while the iowait value gives a cpu local instantanious input.
93  * The iowait factor may look low, but realize that this is also already
94  * represented in the system load average.
95  *
96  */
97 
98 struct menu_device {
99 	int		last_state_idx;
100 	int             needs_update;
101 
102 	unsigned int	expected_us;
103 	u64		predicted_us;
104 	unsigned int	measured_us;
105 	unsigned int	exit_us;
106 	unsigned int	bucket;
107 	u64		correction_factor[BUCKETS];
108 };
109 
110 
111 #define LOAD_INT(x) ((x) >> FSHIFT)
112 #define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100)
113 
114 static int get_loadavg(void)
115 {
116 	unsigned long this = this_cpu_load();
117 
118 
119 	return LOAD_INT(this) * 10 + LOAD_FRAC(this) / 10;
120 }
121 
122 static inline int which_bucket(unsigned int duration)
123 {
124 	int bucket = 0;
125 
126 	/*
127 	 * We keep two groups of stats; one with no
128 	 * IO pending, one without.
129 	 * This allows us to calculate
130 	 * E(duration)|iowait
131 	 */
132 	if (nr_iowait_cpu())
133 		bucket = BUCKETS/2;
134 
135 	if (duration < 10)
136 		return bucket;
137 	if (duration < 100)
138 		return bucket + 1;
139 	if (duration < 1000)
140 		return bucket + 2;
141 	if (duration < 10000)
142 		return bucket + 3;
143 	if (duration < 100000)
144 		return bucket + 4;
145 	return bucket + 5;
146 }
147 
148 /*
149  * Return a multiplier for the exit latency that is intended
150  * to take performance requirements into account.
151  * The more performance critical we estimate the system
152  * to be, the higher this multiplier, and thus the higher
153  * the barrier to go to an expensive C state.
154  */
155 static inline int performance_multiplier(void)
156 {
157 	int mult = 1;
158 
159 	/* for higher loadavg, we are more reluctant */
160 
161 	mult += 2 * get_loadavg();
162 
163 	/* for IO wait tasks (per cpu!) we add 5x each */
164 	mult += 10 * nr_iowait_cpu();
165 
166 	return mult;
167 }
168 
169 static DEFINE_PER_CPU(struct menu_device, menu_devices);
170 
171 static void menu_update(struct cpuidle_device *dev);
172 
173 /* This implements DIV_ROUND_CLOSEST but avoids 64 bit division */
174 static u64 div_round64(u64 dividend, u32 divisor)
175 {
176 	return div_u64(dividend + (divisor / 2), divisor);
177 }
178 
179 /**
180  * menu_select - selects the next idle state to enter
181  * @dev: the CPU
182  */
183 static int menu_select(struct cpuidle_device *dev)
184 {
185 	struct menu_device *data = &__get_cpu_var(menu_devices);
186 	int latency_req = pm_qos_requirement(PM_QOS_CPU_DMA_LATENCY);
187 	int i;
188 	int multiplier;
189 
190 	data->last_state_idx = 0;
191 	data->exit_us = 0;
192 
193 	if (data->needs_update) {
194 		menu_update(dev);
195 		data->needs_update = 0;
196 	}
197 
198 	/* Special case when user has set very strict latency requirement */
199 	if (unlikely(latency_req == 0))
200 		return 0;
201 
202 	/* determine the expected residency time, round up */
203 	data->expected_us =
204 	    DIV_ROUND_UP((u32)ktime_to_ns(tick_nohz_get_sleep_length()), 1000);
205 
206 
207 	data->bucket = which_bucket(data->expected_us);
208 
209 	multiplier = performance_multiplier();
210 
211 	/*
212 	 * if the correction factor is 0 (eg first time init or cpu hotplug
213 	 * etc), we actually want to start out with a unity factor.
214 	 */
215 	if (data->correction_factor[data->bucket] == 0)
216 		data->correction_factor[data->bucket] = RESOLUTION * DECAY;
217 
218 	/* Make sure to round up for half microseconds */
219 	data->predicted_us = div_round64(data->expected_us * data->correction_factor[data->bucket],
220 					 RESOLUTION * DECAY);
221 
222 	/*
223 	 * We want to default to C1 (hlt), not to busy polling
224 	 * unless the timer is happening really really soon.
225 	 */
226 	if (data->expected_us > 5)
227 		data->last_state_idx = CPUIDLE_DRIVER_STATE_START;
228 
229 
230 	/* find the deepest idle state that satisfies our constraints */
231 	for (i = CPUIDLE_DRIVER_STATE_START; i < dev->state_count; i++) {
232 		struct cpuidle_state *s = &dev->states[i];
233 
234 		if (s->target_residency > data->predicted_us)
235 			break;
236 		if (s->exit_latency > latency_req)
237 			break;
238 		if (s->exit_latency * multiplier > data->predicted_us)
239 			break;
240 		data->exit_us = s->exit_latency;
241 		data->last_state_idx = i;
242 	}
243 
244 	return data->last_state_idx;
245 }
246 
247 /**
248  * menu_reflect - records that data structures need update
249  * @dev: the CPU
250  *
251  * NOTE: it's important to be fast here because this operation will add to
252  *       the overall exit latency.
253  */
254 static void menu_reflect(struct cpuidle_device *dev)
255 {
256 	struct menu_device *data = &__get_cpu_var(menu_devices);
257 	data->needs_update = 1;
258 }
259 
260 /**
261  * menu_update - attempts to guess what happened after entry
262  * @dev: the CPU
263  */
264 static void menu_update(struct cpuidle_device *dev)
265 {
266 	struct menu_device *data = &__get_cpu_var(menu_devices);
267 	int last_idx = data->last_state_idx;
268 	unsigned int last_idle_us = cpuidle_get_last_residency(dev);
269 	struct cpuidle_state *target = &dev->states[last_idx];
270 	unsigned int measured_us;
271 	u64 new_factor;
272 
273 	/*
274 	 * Ugh, this idle state doesn't support residency measurements, so we
275 	 * are basically lost in the dark.  As a compromise, assume we slept
276 	 * for the whole expected time.
277 	 */
278 	if (unlikely(!(target->flags & CPUIDLE_FLAG_TIME_VALID)))
279 		last_idle_us = data->expected_us;
280 
281 
282 	measured_us = last_idle_us;
283 
284 	/*
285 	 * We correct for the exit latency; we are assuming here that the
286 	 * exit latency happens after the event that we're interested in.
287 	 */
288 	if (measured_us > data->exit_us)
289 		measured_us -= data->exit_us;
290 
291 
292 	/* update our correction ratio */
293 
294 	new_factor = data->correction_factor[data->bucket]
295 			* (DECAY - 1) / DECAY;
296 
297 	if (data->expected_us > 0 && data->measured_us < MAX_INTERESTING)
298 		new_factor += RESOLUTION * measured_us / data->expected_us;
299 	else
300 		/*
301 		 * we were idle so long that we count it as a perfect
302 		 * prediction
303 		 */
304 		new_factor += RESOLUTION;
305 
306 	/*
307 	 * We don't want 0 as factor; we always want at least
308 	 * a tiny bit of estimated time.
309 	 */
310 	if (new_factor == 0)
311 		new_factor = 1;
312 
313 	data->correction_factor[data->bucket] = new_factor;
314 }
315 
316 /**
317  * menu_enable_device - scans a CPU's states and does setup
318  * @dev: the CPU
319  */
320 static int menu_enable_device(struct cpuidle_device *dev)
321 {
322 	struct menu_device *data = &per_cpu(menu_devices, dev->cpu);
323 
324 	memset(data, 0, sizeof(struct menu_device));
325 
326 	return 0;
327 }
328 
329 static struct cpuidle_governor menu_governor = {
330 	.name =		"menu",
331 	.rating =	20,
332 	.enable =	menu_enable_device,
333 	.select =	menu_select,
334 	.reflect =	menu_reflect,
335 	.owner =	THIS_MODULE,
336 };
337 
338 /**
339  * init_menu - initializes the governor
340  */
341 static int __init init_menu(void)
342 {
343 	return cpuidle_register_governor(&menu_governor);
344 }
345 
346 /**
347  * exit_menu - exits the governor
348  */
349 static void __exit exit_menu(void)
350 {
351 	cpuidle_unregister_governor(&menu_governor);
352 }
353 
354 MODULE_LICENSE("GPL");
355 module_init(init_menu);
356 module_exit(exit_menu);
357