xref: /openbmc/linux/drivers/cpuidle/coupled.c (revision 82e6fdd6)
1 /*
2  * coupled.c - helper functions to enter the same idle state on multiple cpus
3  *
4  * Copyright (c) 2011 Google, Inc.
5  *
6  * Author: Colin Cross <ccross@android.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful, but WITHOUT
14  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
16  * more details.
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/cpu.h>
21 #include <linux/cpuidle.h>
22 #include <linux/mutex.h>
23 #include <linux/sched.h>
24 #include <linux/slab.h>
25 #include <linux/spinlock.h>
26 
27 #include "cpuidle.h"
28 
29 /**
30  * DOC: Coupled cpuidle states
31  *
32  * On some ARM SMP SoCs (OMAP4460, Tegra 2, and probably more), the
33  * cpus cannot be independently powered down, either due to
34  * sequencing restrictions (on Tegra 2, cpu 0 must be the last to
35  * power down), or due to HW bugs (on OMAP4460, a cpu powering up
36  * will corrupt the gic state unless the other cpu runs a work
37  * around).  Each cpu has a power state that it can enter without
38  * coordinating with the other cpu (usually Wait For Interrupt, or
39  * WFI), and one or more "coupled" power states that affect blocks
40  * shared between the cpus (L2 cache, interrupt controller, and
41  * sometimes the whole SoC).  Entering a coupled power state must
42  * be tightly controlled on both cpus.
43  *
44  * This file implements a solution, where each cpu will wait in the
45  * WFI state until all cpus are ready to enter a coupled state, at
46  * which point the coupled state function will be called on all
47  * cpus at approximately the same time.
48  *
49  * Once all cpus are ready to enter idle, they are woken by an smp
50  * cross call.  At this point, there is a chance that one of the
51  * cpus will find work to do, and choose not to enter idle.  A
52  * final pass is needed to guarantee that all cpus will call the
53  * power state enter function at the same time.  During this pass,
54  * each cpu will increment the ready counter, and continue once the
55  * ready counter matches the number of online coupled cpus.  If any
56  * cpu exits idle, the other cpus will decrement their counter and
57  * retry.
58  *
59  * requested_state stores the deepest coupled idle state each cpu
60  * is ready for.  It is assumed that the states are indexed from
61  * shallowest (highest power, lowest exit latency) to deepest
62  * (lowest power, highest exit latency).  The requested_state
63  * variable is not locked.  It is only written from the cpu that
64  * it stores (or by the on/offlining cpu if that cpu is offline),
65  * and only read after all the cpus are ready for the coupled idle
66  * state are are no longer updating it.
67  *
68  * Three atomic counters are used.  alive_count tracks the number
69  * of cpus in the coupled set that are currently or soon will be
70  * online.  waiting_count tracks the number of cpus that are in
71  * the waiting loop, in the ready loop, or in the coupled idle state.
72  * ready_count tracks the number of cpus that are in the ready loop
73  * or in the coupled idle state.
74  *
75  * To use coupled cpuidle states, a cpuidle driver must:
76  *
77  *    Set struct cpuidle_device.coupled_cpus to the mask of all
78  *    coupled cpus, usually the same as cpu_possible_mask if all cpus
79  *    are part of the same cluster.  The coupled_cpus mask must be
80  *    set in the struct cpuidle_device for each cpu.
81  *
82  *    Set struct cpuidle_device.safe_state to a state that is not a
83  *    coupled state.  This is usually WFI.
84  *
85  *    Set CPUIDLE_FLAG_COUPLED in struct cpuidle_state.flags for each
86  *    state that affects multiple cpus.
87  *
88  *    Provide a struct cpuidle_state.enter function for each state
89  *    that affects multiple cpus.  This function is guaranteed to be
90  *    called on all cpus at approximately the same time.  The driver
91  *    should ensure that the cpus all abort together if any cpu tries
92  *    to abort once the function is called.  The function should return
93  *    with interrupts still disabled.
94  */
95 
96 /**
97  * struct cpuidle_coupled - data for set of cpus that share a coupled idle state
98  * @coupled_cpus: mask of cpus that are part of the coupled set
99  * @requested_state: array of requested states for cpus in the coupled set
100  * @ready_waiting_counts: combined count of cpus  in ready or waiting loops
101  * @online_count: count of cpus that are online
102  * @refcnt: reference count of cpuidle devices that are using this struct
103  * @prevent: flag to prevent coupled idle while a cpu is hotplugging
104  */
105 struct cpuidle_coupled {
106 	cpumask_t coupled_cpus;
107 	int requested_state[NR_CPUS];
108 	atomic_t ready_waiting_counts;
109 	atomic_t abort_barrier;
110 	int online_count;
111 	int refcnt;
112 	int prevent;
113 };
114 
115 #define WAITING_BITS 16
116 #define MAX_WAITING_CPUS (1 << WAITING_BITS)
117 #define WAITING_MASK (MAX_WAITING_CPUS - 1)
118 #define READY_MASK (~WAITING_MASK)
119 
120 #define CPUIDLE_COUPLED_NOT_IDLE	(-1)
121 
122 static DEFINE_PER_CPU(call_single_data_t, cpuidle_coupled_poke_cb);
123 
124 /*
125  * The cpuidle_coupled_poke_pending mask is used to avoid calling
126  * __smp_call_function_single with the per cpu call_single_data_t struct already
127  * in use.  This prevents a deadlock where two cpus are waiting for each others
128  * call_single_data_t struct to be available
129  */
130 static cpumask_t cpuidle_coupled_poke_pending;
131 
132 /*
133  * The cpuidle_coupled_poked mask is used to ensure that each cpu has been poked
134  * once to minimize entering the ready loop with a poke pending, which would
135  * require aborting and retrying.
136  */
137 static cpumask_t cpuidle_coupled_poked;
138 
139 /**
140  * cpuidle_coupled_parallel_barrier - synchronize all online coupled cpus
141  * @dev: cpuidle_device of the calling cpu
142  * @a:   atomic variable to hold the barrier
143  *
144  * No caller to this function will return from this function until all online
145  * cpus in the same coupled group have called this function.  Once any caller
146  * has returned from this function, the barrier is immediately available for
147  * reuse.
148  *
149  * The atomic variable must be initialized to 0 before any cpu calls
150  * this function, will be reset to 0 before any cpu returns from this function.
151  *
152  * Must only be called from within a coupled idle state handler
153  * (state.enter when state.flags has CPUIDLE_FLAG_COUPLED set).
154  *
155  * Provides full smp barrier semantics before and after calling.
156  */
157 void cpuidle_coupled_parallel_barrier(struct cpuidle_device *dev, atomic_t *a)
158 {
159 	int n = dev->coupled->online_count;
160 
161 	smp_mb__before_atomic();
162 	atomic_inc(a);
163 
164 	while (atomic_read(a) < n)
165 		cpu_relax();
166 
167 	if (atomic_inc_return(a) == n * 2) {
168 		atomic_set(a, 0);
169 		return;
170 	}
171 
172 	while (atomic_read(a) > n)
173 		cpu_relax();
174 }
175 
176 /**
177  * cpuidle_state_is_coupled - check if a state is part of a coupled set
178  * @drv: struct cpuidle_driver for the platform
179  * @state: index of the target state in drv->states
180  *
181  * Returns true if the target state is coupled with cpus besides this one
182  */
183 bool cpuidle_state_is_coupled(struct cpuidle_driver *drv, int state)
184 {
185 	return drv->states[state].flags & CPUIDLE_FLAG_COUPLED;
186 }
187 
188 /**
189  * cpuidle_coupled_state_verify - check if the coupled states are correctly set.
190  * @drv: struct cpuidle_driver for the platform
191  *
192  * Returns 0 for valid state values, a negative error code otherwise:
193  *  * -EINVAL if any coupled state(safe_state_index) is wrongly set.
194  */
195 int cpuidle_coupled_state_verify(struct cpuidle_driver *drv)
196 {
197 	int i;
198 
199 	for (i = drv->state_count - 1; i >= 0; i--) {
200 		if (cpuidle_state_is_coupled(drv, i) &&
201 		    (drv->safe_state_index == i ||
202 		     drv->safe_state_index < 0 ||
203 		     drv->safe_state_index >= drv->state_count))
204 			return -EINVAL;
205 	}
206 
207 	return 0;
208 }
209 
210 /**
211  * cpuidle_coupled_set_ready - mark a cpu as ready
212  * @coupled: the struct coupled that contains the current cpu
213  */
214 static inline void cpuidle_coupled_set_ready(struct cpuidle_coupled *coupled)
215 {
216 	atomic_add(MAX_WAITING_CPUS, &coupled->ready_waiting_counts);
217 }
218 
219 /**
220  * cpuidle_coupled_set_not_ready - mark a cpu as not ready
221  * @coupled: the struct coupled that contains the current cpu
222  *
223  * Decrements the ready counter, unless the ready (and thus the waiting) counter
224  * is equal to the number of online cpus.  Prevents a race where one cpu
225  * decrements the waiting counter and then re-increments it just before another
226  * cpu has decremented its ready counter, leading to the ready counter going
227  * down from the number of online cpus without going through the coupled idle
228  * state.
229  *
230  * Returns 0 if the counter was decremented successfully, -EINVAL if the ready
231  * counter was equal to the number of online cpus.
232  */
233 static
234 inline int cpuidle_coupled_set_not_ready(struct cpuidle_coupled *coupled)
235 {
236 	int all;
237 	int ret;
238 
239 	all = coupled->online_count | (coupled->online_count << WAITING_BITS);
240 	ret = atomic_add_unless(&coupled->ready_waiting_counts,
241 		-MAX_WAITING_CPUS, all);
242 
243 	return ret ? 0 : -EINVAL;
244 }
245 
246 /**
247  * cpuidle_coupled_no_cpus_ready - check if no cpus in a coupled set are ready
248  * @coupled: the struct coupled that contains the current cpu
249  *
250  * Returns true if all of the cpus in a coupled set are out of the ready loop.
251  */
252 static inline int cpuidle_coupled_no_cpus_ready(struct cpuidle_coupled *coupled)
253 {
254 	int r = atomic_read(&coupled->ready_waiting_counts) >> WAITING_BITS;
255 	return r == 0;
256 }
257 
258 /**
259  * cpuidle_coupled_cpus_ready - check if all cpus in a coupled set are ready
260  * @coupled: the struct coupled that contains the current cpu
261  *
262  * Returns true if all cpus coupled to this target state are in the ready loop
263  */
264 static inline bool cpuidle_coupled_cpus_ready(struct cpuidle_coupled *coupled)
265 {
266 	int r = atomic_read(&coupled->ready_waiting_counts) >> WAITING_BITS;
267 	return r == coupled->online_count;
268 }
269 
270 /**
271  * cpuidle_coupled_cpus_waiting - check if all cpus in a coupled set are waiting
272  * @coupled: the struct coupled that contains the current cpu
273  *
274  * Returns true if all cpus coupled to this target state are in the wait loop
275  */
276 static inline bool cpuidle_coupled_cpus_waiting(struct cpuidle_coupled *coupled)
277 {
278 	int w = atomic_read(&coupled->ready_waiting_counts) & WAITING_MASK;
279 	return w == coupled->online_count;
280 }
281 
282 /**
283  * cpuidle_coupled_no_cpus_waiting - check if no cpus in coupled set are waiting
284  * @coupled: the struct coupled that contains the current cpu
285  *
286  * Returns true if all of the cpus in a coupled set are out of the waiting loop.
287  */
288 static inline int cpuidle_coupled_no_cpus_waiting(struct cpuidle_coupled *coupled)
289 {
290 	int w = atomic_read(&coupled->ready_waiting_counts) & WAITING_MASK;
291 	return w == 0;
292 }
293 
294 /**
295  * cpuidle_coupled_get_state - determine the deepest idle state
296  * @dev: struct cpuidle_device for this cpu
297  * @coupled: the struct coupled that contains the current cpu
298  *
299  * Returns the deepest idle state that all coupled cpus can enter
300  */
301 static inline int cpuidle_coupled_get_state(struct cpuidle_device *dev,
302 		struct cpuidle_coupled *coupled)
303 {
304 	int i;
305 	int state = INT_MAX;
306 
307 	/*
308 	 * Read barrier ensures that read of requested_state is ordered after
309 	 * reads of ready_count.  Matches the write barriers
310 	 * cpuidle_set_state_waiting.
311 	 */
312 	smp_rmb();
313 
314 	for_each_cpu(i, &coupled->coupled_cpus)
315 		if (cpu_online(i) && coupled->requested_state[i] < state)
316 			state = coupled->requested_state[i];
317 
318 	return state;
319 }
320 
321 static void cpuidle_coupled_handle_poke(void *info)
322 {
323 	int cpu = (unsigned long)info;
324 	cpumask_set_cpu(cpu, &cpuidle_coupled_poked);
325 	cpumask_clear_cpu(cpu, &cpuidle_coupled_poke_pending);
326 }
327 
328 /**
329  * cpuidle_coupled_poke - wake up a cpu that may be waiting
330  * @cpu: target cpu
331  *
332  * Ensures that the target cpu exits it's waiting idle state (if it is in it)
333  * and will see updates to waiting_count before it re-enters it's waiting idle
334  * state.
335  *
336  * If cpuidle_coupled_poked_mask is already set for the target cpu, that cpu
337  * either has or will soon have a pending IPI that will wake it out of idle,
338  * or it is currently processing the IPI and is not in idle.
339  */
340 static void cpuidle_coupled_poke(int cpu)
341 {
342 	call_single_data_t *csd = &per_cpu(cpuidle_coupled_poke_cb, cpu);
343 
344 	if (!cpumask_test_and_set_cpu(cpu, &cpuidle_coupled_poke_pending))
345 		smp_call_function_single_async(cpu, csd);
346 }
347 
348 /**
349  * cpuidle_coupled_poke_others - wake up all other cpus that may be waiting
350  * @dev: struct cpuidle_device for this cpu
351  * @coupled: the struct coupled that contains the current cpu
352  *
353  * Calls cpuidle_coupled_poke on all other online cpus.
354  */
355 static void cpuidle_coupled_poke_others(int this_cpu,
356 		struct cpuidle_coupled *coupled)
357 {
358 	int cpu;
359 
360 	for_each_cpu(cpu, &coupled->coupled_cpus)
361 		if (cpu != this_cpu && cpu_online(cpu))
362 			cpuidle_coupled_poke(cpu);
363 }
364 
365 /**
366  * cpuidle_coupled_set_waiting - mark this cpu as in the wait loop
367  * @dev: struct cpuidle_device for this cpu
368  * @coupled: the struct coupled that contains the current cpu
369  * @next_state: the index in drv->states of the requested state for this cpu
370  *
371  * Updates the requested idle state for the specified cpuidle device.
372  * Returns the number of waiting cpus.
373  */
374 static int cpuidle_coupled_set_waiting(int cpu,
375 		struct cpuidle_coupled *coupled, int next_state)
376 {
377 	coupled->requested_state[cpu] = next_state;
378 
379 	/*
380 	 * The atomic_inc_return provides a write barrier to order the write
381 	 * to requested_state with the later write that increments ready_count.
382 	 */
383 	return atomic_inc_return(&coupled->ready_waiting_counts) & WAITING_MASK;
384 }
385 
386 /**
387  * cpuidle_coupled_set_not_waiting - mark this cpu as leaving the wait loop
388  * @dev: struct cpuidle_device for this cpu
389  * @coupled: the struct coupled that contains the current cpu
390  *
391  * Removes the requested idle state for the specified cpuidle device.
392  */
393 static void cpuidle_coupled_set_not_waiting(int cpu,
394 		struct cpuidle_coupled *coupled)
395 {
396 	/*
397 	 * Decrementing waiting count can race with incrementing it in
398 	 * cpuidle_coupled_set_waiting, but that's OK.  Worst case, some
399 	 * cpus will increment ready_count and then spin until they
400 	 * notice that this cpu has cleared it's requested_state.
401 	 */
402 	atomic_dec(&coupled->ready_waiting_counts);
403 
404 	coupled->requested_state[cpu] = CPUIDLE_COUPLED_NOT_IDLE;
405 }
406 
407 /**
408  * cpuidle_coupled_set_done - mark this cpu as leaving the ready loop
409  * @cpu: the current cpu
410  * @coupled: the struct coupled that contains the current cpu
411  *
412  * Marks this cpu as no longer in the ready and waiting loops.  Decrements
413  * the waiting count first to prevent another cpu looping back in and seeing
414  * this cpu as waiting just before it exits idle.
415  */
416 static void cpuidle_coupled_set_done(int cpu, struct cpuidle_coupled *coupled)
417 {
418 	cpuidle_coupled_set_not_waiting(cpu, coupled);
419 	atomic_sub(MAX_WAITING_CPUS, &coupled->ready_waiting_counts);
420 }
421 
422 /**
423  * cpuidle_coupled_clear_pokes - spin until the poke interrupt is processed
424  * @cpu - this cpu
425  *
426  * Turns on interrupts and spins until any outstanding poke interrupts have
427  * been processed and the poke bit has been cleared.
428  *
429  * Other interrupts may also be processed while interrupts are enabled, so
430  * need_resched() must be tested after this function returns to make sure
431  * the interrupt didn't schedule work that should take the cpu out of idle.
432  *
433  * Returns 0 if no poke was pending, 1 if a poke was cleared.
434  */
435 static int cpuidle_coupled_clear_pokes(int cpu)
436 {
437 	if (!cpumask_test_cpu(cpu, &cpuidle_coupled_poke_pending))
438 		return 0;
439 
440 	local_irq_enable();
441 	while (cpumask_test_cpu(cpu, &cpuidle_coupled_poke_pending))
442 		cpu_relax();
443 	local_irq_disable();
444 
445 	return 1;
446 }
447 
448 static bool cpuidle_coupled_any_pokes_pending(struct cpuidle_coupled *coupled)
449 {
450 	cpumask_t cpus;
451 	int ret;
452 
453 	cpumask_and(&cpus, cpu_online_mask, &coupled->coupled_cpus);
454 	ret = cpumask_and(&cpus, &cpuidle_coupled_poke_pending, &cpus);
455 
456 	return ret;
457 }
458 
459 /**
460  * cpuidle_enter_state_coupled - attempt to enter a state with coupled cpus
461  * @dev: struct cpuidle_device for the current cpu
462  * @drv: struct cpuidle_driver for the platform
463  * @next_state: index of the requested state in drv->states
464  *
465  * Coordinate with coupled cpus to enter the target state.  This is a two
466  * stage process.  In the first stage, the cpus are operating independently,
467  * and may call into cpuidle_enter_state_coupled at completely different times.
468  * To save as much power as possible, the first cpus to call this function will
469  * go to an intermediate state (the cpuidle_device's safe state), and wait for
470  * all the other cpus to call this function.  Once all coupled cpus are idle,
471  * the second stage will start.  Each coupled cpu will spin until all cpus have
472  * guaranteed that they will call the target_state.
473  *
474  * This function must be called with interrupts disabled.  It may enable
475  * interrupts while preparing for idle, and it will always return with
476  * interrupts enabled.
477  */
478 int cpuidle_enter_state_coupled(struct cpuidle_device *dev,
479 		struct cpuidle_driver *drv, int next_state)
480 {
481 	int entered_state = -1;
482 	struct cpuidle_coupled *coupled = dev->coupled;
483 	int w;
484 
485 	if (!coupled)
486 		return -EINVAL;
487 
488 	while (coupled->prevent) {
489 		cpuidle_coupled_clear_pokes(dev->cpu);
490 		if (need_resched()) {
491 			local_irq_enable();
492 			return entered_state;
493 		}
494 		entered_state = cpuidle_enter_state(dev, drv,
495 			drv->safe_state_index);
496 		local_irq_disable();
497 	}
498 
499 	/* Read barrier ensures online_count is read after prevent is cleared */
500 	smp_rmb();
501 
502 reset:
503 	cpumask_clear_cpu(dev->cpu, &cpuidle_coupled_poked);
504 
505 	w = cpuidle_coupled_set_waiting(dev->cpu, coupled, next_state);
506 	/*
507 	 * If this is the last cpu to enter the waiting state, poke
508 	 * all the other cpus out of their waiting state so they can
509 	 * enter a deeper state.  This can race with one of the cpus
510 	 * exiting the waiting state due to an interrupt and
511 	 * decrementing waiting_count, see comment below.
512 	 */
513 	if (w == coupled->online_count) {
514 		cpumask_set_cpu(dev->cpu, &cpuidle_coupled_poked);
515 		cpuidle_coupled_poke_others(dev->cpu, coupled);
516 	}
517 
518 retry:
519 	/*
520 	 * Wait for all coupled cpus to be idle, using the deepest state
521 	 * allowed for a single cpu.  If this was not the poking cpu, wait
522 	 * for at least one poke before leaving to avoid a race where
523 	 * two cpus could arrive at the waiting loop at the same time,
524 	 * but the first of the two to arrive could skip the loop without
525 	 * processing the pokes from the last to arrive.
526 	 */
527 	while (!cpuidle_coupled_cpus_waiting(coupled) ||
528 			!cpumask_test_cpu(dev->cpu, &cpuidle_coupled_poked)) {
529 		if (cpuidle_coupled_clear_pokes(dev->cpu))
530 			continue;
531 
532 		if (need_resched()) {
533 			cpuidle_coupled_set_not_waiting(dev->cpu, coupled);
534 			goto out;
535 		}
536 
537 		if (coupled->prevent) {
538 			cpuidle_coupled_set_not_waiting(dev->cpu, coupled);
539 			goto out;
540 		}
541 
542 		entered_state = cpuidle_enter_state(dev, drv,
543 			drv->safe_state_index);
544 		local_irq_disable();
545 	}
546 
547 	cpuidle_coupled_clear_pokes(dev->cpu);
548 	if (need_resched()) {
549 		cpuidle_coupled_set_not_waiting(dev->cpu, coupled);
550 		goto out;
551 	}
552 
553 	/*
554 	 * Make sure final poke status for this cpu is visible before setting
555 	 * cpu as ready.
556 	 */
557 	smp_wmb();
558 
559 	/*
560 	 * All coupled cpus are probably idle.  There is a small chance that
561 	 * one of the other cpus just became active.  Increment the ready count,
562 	 * and spin until all coupled cpus have incremented the counter. Once a
563 	 * cpu has incremented the ready counter, it cannot abort idle and must
564 	 * spin until either all cpus have incremented the ready counter, or
565 	 * another cpu leaves idle and decrements the waiting counter.
566 	 */
567 
568 	cpuidle_coupled_set_ready(coupled);
569 	while (!cpuidle_coupled_cpus_ready(coupled)) {
570 		/* Check if any other cpus bailed out of idle. */
571 		if (!cpuidle_coupled_cpus_waiting(coupled))
572 			if (!cpuidle_coupled_set_not_ready(coupled))
573 				goto retry;
574 
575 		cpu_relax();
576 	}
577 
578 	/*
579 	 * Make sure read of all cpus ready is done before reading pending pokes
580 	 */
581 	smp_rmb();
582 
583 	/*
584 	 * There is a small chance that a cpu left and reentered idle after this
585 	 * cpu saw that all cpus were waiting.  The cpu that reentered idle will
586 	 * have sent this cpu a poke, which will still be pending after the
587 	 * ready loop.  The pending interrupt may be lost by the interrupt
588 	 * controller when entering the deep idle state.  It's not possible to
589 	 * clear a pending interrupt without turning interrupts on and handling
590 	 * it, and it's too late to turn on interrupts here, so reset the
591 	 * coupled idle state of all cpus and retry.
592 	 */
593 	if (cpuidle_coupled_any_pokes_pending(coupled)) {
594 		cpuidle_coupled_set_done(dev->cpu, coupled);
595 		/* Wait for all cpus to see the pending pokes */
596 		cpuidle_coupled_parallel_barrier(dev, &coupled->abort_barrier);
597 		goto reset;
598 	}
599 
600 	/* all cpus have acked the coupled state */
601 	next_state = cpuidle_coupled_get_state(dev, coupled);
602 
603 	entered_state = cpuidle_enter_state(dev, drv, next_state);
604 
605 	cpuidle_coupled_set_done(dev->cpu, coupled);
606 
607 out:
608 	/*
609 	 * Normal cpuidle states are expected to return with irqs enabled.
610 	 * That leads to an inefficiency where a cpu receiving an interrupt
611 	 * that brings it out of idle will process that interrupt before
612 	 * exiting the idle enter function and decrementing ready_count.  All
613 	 * other cpus will need to spin waiting for the cpu that is processing
614 	 * the interrupt.  If the driver returns with interrupts disabled,
615 	 * all other cpus will loop back into the safe idle state instead of
616 	 * spinning, saving power.
617 	 *
618 	 * Calling local_irq_enable here allows coupled states to return with
619 	 * interrupts disabled, but won't cause problems for drivers that
620 	 * exit with interrupts enabled.
621 	 */
622 	local_irq_enable();
623 
624 	/*
625 	 * Wait until all coupled cpus have exited idle.  There is no risk that
626 	 * a cpu exits and re-enters the ready state because this cpu has
627 	 * already decremented its waiting_count.
628 	 */
629 	while (!cpuidle_coupled_no_cpus_ready(coupled))
630 		cpu_relax();
631 
632 	return entered_state;
633 }
634 
635 static void cpuidle_coupled_update_online_cpus(struct cpuidle_coupled *coupled)
636 {
637 	cpumask_t cpus;
638 	cpumask_and(&cpus, cpu_online_mask, &coupled->coupled_cpus);
639 	coupled->online_count = cpumask_weight(&cpus);
640 }
641 
642 /**
643  * cpuidle_coupled_register_device - register a coupled cpuidle device
644  * @dev: struct cpuidle_device for the current cpu
645  *
646  * Called from cpuidle_register_device to handle coupled idle init.  Finds the
647  * cpuidle_coupled struct for this set of coupled cpus, or creates one if none
648  * exists yet.
649  */
650 int cpuidle_coupled_register_device(struct cpuidle_device *dev)
651 {
652 	int cpu;
653 	struct cpuidle_device *other_dev;
654 	call_single_data_t *csd;
655 	struct cpuidle_coupled *coupled;
656 
657 	if (cpumask_empty(&dev->coupled_cpus))
658 		return 0;
659 
660 	for_each_cpu(cpu, &dev->coupled_cpus) {
661 		other_dev = per_cpu(cpuidle_devices, cpu);
662 		if (other_dev && other_dev->coupled) {
663 			coupled = other_dev->coupled;
664 			goto have_coupled;
665 		}
666 	}
667 
668 	/* No existing coupled info found, create a new one */
669 	coupled = kzalloc(sizeof(struct cpuidle_coupled), GFP_KERNEL);
670 	if (!coupled)
671 		return -ENOMEM;
672 
673 	coupled->coupled_cpus = dev->coupled_cpus;
674 
675 have_coupled:
676 	dev->coupled = coupled;
677 	if (WARN_ON(!cpumask_equal(&dev->coupled_cpus, &coupled->coupled_cpus)))
678 		coupled->prevent++;
679 
680 	cpuidle_coupled_update_online_cpus(coupled);
681 
682 	coupled->refcnt++;
683 
684 	csd = &per_cpu(cpuidle_coupled_poke_cb, dev->cpu);
685 	csd->func = cpuidle_coupled_handle_poke;
686 	csd->info = (void *)(unsigned long)dev->cpu;
687 
688 	return 0;
689 }
690 
691 /**
692  * cpuidle_coupled_unregister_device - unregister a coupled cpuidle device
693  * @dev: struct cpuidle_device for the current cpu
694  *
695  * Called from cpuidle_unregister_device to tear down coupled idle.  Removes the
696  * cpu from the coupled idle set, and frees the cpuidle_coupled_info struct if
697  * this was the last cpu in the set.
698  */
699 void cpuidle_coupled_unregister_device(struct cpuidle_device *dev)
700 {
701 	struct cpuidle_coupled *coupled = dev->coupled;
702 
703 	if (cpumask_empty(&dev->coupled_cpus))
704 		return;
705 
706 	if (--coupled->refcnt)
707 		kfree(coupled);
708 	dev->coupled = NULL;
709 }
710 
711 /**
712  * cpuidle_coupled_prevent_idle - prevent cpus from entering a coupled state
713  * @coupled: the struct coupled that contains the cpu that is changing state
714  *
715  * Disables coupled cpuidle on a coupled set of cpus.  Used to ensure that
716  * cpu_online_mask doesn't change while cpus are coordinating coupled idle.
717  */
718 static void cpuidle_coupled_prevent_idle(struct cpuidle_coupled *coupled)
719 {
720 	int cpu = get_cpu();
721 
722 	/* Force all cpus out of the waiting loop. */
723 	coupled->prevent++;
724 	cpuidle_coupled_poke_others(cpu, coupled);
725 	put_cpu();
726 	while (!cpuidle_coupled_no_cpus_waiting(coupled))
727 		cpu_relax();
728 }
729 
730 /**
731  * cpuidle_coupled_allow_idle - allows cpus to enter a coupled state
732  * @coupled: the struct coupled that contains the cpu that is changing state
733  *
734  * Enables coupled cpuidle on a coupled set of cpus.  Used to ensure that
735  * cpu_online_mask doesn't change while cpus are coordinating coupled idle.
736  */
737 static void cpuidle_coupled_allow_idle(struct cpuidle_coupled *coupled)
738 {
739 	int cpu = get_cpu();
740 
741 	/*
742 	 * Write barrier ensures readers see the new online_count when they
743 	 * see prevent == 0.
744 	 */
745 	smp_wmb();
746 	coupled->prevent--;
747 	/* Force cpus out of the prevent loop. */
748 	cpuidle_coupled_poke_others(cpu, coupled);
749 	put_cpu();
750 }
751 
752 static int coupled_cpu_online(unsigned int cpu)
753 {
754 	struct cpuidle_device *dev;
755 
756 	mutex_lock(&cpuidle_lock);
757 
758 	dev = per_cpu(cpuidle_devices, cpu);
759 	if (dev && dev->coupled) {
760 		cpuidle_coupled_update_online_cpus(dev->coupled);
761 		cpuidle_coupled_allow_idle(dev->coupled);
762 	}
763 
764 	mutex_unlock(&cpuidle_lock);
765 	return 0;
766 }
767 
768 static int coupled_cpu_up_prepare(unsigned int cpu)
769 {
770 	struct cpuidle_device *dev;
771 
772 	mutex_lock(&cpuidle_lock);
773 
774 	dev = per_cpu(cpuidle_devices, cpu);
775 	if (dev && dev->coupled)
776 		cpuidle_coupled_prevent_idle(dev->coupled);
777 
778 	mutex_unlock(&cpuidle_lock);
779 	return 0;
780 }
781 
782 static int __init cpuidle_coupled_init(void)
783 {
784 	int ret;
785 
786 	ret = cpuhp_setup_state_nocalls(CPUHP_CPUIDLE_COUPLED_PREPARE,
787 					"cpuidle/coupled:prepare",
788 					coupled_cpu_up_prepare,
789 					coupled_cpu_online);
790 	if (ret)
791 		return ret;
792 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
793 					"cpuidle/coupled:online",
794 					coupled_cpu_online,
795 					coupled_cpu_up_prepare);
796 	if (ret < 0)
797 		cpuhp_remove_state_nocalls(CPUHP_CPUIDLE_COUPLED_PREPARE);
798 	return ret;
799 }
800 core_initcall(cpuidle_coupled_init);
801