xref: /openbmc/linux/drivers/cpuidle/cpuidle-qcom-spm.c (revision f97cee494dc92395a668445bcd24d34c89f4ff8c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2011-2014, The Linux Foundation. All rights reserved.
4  * Copyright (c) 2014,2015, Linaro Ltd.
5  *
6  * SAW power controller driver
7  */
8 
9 #include <linux/kernel.h>
10 #include <linux/init.h>
11 #include <linux/io.h>
12 #include <linux/slab.h>
13 #include <linux/of.h>
14 #include <linux/of_address.h>
15 #include <linux/of_device.h>
16 #include <linux/err.h>
17 #include <linux/platform_device.h>
18 #include <linux/cpuidle.h>
19 #include <linux/cpu_pm.h>
20 #include <linux/qcom_scm.h>
21 
22 #include <asm/proc-fns.h>
23 #include <asm/suspend.h>
24 
25 #include "dt_idle_states.h"
26 
27 #define MAX_PMIC_DATA		2
28 #define MAX_SEQ_DATA		64
29 #define SPM_CTL_INDEX		0x7f
30 #define SPM_CTL_INDEX_SHIFT	4
31 #define SPM_CTL_EN		BIT(0)
32 
33 enum pm_sleep_mode {
34 	PM_SLEEP_MODE_STBY,
35 	PM_SLEEP_MODE_RET,
36 	PM_SLEEP_MODE_SPC,
37 	PM_SLEEP_MODE_PC,
38 	PM_SLEEP_MODE_NR,
39 };
40 
41 enum spm_reg {
42 	SPM_REG_CFG,
43 	SPM_REG_SPM_CTL,
44 	SPM_REG_DLY,
45 	SPM_REG_PMIC_DLY,
46 	SPM_REG_PMIC_DATA_0,
47 	SPM_REG_PMIC_DATA_1,
48 	SPM_REG_VCTL,
49 	SPM_REG_SEQ_ENTRY,
50 	SPM_REG_SPM_STS,
51 	SPM_REG_PMIC_STS,
52 	SPM_REG_NR,
53 };
54 
55 struct spm_reg_data {
56 	const u8 *reg_offset;
57 	u32 spm_cfg;
58 	u32 spm_dly;
59 	u32 pmic_dly;
60 	u32 pmic_data[MAX_PMIC_DATA];
61 	u8 seq[MAX_SEQ_DATA];
62 	u8 start_index[PM_SLEEP_MODE_NR];
63 };
64 
65 struct spm_driver_data {
66 	struct cpuidle_driver cpuidle_driver;
67 	void __iomem *reg_base;
68 	const struct spm_reg_data *reg_data;
69 };
70 
71 static const u8 spm_reg_offset_v2_1[SPM_REG_NR] = {
72 	[SPM_REG_CFG]		= 0x08,
73 	[SPM_REG_SPM_CTL]	= 0x30,
74 	[SPM_REG_DLY]		= 0x34,
75 	[SPM_REG_SEQ_ENTRY]	= 0x80,
76 };
77 
78 /* SPM register data for 8974, 8084 */
79 static const struct spm_reg_data spm_reg_8974_8084_cpu  = {
80 	.reg_offset = spm_reg_offset_v2_1,
81 	.spm_cfg = 0x1,
82 	.spm_dly = 0x3C102800,
83 	.seq = { 0x03, 0x0B, 0x0F, 0x00, 0x20, 0x80, 0x10, 0xE8, 0x5B, 0x03,
84 		0x3B, 0xE8, 0x5B, 0x82, 0x10, 0x0B, 0x30, 0x06, 0x26, 0x30,
85 		0x0F },
86 	.start_index[PM_SLEEP_MODE_STBY] = 0,
87 	.start_index[PM_SLEEP_MODE_SPC] = 3,
88 };
89 
90 static const u8 spm_reg_offset_v1_1[SPM_REG_NR] = {
91 	[SPM_REG_CFG]		= 0x08,
92 	[SPM_REG_SPM_CTL]	= 0x20,
93 	[SPM_REG_PMIC_DLY]	= 0x24,
94 	[SPM_REG_PMIC_DATA_0]	= 0x28,
95 	[SPM_REG_PMIC_DATA_1]	= 0x2C,
96 	[SPM_REG_SEQ_ENTRY]	= 0x80,
97 };
98 
99 /* SPM register data for 8064 */
100 static const struct spm_reg_data spm_reg_8064_cpu = {
101 	.reg_offset = spm_reg_offset_v1_1,
102 	.spm_cfg = 0x1F,
103 	.pmic_dly = 0x02020004,
104 	.pmic_data[0] = 0x0084009C,
105 	.pmic_data[1] = 0x00A4001C,
106 	.seq = { 0x03, 0x0F, 0x00, 0x24, 0x54, 0x10, 0x09, 0x03, 0x01,
107 		0x10, 0x54, 0x30, 0x0C, 0x24, 0x30, 0x0F },
108 	.start_index[PM_SLEEP_MODE_STBY] = 0,
109 	.start_index[PM_SLEEP_MODE_SPC] = 2,
110 };
111 
112 static inline void spm_register_write(struct spm_driver_data *drv,
113 					enum spm_reg reg, u32 val)
114 {
115 	if (drv->reg_data->reg_offset[reg])
116 		writel_relaxed(val, drv->reg_base +
117 				drv->reg_data->reg_offset[reg]);
118 }
119 
120 /* Ensure a guaranteed write, before return */
121 static inline void spm_register_write_sync(struct spm_driver_data *drv,
122 					enum spm_reg reg, u32 val)
123 {
124 	u32 ret;
125 
126 	if (!drv->reg_data->reg_offset[reg])
127 		return;
128 
129 	do {
130 		writel_relaxed(val, drv->reg_base +
131 				drv->reg_data->reg_offset[reg]);
132 		ret = readl_relaxed(drv->reg_base +
133 				drv->reg_data->reg_offset[reg]);
134 		if (ret == val)
135 			break;
136 		cpu_relax();
137 	} while (1);
138 }
139 
140 static inline u32 spm_register_read(struct spm_driver_data *drv,
141 					enum spm_reg reg)
142 {
143 	return readl_relaxed(drv->reg_base + drv->reg_data->reg_offset[reg]);
144 }
145 
146 static void spm_set_low_power_mode(struct spm_driver_data *drv,
147 					enum pm_sleep_mode mode)
148 {
149 	u32 start_index;
150 	u32 ctl_val;
151 
152 	start_index = drv->reg_data->start_index[mode];
153 
154 	ctl_val = spm_register_read(drv, SPM_REG_SPM_CTL);
155 	ctl_val &= ~(SPM_CTL_INDEX << SPM_CTL_INDEX_SHIFT);
156 	ctl_val |= start_index << SPM_CTL_INDEX_SHIFT;
157 	ctl_val |= SPM_CTL_EN;
158 	spm_register_write_sync(drv, SPM_REG_SPM_CTL, ctl_val);
159 }
160 
161 static int qcom_pm_collapse(unsigned long int unused)
162 {
163 	qcom_scm_cpu_power_down(QCOM_SCM_CPU_PWR_DOWN_L2_ON);
164 
165 	/*
166 	 * Returns here only if there was a pending interrupt and we did not
167 	 * power down as a result.
168 	 */
169 	return -1;
170 }
171 
172 static int qcom_cpu_spc(struct spm_driver_data *drv)
173 {
174 	int ret;
175 
176 	spm_set_low_power_mode(drv, PM_SLEEP_MODE_SPC);
177 	ret = cpu_suspend(0, qcom_pm_collapse);
178 	/*
179 	 * ARM common code executes WFI without calling into our driver and
180 	 * if the SPM mode is not reset, then we may accidently power down the
181 	 * cpu when we intended only to gate the cpu clock.
182 	 * Ensure the state is set to standby before returning.
183 	 */
184 	spm_set_low_power_mode(drv, PM_SLEEP_MODE_STBY);
185 
186 	return ret;
187 }
188 
189 static int spm_enter_idle_state(struct cpuidle_device *dev,
190 				struct cpuidle_driver *drv, int idx)
191 {
192 	struct spm_driver_data *data = container_of(drv, struct spm_driver_data,
193 						    cpuidle_driver);
194 
195 	return CPU_PM_CPU_IDLE_ENTER_PARAM(qcom_cpu_spc, idx, data);
196 }
197 
198 static struct cpuidle_driver qcom_spm_idle_driver = {
199 	.name = "qcom_spm",
200 	.owner = THIS_MODULE,
201 	.states[0] = {
202 		.enter			= spm_enter_idle_state,
203 		.exit_latency		= 1,
204 		.target_residency	= 1,
205 		.power_usage		= UINT_MAX,
206 		.name			= "WFI",
207 		.desc			= "ARM WFI",
208 	}
209 };
210 
211 static const struct of_device_id qcom_idle_state_match[] = {
212 	{ .compatible = "qcom,idle-state-spc", .data = spm_enter_idle_state },
213 	{ },
214 };
215 
216 static int spm_cpuidle_init(struct cpuidle_driver *drv, int cpu)
217 {
218 	int ret;
219 
220 	memcpy(drv, &qcom_spm_idle_driver, sizeof(*drv));
221 	drv->cpumask = (struct cpumask *)cpumask_of(cpu);
222 
223 	/* Parse idle states from device tree */
224 	ret = dt_init_idle_driver(drv, qcom_idle_state_match, 1);
225 	if (ret <= 0)
226 		return ret ? : -ENODEV;
227 
228 	/* We have atleast one power down mode */
229 	return qcom_scm_set_warm_boot_addr(cpu_resume_arm, drv->cpumask);
230 }
231 
232 static struct spm_driver_data *spm_get_drv(struct platform_device *pdev,
233 		int *spm_cpu)
234 {
235 	struct spm_driver_data *drv = NULL;
236 	struct device_node *cpu_node, *saw_node;
237 	int cpu;
238 	bool found = 0;
239 
240 	for_each_possible_cpu(cpu) {
241 		cpu_node = of_cpu_device_node_get(cpu);
242 		if (!cpu_node)
243 			continue;
244 		saw_node = of_parse_phandle(cpu_node, "qcom,saw", 0);
245 		found = (saw_node == pdev->dev.of_node);
246 		of_node_put(saw_node);
247 		of_node_put(cpu_node);
248 		if (found)
249 			break;
250 	}
251 
252 	if (found) {
253 		drv = devm_kzalloc(&pdev->dev, sizeof(*drv), GFP_KERNEL);
254 		if (drv)
255 			*spm_cpu = cpu;
256 	}
257 
258 	return drv;
259 }
260 
261 static const struct of_device_id spm_match_table[] = {
262 	{ .compatible = "qcom,msm8974-saw2-v2.1-cpu",
263 	  .data = &spm_reg_8974_8084_cpu },
264 	{ .compatible = "qcom,apq8084-saw2-v2.1-cpu",
265 	  .data = &spm_reg_8974_8084_cpu },
266 	{ .compatible = "qcom,apq8064-saw2-v1.1-cpu",
267 	  .data = &spm_reg_8064_cpu },
268 	{ },
269 };
270 
271 static int spm_dev_probe(struct platform_device *pdev)
272 {
273 	struct spm_driver_data *drv;
274 	struct resource *res;
275 	const struct of_device_id *match_id;
276 	void __iomem *addr;
277 	int cpu, ret;
278 
279 	if (!qcom_scm_is_available())
280 		return -EPROBE_DEFER;
281 
282 	drv = spm_get_drv(pdev, &cpu);
283 	if (!drv)
284 		return -EINVAL;
285 	platform_set_drvdata(pdev, drv);
286 
287 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
288 	drv->reg_base = devm_ioremap_resource(&pdev->dev, res);
289 	if (IS_ERR(drv->reg_base))
290 		return PTR_ERR(drv->reg_base);
291 
292 	match_id = of_match_node(spm_match_table, pdev->dev.of_node);
293 	if (!match_id)
294 		return -ENODEV;
295 
296 	drv->reg_data = match_id->data;
297 
298 	ret = spm_cpuidle_init(&drv->cpuidle_driver, cpu);
299 	if (ret)
300 		return ret;
301 
302 	/* Write the SPM sequences first.. */
303 	addr = drv->reg_base + drv->reg_data->reg_offset[SPM_REG_SEQ_ENTRY];
304 	__iowrite32_copy(addr, drv->reg_data->seq,
305 			ARRAY_SIZE(drv->reg_data->seq) / 4);
306 
307 	/*
308 	 * ..and then the control registers.
309 	 * On some SoC if the control registers are written first and if the
310 	 * CPU was held in reset, the reset signal could trigger the SPM state
311 	 * machine, before the sequences are completely written.
312 	 */
313 	spm_register_write(drv, SPM_REG_CFG, drv->reg_data->spm_cfg);
314 	spm_register_write(drv, SPM_REG_DLY, drv->reg_data->spm_dly);
315 	spm_register_write(drv, SPM_REG_PMIC_DLY, drv->reg_data->pmic_dly);
316 	spm_register_write(drv, SPM_REG_PMIC_DATA_0,
317 				drv->reg_data->pmic_data[0]);
318 	spm_register_write(drv, SPM_REG_PMIC_DATA_1,
319 				drv->reg_data->pmic_data[1]);
320 
321 	/* Set up Standby as the default low power mode */
322 	spm_set_low_power_mode(drv, PM_SLEEP_MODE_STBY);
323 
324 	return cpuidle_register(&drv->cpuidle_driver, NULL);
325 }
326 
327 static int spm_dev_remove(struct platform_device *pdev)
328 {
329 	struct spm_driver_data *drv = platform_get_drvdata(pdev);
330 
331 	cpuidle_unregister(&drv->cpuidle_driver);
332 	return 0;
333 }
334 
335 static struct platform_driver spm_driver = {
336 	.probe = spm_dev_probe,
337 	.remove = spm_dev_remove,
338 	.driver = {
339 		.name = "saw",
340 		.of_match_table = spm_match_table,
341 	},
342 };
343 
344 builtin_platform_driver(spm_driver);
345