xref: /openbmc/linux/drivers/cpuidle/governors/menu.c (revision 5dcb1015)
1 /*
2  * menu.c - the menu idle governor
3  *
4  * Copyright (C) 2006-2007 Adam Belay <abelay@novell.com>
5  * Copyright (C) 2009 Intel Corporation
6  * Author:
7  *        Arjan van de Ven <arjan@linux.intel.com>
8  *
9  * This code is licenced under the GPL version 2 as described
10  * in the COPYING file that acompanies the Linux Kernel.
11  */
12 
13 #include <linux/kernel.h>
14 #include <linux/cpuidle.h>
15 #include <linux/pm_qos.h>
16 #include <linux/time.h>
17 #include <linux/ktime.h>
18 #include <linux/hrtimer.h>
19 #include <linux/tick.h>
20 #include <linux/sched.h>
21 #include <linux/math64.h>
22 #include <linux/module.h>
23 
24 /*
25  * Please note when changing the tuning values:
26  * If (MAX_INTERESTING-1) * RESOLUTION > UINT_MAX, the result of
27  * a scaling operation multiplication may overflow on 32 bit platforms.
28  * In that case, #define RESOLUTION as ULL to get 64 bit result:
29  * #define RESOLUTION 1024ULL
30  *
31  * The default values do not overflow.
32  */
33 #define BUCKETS 12
34 #define INTERVAL_SHIFT 3
35 #define INTERVALS (1UL << INTERVAL_SHIFT)
36 #define RESOLUTION 1024
37 #define DECAY 8
38 #define MAX_INTERESTING 50000
39 
40 
41 /*
42  * Concepts and ideas behind the menu governor
43  *
44  * For the menu governor, there are 3 decision factors for picking a C
45  * state:
46  * 1) Energy break even point
47  * 2) Performance impact
48  * 3) Latency tolerance (from pmqos infrastructure)
49  * These these three factors are treated independently.
50  *
51  * Energy break even point
52  * -----------------------
53  * C state entry and exit have an energy cost, and a certain amount of time in
54  * the  C state is required to actually break even on this cost. CPUIDLE
55  * provides us this duration in the "target_residency" field. So all that we
56  * need is a good prediction of how long we'll be idle. Like the traditional
57  * menu governor, we start with the actual known "next timer event" time.
58  *
59  * Since there are other source of wakeups (interrupts for example) than
60  * the next timer event, this estimation is rather optimistic. To get a
61  * more realistic estimate, a correction factor is applied to the estimate,
62  * that is based on historic behavior. For example, if in the past the actual
63  * duration always was 50% of the next timer tick, the correction factor will
64  * be 0.5.
65  *
66  * menu uses a running average for this correction factor, however it uses a
67  * set of factors, not just a single factor. This stems from the realization
68  * that the ratio is dependent on the order of magnitude of the expected
69  * duration; if we expect 500 milliseconds of idle time the likelihood of
70  * getting an interrupt very early is much higher than if we expect 50 micro
71  * seconds of idle time. A second independent factor that has big impact on
72  * the actual factor is if there is (disk) IO outstanding or not.
73  * (as a special twist, we consider every sleep longer than 50 milliseconds
74  * as perfect; there are no power gains for sleeping longer than this)
75  *
76  * For these two reasons we keep an array of 12 independent factors, that gets
77  * indexed based on the magnitude of the expected duration as well as the
78  * "is IO outstanding" property.
79  *
80  * Repeatable-interval-detector
81  * ----------------------------
82  * There are some cases where "next timer" is a completely unusable predictor:
83  * Those cases where the interval is fixed, for example due to hardware
84  * interrupt mitigation, but also due to fixed transfer rate devices such as
85  * mice.
86  * For this, we use a different predictor: We track the duration of the last 8
87  * intervals and if the stand deviation of these 8 intervals is below a
88  * threshold value, we use the average of these intervals as prediction.
89  *
90  * Limiting Performance Impact
91  * ---------------------------
92  * C states, especially those with large exit latencies, can have a real
93  * noticeable impact on workloads, which is not acceptable for most sysadmins,
94  * and in addition, less performance has a power price of its own.
95  *
96  * As a general rule of thumb, menu assumes that the following heuristic
97  * holds:
98  *     The busier the system, the less impact of C states is acceptable
99  *
100  * This rule-of-thumb is implemented using a performance-multiplier:
101  * If the exit latency times the performance multiplier is longer than
102  * the predicted duration, the C state is not considered a candidate
103  * for selection due to a too high performance impact. So the higher
104  * this multiplier is, the longer we need to be idle to pick a deep C
105  * state, and thus the less likely a busy CPU will hit such a deep
106  * C state.
107  *
108  * Two factors are used in determing this multiplier:
109  * a value of 10 is added for each point of "per cpu load average" we have.
110  * a value of 5 points is added for each process that is waiting for
111  * IO on this CPU.
112  * (these values are experimentally determined)
113  *
114  * The load average factor gives a longer term (few seconds) input to the
115  * decision, while the iowait value gives a cpu local instantanious input.
116  * The iowait factor may look low, but realize that this is also already
117  * represented in the system load average.
118  *
119  */
120 
121 struct menu_device {
122 	int		last_state_idx;
123 	int             needs_update;
124 
125 	unsigned int	next_timer_us;
126 	unsigned int	predicted_us;
127 	unsigned int	bucket;
128 	unsigned int	correction_factor[BUCKETS];
129 	unsigned int	intervals[INTERVALS];
130 	int		interval_ptr;
131 };
132 
133 
134 #define LOAD_INT(x) ((x) >> FSHIFT)
135 #define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100)
136 
137 static inline int get_loadavg(unsigned long load)
138 {
139 	return LOAD_INT(load) * 10 + LOAD_FRAC(load) / 10;
140 }
141 
142 static inline int which_bucket(unsigned int duration, unsigned long nr_iowaiters)
143 {
144 	int bucket = 0;
145 
146 	/*
147 	 * We keep two groups of stats; one with no
148 	 * IO pending, one without.
149 	 * This allows us to calculate
150 	 * E(duration)|iowait
151 	 */
152 	if (nr_iowaiters)
153 		bucket = BUCKETS/2;
154 
155 	if (duration < 10)
156 		return bucket;
157 	if (duration < 100)
158 		return bucket + 1;
159 	if (duration < 1000)
160 		return bucket + 2;
161 	if (duration < 10000)
162 		return bucket + 3;
163 	if (duration < 100000)
164 		return bucket + 4;
165 	return bucket + 5;
166 }
167 
168 /*
169  * Return a multiplier for the exit latency that is intended
170  * to take performance requirements into account.
171  * The more performance critical we estimate the system
172  * to be, the higher this multiplier, and thus the higher
173  * the barrier to go to an expensive C state.
174  */
175 static inline int performance_multiplier(unsigned long nr_iowaiters, unsigned long load)
176 {
177 	int mult = 1;
178 
179 	/* for higher loadavg, we are more reluctant */
180 
181 	mult += 2 * get_loadavg(load);
182 
183 	/* for IO wait tasks (per cpu!) we add 5x each */
184 	mult += 10 * nr_iowaiters;
185 
186 	return mult;
187 }
188 
189 static DEFINE_PER_CPU(struct menu_device, menu_devices);
190 
191 static void menu_update(struct cpuidle_driver *drv, struct cpuidle_device *dev);
192 
193 /* This implements DIV_ROUND_CLOSEST but avoids 64 bit division */
194 static u64 div_round64(u64 dividend, u32 divisor)
195 {
196 	return div_u64(dividend + (divisor / 2), divisor);
197 }
198 
199 /*
200  * Try detecting repeating patterns by keeping track of the last 8
201  * intervals, and checking if the standard deviation of that set
202  * of points is below a threshold. If it is... then use the
203  * average of these 8 points as the estimated value.
204  */
205 static void get_typical_interval(struct menu_device *data)
206 {
207 	int i, divisor;
208 	unsigned int max, thresh;
209 	uint64_t avg, stddev;
210 
211 	thresh = UINT_MAX; /* Discard outliers above this value */
212 
213 again:
214 
215 	/* First calculate the average of past intervals */
216 	max = 0;
217 	avg = 0;
218 	divisor = 0;
219 	for (i = 0; i < INTERVALS; i++) {
220 		unsigned int value = data->intervals[i];
221 		if (value <= thresh) {
222 			avg += value;
223 			divisor++;
224 			if (value > max)
225 				max = value;
226 		}
227 	}
228 	if (divisor == INTERVALS)
229 		avg >>= INTERVAL_SHIFT;
230 	else
231 		do_div(avg, divisor);
232 
233 	/* Then try to determine standard deviation */
234 	stddev = 0;
235 	for (i = 0; i < INTERVALS; i++) {
236 		unsigned int value = data->intervals[i];
237 		if (value <= thresh) {
238 			int64_t diff = value - avg;
239 			stddev += diff * diff;
240 		}
241 	}
242 	if (divisor == INTERVALS)
243 		stddev >>= INTERVAL_SHIFT;
244 	else
245 		do_div(stddev, divisor);
246 
247 	/*
248 	 * The typical interval is obtained when standard deviation is small
249 	 * or standard deviation is small compared to the average interval.
250 	 *
251 	 * int_sqrt() formal parameter type is unsigned long. When the
252 	 * greatest difference to an outlier exceeds ~65 ms * sqrt(divisor)
253 	 * the resulting squared standard deviation exceeds the input domain
254 	 * of int_sqrt on platforms where unsigned long is 32 bits in size.
255 	 * In such case reject the candidate average.
256 	 *
257 	 * Use this result only if there is no timer to wake us up sooner.
258 	 */
259 	if (likely(stddev <= ULONG_MAX)) {
260 		stddev = int_sqrt(stddev);
261 		if (((avg > stddev * 6) && (divisor * 4 >= INTERVALS * 3))
262 							|| stddev <= 20) {
263 			if (data->next_timer_us > avg)
264 				data->predicted_us = avg;
265 			return;
266 		}
267 	}
268 
269 	/*
270 	 * If we have outliers to the upside in our distribution, discard
271 	 * those by setting the threshold to exclude these outliers, then
272 	 * calculate the average and standard deviation again. Once we get
273 	 * down to the bottom 3/4 of our samples, stop excluding samples.
274 	 *
275 	 * This can deal with workloads that have long pauses interspersed
276 	 * with sporadic activity with a bunch of short pauses.
277 	 */
278 	if ((divisor * 4) <= INTERVALS * 3)
279 		return;
280 
281 	thresh = max - 1;
282 	goto again;
283 }
284 
285 /**
286  * menu_select - selects the next idle state to enter
287  * @drv: cpuidle driver containing state data
288  * @dev: the CPU
289  */
290 static int menu_select(struct cpuidle_driver *drv, struct cpuidle_device *dev)
291 {
292 	struct menu_device *data = this_cpu_ptr(&menu_devices);
293 	int latency_req = pm_qos_request(PM_QOS_CPU_DMA_LATENCY);
294 	int i;
295 	unsigned int interactivity_req;
296 	unsigned long nr_iowaiters, cpu_load;
297 
298 	if (data->needs_update) {
299 		menu_update(drv, dev);
300 		data->needs_update = 0;
301 	}
302 
303 	data->last_state_idx = CPUIDLE_DRIVER_STATE_START - 1;
304 
305 	/* Special case when user has set very strict latency requirement */
306 	if (unlikely(latency_req == 0))
307 		return 0;
308 
309 	/* determine the expected residency time, round up */
310 	data->next_timer_us = ktime_to_us(tick_nohz_get_sleep_length());
311 
312 	get_iowait_load(&nr_iowaiters, &cpu_load);
313 	data->bucket = which_bucket(data->next_timer_us, nr_iowaiters);
314 
315 	/*
316 	 * Force the result of multiplication to be 64 bits even if both
317 	 * operands are 32 bits.
318 	 * Make sure to round up for half microseconds.
319 	 */
320 	data->predicted_us = div_round64((uint64_t)data->next_timer_us *
321 					 data->correction_factor[data->bucket],
322 					 RESOLUTION * DECAY);
323 
324 	get_typical_interval(data);
325 
326 	/*
327 	 * Performance multiplier defines a minimum predicted idle
328 	 * duration / latency ratio. Adjust the latency limit if
329 	 * necessary.
330 	 */
331 	interactivity_req = data->predicted_us / performance_multiplier(nr_iowaiters, cpu_load);
332 	if (latency_req > interactivity_req)
333 		latency_req = interactivity_req;
334 
335 	/*
336 	 * We want to default to C1 (hlt), not to busy polling
337 	 * unless the timer is happening really really soon.
338 	 */
339 	if (data->next_timer_us > 5 &&
340 	    !drv->states[CPUIDLE_DRIVER_STATE_START].disabled &&
341 		dev->states_usage[CPUIDLE_DRIVER_STATE_START].disable == 0)
342 		data->last_state_idx = CPUIDLE_DRIVER_STATE_START;
343 
344 	/*
345 	 * Find the idle state with the lowest power while satisfying
346 	 * our constraints.
347 	 */
348 	for (i = CPUIDLE_DRIVER_STATE_START; i < drv->state_count; i++) {
349 		struct cpuidle_state *s = &drv->states[i];
350 		struct cpuidle_state_usage *su = &dev->states_usage[i];
351 
352 		if (s->disabled || su->disable)
353 			continue;
354 		if (s->target_residency > data->predicted_us)
355 			continue;
356 		if (s->exit_latency > latency_req)
357 			continue;
358 
359 		data->last_state_idx = i;
360 	}
361 
362 	return data->last_state_idx;
363 }
364 
365 /**
366  * menu_reflect - records that data structures need update
367  * @dev: the CPU
368  * @index: the index of actual entered state
369  *
370  * NOTE: it's important to be fast here because this operation will add to
371  *       the overall exit latency.
372  */
373 static void menu_reflect(struct cpuidle_device *dev, int index)
374 {
375 	struct menu_device *data = this_cpu_ptr(&menu_devices);
376 	data->last_state_idx = index;
377 	if (index >= 0)
378 		data->needs_update = 1;
379 }
380 
381 /**
382  * menu_update - attempts to guess what happened after entry
383  * @drv: cpuidle driver containing state data
384  * @dev: the CPU
385  */
386 static void menu_update(struct cpuidle_driver *drv, struct cpuidle_device *dev)
387 {
388 	struct menu_device *data = this_cpu_ptr(&menu_devices);
389 	int last_idx = data->last_state_idx;
390 	struct cpuidle_state *target = &drv->states[last_idx];
391 	unsigned int measured_us;
392 	unsigned int new_factor;
393 
394 	/*
395 	 * Try to figure out how much time passed between entry to low
396 	 * power state and occurrence of the wakeup event.
397 	 *
398 	 * If the entered idle state didn't support residency measurements,
399 	 * we are basically lost in the dark how much time passed.
400 	 * As a compromise, assume we slept for the whole expected time.
401 	 *
402 	 * Any measured amount of time will include the exit latency.
403 	 * Since we are interested in when the wakeup begun, not when it
404 	 * was completed, we must subtract the exit latency. However, if
405 	 * the measured amount of time is less than the exit latency,
406 	 * assume the state was never reached and the exit latency is 0.
407 	 */
408 	if (unlikely(!(target->flags & CPUIDLE_FLAG_TIME_VALID))) {
409 		/* Use timer value as is */
410 		measured_us = data->next_timer_us;
411 
412 	} else {
413 		/* Use measured value */
414 		measured_us = cpuidle_get_last_residency(dev);
415 
416 		/* Deduct exit latency */
417 		if (measured_us > target->exit_latency)
418 			measured_us -= target->exit_latency;
419 
420 		/* Make sure our coefficients do not exceed unity */
421 		if (measured_us > data->next_timer_us)
422 			measured_us = data->next_timer_us;
423 	}
424 
425 	/* Update our correction ratio */
426 	new_factor = data->correction_factor[data->bucket];
427 	new_factor -= new_factor / DECAY;
428 
429 	if (data->next_timer_us > 0 && measured_us < MAX_INTERESTING)
430 		new_factor += RESOLUTION * measured_us / data->next_timer_us;
431 	else
432 		/*
433 		 * we were idle so long that we count it as a perfect
434 		 * prediction
435 		 */
436 		new_factor += RESOLUTION;
437 
438 	/*
439 	 * We don't want 0 as factor; we always want at least
440 	 * a tiny bit of estimated time. Fortunately, due to rounding,
441 	 * new_factor will stay nonzero regardless of measured_us values
442 	 * and the compiler can eliminate this test as long as DECAY > 1.
443 	 */
444 	if (DECAY == 1 && unlikely(new_factor == 0))
445 		new_factor = 1;
446 
447 	data->correction_factor[data->bucket] = new_factor;
448 
449 	/* update the repeating-pattern data */
450 	data->intervals[data->interval_ptr++] = measured_us;
451 	if (data->interval_ptr >= INTERVALS)
452 		data->interval_ptr = 0;
453 }
454 
455 /**
456  * menu_enable_device - scans a CPU's states and does setup
457  * @drv: cpuidle driver
458  * @dev: the CPU
459  */
460 static int menu_enable_device(struct cpuidle_driver *drv,
461 				struct cpuidle_device *dev)
462 {
463 	struct menu_device *data = &per_cpu(menu_devices, dev->cpu);
464 	int i;
465 
466 	memset(data, 0, sizeof(struct menu_device));
467 
468 	/*
469 	 * if the correction factor is 0 (eg first time init or cpu hotplug
470 	 * etc), we actually want to start out with a unity factor.
471 	 */
472 	for(i = 0; i < BUCKETS; i++)
473 		data->correction_factor[i] = RESOLUTION * DECAY;
474 
475 	return 0;
476 }
477 
478 static struct cpuidle_governor menu_governor = {
479 	.name =		"menu",
480 	.rating =	20,
481 	.enable =	menu_enable_device,
482 	.select =	menu_select,
483 	.reflect =	menu_reflect,
484 	.owner =	THIS_MODULE,
485 };
486 
487 /**
488  * init_menu - initializes the governor
489  */
490 static int __init init_menu(void)
491 {
492 	return cpuidle_register_governor(&menu_governor);
493 }
494 
495 postcore_initcall(init_menu);
496