xref: /openbmc/linux/drivers/cpuidle/cpuidle-big_little.c (revision f677b30b487ca3763c3de3f1b4d8c976c2961cd1)
1 /*
2  * Copyright (c) 2013 ARM/Linaro
3  *
4  * Authors: Daniel Lezcano <daniel.lezcano@linaro.org>
5  *          Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
6  *          Nicolas Pitre <nicolas.pitre@linaro.org>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  *
12  * Maintainer: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
13  * Maintainer: Daniel Lezcano <daniel.lezcano@linaro.org>
14  */
15 #include <linux/cpuidle.h>
16 #include <linux/cpu_pm.h>
17 #include <linux/slab.h>
18 #include <linux/of.h>
19 
20 #include <asm/cpu.h>
21 #include <asm/cputype.h>
22 #include <asm/cpuidle.h>
23 #include <asm/mcpm.h>
24 #include <asm/smp_plat.h>
25 #include <asm/suspend.h>
26 
27 static int bl_enter_powerdown(struct cpuidle_device *dev,
28 			      struct cpuidle_driver *drv, int idx);
29 
30 /*
31  * NB: Owing to current menu governor behaviour big and LITTLE
32  * index 1 states have to define exit_latency and target_residency for
33  * cluster state since, when all CPUs in a cluster hit it, the cluster
34  * can be shutdown. This means that when a single CPU enters this state
35  * the exit_latency and target_residency values are somewhat overkill.
36  * There is no notion of cluster states in the menu governor, so CPUs
37  * have to define CPU states where possibly the cluster will be shutdown
38  * depending on the state of other CPUs. idle states entry and exit happen
39  * at random times; however the cluster state provides target_residency
40  * values as if all CPUs in a cluster enter the state at once; this is
41  * somewhat optimistic and behaviour should be fixed either in the governor
42  * or in the MCPM back-ends.
43  * To make this driver 100% generic the number of states and the exit_latency
44  * target_residency values must be obtained from device tree bindings.
45  *
46  * exit_latency: refers to the TC2 vexpress test chip and depends on the
47  * current cluster operating point. It is the time it takes to get the CPU
48  * up and running when the CPU is powered up on cluster wake-up from shutdown.
49  * Current values for big and LITTLE clusters are provided for clusters
50  * running at default operating points.
51  *
52  * target_residency: it is the minimum amount of time the cluster has
53  * to be down to break even in terms of power consumption. cluster
54  * shutdown has inherent dynamic power costs (L2 writebacks to DRAM
55  * being the main factor) that depend on the current operating points.
56  * The current values for both clusters are provided for a CPU whose half
57  * of L2 lines are dirty and require cleaning to DRAM, and takes into
58  * account leakage static power values related to the vexpress TC2 testchip.
59  */
60 static struct cpuidle_driver bl_idle_little_driver = {
61 	.name = "little_idle",
62 	.owner = THIS_MODULE,
63 	.states[0] = ARM_CPUIDLE_WFI_STATE,
64 	.states[1] = {
65 		.enter			= bl_enter_powerdown,
66 		.exit_latency		= 700,
67 		.target_residency	= 2500,
68 		.flags			= CPUIDLE_FLAG_TIME_VALID |
69 					  CPUIDLE_FLAG_TIMER_STOP,
70 		.name			= "C1",
71 		.desc			= "ARM little-cluster power down",
72 	},
73 	.state_count = 2,
74 };
75 
76 static struct cpuidle_driver bl_idle_big_driver = {
77 	.name = "big_idle",
78 	.owner = THIS_MODULE,
79 	.states[0] = ARM_CPUIDLE_WFI_STATE,
80 	.states[1] = {
81 		.enter			= bl_enter_powerdown,
82 		.exit_latency		= 500,
83 		.target_residency	= 2000,
84 		.flags			= CPUIDLE_FLAG_TIME_VALID |
85 					  CPUIDLE_FLAG_TIMER_STOP,
86 		.name			= "C1",
87 		.desc			= "ARM big-cluster power down",
88 	},
89 	.state_count = 2,
90 };
91 
92 /*
93  * notrace prevents trace shims from getting inserted where they
94  * should not. Global jumps and ldrex/strex must not be inserted
95  * in power down sequences where caches and MMU may be turned off.
96  */
97 static int notrace bl_powerdown_finisher(unsigned long arg)
98 {
99 	/* MCPM works with HW CPU identifiers */
100 	unsigned int mpidr = read_cpuid_mpidr();
101 	unsigned int cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1);
102 	unsigned int cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
103 
104 	mcpm_set_entry_vector(cpu, cluster, cpu_resume);
105 
106 	/*
107 	 * Residency value passed to mcpm_cpu_suspend back-end
108 	 * has to be given clear semantics. Set to 0 as a
109 	 * temporary value.
110 	 */
111 	mcpm_cpu_suspend(0);
112 
113 	/* return value != 0 means failure */
114 	return 1;
115 }
116 
117 /**
118  * bl_enter_powerdown - Programs CPU to enter the specified state
119  * @dev: cpuidle device
120  * @drv: The target state to be programmed
121  * @idx: state index
122  *
123  * Called from the CPUidle framework to program the device to the
124  * specified target state selected by the governor.
125  */
126 static int bl_enter_powerdown(struct cpuidle_device *dev,
127 				struct cpuidle_driver *drv, int idx)
128 {
129 	cpu_pm_enter();
130 
131 	cpu_suspend(0, bl_powerdown_finisher);
132 
133 	/* signals the MCPM core that CPU is out of low power state */
134 	mcpm_cpu_powered_up();
135 
136 	cpu_pm_exit();
137 
138 	return idx;
139 }
140 
141 static int __init bl_idle_driver_init(struct cpuidle_driver *drv, int cpu_id)
142 {
143 	struct cpuinfo_arm *cpu_info;
144 	struct cpumask *cpumask;
145 	unsigned long cpuid;
146 	int cpu;
147 
148 	cpumask = kzalloc(cpumask_size(), GFP_KERNEL);
149 	if (!cpumask)
150 		return -ENOMEM;
151 
152 	for_each_possible_cpu(cpu) {
153 		cpu_info = &per_cpu(cpu_data, cpu);
154 		cpuid = is_smp() ? cpu_info->cpuid : read_cpuid_id();
155 
156 		/* read cpu id part number */
157 		if ((cpuid & 0xFFF0) == cpu_id)
158 			cpumask_set_cpu(cpu, cpumask);
159 	}
160 
161 	drv->cpumask = cpumask;
162 
163 	return 0;
164 }
165 
166 static int __init bl_idle_init(void)
167 {
168 	int ret;
169 
170 	/*
171 	 * Initialize the driver just for a compliant set of machines
172 	 */
173 	if (!of_machine_is_compatible("arm,vexpress,v2p-ca15_a7"))
174 		return -ENODEV;
175 	/*
176 	 * For now the differentiation between little and big cores
177 	 * is based on the part number. A7 cores are considered little
178 	 * cores, A15 are considered big cores. This distinction may
179 	 * evolve in the future with a more generic matching approach.
180 	 */
181 	ret = bl_idle_driver_init(&bl_idle_little_driver,
182 				  ARM_CPU_PART_CORTEX_A7);
183 	if (ret)
184 		return ret;
185 
186 	ret = bl_idle_driver_init(&bl_idle_big_driver, ARM_CPU_PART_CORTEX_A15);
187 	if (ret)
188 		goto out_uninit_little;
189 
190 	ret = cpuidle_register(&bl_idle_little_driver, NULL);
191 	if (ret)
192 		goto out_uninit_big;
193 
194 	ret = cpuidle_register(&bl_idle_big_driver, NULL);
195 	if (ret)
196 		goto out_unregister_little;
197 
198 	return 0;
199 
200 out_unregister_little:
201 	cpuidle_unregister(&bl_idle_little_driver);
202 out_uninit_big:
203 	kfree(bl_idle_big_driver.cpumask);
204 out_uninit_little:
205 	kfree(bl_idle_little_driver.cpumask);
206 
207 	return ret;
208 }
209 device_initcall(bl_idle_init);
210