1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved
4  */
5 
6 #include <linux/cpu.h>
7 #include <linux/cpufreq.h>
8 #include <linux/delay.h>
9 #include <linux/dma-mapping.h>
10 #include <linux/module.h>
11 #include <linux/of.h>
12 #include <linux/of_platform.h>
13 #include <linux/platform_device.h>
14 #include <linux/slab.h>
15 
16 #include <asm/smp_plat.h>
17 
18 #include <soc/tegra/bpmp.h>
19 #include <soc/tegra/bpmp-abi.h>
20 
21 #define KHZ                     1000
22 #define REF_CLK_MHZ             408 /* 408 MHz */
23 #define US_DELAY                500
24 #define US_DELAY_MIN            2
25 #define CPUFREQ_TBL_STEP_HZ     (50 * KHZ * KHZ)
26 #define MAX_CNT                 ~0U
27 
28 /* cpufreq transisition latency */
29 #define TEGRA_CPUFREQ_TRANSITION_LATENCY (300 * 1000) /* unit in nanoseconds */
30 
31 enum cluster {
32 	CLUSTER0,
33 	CLUSTER1,
34 	CLUSTER2,
35 	CLUSTER3,
36 	MAX_CLUSTERS,
37 };
38 
39 struct tegra194_cpufreq_data {
40 	void __iomem *regs;
41 	size_t num_clusters;
42 	struct cpufreq_frequency_table **tables;
43 };
44 
45 struct tegra_cpu_ctr {
46 	u32 cpu;
47 	u32 delay;
48 	u32 coreclk_cnt, last_coreclk_cnt;
49 	u32 refclk_cnt, last_refclk_cnt;
50 };
51 
52 struct read_counters_work {
53 	struct work_struct work;
54 	struct tegra_cpu_ctr c;
55 };
56 
57 static struct workqueue_struct *read_counters_wq;
58 
59 static enum cluster get_cpu_cluster(u8 cpu)
60 {
61 	return MPIDR_AFFINITY_LEVEL(cpu_logical_map(cpu), 1);
62 }
63 
64 /*
65  * Read per-core Read-only system register NVFREQ_FEEDBACK_EL1.
66  * The register provides frequency feedback information to
67  * determine the average actual frequency a core has run at over
68  * a period of time.
69  *	[31:0] PLLP counter: Counts at fixed frequency (408 MHz)
70  *	[63:32] Core clock counter: counts on every core clock cycle
71  *			where the core is architecturally clocking
72  */
73 static u64 read_freq_feedback(void)
74 {
75 	u64 val = 0;
76 
77 	asm volatile("mrs %0, s3_0_c15_c0_5" : "=r" (val) : );
78 
79 	return val;
80 }
81 
82 static inline u32 map_ndiv_to_freq(struct mrq_cpu_ndiv_limits_response
83 				   *nltbl, u16 ndiv)
84 {
85 	return nltbl->ref_clk_hz / KHZ * ndiv / (nltbl->pdiv * nltbl->mdiv);
86 }
87 
88 static void tegra_read_counters(struct work_struct *work)
89 {
90 	struct read_counters_work *read_counters_work;
91 	struct tegra_cpu_ctr *c;
92 	u64 val;
93 
94 	/*
95 	 * ref_clk_counter(32 bit counter) runs on constant clk,
96 	 * pll_p(408MHz).
97 	 * It will take = 2 ^ 32 / 408 MHz to overflow ref clk counter
98 	 *              = 10526880 usec = 10.527 sec to overflow
99 	 *
100 	 * Like wise core_clk_counter(32 bit counter) runs on core clock.
101 	 * It's synchronized to crab_clk (cpu_crab_clk) which runs at
102 	 * freq of cluster. Assuming max cluster clock ~2000MHz,
103 	 * It will take = 2 ^ 32 / 2000 MHz to overflow core clk counter
104 	 *              = ~2.147 sec to overflow
105 	 */
106 	read_counters_work = container_of(work, struct read_counters_work,
107 					  work);
108 	c = &read_counters_work->c;
109 
110 	val = read_freq_feedback();
111 	c->last_refclk_cnt = lower_32_bits(val);
112 	c->last_coreclk_cnt = upper_32_bits(val);
113 	udelay(c->delay);
114 	val = read_freq_feedback();
115 	c->refclk_cnt = lower_32_bits(val);
116 	c->coreclk_cnt = upper_32_bits(val);
117 }
118 
119 /*
120  * Return instantaneous cpu speed
121  * Instantaneous freq is calculated as -
122  * -Takes sample on every query of getting the freq.
123  *	- Read core and ref clock counters;
124  *	- Delay for X us
125  *	- Read above cycle counters again
126  *	- Calculates freq by subtracting current and previous counters
127  *	  divided by the delay time or eqv. of ref_clk_counter in delta time
128  *	- Return Kcycles/second, freq in KHz
129  *
130  *	delta time period = x sec
131  *			  = delta ref_clk_counter / (408 * 10^6) sec
132  *	freq in Hz = cycles/sec
133  *		   = (delta cycles / x sec
134  *		   = (delta cycles * 408 * 10^6) / delta ref_clk_counter
135  *	in KHz	   = (delta cycles * 408 * 10^3) / delta ref_clk_counter
136  *
137  * @cpu - logical cpu whose freq to be updated
138  * Returns freq in KHz on success, 0 if cpu is offline
139  */
140 static unsigned int tegra194_get_speed_common(u32 cpu, u32 delay)
141 {
142 	struct read_counters_work read_counters_work;
143 	struct tegra_cpu_ctr c;
144 	u32 delta_refcnt;
145 	u32 delta_ccnt;
146 	u32 rate_mhz;
147 
148 	/*
149 	 * udelay() is required to reconstruct cpu frequency over an
150 	 * observation window. Using workqueue to call udelay() with
151 	 * interrupts enabled.
152 	 */
153 	read_counters_work.c.cpu = cpu;
154 	read_counters_work.c.delay = delay;
155 	INIT_WORK_ONSTACK(&read_counters_work.work, tegra_read_counters);
156 	queue_work_on(cpu, read_counters_wq, &read_counters_work.work);
157 	flush_work(&read_counters_work.work);
158 	c = read_counters_work.c;
159 
160 	if (c.coreclk_cnt < c.last_coreclk_cnt)
161 		delta_ccnt = c.coreclk_cnt + (MAX_CNT - c.last_coreclk_cnt);
162 	else
163 		delta_ccnt = c.coreclk_cnt - c.last_coreclk_cnt;
164 	if (!delta_ccnt)
165 		return 0;
166 
167 	/* ref clock is 32 bits */
168 	if (c.refclk_cnt < c.last_refclk_cnt)
169 		delta_refcnt = c.refclk_cnt + (MAX_CNT - c.last_refclk_cnt);
170 	else
171 		delta_refcnt = c.refclk_cnt - c.last_refclk_cnt;
172 	if (!delta_refcnt) {
173 		pr_debug("cpufreq: %d is idle, delta_refcnt: 0\n", cpu);
174 		return 0;
175 	}
176 	rate_mhz = ((unsigned long)(delta_ccnt * REF_CLK_MHZ)) / delta_refcnt;
177 
178 	return (rate_mhz * KHZ); /* in KHz */
179 }
180 
181 static unsigned int tegra194_get_speed(u32 cpu)
182 {
183 	return tegra194_get_speed_common(cpu, US_DELAY);
184 }
185 
186 static int tegra194_cpufreq_init(struct cpufreq_policy *policy)
187 {
188 	struct tegra194_cpufreq_data *data = cpufreq_get_driver_data();
189 	int cl = get_cpu_cluster(policy->cpu);
190 	u32 cpu;
191 
192 	if (cl >= data->num_clusters)
193 		return -EINVAL;
194 
195 	/* boot freq */
196 	policy->cur = tegra194_get_speed_common(policy->cpu, US_DELAY_MIN);
197 
198 	/* set same policy for all cpus in a cluster */
199 	for (cpu = (cl * 2); cpu < ((cl + 1) * 2); cpu++)
200 		cpumask_set_cpu(cpu, policy->cpus);
201 
202 	policy->freq_table = data->tables[cl];
203 	policy->cpuinfo.transition_latency = TEGRA_CPUFREQ_TRANSITION_LATENCY;
204 
205 	return 0;
206 }
207 
208 static void set_cpu_ndiv(void *data)
209 {
210 	struct cpufreq_frequency_table *tbl = data;
211 	u64 ndiv_val = (u64)tbl->driver_data;
212 
213 	asm volatile("msr s3_0_c15_c0_4, %0" : : "r" (ndiv_val));
214 }
215 
216 static int tegra194_cpufreq_set_target(struct cpufreq_policy *policy,
217 				       unsigned int index)
218 {
219 	struct cpufreq_frequency_table *tbl = policy->freq_table + index;
220 
221 	/*
222 	 * Each core writes frequency in per core register. Then both cores
223 	 * in a cluster run at same frequency which is the maximum frequency
224 	 * request out of the values requested by both cores in that cluster.
225 	 */
226 	on_each_cpu_mask(policy->cpus, set_cpu_ndiv, tbl, true);
227 
228 	return 0;
229 }
230 
231 static struct cpufreq_driver tegra194_cpufreq_driver = {
232 	.name = "tegra194",
233 	.flags = CPUFREQ_STICKY | CPUFREQ_CONST_LOOPS |
234 		CPUFREQ_NEED_INITIAL_FREQ_CHECK,
235 	.verify = cpufreq_generic_frequency_table_verify,
236 	.target_index = tegra194_cpufreq_set_target,
237 	.get = tegra194_get_speed,
238 	.init = tegra194_cpufreq_init,
239 	.attr = cpufreq_generic_attr,
240 };
241 
242 static void tegra194_cpufreq_free_resources(void)
243 {
244 	destroy_workqueue(read_counters_wq);
245 }
246 
247 static struct cpufreq_frequency_table *
248 init_freq_table(struct platform_device *pdev, struct tegra_bpmp *bpmp,
249 		unsigned int cluster_id)
250 {
251 	struct cpufreq_frequency_table *freq_table;
252 	struct mrq_cpu_ndiv_limits_response resp;
253 	unsigned int num_freqs, ndiv, delta_ndiv;
254 	struct mrq_cpu_ndiv_limits_request req;
255 	struct tegra_bpmp_message msg;
256 	u16 freq_table_step_size;
257 	int err, index;
258 
259 	memset(&req, 0, sizeof(req));
260 	req.cluster_id = cluster_id;
261 
262 	memset(&msg, 0, sizeof(msg));
263 	msg.mrq = MRQ_CPU_NDIV_LIMITS;
264 	msg.tx.data = &req;
265 	msg.tx.size = sizeof(req);
266 	msg.rx.data = &resp;
267 	msg.rx.size = sizeof(resp);
268 
269 	err = tegra_bpmp_transfer(bpmp, &msg);
270 	if (err)
271 		return ERR_PTR(err);
272 
273 	/*
274 	 * Make sure frequency table step is a multiple of mdiv to match
275 	 * vhint table granularity.
276 	 */
277 	freq_table_step_size = resp.mdiv *
278 			DIV_ROUND_UP(CPUFREQ_TBL_STEP_HZ, resp.ref_clk_hz);
279 
280 	dev_dbg(&pdev->dev, "cluster %d: frequency table step size: %d\n",
281 		cluster_id, freq_table_step_size);
282 
283 	delta_ndiv = resp.ndiv_max - resp.ndiv_min;
284 
285 	if (unlikely(delta_ndiv == 0)) {
286 		num_freqs = 1;
287 	} else {
288 		/* We store both ndiv_min and ndiv_max hence the +1 */
289 		num_freqs = delta_ndiv / freq_table_step_size + 1;
290 	}
291 
292 	num_freqs += (delta_ndiv % freq_table_step_size) ? 1 : 0;
293 
294 	freq_table = devm_kcalloc(&pdev->dev, num_freqs + 1,
295 				  sizeof(*freq_table), GFP_KERNEL);
296 	if (!freq_table)
297 		return ERR_PTR(-ENOMEM);
298 
299 	for (index = 0, ndiv = resp.ndiv_min;
300 			ndiv < resp.ndiv_max;
301 			index++, ndiv += freq_table_step_size) {
302 		freq_table[index].driver_data = ndiv;
303 		freq_table[index].frequency = map_ndiv_to_freq(&resp, ndiv);
304 	}
305 
306 	freq_table[index].driver_data = resp.ndiv_max;
307 	freq_table[index++].frequency = map_ndiv_to_freq(&resp, resp.ndiv_max);
308 	freq_table[index].frequency = CPUFREQ_TABLE_END;
309 
310 	return freq_table;
311 }
312 
313 static int tegra194_cpufreq_probe(struct platform_device *pdev)
314 {
315 	struct tegra194_cpufreq_data *data;
316 	struct tegra_bpmp *bpmp;
317 	int err, i;
318 
319 	data = devm_kzalloc(&pdev->dev, sizeof(*data), GFP_KERNEL);
320 	if (!data)
321 		return -ENOMEM;
322 
323 	data->num_clusters = MAX_CLUSTERS;
324 	data->tables = devm_kcalloc(&pdev->dev, data->num_clusters,
325 				    sizeof(*data->tables), GFP_KERNEL);
326 	if (!data->tables)
327 		return -ENOMEM;
328 
329 	platform_set_drvdata(pdev, data);
330 
331 	bpmp = tegra_bpmp_get(&pdev->dev);
332 	if (IS_ERR(bpmp))
333 		return PTR_ERR(bpmp);
334 
335 	read_counters_wq = alloc_workqueue("read_counters_wq", __WQ_LEGACY, 1);
336 	if (!read_counters_wq) {
337 		dev_err(&pdev->dev, "fail to create_workqueue\n");
338 		err = -EINVAL;
339 		goto put_bpmp;
340 	}
341 
342 	for (i = 0; i < data->num_clusters; i++) {
343 		data->tables[i] = init_freq_table(pdev, bpmp, i);
344 		if (IS_ERR(data->tables[i])) {
345 			err = PTR_ERR(data->tables[i]);
346 			goto err_free_res;
347 		}
348 	}
349 
350 	tegra194_cpufreq_driver.driver_data = data;
351 
352 	err = cpufreq_register_driver(&tegra194_cpufreq_driver);
353 	if (!err)
354 		goto put_bpmp;
355 
356 err_free_res:
357 	tegra194_cpufreq_free_resources();
358 put_bpmp:
359 	tegra_bpmp_put(bpmp);
360 	return err;
361 }
362 
363 static int tegra194_cpufreq_remove(struct platform_device *pdev)
364 {
365 	cpufreq_unregister_driver(&tegra194_cpufreq_driver);
366 	tegra194_cpufreq_free_resources();
367 
368 	return 0;
369 }
370 
371 static const struct of_device_id tegra194_cpufreq_of_match[] = {
372 	{ .compatible = "nvidia,tegra194-ccplex", },
373 	{ /* sentinel */ }
374 };
375 MODULE_DEVICE_TABLE(of, tegra194_cpufreq_of_match);
376 
377 static struct platform_driver tegra194_ccplex_driver = {
378 	.driver = {
379 		.name = "tegra194-cpufreq",
380 		.of_match_table = tegra194_cpufreq_of_match,
381 	},
382 	.probe = tegra194_cpufreq_probe,
383 	.remove = tegra194_cpufreq_remove,
384 };
385 module_platform_driver(tegra194_ccplex_driver);
386 
387 MODULE_AUTHOR("Mikko Perttunen <mperttunen@nvidia.com>");
388 MODULE_AUTHOR("Sumit Gupta <sumitg@nvidia.com>");
389 MODULE_DESCRIPTION("NVIDIA Tegra194 cpufreq driver");
390 MODULE_LICENSE("GPL v2");
391