1 /* 2 * cpuidle.c - core cpuidle infrastructure 3 * 4 * (C) 2006-2007 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com> 5 * Shaohua Li <shaohua.li@intel.com> 6 * Adam Belay <abelay@novell.com> 7 * 8 * This code is licenced under the GPL. 9 */ 10 11 #include "linux/percpu-defs.h" 12 #include <linux/clockchips.h> 13 #include <linux/kernel.h> 14 #include <linux/mutex.h> 15 #include <linux/sched.h> 16 #include <linux/sched/clock.h> 17 #include <linux/sched/idle.h> 18 #include <linux/notifier.h> 19 #include <linux/pm_qos.h> 20 #include <linux/cpu.h> 21 #include <linux/cpuidle.h> 22 #include <linux/ktime.h> 23 #include <linux/hrtimer.h> 24 #include <linux/module.h> 25 #include <linux/suspend.h> 26 #include <linux/tick.h> 27 #include <linux/mmu_context.h> 28 #include <linux/context_tracking.h> 29 #include <trace/events/power.h> 30 31 #include "cpuidle.h" 32 33 DEFINE_PER_CPU(struct cpuidle_device *, cpuidle_devices); 34 DEFINE_PER_CPU(struct cpuidle_device, cpuidle_dev); 35 36 DEFINE_MUTEX(cpuidle_lock); 37 LIST_HEAD(cpuidle_detected_devices); 38 39 static int enabled_devices; 40 static int off __read_mostly; 41 static int initialized __read_mostly; 42 43 int cpuidle_disabled(void) 44 { 45 return off; 46 } 47 void disable_cpuidle(void) 48 { 49 off = 1; 50 } 51 52 bool cpuidle_not_available(struct cpuidle_driver *drv, 53 struct cpuidle_device *dev) 54 { 55 return off || !initialized || !drv || !dev || !dev->enabled; 56 } 57 58 /** 59 * cpuidle_play_dead - cpu off-lining 60 * 61 * Returns in case of an error or no driver 62 */ 63 int cpuidle_play_dead(void) 64 { 65 struct cpuidle_device *dev = __this_cpu_read(cpuidle_devices); 66 struct cpuidle_driver *drv = cpuidle_get_cpu_driver(dev); 67 int i; 68 69 if (!drv) 70 return -ENODEV; 71 72 /* Find lowest-power state that supports long-term idle */ 73 for (i = drv->state_count - 1; i >= 0; i--) 74 if (drv->states[i].enter_dead) 75 return drv->states[i].enter_dead(dev, i); 76 77 return -ENODEV; 78 } 79 80 static int find_deepest_state(struct cpuidle_driver *drv, 81 struct cpuidle_device *dev, 82 u64 max_latency_ns, 83 unsigned int forbidden_flags, 84 bool s2idle) 85 { 86 u64 latency_req = 0; 87 int i, ret = 0; 88 89 for (i = 1; i < drv->state_count; i++) { 90 struct cpuidle_state *s = &drv->states[i]; 91 92 if (dev->states_usage[i].disable || 93 s->exit_latency_ns <= latency_req || 94 s->exit_latency_ns > max_latency_ns || 95 (s->flags & forbidden_flags) || 96 (s2idle && !s->enter_s2idle)) 97 continue; 98 99 latency_req = s->exit_latency_ns; 100 ret = i; 101 } 102 return ret; 103 } 104 105 /** 106 * cpuidle_use_deepest_state - Set/unset governor override mode. 107 * @latency_limit_ns: Idle state exit latency limit (or no override if 0). 108 * 109 * If @latency_limit_ns is nonzero, set the current CPU to use the deepest idle 110 * state with exit latency within @latency_limit_ns (override governors going 111 * forward), or do not override governors if it is zero. 112 */ 113 void cpuidle_use_deepest_state(u64 latency_limit_ns) 114 { 115 struct cpuidle_device *dev; 116 117 preempt_disable(); 118 dev = cpuidle_get_device(); 119 if (dev) 120 dev->forced_idle_latency_limit_ns = latency_limit_ns; 121 preempt_enable(); 122 } 123 124 /** 125 * cpuidle_find_deepest_state - Find the deepest available idle state. 126 * @drv: cpuidle driver for the given CPU. 127 * @dev: cpuidle device for the given CPU. 128 * @latency_limit_ns: Idle state exit latency limit 129 * 130 * Return: the index of the deepest available idle state. 131 */ 132 int cpuidle_find_deepest_state(struct cpuidle_driver *drv, 133 struct cpuidle_device *dev, 134 u64 latency_limit_ns) 135 { 136 return find_deepest_state(drv, dev, latency_limit_ns, 0, false); 137 } 138 139 #ifdef CONFIG_SUSPEND 140 static noinstr void enter_s2idle_proper(struct cpuidle_driver *drv, 141 struct cpuidle_device *dev, int index) 142 { 143 struct cpuidle_state *target_state = &drv->states[index]; 144 ktime_t time_start, time_end; 145 146 instrumentation_begin(); 147 148 time_start = ns_to_ktime(local_clock()); 149 150 tick_freeze(); 151 /* 152 * The state used here cannot be a "coupled" one, because the "coupled" 153 * cpuidle mechanism enables interrupts and doing that with timekeeping 154 * suspended is generally unsafe. 155 */ 156 stop_critical_timings(); 157 if (!(target_state->flags & CPUIDLE_FLAG_RCU_IDLE)) { 158 ct_cpuidle_enter(); 159 /* Annotate away the indirect call */ 160 instrumentation_begin(); 161 } 162 target_state->enter_s2idle(dev, drv, index); 163 if (WARN_ON_ONCE(!irqs_disabled())) 164 raw_local_irq_disable(); 165 if (!(target_state->flags & CPUIDLE_FLAG_RCU_IDLE)) { 166 instrumentation_end(); 167 ct_cpuidle_exit(); 168 } 169 tick_unfreeze(); 170 start_critical_timings(); 171 172 time_end = ns_to_ktime(local_clock()); 173 174 dev->states_usage[index].s2idle_time += ktime_us_delta(time_end, time_start); 175 dev->states_usage[index].s2idle_usage++; 176 instrumentation_end(); 177 } 178 179 /** 180 * cpuidle_enter_s2idle - Enter an idle state suitable for suspend-to-idle. 181 * @drv: cpuidle driver for the given CPU. 182 * @dev: cpuidle device for the given CPU. 183 * 184 * If there are states with the ->enter_s2idle callback, find the deepest of 185 * them and enter it with frozen tick. 186 */ 187 int cpuidle_enter_s2idle(struct cpuidle_driver *drv, struct cpuidle_device *dev) 188 { 189 int index; 190 191 /* 192 * Find the deepest state with ->enter_s2idle present, which guarantees 193 * that interrupts won't be enabled when it exits and allows the tick to 194 * be frozen safely. 195 */ 196 index = find_deepest_state(drv, dev, U64_MAX, 0, true); 197 if (index > 0) { 198 enter_s2idle_proper(drv, dev, index); 199 local_irq_enable(); 200 } 201 return index; 202 } 203 #endif /* CONFIG_SUSPEND */ 204 205 /** 206 * cpuidle_enter_state - enter the state and update stats 207 * @dev: cpuidle device for this cpu 208 * @drv: cpuidle driver for this cpu 209 * @index: index into the states table in @drv of the state to enter 210 */ 211 noinstr int cpuidle_enter_state(struct cpuidle_device *dev, 212 struct cpuidle_driver *drv, 213 int index) 214 { 215 int entered_state; 216 217 struct cpuidle_state *target_state = &drv->states[index]; 218 bool broadcast = !!(target_state->flags & CPUIDLE_FLAG_TIMER_STOP); 219 ktime_t time_start, time_end; 220 221 instrumentation_begin(); 222 223 /* 224 * Tell the time framework to switch to a broadcast timer because our 225 * local timer will be shut down. If a local timer is used from another 226 * CPU as a broadcast timer, this call may fail if it is not available. 227 */ 228 if (broadcast && tick_broadcast_enter()) { 229 index = find_deepest_state(drv, dev, target_state->exit_latency_ns, 230 CPUIDLE_FLAG_TIMER_STOP, false); 231 if (index < 0) { 232 default_idle_call(); 233 return -EBUSY; 234 } 235 target_state = &drv->states[index]; 236 broadcast = false; 237 } 238 239 if (target_state->flags & CPUIDLE_FLAG_TLB_FLUSHED) 240 leave_mm(dev->cpu); 241 242 /* Take note of the planned idle state. */ 243 sched_idle_set_state(target_state); 244 245 trace_cpu_idle(index, dev->cpu); 246 time_start = ns_to_ktime(local_clock()); 247 248 stop_critical_timings(); 249 if (!(target_state->flags & CPUIDLE_FLAG_RCU_IDLE)) { 250 ct_cpuidle_enter(); 251 /* Annotate away the indirect call */ 252 instrumentation_begin(); 253 } 254 255 /* 256 * NOTE!! 257 * 258 * For cpuidle_state::enter() methods that do *NOT* set 259 * CPUIDLE_FLAG_RCU_IDLE RCU will be disabled here and these functions 260 * must be marked either noinstr or __cpuidle. 261 * 262 * For cpuidle_state::enter() methods that *DO* set 263 * CPUIDLE_FLAG_RCU_IDLE this isn't required, but they must mark the 264 * function calling ct_cpuidle_enter() as noinstr/__cpuidle and all 265 * functions called within the RCU-idle region. 266 */ 267 entered_state = target_state->enter(dev, drv, index); 268 269 if (WARN_ONCE(!irqs_disabled(), "%ps leaked IRQ state", target_state->enter)) 270 raw_local_irq_disable(); 271 272 if (!(target_state->flags & CPUIDLE_FLAG_RCU_IDLE)) { 273 instrumentation_end(); 274 ct_cpuidle_exit(); 275 } 276 start_critical_timings(); 277 278 sched_clock_idle_wakeup_event(); 279 time_end = ns_to_ktime(local_clock()); 280 trace_cpu_idle(PWR_EVENT_EXIT, dev->cpu); 281 282 /* The cpu is no longer idle or about to enter idle. */ 283 sched_idle_set_state(NULL); 284 285 if (broadcast) 286 tick_broadcast_exit(); 287 288 if (!cpuidle_state_is_coupled(drv, index)) 289 local_irq_enable(); 290 291 if (entered_state >= 0) { 292 s64 diff, delay = drv->states[entered_state].exit_latency_ns; 293 int i; 294 295 /* 296 * Update cpuidle counters 297 * This can be moved to within driver enter routine, 298 * but that results in multiple copies of same code. 299 */ 300 diff = ktime_sub(time_end, time_start); 301 302 dev->last_residency_ns = diff; 303 dev->states_usage[entered_state].time_ns += diff; 304 dev->states_usage[entered_state].usage++; 305 306 if (diff < drv->states[entered_state].target_residency_ns) { 307 for (i = entered_state - 1; i >= 0; i--) { 308 if (dev->states_usage[i].disable) 309 continue; 310 311 /* Shallower states are enabled, so update. */ 312 dev->states_usage[entered_state].above++; 313 trace_cpu_idle_miss(dev->cpu, entered_state, false); 314 break; 315 } 316 } else if (diff > delay) { 317 for (i = entered_state + 1; i < drv->state_count; i++) { 318 if (dev->states_usage[i].disable) 319 continue; 320 321 /* 322 * Update if a deeper state would have been a 323 * better match for the observed idle duration. 324 */ 325 if (diff - delay >= drv->states[i].target_residency_ns) { 326 dev->states_usage[entered_state].below++; 327 trace_cpu_idle_miss(dev->cpu, entered_state, true); 328 } 329 330 break; 331 } 332 } 333 } else { 334 dev->last_residency_ns = 0; 335 dev->states_usage[index].rejected++; 336 } 337 338 instrumentation_end(); 339 340 return entered_state; 341 } 342 343 /** 344 * cpuidle_select - ask the cpuidle framework to choose an idle state 345 * 346 * @drv: the cpuidle driver 347 * @dev: the cpuidle device 348 * @stop_tick: indication on whether or not to stop the tick 349 * 350 * Returns the index of the idle state. The return value must not be negative. 351 * 352 * The memory location pointed to by @stop_tick is expected to be written the 353 * 'false' boolean value if the scheduler tick should not be stopped before 354 * entering the returned state. 355 */ 356 int cpuidle_select(struct cpuidle_driver *drv, struct cpuidle_device *dev, 357 bool *stop_tick) 358 { 359 return cpuidle_curr_governor->select(drv, dev, stop_tick); 360 } 361 362 /** 363 * cpuidle_enter - enter into the specified idle state 364 * 365 * @drv: the cpuidle driver tied with the cpu 366 * @dev: the cpuidle device 367 * @index: the index in the idle state table 368 * 369 * Returns the index in the idle state, < 0 in case of error. 370 * The error code depends on the backend driver 371 */ 372 int cpuidle_enter(struct cpuidle_driver *drv, struct cpuidle_device *dev, 373 int index) 374 { 375 int ret = 0; 376 377 /* 378 * Store the next hrtimer, which becomes either next tick or the next 379 * timer event, whatever expires first. Additionally, to make this data 380 * useful for consumers outside cpuidle, we rely on that the governor's 381 * ->select() callback have decided, whether to stop the tick or not. 382 */ 383 WRITE_ONCE(dev->next_hrtimer, tick_nohz_get_next_hrtimer()); 384 385 if (cpuidle_state_is_coupled(drv, index)) 386 ret = cpuidle_enter_state_coupled(dev, drv, index); 387 else 388 ret = cpuidle_enter_state(dev, drv, index); 389 390 WRITE_ONCE(dev->next_hrtimer, 0); 391 return ret; 392 } 393 394 /** 395 * cpuidle_reflect - tell the underlying governor what was the state 396 * we were in 397 * 398 * @dev : the cpuidle device 399 * @index: the index in the idle state table 400 * 401 */ 402 void cpuidle_reflect(struct cpuidle_device *dev, int index) 403 { 404 if (cpuidle_curr_governor->reflect && index >= 0) 405 cpuidle_curr_governor->reflect(dev, index); 406 } 407 408 /* 409 * Min polling interval of 10usec is a guess. It is assuming that 410 * for most users, the time for a single ping-pong workload like 411 * perf bench pipe would generally complete within 10usec but 412 * this is hardware dependant. Actual time can be estimated with 413 * 414 * perf bench sched pipe -l 10000 415 * 416 * Run multiple times to avoid cpufreq effects. 417 */ 418 #define CPUIDLE_POLL_MIN 10000 419 #define CPUIDLE_POLL_MAX (TICK_NSEC / 16) 420 421 /** 422 * cpuidle_poll_time - return amount of time to poll for, 423 * governors can override dev->poll_limit_ns if necessary 424 * 425 * @drv: the cpuidle driver tied with the cpu 426 * @dev: the cpuidle device 427 * 428 */ 429 __cpuidle u64 cpuidle_poll_time(struct cpuidle_driver *drv, 430 struct cpuidle_device *dev) 431 { 432 int i; 433 u64 limit_ns; 434 435 BUILD_BUG_ON(CPUIDLE_POLL_MIN > CPUIDLE_POLL_MAX); 436 437 if (dev->poll_limit_ns) 438 return dev->poll_limit_ns; 439 440 limit_ns = CPUIDLE_POLL_MAX; 441 for (i = 1; i < drv->state_count; i++) { 442 u64 state_limit; 443 444 if (dev->states_usage[i].disable) 445 continue; 446 447 state_limit = drv->states[i].target_residency_ns; 448 if (state_limit < CPUIDLE_POLL_MIN) 449 continue; 450 451 limit_ns = min_t(u64, state_limit, CPUIDLE_POLL_MAX); 452 break; 453 } 454 455 dev->poll_limit_ns = limit_ns; 456 457 return dev->poll_limit_ns; 458 } 459 460 /** 461 * cpuidle_install_idle_handler - installs the cpuidle idle loop handler 462 */ 463 void cpuidle_install_idle_handler(void) 464 { 465 if (enabled_devices) { 466 /* Make sure all changes finished before we switch to new idle */ 467 smp_wmb(); 468 initialized = 1; 469 } 470 } 471 472 /** 473 * cpuidle_uninstall_idle_handler - uninstalls the cpuidle idle loop handler 474 */ 475 void cpuidle_uninstall_idle_handler(void) 476 { 477 if (enabled_devices) { 478 initialized = 0; 479 wake_up_all_idle_cpus(); 480 } 481 482 /* 483 * Make sure external observers (such as the scheduler) 484 * are done looking at pointed idle states. 485 */ 486 synchronize_rcu(); 487 } 488 489 /** 490 * cpuidle_pause_and_lock - temporarily disables CPUIDLE 491 */ 492 void cpuidle_pause_and_lock(void) 493 { 494 mutex_lock(&cpuidle_lock); 495 cpuidle_uninstall_idle_handler(); 496 } 497 498 EXPORT_SYMBOL_GPL(cpuidle_pause_and_lock); 499 500 /** 501 * cpuidle_resume_and_unlock - resumes CPUIDLE operation 502 */ 503 void cpuidle_resume_and_unlock(void) 504 { 505 cpuidle_install_idle_handler(); 506 mutex_unlock(&cpuidle_lock); 507 } 508 509 EXPORT_SYMBOL_GPL(cpuidle_resume_and_unlock); 510 511 /* Currently used in suspend/resume path to suspend cpuidle */ 512 void cpuidle_pause(void) 513 { 514 mutex_lock(&cpuidle_lock); 515 cpuidle_uninstall_idle_handler(); 516 mutex_unlock(&cpuidle_lock); 517 } 518 519 /* Currently used in suspend/resume path to resume cpuidle */ 520 void cpuidle_resume(void) 521 { 522 mutex_lock(&cpuidle_lock); 523 cpuidle_install_idle_handler(); 524 mutex_unlock(&cpuidle_lock); 525 } 526 527 /** 528 * cpuidle_enable_device - enables idle PM for a CPU 529 * @dev: the CPU 530 * 531 * This function must be called between cpuidle_pause_and_lock and 532 * cpuidle_resume_and_unlock when used externally. 533 */ 534 int cpuidle_enable_device(struct cpuidle_device *dev) 535 { 536 int ret; 537 struct cpuidle_driver *drv; 538 539 if (!dev) 540 return -EINVAL; 541 542 if (dev->enabled) 543 return 0; 544 545 if (!cpuidle_curr_governor) 546 return -EIO; 547 548 drv = cpuidle_get_cpu_driver(dev); 549 550 if (!drv) 551 return -EIO; 552 553 if (!dev->registered) 554 return -EINVAL; 555 556 ret = cpuidle_add_device_sysfs(dev); 557 if (ret) 558 return ret; 559 560 if (cpuidle_curr_governor->enable) { 561 ret = cpuidle_curr_governor->enable(drv, dev); 562 if (ret) 563 goto fail_sysfs; 564 } 565 566 smp_wmb(); 567 568 dev->enabled = 1; 569 570 enabled_devices++; 571 return 0; 572 573 fail_sysfs: 574 cpuidle_remove_device_sysfs(dev); 575 576 return ret; 577 } 578 579 EXPORT_SYMBOL_GPL(cpuidle_enable_device); 580 581 /** 582 * cpuidle_disable_device - disables idle PM for a CPU 583 * @dev: the CPU 584 * 585 * This function must be called between cpuidle_pause_and_lock and 586 * cpuidle_resume_and_unlock when used externally. 587 */ 588 void cpuidle_disable_device(struct cpuidle_device *dev) 589 { 590 struct cpuidle_driver *drv = cpuidle_get_cpu_driver(dev); 591 592 if (!dev || !dev->enabled) 593 return; 594 595 if (!drv || !cpuidle_curr_governor) 596 return; 597 598 dev->enabled = 0; 599 600 if (cpuidle_curr_governor->disable) 601 cpuidle_curr_governor->disable(drv, dev); 602 603 cpuidle_remove_device_sysfs(dev); 604 enabled_devices--; 605 } 606 607 EXPORT_SYMBOL_GPL(cpuidle_disable_device); 608 609 static void __cpuidle_unregister_device(struct cpuidle_device *dev) 610 { 611 struct cpuidle_driver *drv = cpuidle_get_cpu_driver(dev); 612 613 list_del(&dev->device_list); 614 per_cpu(cpuidle_devices, dev->cpu) = NULL; 615 module_put(drv->owner); 616 617 dev->registered = 0; 618 } 619 620 static void __cpuidle_device_init(struct cpuidle_device *dev) 621 { 622 memset(dev->states_usage, 0, sizeof(dev->states_usage)); 623 dev->last_residency_ns = 0; 624 dev->next_hrtimer = 0; 625 } 626 627 /** 628 * __cpuidle_register_device - internal register function called before register 629 * and enable routines 630 * @dev: the cpu 631 * 632 * cpuidle_lock mutex must be held before this is called 633 */ 634 static int __cpuidle_register_device(struct cpuidle_device *dev) 635 { 636 struct cpuidle_driver *drv = cpuidle_get_cpu_driver(dev); 637 int i, ret; 638 639 if (!try_module_get(drv->owner)) 640 return -EINVAL; 641 642 for (i = 0; i < drv->state_count; i++) { 643 if (drv->states[i].flags & CPUIDLE_FLAG_UNUSABLE) 644 dev->states_usage[i].disable |= CPUIDLE_STATE_DISABLED_BY_DRIVER; 645 646 if (drv->states[i].flags & CPUIDLE_FLAG_OFF) 647 dev->states_usage[i].disable |= CPUIDLE_STATE_DISABLED_BY_USER; 648 } 649 650 per_cpu(cpuidle_devices, dev->cpu) = dev; 651 list_add(&dev->device_list, &cpuidle_detected_devices); 652 653 ret = cpuidle_coupled_register_device(dev); 654 if (ret) 655 __cpuidle_unregister_device(dev); 656 else 657 dev->registered = 1; 658 659 return ret; 660 } 661 662 /** 663 * cpuidle_register_device - registers a CPU's idle PM feature 664 * @dev: the cpu 665 */ 666 int cpuidle_register_device(struct cpuidle_device *dev) 667 { 668 int ret = -EBUSY; 669 670 if (!dev) 671 return -EINVAL; 672 673 mutex_lock(&cpuidle_lock); 674 675 if (dev->registered) 676 goto out_unlock; 677 678 __cpuidle_device_init(dev); 679 680 ret = __cpuidle_register_device(dev); 681 if (ret) 682 goto out_unlock; 683 684 ret = cpuidle_add_sysfs(dev); 685 if (ret) 686 goto out_unregister; 687 688 ret = cpuidle_enable_device(dev); 689 if (ret) 690 goto out_sysfs; 691 692 cpuidle_install_idle_handler(); 693 694 out_unlock: 695 mutex_unlock(&cpuidle_lock); 696 697 return ret; 698 699 out_sysfs: 700 cpuidle_remove_sysfs(dev); 701 out_unregister: 702 __cpuidle_unregister_device(dev); 703 goto out_unlock; 704 } 705 706 EXPORT_SYMBOL_GPL(cpuidle_register_device); 707 708 /** 709 * cpuidle_unregister_device - unregisters a CPU's idle PM feature 710 * @dev: the cpu 711 */ 712 void cpuidle_unregister_device(struct cpuidle_device *dev) 713 { 714 if (!dev || dev->registered == 0) 715 return; 716 717 cpuidle_pause_and_lock(); 718 719 cpuidle_disable_device(dev); 720 721 cpuidle_remove_sysfs(dev); 722 723 __cpuidle_unregister_device(dev); 724 725 cpuidle_coupled_unregister_device(dev); 726 727 cpuidle_resume_and_unlock(); 728 } 729 730 EXPORT_SYMBOL_GPL(cpuidle_unregister_device); 731 732 /** 733 * cpuidle_unregister: unregister a driver and the devices. This function 734 * can be used only if the driver has been previously registered through 735 * the cpuidle_register function. 736 * 737 * @drv: a valid pointer to a struct cpuidle_driver 738 */ 739 void cpuidle_unregister(struct cpuidle_driver *drv) 740 { 741 int cpu; 742 struct cpuidle_device *device; 743 744 for_each_cpu(cpu, drv->cpumask) { 745 device = &per_cpu(cpuidle_dev, cpu); 746 cpuidle_unregister_device(device); 747 } 748 749 cpuidle_unregister_driver(drv); 750 } 751 EXPORT_SYMBOL_GPL(cpuidle_unregister); 752 753 /** 754 * cpuidle_register: registers the driver and the cpu devices with the 755 * coupled_cpus passed as parameter. This function is used for all common 756 * initialization pattern there are in the arch specific drivers. The 757 * devices is globally defined in this file. 758 * 759 * @drv : a valid pointer to a struct cpuidle_driver 760 * @coupled_cpus: a cpumask for the coupled states 761 * 762 * Returns 0 on success, < 0 otherwise 763 */ 764 int cpuidle_register(struct cpuidle_driver *drv, 765 const struct cpumask *const coupled_cpus) 766 { 767 int ret, cpu; 768 struct cpuidle_device *device; 769 770 ret = cpuidle_register_driver(drv); 771 if (ret) { 772 pr_err("failed to register cpuidle driver\n"); 773 return ret; 774 } 775 776 for_each_cpu(cpu, drv->cpumask) { 777 device = &per_cpu(cpuidle_dev, cpu); 778 device->cpu = cpu; 779 780 #ifdef CONFIG_ARCH_NEEDS_CPU_IDLE_COUPLED 781 /* 782 * On multiplatform for ARM, the coupled idle states could be 783 * enabled in the kernel even if the cpuidle driver does not 784 * use it. Note, coupled_cpus is a struct copy. 785 */ 786 if (coupled_cpus) 787 device->coupled_cpus = *coupled_cpus; 788 #endif 789 ret = cpuidle_register_device(device); 790 if (!ret) 791 continue; 792 793 pr_err("Failed to register cpuidle device for cpu%d\n", cpu); 794 795 cpuidle_unregister(drv); 796 break; 797 } 798 799 return ret; 800 } 801 EXPORT_SYMBOL_GPL(cpuidle_register); 802 803 /** 804 * cpuidle_init - core initializer 805 */ 806 static int __init cpuidle_init(void) 807 { 808 if (cpuidle_disabled()) 809 return -ENODEV; 810 811 return cpuidle_add_interface(); 812 } 813 814 module_param(off, int, 0444); 815 module_param_string(governor, param_governor, CPUIDLE_NAME_LEN, 0444); 816 core_initcall(cpuidle_init); 817