1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2020 - 2022, NVIDIA CORPORATION. All rights reserved
4  */
5 
6 #include <linux/cpu.h>
7 #include <linux/cpufreq.h>
8 #include <linux/delay.h>
9 #include <linux/dma-mapping.h>
10 #include <linux/module.h>
11 #include <linux/of.h>
12 #include <linux/of_platform.h>
13 #include <linux/platform_device.h>
14 #include <linux/slab.h>
15 #include <linux/units.h>
16 
17 #include <asm/smp_plat.h>
18 
19 #include <soc/tegra/bpmp.h>
20 #include <soc/tegra/bpmp-abi.h>
21 
22 #define KHZ                     1000
23 #define REF_CLK_MHZ             408 /* 408 MHz */
24 #define US_DELAY                500
25 #define CPUFREQ_TBL_STEP_HZ     (50 * KHZ * KHZ)
26 #define MAX_CNT                 ~0U
27 
28 #define NDIV_MASK              0x1FF
29 
30 #define CORE_OFFSET(cpu)			(cpu * 8)
31 #define CMU_CLKS_BASE				0x2000
32 #define SCRATCH_FREQ_CORE_REG(data, cpu)	(data->regs + CMU_CLKS_BASE + CORE_OFFSET(cpu))
33 
34 #define MMCRAB_CLUSTER_BASE(cl)			(0x30000 + (cl * 0x10000))
35 #define CLUSTER_ACTMON_BASE(data, cl) \
36 			(data->regs + (MMCRAB_CLUSTER_BASE(cl) + data->soc->actmon_cntr_base))
37 #define CORE_ACTMON_CNTR_REG(data, cl, cpu)	(CLUSTER_ACTMON_BASE(data, cl) + CORE_OFFSET(cpu))
38 
39 /* cpufreq transisition latency */
40 #define TEGRA_CPUFREQ_TRANSITION_LATENCY (300 * 1000) /* unit in nanoseconds */
41 
42 struct tegra_cpu_ctr {
43 	u32 cpu;
44 	u32 coreclk_cnt, last_coreclk_cnt;
45 	u32 refclk_cnt, last_refclk_cnt;
46 };
47 
48 struct read_counters_work {
49 	struct work_struct work;
50 	struct tegra_cpu_ctr c;
51 };
52 
53 struct tegra_cpufreq_ops {
54 	void (*read_counters)(struct tegra_cpu_ctr *c);
55 	void (*set_cpu_ndiv)(struct cpufreq_policy *policy, u64 ndiv);
56 	void (*get_cpu_cluster_id)(u32 cpu, u32 *cpuid, u32 *clusterid);
57 	int (*get_cpu_ndiv)(u32 cpu, u32 cpuid, u32 clusterid, u64 *ndiv);
58 };
59 
60 struct tegra_cpufreq_soc {
61 	struct tegra_cpufreq_ops *ops;
62 	int maxcpus_per_cluster;
63 	unsigned int num_clusters;
64 	phys_addr_t actmon_cntr_base;
65 };
66 
67 struct tegra194_cpufreq_data {
68 	void __iomem *regs;
69 	struct cpufreq_frequency_table **bpmp_luts;
70 	const struct tegra_cpufreq_soc *soc;
71 	bool icc_dram_bw_scaling;
72 };
73 
74 static struct workqueue_struct *read_counters_wq;
75 
76 static int tegra_cpufreq_set_bw(struct cpufreq_policy *policy, unsigned long freq_khz)
77 {
78 	struct tegra194_cpufreq_data *data = cpufreq_get_driver_data();
79 	struct dev_pm_opp *opp;
80 	struct device *dev;
81 	int ret;
82 
83 	dev = get_cpu_device(policy->cpu);
84 	if (!dev)
85 		return -ENODEV;
86 
87 	opp = dev_pm_opp_find_freq_exact(dev, freq_khz * KHZ, true);
88 	if (IS_ERR(opp))
89 		return PTR_ERR(opp);
90 
91 	ret = dev_pm_opp_set_opp(dev, opp);
92 	if (ret)
93 		data->icc_dram_bw_scaling = false;
94 
95 	dev_pm_opp_put(opp);
96 	return ret;
97 }
98 
99 static void tegra_get_cpu_mpidr(void *mpidr)
100 {
101 	*((u64 *)mpidr) = read_cpuid_mpidr() & MPIDR_HWID_BITMASK;
102 }
103 
104 static void tegra234_get_cpu_cluster_id(u32 cpu, u32 *cpuid, u32 *clusterid)
105 {
106 	u64 mpidr;
107 
108 	smp_call_function_single(cpu, tegra_get_cpu_mpidr, &mpidr, true);
109 
110 	if (cpuid)
111 		*cpuid = MPIDR_AFFINITY_LEVEL(mpidr, 1);
112 	if (clusterid)
113 		*clusterid = MPIDR_AFFINITY_LEVEL(mpidr, 2);
114 }
115 
116 static int tegra234_get_cpu_ndiv(u32 cpu, u32 cpuid, u32 clusterid, u64 *ndiv)
117 {
118 	struct tegra194_cpufreq_data *data = cpufreq_get_driver_data();
119 	void __iomem *freq_core_reg;
120 	u64 mpidr_id;
121 
122 	/* use physical id to get address of per core frequency register */
123 	mpidr_id = (clusterid * data->soc->maxcpus_per_cluster) + cpuid;
124 	freq_core_reg = SCRATCH_FREQ_CORE_REG(data, mpidr_id);
125 
126 	*ndiv = readl(freq_core_reg) & NDIV_MASK;
127 
128 	return 0;
129 }
130 
131 static void tegra234_set_cpu_ndiv(struct cpufreq_policy *policy, u64 ndiv)
132 {
133 	struct tegra194_cpufreq_data *data = cpufreq_get_driver_data();
134 	void __iomem *freq_core_reg;
135 	u32 cpu, cpuid, clusterid;
136 	u64 mpidr_id;
137 
138 	for_each_cpu_and(cpu, policy->cpus, cpu_online_mask) {
139 		data->soc->ops->get_cpu_cluster_id(cpu, &cpuid, &clusterid);
140 
141 		/* use physical id to get address of per core frequency register */
142 		mpidr_id = (clusterid * data->soc->maxcpus_per_cluster) + cpuid;
143 		freq_core_reg = SCRATCH_FREQ_CORE_REG(data, mpidr_id);
144 
145 		writel(ndiv, freq_core_reg);
146 	}
147 }
148 
149 /*
150  * This register provides access to two counter values with a single
151  * 64-bit read. The counter values are used to determine the average
152  * actual frequency a core has run at over a period of time.
153  *     [63:32] PLLP counter: Counts at fixed frequency (408 MHz)
154  *     [31:0] Core clock counter: Counts on every core clock cycle
155  */
156 static void tegra234_read_counters(struct tegra_cpu_ctr *c)
157 {
158 	struct tegra194_cpufreq_data *data = cpufreq_get_driver_data();
159 	void __iomem *actmon_reg;
160 	u32 cpuid, clusterid;
161 	u64 val;
162 
163 	data->soc->ops->get_cpu_cluster_id(c->cpu, &cpuid, &clusterid);
164 	actmon_reg = CORE_ACTMON_CNTR_REG(data, clusterid, cpuid);
165 
166 	val = readq(actmon_reg);
167 	c->last_refclk_cnt = upper_32_bits(val);
168 	c->last_coreclk_cnt = lower_32_bits(val);
169 	udelay(US_DELAY);
170 	val = readq(actmon_reg);
171 	c->refclk_cnt = upper_32_bits(val);
172 	c->coreclk_cnt = lower_32_bits(val);
173 }
174 
175 static struct tegra_cpufreq_ops tegra234_cpufreq_ops = {
176 	.read_counters = tegra234_read_counters,
177 	.get_cpu_cluster_id = tegra234_get_cpu_cluster_id,
178 	.get_cpu_ndiv = tegra234_get_cpu_ndiv,
179 	.set_cpu_ndiv = tegra234_set_cpu_ndiv,
180 };
181 
182 static const struct tegra_cpufreq_soc tegra234_cpufreq_soc = {
183 	.ops = &tegra234_cpufreq_ops,
184 	.actmon_cntr_base = 0x9000,
185 	.maxcpus_per_cluster = 4,
186 	.num_clusters = 3,
187 };
188 
189 static const struct tegra_cpufreq_soc tegra239_cpufreq_soc = {
190 	.ops = &tegra234_cpufreq_ops,
191 	.actmon_cntr_base = 0x4000,
192 	.maxcpus_per_cluster = 8,
193 	.num_clusters = 1,
194 };
195 
196 static void tegra194_get_cpu_cluster_id(u32 cpu, u32 *cpuid, u32 *clusterid)
197 {
198 	u64 mpidr;
199 
200 	smp_call_function_single(cpu, tegra_get_cpu_mpidr, &mpidr, true);
201 
202 	if (cpuid)
203 		*cpuid = MPIDR_AFFINITY_LEVEL(mpidr, 0);
204 	if (clusterid)
205 		*clusterid = MPIDR_AFFINITY_LEVEL(mpidr, 1);
206 }
207 
208 /*
209  * Read per-core Read-only system register NVFREQ_FEEDBACK_EL1.
210  * The register provides frequency feedback information to
211  * determine the average actual frequency a core has run at over
212  * a period of time.
213  *	[31:0] PLLP counter: Counts at fixed frequency (408 MHz)
214  *	[63:32] Core clock counter: counts on every core clock cycle
215  *			where the core is architecturally clocking
216  */
217 static u64 read_freq_feedback(void)
218 {
219 	u64 val = 0;
220 
221 	asm volatile("mrs %0, s3_0_c15_c0_5" : "=r" (val) : );
222 
223 	return val;
224 }
225 
226 static inline u32 map_ndiv_to_freq(struct mrq_cpu_ndiv_limits_response
227 				   *nltbl, u16 ndiv)
228 {
229 	return nltbl->ref_clk_hz / KHZ * ndiv / (nltbl->pdiv * nltbl->mdiv);
230 }
231 
232 static void tegra194_read_counters(struct tegra_cpu_ctr *c)
233 {
234 	u64 val;
235 
236 	val = read_freq_feedback();
237 	c->last_refclk_cnt = lower_32_bits(val);
238 	c->last_coreclk_cnt = upper_32_bits(val);
239 	udelay(US_DELAY);
240 	val = read_freq_feedback();
241 	c->refclk_cnt = lower_32_bits(val);
242 	c->coreclk_cnt = upper_32_bits(val);
243 }
244 
245 static void tegra_read_counters(struct work_struct *work)
246 {
247 	struct tegra194_cpufreq_data *data = cpufreq_get_driver_data();
248 	struct read_counters_work *read_counters_work;
249 	struct tegra_cpu_ctr *c;
250 
251 	/*
252 	 * ref_clk_counter(32 bit counter) runs on constant clk,
253 	 * pll_p(408MHz).
254 	 * It will take = 2 ^ 32 / 408 MHz to overflow ref clk counter
255 	 *              = 10526880 usec = 10.527 sec to overflow
256 	 *
257 	 * Like wise core_clk_counter(32 bit counter) runs on core clock.
258 	 * It's synchronized to crab_clk (cpu_crab_clk) which runs at
259 	 * freq of cluster. Assuming max cluster clock ~2000MHz,
260 	 * It will take = 2 ^ 32 / 2000 MHz to overflow core clk counter
261 	 *              = ~2.147 sec to overflow
262 	 */
263 	read_counters_work = container_of(work, struct read_counters_work,
264 					  work);
265 	c = &read_counters_work->c;
266 
267 	data->soc->ops->read_counters(c);
268 }
269 
270 /*
271  * Return instantaneous cpu speed
272  * Instantaneous freq is calculated as -
273  * -Takes sample on every query of getting the freq.
274  *	- Read core and ref clock counters;
275  *	- Delay for X us
276  *	- Read above cycle counters again
277  *	- Calculates freq by subtracting current and previous counters
278  *	  divided by the delay time or eqv. of ref_clk_counter in delta time
279  *	- Return Kcycles/second, freq in KHz
280  *
281  *	delta time period = x sec
282  *			  = delta ref_clk_counter / (408 * 10^6) sec
283  *	freq in Hz = cycles/sec
284  *		   = (delta cycles / x sec
285  *		   = (delta cycles * 408 * 10^6) / delta ref_clk_counter
286  *	in KHz	   = (delta cycles * 408 * 10^3) / delta ref_clk_counter
287  *
288  * @cpu - logical cpu whose freq to be updated
289  * Returns freq in KHz on success, 0 if cpu is offline
290  */
291 static unsigned int tegra194_calculate_speed(u32 cpu)
292 {
293 	struct read_counters_work read_counters_work;
294 	struct tegra_cpu_ctr c;
295 	u32 delta_refcnt;
296 	u32 delta_ccnt;
297 	u32 rate_mhz;
298 
299 	/*
300 	 * udelay() is required to reconstruct cpu frequency over an
301 	 * observation window. Using workqueue to call udelay() with
302 	 * interrupts enabled.
303 	 */
304 	read_counters_work.c.cpu = cpu;
305 	INIT_WORK_ONSTACK(&read_counters_work.work, tegra_read_counters);
306 	queue_work_on(cpu, read_counters_wq, &read_counters_work.work);
307 	flush_work(&read_counters_work.work);
308 	c = read_counters_work.c;
309 
310 	if (c.coreclk_cnt < c.last_coreclk_cnt)
311 		delta_ccnt = c.coreclk_cnt + (MAX_CNT - c.last_coreclk_cnt);
312 	else
313 		delta_ccnt = c.coreclk_cnt - c.last_coreclk_cnt;
314 	if (!delta_ccnt)
315 		return 0;
316 
317 	/* ref clock is 32 bits */
318 	if (c.refclk_cnt < c.last_refclk_cnt)
319 		delta_refcnt = c.refclk_cnt + (MAX_CNT - c.last_refclk_cnt);
320 	else
321 		delta_refcnt = c.refclk_cnt - c.last_refclk_cnt;
322 	if (!delta_refcnt) {
323 		pr_debug("cpufreq: %d is idle, delta_refcnt: 0\n", cpu);
324 		return 0;
325 	}
326 	rate_mhz = ((unsigned long)(delta_ccnt * REF_CLK_MHZ)) / delta_refcnt;
327 
328 	return (rate_mhz * KHZ); /* in KHz */
329 }
330 
331 static void tegra194_get_cpu_ndiv_sysreg(void *ndiv)
332 {
333 	u64 ndiv_val;
334 
335 	asm volatile("mrs %0, s3_0_c15_c0_4" : "=r" (ndiv_val) : );
336 
337 	*(u64 *)ndiv = ndiv_val;
338 }
339 
340 static int tegra194_get_cpu_ndiv(u32 cpu, u32 cpuid, u32 clusterid, u64 *ndiv)
341 {
342 	return smp_call_function_single(cpu, tegra194_get_cpu_ndiv_sysreg, &ndiv, true);
343 }
344 
345 static void tegra194_set_cpu_ndiv_sysreg(void *data)
346 {
347 	u64 ndiv_val = *(u64 *)data;
348 
349 	asm volatile("msr s3_0_c15_c0_4, %0" : : "r" (ndiv_val));
350 }
351 
352 static void tegra194_set_cpu_ndiv(struct cpufreq_policy *policy, u64 ndiv)
353 {
354 	on_each_cpu_mask(policy->cpus, tegra194_set_cpu_ndiv_sysreg, &ndiv, true);
355 }
356 
357 static unsigned int tegra194_get_speed(u32 cpu)
358 {
359 	struct tegra194_cpufreq_data *data = cpufreq_get_driver_data();
360 	struct cpufreq_frequency_table *pos;
361 	u32 cpuid, clusterid;
362 	unsigned int rate;
363 	u64 ndiv;
364 	int ret;
365 
366 	data->soc->ops->get_cpu_cluster_id(cpu, &cpuid, &clusterid);
367 
368 	/* reconstruct actual cpu freq using counters */
369 	rate = tegra194_calculate_speed(cpu);
370 
371 	/* get last written ndiv value */
372 	ret = data->soc->ops->get_cpu_ndiv(cpu, cpuid, clusterid, &ndiv);
373 	if (WARN_ON_ONCE(ret))
374 		return rate;
375 
376 	/*
377 	 * If the reconstructed frequency has acceptable delta from
378 	 * the last written value, then return freq corresponding
379 	 * to the last written ndiv value from freq_table. This is
380 	 * done to return consistent value.
381 	 */
382 	cpufreq_for_each_valid_entry(pos, data->bpmp_luts[clusterid]) {
383 		if (pos->driver_data != ndiv)
384 			continue;
385 
386 		if (abs(pos->frequency - rate) > 115200) {
387 			pr_warn("cpufreq: cpu%d,cur:%u,set:%u,set ndiv:%llu\n",
388 				cpu, rate, pos->frequency, ndiv);
389 		} else {
390 			rate = pos->frequency;
391 		}
392 		break;
393 	}
394 	return rate;
395 }
396 
397 static int tegra_cpufreq_init_cpufreq_table(struct cpufreq_policy *policy,
398 					    struct cpufreq_frequency_table *bpmp_lut,
399 					    struct cpufreq_frequency_table **opp_table)
400 {
401 	struct tegra194_cpufreq_data *data = cpufreq_get_driver_data();
402 	struct cpufreq_frequency_table *freq_table = NULL;
403 	struct cpufreq_frequency_table *pos;
404 	struct device *cpu_dev;
405 	struct dev_pm_opp *opp;
406 	unsigned long rate;
407 	int ret, max_opps;
408 	int j = 0;
409 
410 	cpu_dev = get_cpu_device(policy->cpu);
411 	if (!cpu_dev) {
412 		pr_err("%s: failed to get cpu%d device\n", __func__, policy->cpu);
413 		return -ENODEV;
414 	}
415 
416 	/* Initialize OPP table mentioned in operating-points-v2 property in DT */
417 	ret = dev_pm_opp_of_add_table_indexed(cpu_dev, 0);
418 	if (!ret) {
419 		max_opps = dev_pm_opp_get_opp_count(cpu_dev);
420 		if (max_opps <= 0) {
421 			dev_err(cpu_dev, "Failed to add OPPs\n");
422 			return max_opps;
423 		}
424 
425 		/* Disable all opps and cross-validate against LUT later */
426 		for (rate = 0; ; rate++) {
427 			opp = dev_pm_opp_find_freq_ceil(cpu_dev, &rate);
428 			if (IS_ERR(opp))
429 				break;
430 
431 			dev_pm_opp_put(opp);
432 			dev_pm_opp_disable(cpu_dev, rate);
433 		}
434 	} else {
435 		dev_err(cpu_dev, "Invalid or empty opp table in device tree\n");
436 		data->icc_dram_bw_scaling = false;
437 		return ret;
438 	}
439 
440 	freq_table = kcalloc((max_opps + 1), sizeof(*freq_table), GFP_KERNEL);
441 	if (!freq_table)
442 		return -ENOMEM;
443 
444 	/*
445 	 * Cross check the frequencies from BPMP-FW LUT against the OPP's present in DT.
446 	 * Enable only those DT OPP's which are present in LUT also.
447 	 */
448 	cpufreq_for_each_valid_entry(pos, bpmp_lut) {
449 		opp = dev_pm_opp_find_freq_exact(cpu_dev, pos->frequency * KHZ, false);
450 		if (IS_ERR(opp))
451 			continue;
452 
453 		dev_pm_opp_put(opp);
454 
455 		ret = dev_pm_opp_enable(cpu_dev, pos->frequency * KHZ);
456 		if (ret < 0)
457 			return ret;
458 
459 		freq_table[j].driver_data = pos->driver_data;
460 		freq_table[j].frequency = pos->frequency;
461 		j++;
462 	}
463 
464 	freq_table[j].driver_data = pos->driver_data;
465 	freq_table[j].frequency = CPUFREQ_TABLE_END;
466 
467 	*opp_table = &freq_table[0];
468 
469 	dev_pm_opp_set_sharing_cpus(cpu_dev, policy->cpus);
470 
471 	return ret;
472 }
473 
474 static int tegra194_cpufreq_init(struct cpufreq_policy *policy)
475 {
476 	struct tegra194_cpufreq_data *data = cpufreq_get_driver_data();
477 	int maxcpus_per_cluster = data->soc->maxcpus_per_cluster;
478 	struct cpufreq_frequency_table *freq_table;
479 	struct cpufreq_frequency_table *bpmp_lut;
480 	u32 start_cpu, cpu;
481 	u32 clusterid;
482 	int ret;
483 
484 	data->soc->ops->get_cpu_cluster_id(policy->cpu, NULL, &clusterid);
485 	if (clusterid >= data->soc->num_clusters || !data->bpmp_luts[clusterid])
486 		return -EINVAL;
487 
488 	start_cpu = rounddown(policy->cpu, maxcpus_per_cluster);
489 	/* set same policy for all cpus in a cluster */
490 	for (cpu = start_cpu; cpu < (start_cpu + maxcpus_per_cluster); cpu++) {
491 		if (cpu_possible(cpu))
492 			cpumask_set_cpu(cpu, policy->cpus);
493 	}
494 	policy->cpuinfo.transition_latency = TEGRA_CPUFREQ_TRANSITION_LATENCY;
495 
496 	bpmp_lut = data->bpmp_luts[clusterid];
497 
498 	if (data->icc_dram_bw_scaling) {
499 		ret = tegra_cpufreq_init_cpufreq_table(policy, bpmp_lut, &freq_table);
500 		if (!ret) {
501 			policy->freq_table = freq_table;
502 			return 0;
503 		}
504 	}
505 
506 	data->icc_dram_bw_scaling = false;
507 	policy->freq_table = bpmp_lut;
508 	pr_info("OPP tables missing from DT, EMC frequency scaling disabled\n");
509 
510 	return 0;
511 }
512 
513 static int tegra194_cpufreq_online(struct cpufreq_policy *policy)
514 {
515 	/* We did light-weight tear down earlier, nothing to do here */
516 	return 0;
517 }
518 
519 static int tegra194_cpufreq_offline(struct cpufreq_policy *policy)
520 {
521 	/*
522 	 * Preserve policy->driver_data and don't free resources on light-weight
523 	 * tear down.
524 	 */
525 
526 	return 0;
527 }
528 
529 static int tegra194_cpufreq_exit(struct cpufreq_policy *policy)
530 {
531 	struct device *cpu_dev = get_cpu_device(policy->cpu);
532 
533 	dev_pm_opp_remove_all_dynamic(cpu_dev);
534 	dev_pm_opp_of_cpumask_remove_table(policy->related_cpus);
535 
536 	return 0;
537 }
538 
539 static int tegra194_cpufreq_set_target(struct cpufreq_policy *policy,
540 				       unsigned int index)
541 {
542 	struct cpufreq_frequency_table *tbl = policy->freq_table + index;
543 	struct tegra194_cpufreq_data *data = cpufreq_get_driver_data();
544 
545 	/*
546 	 * Each core writes frequency in per core register. Then both cores
547 	 * in a cluster run at same frequency which is the maximum frequency
548 	 * request out of the values requested by both cores in that cluster.
549 	 */
550 	data->soc->ops->set_cpu_ndiv(policy, (u64)tbl->driver_data);
551 
552 	if (data->icc_dram_bw_scaling)
553 		tegra_cpufreq_set_bw(policy, tbl->frequency);
554 
555 	return 0;
556 }
557 
558 static struct cpufreq_driver tegra194_cpufreq_driver = {
559 	.name = "tegra194",
560 	.flags = CPUFREQ_CONST_LOOPS | CPUFREQ_NEED_INITIAL_FREQ_CHECK |
561 		 CPUFREQ_IS_COOLING_DEV,
562 	.verify = cpufreq_generic_frequency_table_verify,
563 	.target_index = tegra194_cpufreq_set_target,
564 	.get = tegra194_get_speed,
565 	.init = tegra194_cpufreq_init,
566 	.exit = tegra194_cpufreq_exit,
567 	.online = tegra194_cpufreq_online,
568 	.offline = tegra194_cpufreq_offline,
569 	.attr = cpufreq_generic_attr,
570 };
571 
572 static struct tegra_cpufreq_ops tegra194_cpufreq_ops = {
573 	.read_counters = tegra194_read_counters,
574 	.get_cpu_cluster_id = tegra194_get_cpu_cluster_id,
575 	.get_cpu_ndiv = tegra194_get_cpu_ndiv,
576 	.set_cpu_ndiv = tegra194_set_cpu_ndiv,
577 };
578 
579 static const struct tegra_cpufreq_soc tegra194_cpufreq_soc = {
580 	.ops = &tegra194_cpufreq_ops,
581 	.maxcpus_per_cluster = 2,
582 	.num_clusters = 4,
583 };
584 
585 static void tegra194_cpufreq_free_resources(void)
586 {
587 	destroy_workqueue(read_counters_wq);
588 }
589 
590 static struct cpufreq_frequency_table *
591 tegra_cpufreq_bpmp_read_lut(struct platform_device *pdev, struct tegra_bpmp *bpmp,
592 			    unsigned int cluster_id)
593 {
594 	struct cpufreq_frequency_table *freq_table;
595 	struct mrq_cpu_ndiv_limits_response resp;
596 	unsigned int num_freqs, ndiv, delta_ndiv;
597 	struct mrq_cpu_ndiv_limits_request req;
598 	struct tegra_bpmp_message msg;
599 	u16 freq_table_step_size;
600 	int err, index;
601 
602 	memset(&req, 0, sizeof(req));
603 	req.cluster_id = cluster_id;
604 
605 	memset(&msg, 0, sizeof(msg));
606 	msg.mrq = MRQ_CPU_NDIV_LIMITS;
607 	msg.tx.data = &req;
608 	msg.tx.size = sizeof(req);
609 	msg.rx.data = &resp;
610 	msg.rx.size = sizeof(resp);
611 
612 	err = tegra_bpmp_transfer(bpmp, &msg);
613 	if (err)
614 		return ERR_PTR(err);
615 	if (msg.rx.ret == -BPMP_EINVAL) {
616 		/* Cluster not available */
617 		return NULL;
618 	}
619 	if (msg.rx.ret)
620 		return ERR_PTR(-EINVAL);
621 
622 	/*
623 	 * Make sure frequency table step is a multiple of mdiv to match
624 	 * vhint table granularity.
625 	 */
626 	freq_table_step_size = resp.mdiv *
627 			DIV_ROUND_UP(CPUFREQ_TBL_STEP_HZ, resp.ref_clk_hz);
628 
629 	dev_dbg(&pdev->dev, "cluster %d: frequency table step size: %d\n",
630 		cluster_id, freq_table_step_size);
631 
632 	delta_ndiv = resp.ndiv_max - resp.ndiv_min;
633 
634 	if (unlikely(delta_ndiv == 0)) {
635 		num_freqs = 1;
636 	} else {
637 		/* We store both ndiv_min and ndiv_max hence the +1 */
638 		num_freqs = delta_ndiv / freq_table_step_size + 1;
639 	}
640 
641 	num_freqs += (delta_ndiv % freq_table_step_size) ? 1 : 0;
642 
643 	freq_table = devm_kcalloc(&pdev->dev, num_freqs + 1,
644 				  sizeof(*freq_table), GFP_KERNEL);
645 	if (!freq_table)
646 		return ERR_PTR(-ENOMEM);
647 
648 	for (index = 0, ndiv = resp.ndiv_min;
649 			ndiv < resp.ndiv_max;
650 			index++, ndiv += freq_table_step_size) {
651 		freq_table[index].driver_data = ndiv;
652 		freq_table[index].frequency = map_ndiv_to_freq(&resp, ndiv);
653 	}
654 
655 	freq_table[index].driver_data = resp.ndiv_max;
656 	freq_table[index++].frequency = map_ndiv_to_freq(&resp, resp.ndiv_max);
657 	freq_table[index].frequency = CPUFREQ_TABLE_END;
658 
659 	return freq_table;
660 }
661 
662 static int tegra194_cpufreq_probe(struct platform_device *pdev)
663 {
664 	const struct tegra_cpufreq_soc *soc;
665 	struct tegra194_cpufreq_data *data;
666 	struct tegra_bpmp *bpmp;
667 	struct device *cpu_dev;
668 	int err, i;
669 
670 	data = devm_kzalloc(&pdev->dev, sizeof(*data), GFP_KERNEL);
671 	if (!data)
672 		return -ENOMEM;
673 
674 	soc = of_device_get_match_data(&pdev->dev);
675 
676 	if (soc->ops && soc->maxcpus_per_cluster && soc->num_clusters) {
677 		data->soc = soc;
678 	} else {
679 		dev_err(&pdev->dev, "soc data missing\n");
680 		return -EINVAL;
681 	}
682 
683 	data->bpmp_luts = devm_kcalloc(&pdev->dev, data->soc->num_clusters,
684 				       sizeof(*data->bpmp_luts), GFP_KERNEL);
685 	if (!data->bpmp_luts)
686 		return -ENOMEM;
687 
688 	if (soc->actmon_cntr_base) {
689 		/* mmio registers are used for frequency request and re-construction */
690 		data->regs = devm_platform_ioremap_resource(pdev, 0);
691 		if (IS_ERR(data->regs))
692 			return PTR_ERR(data->regs);
693 	}
694 
695 	platform_set_drvdata(pdev, data);
696 
697 	bpmp = tegra_bpmp_get(&pdev->dev);
698 	if (IS_ERR(bpmp))
699 		return PTR_ERR(bpmp);
700 
701 	read_counters_wq = alloc_workqueue("read_counters_wq", __WQ_LEGACY, 1);
702 	if (!read_counters_wq) {
703 		dev_err(&pdev->dev, "fail to create_workqueue\n");
704 		err = -EINVAL;
705 		goto put_bpmp;
706 	}
707 
708 	for (i = 0; i < data->soc->num_clusters; i++) {
709 		data->bpmp_luts[i] = tegra_cpufreq_bpmp_read_lut(pdev, bpmp, i);
710 		if (IS_ERR(data->bpmp_luts[i])) {
711 			err = PTR_ERR(data->bpmp_luts[i]);
712 			goto err_free_res;
713 		}
714 	}
715 
716 	tegra194_cpufreq_driver.driver_data = data;
717 
718 	/* Check for optional OPPv2 and interconnect paths on CPU0 to enable ICC scaling */
719 	cpu_dev = get_cpu_device(0);
720 	if (!cpu_dev) {
721 		err = -EPROBE_DEFER;
722 		goto err_free_res;
723 	}
724 
725 	if (dev_pm_opp_of_get_opp_desc_node(cpu_dev)) {
726 		err = dev_pm_opp_of_find_icc_paths(cpu_dev, NULL);
727 		if (!err)
728 			data->icc_dram_bw_scaling = true;
729 	}
730 
731 	err = cpufreq_register_driver(&tegra194_cpufreq_driver);
732 	if (!err)
733 		goto put_bpmp;
734 
735 err_free_res:
736 	tegra194_cpufreq_free_resources();
737 put_bpmp:
738 	tegra_bpmp_put(bpmp);
739 	return err;
740 }
741 
742 static void tegra194_cpufreq_remove(struct platform_device *pdev)
743 {
744 	cpufreq_unregister_driver(&tegra194_cpufreq_driver);
745 	tegra194_cpufreq_free_resources();
746 }
747 
748 static const struct of_device_id tegra194_cpufreq_of_match[] = {
749 	{ .compatible = "nvidia,tegra194-ccplex", .data = &tegra194_cpufreq_soc },
750 	{ .compatible = "nvidia,tegra234-ccplex-cluster", .data = &tegra234_cpufreq_soc },
751 	{ .compatible = "nvidia,tegra239-ccplex-cluster", .data = &tegra239_cpufreq_soc },
752 	{ /* sentinel */ }
753 };
754 MODULE_DEVICE_TABLE(of, tegra194_cpufreq_of_match);
755 
756 static struct platform_driver tegra194_ccplex_driver = {
757 	.driver = {
758 		.name = "tegra194-cpufreq",
759 		.of_match_table = tegra194_cpufreq_of_match,
760 	},
761 	.probe = tegra194_cpufreq_probe,
762 	.remove_new = tegra194_cpufreq_remove,
763 };
764 module_platform_driver(tegra194_ccplex_driver);
765 
766 MODULE_AUTHOR("Mikko Perttunen <mperttunen@nvidia.com>");
767 MODULE_AUTHOR("Sumit Gupta <sumitg@nvidia.com>");
768 MODULE_DESCRIPTION("NVIDIA Tegra194 cpufreq driver");
769 MODULE_LICENSE("GPL v2");
770