xref: /openbmc/linux/drivers/cpufreq/tegra194-cpufreq.c (revision 61c1f340bc809a1ca1e3c8794207a91cde1a7c78)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2020 - 2022, NVIDIA CORPORATION. All rights reserved
4  */
5 
6 #include <linux/cpu.h>
7 #include <linux/cpufreq.h>
8 #include <linux/delay.h>
9 #include <linux/dma-mapping.h>
10 #include <linux/module.h>
11 #include <linux/of.h>
12 #include <linux/of_platform.h>
13 #include <linux/platform_device.h>
14 #include <linux/slab.h>
15 
16 #include <asm/smp_plat.h>
17 
18 #include <soc/tegra/bpmp.h>
19 #include <soc/tegra/bpmp-abi.h>
20 
21 #define KHZ                     1000
22 #define REF_CLK_MHZ             408 /* 408 MHz */
23 #define US_DELAY                500
24 #define CPUFREQ_TBL_STEP_HZ     (50 * KHZ * KHZ)
25 #define MAX_CNT                 ~0U
26 
27 #define NDIV_MASK              0x1FF
28 
29 #define CORE_OFFSET(cpu)			(cpu * 8)
30 #define CMU_CLKS_BASE				0x2000
31 #define SCRATCH_FREQ_CORE_REG(data, cpu)	(data->regs + CMU_CLKS_BASE + CORE_OFFSET(cpu))
32 
33 #define MMCRAB_CLUSTER_BASE(cl)			(0x30000 + (cl * 0x10000))
34 #define CLUSTER_ACTMON_BASE(data, cl) \
35 			(data->regs + (MMCRAB_CLUSTER_BASE(cl) + data->soc->actmon_cntr_base))
36 #define CORE_ACTMON_CNTR_REG(data, cl, cpu)	(CLUSTER_ACTMON_BASE(data, cl) + CORE_OFFSET(cpu))
37 
38 /* cpufreq transisition latency */
39 #define TEGRA_CPUFREQ_TRANSITION_LATENCY (300 * 1000) /* unit in nanoseconds */
40 
41 enum cluster {
42 	CLUSTER0,
43 	CLUSTER1,
44 	CLUSTER2,
45 	CLUSTER3,
46 	MAX_CLUSTERS,
47 };
48 
49 struct tegra_cpu_ctr {
50 	u32 cpu;
51 	u32 coreclk_cnt, last_coreclk_cnt;
52 	u32 refclk_cnt, last_refclk_cnt;
53 };
54 
55 struct read_counters_work {
56 	struct work_struct work;
57 	struct tegra_cpu_ctr c;
58 };
59 
60 struct tegra_cpufreq_ops {
61 	void (*read_counters)(struct tegra_cpu_ctr *c);
62 	void (*set_cpu_ndiv)(struct cpufreq_policy *policy, u64 ndiv);
63 	void (*get_cpu_cluster_id)(u32 cpu, u32 *cpuid, u32 *clusterid);
64 	int (*get_cpu_ndiv)(u32 cpu, u32 cpuid, u32 clusterid, u64 *ndiv);
65 };
66 
67 struct tegra_cpufreq_soc {
68 	struct tegra_cpufreq_ops *ops;
69 	int maxcpus_per_cluster;
70 	phys_addr_t actmon_cntr_base;
71 };
72 
73 struct tegra194_cpufreq_data {
74 	void __iomem *regs;
75 	size_t num_clusters;
76 	struct cpufreq_frequency_table **tables;
77 	const struct tegra_cpufreq_soc *soc;
78 };
79 
80 static struct workqueue_struct *read_counters_wq;
81 
82 static void tegra_get_cpu_mpidr(void *mpidr)
83 {
84 	*((u64 *)mpidr) = read_cpuid_mpidr() & MPIDR_HWID_BITMASK;
85 }
86 
87 static void tegra234_get_cpu_cluster_id(u32 cpu, u32 *cpuid, u32 *clusterid)
88 {
89 	u64 mpidr;
90 
91 	smp_call_function_single(cpu, tegra_get_cpu_mpidr, &mpidr, true);
92 
93 	if (cpuid)
94 		*cpuid = MPIDR_AFFINITY_LEVEL(mpidr, 1);
95 	if (clusterid)
96 		*clusterid = MPIDR_AFFINITY_LEVEL(mpidr, 2);
97 }
98 
99 static int tegra234_get_cpu_ndiv(u32 cpu, u32 cpuid, u32 clusterid, u64 *ndiv)
100 {
101 	struct tegra194_cpufreq_data *data = cpufreq_get_driver_data();
102 	void __iomem *freq_core_reg;
103 	u64 mpidr_id;
104 
105 	/* use physical id to get address of per core frequency register */
106 	mpidr_id = (clusterid * data->soc->maxcpus_per_cluster) + cpuid;
107 	freq_core_reg = SCRATCH_FREQ_CORE_REG(data, mpidr_id);
108 
109 	*ndiv = readl(freq_core_reg) & NDIV_MASK;
110 
111 	return 0;
112 }
113 
114 static void tegra234_set_cpu_ndiv(struct cpufreq_policy *policy, u64 ndiv)
115 {
116 	struct tegra194_cpufreq_data *data = cpufreq_get_driver_data();
117 	void __iomem *freq_core_reg;
118 	u32 cpu, cpuid, clusterid;
119 	u64 mpidr_id;
120 
121 	for_each_cpu_and(cpu, policy->cpus, cpu_online_mask) {
122 		data->soc->ops->get_cpu_cluster_id(cpu, &cpuid, &clusterid);
123 
124 		/* use physical id to get address of per core frequency register */
125 		mpidr_id = (clusterid * data->soc->maxcpus_per_cluster) + cpuid;
126 		freq_core_reg = SCRATCH_FREQ_CORE_REG(data, mpidr_id);
127 
128 		writel(ndiv, freq_core_reg);
129 	}
130 }
131 
132 /*
133  * This register provides access to two counter values with a single
134  * 64-bit read. The counter values are used to determine the average
135  * actual frequency a core has run at over a period of time.
136  *     [63:32] PLLP counter: Counts at fixed frequency (408 MHz)
137  *     [31:0] Core clock counter: Counts on every core clock cycle
138  */
139 static void tegra234_read_counters(struct tegra_cpu_ctr *c)
140 {
141 	struct tegra194_cpufreq_data *data = cpufreq_get_driver_data();
142 	void __iomem *actmon_reg;
143 	u32 cpuid, clusterid;
144 	u64 val;
145 
146 	data->soc->ops->get_cpu_cluster_id(c->cpu, &cpuid, &clusterid);
147 	actmon_reg = CORE_ACTMON_CNTR_REG(data, clusterid, cpuid);
148 
149 	val = readq(actmon_reg);
150 	c->last_refclk_cnt = upper_32_bits(val);
151 	c->last_coreclk_cnt = lower_32_bits(val);
152 	udelay(US_DELAY);
153 	val = readq(actmon_reg);
154 	c->refclk_cnt = upper_32_bits(val);
155 	c->coreclk_cnt = lower_32_bits(val);
156 }
157 
158 static struct tegra_cpufreq_ops tegra234_cpufreq_ops = {
159 	.read_counters = tegra234_read_counters,
160 	.get_cpu_cluster_id = tegra234_get_cpu_cluster_id,
161 	.get_cpu_ndiv = tegra234_get_cpu_ndiv,
162 	.set_cpu_ndiv = tegra234_set_cpu_ndiv,
163 };
164 
165 const struct tegra_cpufreq_soc tegra234_cpufreq_soc = {
166 	.ops = &tegra234_cpufreq_ops,
167 	.actmon_cntr_base = 0x9000,
168 	.maxcpus_per_cluster = 4,
169 };
170 
171 static void tegra194_get_cpu_cluster_id(u32 cpu, u32 *cpuid, u32 *clusterid)
172 {
173 	u64 mpidr;
174 
175 	smp_call_function_single(cpu, tegra_get_cpu_mpidr, &mpidr, true);
176 
177 	if (cpuid)
178 		*cpuid = MPIDR_AFFINITY_LEVEL(mpidr, 0);
179 	if (clusterid)
180 		*clusterid = MPIDR_AFFINITY_LEVEL(mpidr, 1);
181 }
182 
183 /*
184  * Read per-core Read-only system register NVFREQ_FEEDBACK_EL1.
185  * The register provides frequency feedback information to
186  * determine the average actual frequency a core has run at over
187  * a period of time.
188  *	[31:0] PLLP counter: Counts at fixed frequency (408 MHz)
189  *	[63:32] Core clock counter: counts on every core clock cycle
190  *			where the core is architecturally clocking
191  */
192 static u64 read_freq_feedback(void)
193 {
194 	u64 val = 0;
195 
196 	asm volatile("mrs %0, s3_0_c15_c0_5" : "=r" (val) : );
197 
198 	return val;
199 }
200 
201 static inline u32 map_ndiv_to_freq(struct mrq_cpu_ndiv_limits_response
202 				   *nltbl, u16 ndiv)
203 {
204 	return nltbl->ref_clk_hz / KHZ * ndiv / (nltbl->pdiv * nltbl->mdiv);
205 }
206 
207 static void tegra194_read_counters(struct tegra_cpu_ctr *c)
208 {
209 	u64 val;
210 
211 	val = read_freq_feedback();
212 	c->last_refclk_cnt = lower_32_bits(val);
213 	c->last_coreclk_cnt = upper_32_bits(val);
214 	udelay(US_DELAY);
215 	val = read_freq_feedback();
216 	c->refclk_cnt = lower_32_bits(val);
217 	c->coreclk_cnt = upper_32_bits(val);
218 }
219 
220 static void tegra_read_counters(struct work_struct *work)
221 {
222 	struct tegra194_cpufreq_data *data = cpufreq_get_driver_data();
223 	struct read_counters_work *read_counters_work;
224 	struct tegra_cpu_ctr *c;
225 
226 	/*
227 	 * ref_clk_counter(32 bit counter) runs on constant clk,
228 	 * pll_p(408MHz).
229 	 * It will take = 2 ^ 32 / 408 MHz to overflow ref clk counter
230 	 *              = 10526880 usec = 10.527 sec to overflow
231 	 *
232 	 * Like wise core_clk_counter(32 bit counter) runs on core clock.
233 	 * It's synchronized to crab_clk (cpu_crab_clk) which runs at
234 	 * freq of cluster. Assuming max cluster clock ~2000MHz,
235 	 * It will take = 2 ^ 32 / 2000 MHz to overflow core clk counter
236 	 *              = ~2.147 sec to overflow
237 	 */
238 	read_counters_work = container_of(work, struct read_counters_work,
239 					  work);
240 	c = &read_counters_work->c;
241 
242 	data->soc->ops->read_counters(c);
243 }
244 
245 /*
246  * Return instantaneous cpu speed
247  * Instantaneous freq is calculated as -
248  * -Takes sample on every query of getting the freq.
249  *	- Read core and ref clock counters;
250  *	- Delay for X us
251  *	- Read above cycle counters again
252  *	- Calculates freq by subtracting current and previous counters
253  *	  divided by the delay time or eqv. of ref_clk_counter in delta time
254  *	- Return Kcycles/second, freq in KHz
255  *
256  *	delta time period = x sec
257  *			  = delta ref_clk_counter / (408 * 10^6) sec
258  *	freq in Hz = cycles/sec
259  *		   = (delta cycles / x sec
260  *		   = (delta cycles * 408 * 10^6) / delta ref_clk_counter
261  *	in KHz	   = (delta cycles * 408 * 10^3) / delta ref_clk_counter
262  *
263  * @cpu - logical cpu whose freq to be updated
264  * Returns freq in KHz on success, 0 if cpu is offline
265  */
266 static unsigned int tegra194_calculate_speed(u32 cpu)
267 {
268 	struct read_counters_work read_counters_work;
269 	struct tegra_cpu_ctr c;
270 	u32 delta_refcnt;
271 	u32 delta_ccnt;
272 	u32 rate_mhz;
273 
274 	/*
275 	 * udelay() is required to reconstruct cpu frequency over an
276 	 * observation window. Using workqueue to call udelay() with
277 	 * interrupts enabled.
278 	 */
279 	read_counters_work.c.cpu = cpu;
280 	INIT_WORK_ONSTACK(&read_counters_work.work, tegra_read_counters);
281 	queue_work_on(cpu, read_counters_wq, &read_counters_work.work);
282 	flush_work(&read_counters_work.work);
283 	c = read_counters_work.c;
284 
285 	if (c.coreclk_cnt < c.last_coreclk_cnt)
286 		delta_ccnt = c.coreclk_cnt + (MAX_CNT - c.last_coreclk_cnt);
287 	else
288 		delta_ccnt = c.coreclk_cnt - c.last_coreclk_cnt;
289 	if (!delta_ccnt)
290 		return 0;
291 
292 	/* ref clock is 32 bits */
293 	if (c.refclk_cnt < c.last_refclk_cnt)
294 		delta_refcnt = c.refclk_cnt + (MAX_CNT - c.last_refclk_cnt);
295 	else
296 		delta_refcnt = c.refclk_cnt - c.last_refclk_cnt;
297 	if (!delta_refcnt) {
298 		pr_debug("cpufreq: %d is idle, delta_refcnt: 0\n", cpu);
299 		return 0;
300 	}
301 	rate_mhz = ((unsigned long)(delta_ccnt * REF_CLK_MHZ)) / delta_refcnt;
302 
303 	return (rate_mhz * KHZ); /* in KHz */
304 }
305 
306 static void tegra194_get_cpu_ndiv_sysreg(void *ndiv)
307 {
308 	u64 ndiv_val;
309 
310 	asm volatile("mrs %0, s3_0_c15_c0_4" : "=r" (ndiv_val) : );
311 
312 	*(u64 *)ndiv = ndiv_val;
313 }
314 
315 static int tegra194_get_cpu_ndiv(u32 cpu, u32 cpuid, u32 clusterid, u64 *ndiv)
316 {
317 	int ret;
318 
319 	ret = smp_call_function_single(cpu, tegra194_get_cpu_ndiv_sysreg, &ndiv, true);
320 
321 	return ret;
322 }
323 
324 static void tegra194_set_cpu_ndiv_sysreg(void *data)
325 {
326 	u64 ndiv_val = *(u64 *)data;
327 
328 	asm volatile("msr s3_0_c15_c0_4, %0" : : "r" (ndiv_val));
329 }
330 
331 static void tegra194_set_cpu_ndiv(struct cpufreq_policy *policy, u64 ndiv)
332 {
333 	on_each_cpu_mask(policy->cpus, tegra194_set_cpu_ndiv_sysreg, &ndiv, true);
334 }
335 
336 static unsigned int tegra194_get_speed(u32 cpu)
337 {
338 	struct tegra194_cpufreq_data *data = cpufreq_get_driver_data();
339 	struct cpufreq_frequency_table *pos;
340 	u32 cpuid, clusterid;
341 	unsigned int rate;
342 	u64 ndiv;
343 	int ret;
344 
345 	data->soc->ops->get_cpu_cluster_id(cpu, &cpuid, &clusterid);
346 
347 	/* reconstruct actual cpu freq using counters */
348 	rate = tegra194_calculate_speed(cpu);
349 
350 	/* get last written ndiv value */
351 	ret = data->soc->ops->get_cpu_ndiv(cpu, cpuid, clusterid, &ndiv);
352 	if (WARN_ON_ONCE(ret))
353 		return rate;
354 
355 	/*
356 	 * If the reconstructed frequency has acceptable delta from
357 	 * the last written value, then return freq corresponding
358 	 * to the last written ndiv value from freq_table. This is
359 	 * done to return consistent value.
360 	 */
361 	cpufreq_for_each_valid_entry(pos, data->tables[clusterid]) {
362 		if (pos->driver_data != ndiv)
363 			continue;
364 
365 		if (abs(pos->frequency - rate) > 115200) {
366 			pr_warn("cpufreq: cpu%d,cur:%u,set:%u,set ndiv:%llu\n",
367 				cpu, rate, pos->frequency, ndiv);
368 		} else {
369 			rate = pos->frequency;
370 		}
371 		break;
372 	}
373 	return rate;
374 }
375 
376 static int tegra194_cpufreq_init(struct cpufreq_policy *policy)
377 {
378 	struct tegra194_cpufreq_data *data = cpufreq_get_driver_data();
379 	int maxcpus_per_cluster = data->soc->maxcpus_per_cluster;
380 	u32 start_cpu, cpu;
381 	u32 clusterid;
382 
383 	data->soc->ops->get_cpu_cluster_id(policy->cpu, NULL, &clusterid);
384 
385 	if (clusterid >= data->num_clusters || !data->tables[clusterid])
386 		return -EINVAL;
387 
388 	start_cpu = rounddown(policy->cpu, maxcpus_per_cluster);
389 	/* set same policy for all cpus in a cluster */
390 	for (cpu = start_cpu; cpu < (start_cpu + maxcpus_per_cluster); cpu++) {
391 		if (cpu_possible(cpu))
392 			cpumask_set_cpu(cpu, policy->cpus);
393 	}
394 	policy->freq_table = data->tables[clusterid];
395 	policy->cpuinfo.transition_latency = TEGRA_CPUFREQ_TRANSITION_LATENCY;
396 
397 	return 0;
398 }
399 
400 static int tegra194_cpufreq_set_target(struct cpufreq_policy *policy,
401 				       unsigned int index)
402 {
403 	struct cpufreq_frequency_table *tbl = policy->freq_table + index;
404 	struct tegra194_cpufreq_data *data = cpufreq_get_driver_data();
405 
406 	/*
407 	 * Each core writes frequency in per core register. Then both cores
408 	 * in a cluster run at same frequency which is the maximum frequency
409 	 * request out of the values requested by both cores in that cluster.
410 	 */
411 	data->soc->ops->set_cpu_ndiv(policy, (u64)tbl->driver_data);
412 
413 	return 0;
414 }
415 
416 static struct cpufreq_driver tegra194_cpufreq_driver = {
417 	.name = "tegra194",
418 	.flags = CPUFREQ_CONST_LOOPS | CPUFREQ_NEED_INITIAL_FREQ_CHECK,
419 	.verify = cpufreq_generic_frequency_table_verify,
420 	.target_index = tegra194_cpufreq_set_target,
421 	.get = tegra194_get_speed,
422 	.init = tegra194_cpufreq_init,
423 	.attr = cpufreq_generic_attr,
424 };
425 
426 static struct tegra_cpufreq_ops tegra194_cpufreq_ops = {
427 	.read_counters = tegra194_read_counters,
428 	.get_cpu_cluster_id = tegra194_get_cpu_cluster_id,
429 	.get_cpu_ndiv = tegra194_get_cpu_ndiv,
430 	.set_cpu_ndiv = tegra194_set_cpu_ndiv,
431 };
432 
433 const struct tegra_cpufreq_soc tegra194_cpufreq_soc = {
434 	.ops = &tegra194_cpufreq_ops,
435 	.maxcpus_per_cluster = 2,
436 };
437 
438 static void tegra194_cpufreq_free_resources(void)
439 {
440 	destroy_workqueue(read_counters_wq);
441 }
442 
443 static struct cpufreq_frequency_table *
444 init_freq_table(struct platform_device *pdev, struct tegra_bpmp *bpmp,
445 		unsigned int cluster_id)
446 {
447 	struct cpufreq_frequency_table *freq_table;
448 	struct mrq_cpu_ndiv_limits_response resp;
449 	unsigned int num_freqs, ndiv, delta_ndiv;
450 	struct mrq_cpu_ndiv_limits_request req;
451 	struct tegra_bpmp_message msg;
452 	u16 freq_table_step_size;
453 	int err, index;
454 
455 	memset(&req, 0, sizeof(req));
456 	req.cluster_id = cluster_id;
457 
458 	memset(&msg, 0, sizeof(msg));
459 	msg.mrq = MRQ_CPU_NDIV_LIMITS;
460 	msg.tx.data = &req;
461 	msg.tx.size = sizeof(req);
462 	msg.rx.data = &resp;
463 	msg.rx.size = sizeof(resp);
464 
465 	err = tegra_bpmp_transfer(bpmp, &msg);
466 	if (err)
467 		return ERR_PTR(err);
468 	if (msg.rx.ret == -BPMP_EINVAL) {
469 		/* Cluster not available */
470 		return NULL;
471 	}
472 	if (msg.rx.ret)
473 		return ERR_PTR(-EINVAL);
474 
475 	/*
476 	 * Make sure frequency table step is a multiple of mdiv to match
477 	 * vhint table granularity.
478 	 */
479 	freq_table_step_size = resp.mdiv *
480 			DIV_ROUND_UP(CPUFREQ_TBL_STEP_HZ, resp.ref_clk_hz);
481 
482 	dev_dbg(&pdev->dev, "cluster %d: frequency table step size: %d\n",
483 		cluster_id, freq_table_step_size);
484 
485 	delta_ndiv = resp.ndiv_max - resp.ndiv_min;
486 
487 	if (unlikely(delta_ndiv == 0)) {
488 		num_freqs = 1;
489 	} else {
490 		/* We store both ndiv_min and ndiv_max hence the +1 */
491 		num_freqs = delta_ndiv / freq_table_step_size + 1;
492 	}
493 
494 	num_freqs += (delta_ndiv % freq_table_step_size) ? 1 : 0;
495 
496 	freq_table = devm_kcalloc(&pdev->dev, num_freqs + 1,
497 				  sizeof(*freq_table), GFP_KERNEL);
498 	if (!freq_table)
499 		return ERR_PTR(-ENOMEM);
500 
501 	for (index = 0, ndiv = resp.ndiv_min;
502 			ndiv < resp.ndiv_max;
503 			index++, ndiv += freq_table_step_size) {
504 		freq_table[index].driver_data = ndiv;
505 		freq_table[index].frequency = map_ndiv_to_freq(&resp, ndiv);
506 	}
507 
508 	freq_table[index].driver_data = resp.ndiv_max;
509 	freq_table[index++].frequency = map_ndiv_to_freq(&resp, resp.ndiv_max);
510 	freq_table[index].frequency = CPUFREQ_TABLE_END;
511 
512 	return freq_table;
513 }
514 
515 static int tegra194_cpufreq_probe(struct platform_device *pdev)
516 {
517 	const struct tegra_cpufreq_soc *soc;
518 	struct tegra194_cpufreq_data *data;
519 	struct tegra_bpmp *bpmp;
520 	int err, i;
521 
522 	data = devm_kzalloc(&pdev->dev, sizeof(*data), GFP_KERNEL);
523 	if (!data)
524 		return -ENOMEM;
525 
526 	soc = of_device_get_match_data(&pdev->dev);
527 
528 	if (soc->ops && soc->maxcpus_per_cluster) {
529 		data->soc = soc;
530 	} else {
531 		dev_err(&pdev->dev, "soc data missing\n");
532 		return -EINVAL;
533 	}
534 
535 	data->num_clusters = MAX_CLUSTERS;
536 	data->tables = devm_kcalloc(&pdev->dev, data->num_clusters,
537 				    sizeof(*data->tables), GFP_KERNEL);
538 	if (!data->tables)
539 		return -ENOMEM;
540 
541 	if (soc->actmon_cntr_base) {
542 		/* mmio registers are used for frequency request and re-construction */
543 		data->regs = devm_platform_ioremap_resource(pdev, 0);
544 		if (IS_ERR(data->regs))
545 			return PTR_ERR(data->regs);
546 	}
547 
548 	platform_set_drvdata(pdev, data);
549 
550 	bpmp = tegra_bpmp_get(&pdev->dev);
551 	if (IS_ERR(bpmp))
552 		return PTR_ERR(bpmp);
553 
554 	read_counters_wq = alloc_workqueue("read_counters_wq", __WQ_LEGACY, 1);
555 	if (!read_counters_wq) {
556 		dev_err(&pdev->dev, "fail to create_workqueue\n");
557 		err = -EINVAL;
558 		goto put_bpmp;
559 	}
560 
561 	for (i = 0; i < data->num_clusters; i++) {
562 		data->tables[i] = init_freq_table(pdev, bpmp, i);
563 		if (IS_ERR(data->tables[i])) {
564 			err = PTR_ERR(data->tables[i]);
565 			goto err_free_res;
566 		}
567 	}
568 
569 	tegra194_cpufreq_driver.driver_data = data;
570 
571 	err = cpufreq_register_driver(&tegra194_cpufreq_driver);
572 	if (!err)
573 		goto put_bpmp;
574 
575 err_free_res:
576 	tegra194_cpufreq_free_resources();
577 put_bpmp:
578 	tegra_bpmp_put(bpmp);
579 	return err;
580 }
581 
582 static int tegra194_cpufreq_remove(struct platform_device *pdev)
583 {
584 	cpufreq_unregister_driver(&tegra194_cpufreq_driver);
585 	tegra194_cpufreq_free_resources();
586 
587 	return 0;
588 }
589 
590 static const struct of_device_id tegra194_cpufreq_of_match[] = {
591 	{ .compatible = "nvidia,tegra194-ccplex", .data = &tegra194_cpufreq_soc },
592 	{ .compatible = "nvidia,tegra234-ccplex-cluster", .data = &tegra234_cpufreq_soc },
593 	{ /* sentinel */ }
594 };
595 
596 static struct platform_driver tegra194_ccplex_driver = {
597 	.driver = {
598 		.name = "tegra194-cpufreq",
599 		.of_match_table = tegra194_cpufreq_of_match,
600 	},
601 	.probe = tegra194_cpufreq_probe,
602 	.remove = tegra194_cpufreq_remove,
603 };
604 module_platform_driver(tegra194_ccplex_driver);
605 
606 MODULE_AUTHOR("Mikko Perttunen <mperttunen@nvidia.com>");
607 MODULE_AUTHOR("Sumit Gupta <sumitg@nvidia.com>");
608 MODULE_DESCRIPTION("NVIDIA Tegra194 cpufreq driver");
609 MODULE_LICENSE("GPL v2");
610