1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved 4 */ 5 6 #include <linux/cpu.h> 7 #include <linux/cpufreq.h> 8 #include <linux/delay.h> 9 #include <linux/dma-mapping.h> 10 #include <linux/module.h> 11 #include <linux/of.h> 12 #include <linux/of_platform.h> 13 #include <linux/platform_device.h> 14 #include <linux/slab.h> 15 16 #include <asm/smp_plat.h> 17 18 #include <soc/tegra/bpmp.h> 19 #include <soc/tegra/bpmp-abi.h> 20 21 #define KHZ 1000 22 #define REF_CLK_MHZ 408 /* 408 MHz */ 23 #define US_DELAY 500 24 #define CPUFREQ_TBL_STEP_HZ (50 * KHZ * KHZ) 25 #define MAX_CNT ~0U 26 27 /* cpufreq transisition latency */ 28 #define TEGRA_CPUFREQ_TRANSITION_LATENCY (300 * 1000) /* unit in nanoseconds */ 29 30 enum cluster { 31 CLUSTER0, 32 CLUSTER1, 33 CLUSTER2, 34 CLUSTER3, 35 MAX_CLUSTERS, 36 }; 37 38 struct tegra194_cpufreq_data { 39 void __iomem *regs; 40 size_t num_clusters; 41 struct cpufreq_frequency_table **tables; 42 }; 43 44 struct tegra_cpu_ctr { 45 u32 cpu; 46 u32 coreclk_cnt, last_coreclk_cnt; 47 u32 refclk_cnt, last_refclk_cnt; 48 }; 49 50 struct read_counters_work { 51 struct work_struct work; 52 struct tegra_cpu_ctr c; 53 }; 54 55 static struct workqueue_struct *read_counters_wq; 56 57 static void get_cpu_cluster(void *cluster) 58 { 59 u64 mpidr = read_cpuid_mpidr() & MPIDR_HWID_BITMASK; 60 61 *((uint32_t *)cluster) = MPIDR_AFFINITY_LEVEL(mpidr, 1); 62 } 63 64 /* 65 * Read per-core Read-only system register NVFREQ_FEEDBACK_EL1. 66 * The register provides frequency feedback information to 67 * determine the average actual frequency a core has run at over 68 * a period of time. 69 * [31:0] PLLP counter: Counts at fixed frequency (408 MHz) 70 * [63:32] Core clock counter: counts on every core clock cycle 71 * where the core is architecturally clocking 72 */ 73 static u64 read_freq_feedback(void) 74 { 75 u64 val = 0; 76 77 asm volatile("mrs %0, s3_0_c15_c0_5" : "=r" (val) : ); 78 79 return val; 80 } 81 82 static inline u32 map_ndiv_to_freq(struct mrq_cpu_ndiv_limits_response 83 *nltbl, u16 ndiv) 84 { 85 return nltbl->ref_clk_hz / KHZ * ndiv / (nltbl->pdiv * nltbl->mdiv); 86 } 87 88 static void tegra_read_counters(struct work_struct *work) 89 { 90 struct read_counters_work *read_counters_work; 91 struct tegra_cpu_ctr *c; 92 u64 val; 93 94 /* 95 * ref_clk_counter(32 bit counter) runs on constant clk, 96 * pll_p(408MHz). 97 * It will take = 2 ^ 32 / 408 MHz to overflow ref clk counter 98 * = 10526880 usec = 10.527 sec to overflow 99 * 100 * Like wise core_clk_counter(32 bit counter) runs on core clock. 101 * It's synchronized to crab_clk (cpu_crab_clk) which runs at 102 * freq of cluster. Assuming max cluster clock ~2000MHz, 103 * It will take = 2 ^ 32 / 2000 MHz to overflow core clk counter 104 * = ~2.147 sec to overflow 105 */ 106 read_counters_work = container_of(work, struct read_counters_work, 107 work); 108 c = &read_counters_work->c; 109 110 val = read_freq_feedback(); 111 c->last_refclk_cnt = lower_32_bits(val); 112 c->last_coreclk_cnt = upper_32_bits(val); 113 udelay(US_DELAY); 114 val = read_freq_feedback(); 115 c->refclk_cnt = lower_32_bits(val); 116 c->coreclk_cnt = upper_32_bits(val); 117 } 118 119 /* 120 * Return instantaneous cpu speed 121 * Instantaneous freq is calculated as - 122 * -Takes sample on every query of getting the freq. 123 * - Read core and ref clock counters; 124 * - Delay for X us 125 * - Read above cycle counters again 126 * - Calculates freq by subtracting current and previous counters 127 * divided by the delay time or eqv. of ref_clk_counter in delta time 128 * - Return Kcycles/second, freq in KHz 129 * 130 * delta time period = x sec 131 * = delta ref_clk_counter / (408 * 10^6) sec 132 * freq in Hz = cycles/sec 133 * = (delta cycles / x sec 134 * = (delta cycles * 408 * 10^6) / delta ref_clk_counter 135 * in KHz = (delta cycles * 408 * 10^3) / delta ref_clk_counter 136 * 137 * @cpu - logical cpu whose freq to be updated 138 * Returns freq in KHz on success, 0 if cpu is offline 139 */ 140 static unsigned int tegra194_calculate_speed(u32 cpu) 141 { 142 struct read_counters_work read_counters_work; 143 struct tegra_cpu_ctr c; 144 u32 delta_refcnt; 145 u32 delta_ccnt; 146 u32 rate_mhz; 147 148 /* 149 * udelay() is required to reconstruct cpu frequency over an 150 * observation window. Using workqueue to call udelay() with 151 * interrupts enabled. 152 */ 153 read_counters_work.c.cpu = cpu; 154 INIT_WORK_ONSTACK(&read_counters_work.work, tegra_read_counters); 155 queue_work_on(cpu, read_counters_wq, &read_counters_work.work); 156 flush_work(&read_counters_work.work); 157 c = read_counters_work.c; 158 159 if (c.coreclk_cnt < c.last_coreclk_cnt) 160 delta_ccnt = c.coreclk_cnt + (MAX_CNT - c.last_coreclk_cnt); 161 else 162 delta_ccnt = c.coreclk_cnt - c.last_coreclk_cnt; 163 if (!delta_ccnt) 164 return 0; 165 166 /* ref clock is 32 bits */ 167 if (c.refclk_cnt < c.last_refclk_cnt) 168 delta_refcnt = c.refclk_cnt + (MAX_CNT - c.last_refclk_cnt); 169 else 170 delta_refcnt = c.refclk_cnt - c.last_refclk_cnt; 171 if (!delta_refcnt) { 172 pr_debug("cpufreq: %d is idle, delta_refcnt: 0\n", cpu); 173 return 0; 174 } 175 rate_mhz = ((unsigned long)(delta_ccnt * REF_CLK_MHZ)) / delta_refcnt; 176 177 return (rate_mhz * KHZ); /* in KHz */ 178 } 179 180 static void get_cpu_ndiv(void *ndiv) 181 { 182 u64 ndiv_val; 183 184 asm volatile("mrs %0, s3_0_c15_c0_4" : "=r" (ndiv_val) : ); 185 186 *(u64 *)ndiv = ndiv_val; 187 } 188 189 static void set_cpu_ndiv(void *data) 190 { 191 struct cpufreq_frequency_table *tbl = data; 192 u64 ndiv_val = (u64)tbl->driver_data; 193 194 asm volatile("msr s3_0_c15_c0_4, %0" : : "r" (ndiv_val)); 195 } 196 197 static unsigned int tegra194_get_speed(u32 cpu) 198 { 199 struct tegra194_cpufreq_data *data = cpufreq_get_driver_data(); 200 struct cpufreq_frequency_table *pos; 201 unsigned int rate; 202 u64 ndiv; 203 int ret; 204 u32 cl; 205 206 smp_call_function_single(cpu, get_cpu_cluster, &cl, true); 207 208 /* reconstruct actual cpu freq using counters */ 209 rate = tegra194_calculate_speed(cpu); 210 211 /* get last written ndiv value */ 212 ret = smp_call_function_single(cpu, get_cpu_ndiv, &ndiv, true); 213 if (WARN_ON_ONCE(ret)) 214 return rate; 215 216 /* 217 * If the reconstructed frequency has acceptable delta from 218 * the last written value, then return freq corresponding 219 * to the last written ndiv value from freq_table. This is 220 * done to return consistent value. 221 */ 222 cpufreq_for_each_valid_entry(pos, data->tables[cl]) { 223 if (pos->driver_data != ndiv) 224 continue; 225 226 if (abs(pos->frequency - rate) > 115200) { 227 pr_warn("cpufreq: cpu%d,cur:%u,set:%u,set ndiv:%llu\n", 228 cpu, rate, pos->frequency, ndiv); 229 } else { 230 rate = pos->frequency; 231 } 232 break; 233 } 234 return rate; 235 } 236 237 static int tegra194_cpufreq_init(struct cpufreq_policy *policy) 238 { 239 struct tegra194_cpufreq_data *data = cpufreq_get_driver_data(); 240 u32 cpu; 241 u32 cl; 242 243 smp_call_function_single(policy->cpu, get_cpu_cluster, &cl, true); 244 245 if (cl >= data->num_clusters) 246 return -EINVAL; 247 248 /* set same policy for all cpus in a cluster */ 249 for (cpu = (cl * 2); cpu < ((cl + 1) * 2); cpu++) 250 cpumask_set_cpu(cpu, policy->cpus); 251 252 policy->freq_table = data->tables[cl]; 253 policy->cpuinfo.transition_latency = TEGRA_CPUFREQ_TRANSITION_LATENCY; 254 255 return 0; 256 } 257 258 static int tegra194_cpufreq_set_target(struct cpufreq_policy *policy, 259 unsigned int index) 260 { 261 struct cpufreq_frequency_table *tbl = policy->freq_table + index; 262 263 /* 264 * Each core writes frequency in per core register. Then both cores 265 * in a cluster run at same frequency which is the maximum frequency 266 * request out of the values requested by both cores in that cluster. 267 */ 268 on_each_cpu_mask(policy->cpus, set_cpu_ndiv, tbl, true); 269 270 return 0; 271 } 272 273 static struct cpufreq_driver tegra194_cpufreq_driver = { 274 .name = "tegra194", 275 .flags = CPUFREQ_STICKY | CPUFREQ_CONST_LOOPS | 276 CPUFREQ_NEED_INITIAL_FREQ_CHECK, 277 .verify = cpufreq_generic_frequency_table_verify, 278 .target_index = tegra194_cpufreq_set_target, 279 .get = tegra194_get_speed, 280 .init = tegra194_cpufreq_init, 281 .attr = cpufreq_generic_attr, 282 }; 283 284 static void tegra194_cpufreq_free_resources(void) 285 { 286 destroy_workqueue(read_counters_wq); 287 } 288 289 static struct cpufreq_frequency_table * 290 init_freq_table(struct platform_device *pdev, struct tegra_bpmp *bpmp, 291 unsigned int cluster_id) 292 { 293 struct cpufreq_frequency_table *freq_table; 294 struct mrq_cpu_ndiv_limits_response resp; 295 unsigned int num_freqs, ndiv, delta_ndiv; 296 struct mrq_cpu_ndiv_limits_request req; 297 struct tegra_bpmp_message msg; 298 u16 freq_table_step_size; 299 int err, index; 300 301 memset(&req, 0, sizeof(req)); 302 req.cluster_id = cluster_id; 303 304 memset(&msg, 0, sizeof(msg)); 305 msg.mrq = MRQ_CPU_NDIV_LIMITS; 306 msg.tx.data = &req; 307 msg.tx.size = sizeof(req); 308 msg.rx.data = &resp; 309 msg.rx.size = sizeof(resp); 310 311 err = tegra_bpmp_transfer(bpmp, &msg); 312 if (err) 313 return ERR_PTR(err); 314 315 /* 316 * Make sure frequency table step is a multiple of mdiv to match 317 * vhint table granularity. 318 */ 319 freq_table_step_size = resp.mdiv * 320 DIV_ROUND_UP(CPUFREQ_TBL_STEP_HZ, resp.ref_clk_hz); 321 322 dev_dbg(&pdev->dev, "cluster %d: frequency table step size: %d\n", 323 cluster_id, freq_table_step_size); 324 325 delta_ndiv = resp.ndiv_max - resp.ndiv_min; 326 327 if (unlikely(delta_ndiv == 0)) { 328 num_freqs = 1; 329 } else { 330 /* We store both ndiv_min and ndiv_max hence the +1 */ 331 num_freqs = delta_ndiv / freq_table_step_size + 1; 332 } 333 334 num_freqs += (delta_ndiv % freq_table_step_size) ? 1 : 0; 335 336 freq_table = devm_kcalloc(&pdev->dev, num_freqs + 1, 337 sizeof(*freq_table), GFP_KERNEL); 338 if (!freq_table) 339 return ERR_PTR(-ENOMEM); 340 341 for (index = 0, ndiv = resp.ndiv_min; 342 ndiv < resp.ndiv_max; 343 index++, ndiv += freq_table_step_size) { 344 freq_table[index].driver_data = ndiv; 345 freq_table[index].frequency = map_ndiv_to_freq(&resp, ndiv); 346 } 347 348 freq_table[index].driver_data = resp.ndiv_max; 349 freq_table[index++].frequency = map_ndiv_to_freq(&resp, resp.ndiv_max); 350 freq_table[index].frequency = CPUFREQ_TABLE_END; 351 352 return freq_table; 353 } 354 355 static int tegra194_cpufreq_probe(struct platform_device *pdev) 356 { 357 struct tegra194_cpufreq_data *data; 358 struct tegra_bpmp *bpmp; 359 int err, i; 360 361 data = devm_kzalloc(&pdev->dev, sizeof(*data), GFP_KERNEL); 362 if (!data) 363 return -ENOMEM; 364 365 data->num_clusters = MAX_CLUSTERS; 366 data->tables = devm_kcalloc(&pdev->dev, data->num_clusters, 367 sizeof(*data->tables), GFP_KERNEL); 368 if (!data->tables) 369 return -ENOMEM; 370 371 platform_set_drvdata(pdev, data); 372 373 bpmp = tegra_bpmp_get(&pdev->dev); 374 if (IS_ERR(bpmp)) 375 return PTR_ERR(bpmp); 376 377 read_counters_wq = alloc_workqueue("read_counters_wq", __WQ_LEGACY, 1); 378 if (!read_counters_wq) { 379 dev_err(&pdev->dev, "fail to create_workqueue\n"); 380 err = -EINVAL; 381 goto put_bpmp; 382 } 383 384 for (i = 0; i < data->num_clusters; i++) { 385 data->tables[i] = init_freq_table(pdev, bpmp, i); 386 if (IS_ERR(data->tables[i])) { 387 err = PTR_ERR(data->tables[i]); 388 goto err_free_res; 389 } 390 } 391 392 tegra194_cpufreq_driver.driver_data = data; 393 394 err = cpufreq_register_driver(&tegra194_cpufreq_driver); 395 if (!err) 396 goto put_bpmp; 397 398 err_free_res: 399 tegra194_cpufreq_free_resources(); 400 put_bpmp: 401 tegra_bpmp_put(bpmp); 402 return err; 403 } 404 405 static int tegra194_cpufreq_remove(struct platform_device *pdev) 406 { 407 cpufreq_unregister_driver(&tegra194_cpufreq_driver); 408 tegra194_cpufreq_free_resources(); 409 410 return 0; 411 } 412 413 static const struct of_device_id tegra194_cpufreq_of_match[] = { 414 { .compatible = "nvidia,tegra194-ccplex", }, 415 { /* sentinel */ } 416 }; 417 MODULE_DEVICE_TABLE(of, tegra194_cpufreq_of_match); 418 419 static struct platform_driver tegra194_ccplex_driver = { 420 .driver = { 421 .name = "tegra194-cpufreq", 422 .of_match_table = tegra194_cpufreq_of_match, 423 }, 424 .probe = tegra194_cpufreq_probe, 425 .remove = tegra194_cpufreq_remove, 426 }; 427 module_platform_driver(tegra194_ccplex_driver); 428 429 MODULE_AUTHOR("Mikko Perttunen <mperttunen@nvidia.com>"); 430 MODULE_AUTHOR("Sumit Gupta <sumitg@nvidia.com>"); 431 MODULE_DESCRIPTION("NVIDIA Tegra194 cpufreq driver"); 432 MODULE_LICENSE("GPL v2"); 433