1 // SPDX-License-Identifier: GPL-2.0-only
2 /* us2e_cpufreq.c: UltraSPARC-IIe cpu frequency support
3  *
4  * Copyright (C) 2003 David S. Miller (davem@redhat.com)
5  *
6  * Many thanks to Dominik Brodowski for fixing up the cpufreq
7  * infrastructure in order to make this driver easier to implement.
8  */
9 
10 #include <linux/kernel.h>
11 #include <linux/module.h>
12 #include <linux/sched.h>
13 #include <linux/smp.h>
14 #include <linux/cpufreq.h>
15 #include <linux/threads.h>
16 #include <linux/slab.h>
17 #include <linux/delay.h>
18 #include <linux/init.h>
19 
20 #include <asm/asi.h>
21 #include <asm/timer.h>
22 
23 struct us2e_freq_percpu_info {
24 	struct cpufreq_frequency_table table[6];
25 };
26 
27 /* Indexed by cpu number. */
28 static struct us2e_freq_percpu_info *us2e_freq_table;
29 
30 #define HBIRD_MEM_CNTL0_ADDR	0x1fe0000f010UL
31 #define HBIRD_ESTAR_MODE_ADDR	0x1fe0000f080UL
32 
33 /* UltraSPARC-IIe has five dividers: 1, 2, 4, 6, and 8.  These are controlled
34  * in the ESTAR mode control register.
35  */
36 #define ESTAR_MODE_DIV_1	0x0000000000000000UL
37 #define ESTAR_MODE_DIV_2	0x0000000000000001UL
38 #define ESTAR_MODE_DIV_4	0x0000000000000003UL
39 #define ESTAR_MODE_DIV_6	0x0000000000000002UL
40 #define ESTAR_MODE_DIV_8	0x0000000000000004UL
41 #define ESTAR_MODE_DIV_MASK	0x0000000000000007UL
42 
43 #define MCTRL0_SREFRESH_ENAB	0x0000000000010000UL
44 #define MCTRL0_REFR_COUNT_MASK	0x0000000000007f00UL
45 #define MCTRL0_REFR_COUNT_SHIFT	8
46 #define MCTRL0_REFR_INTERVAL	7800
47 #define MCTRL0_REFR_CLKS_P_CNT	64
48 
49 static unsigned long read_hbreg(unsigned long addr)
50 {
51 	unsigned long ret;
52 
53 	__asm__ __volatile__("ldxa	[%1] %2, %0"
54 			     : "=&r" (ret)
55 			     : "r" (addr), "i" (ASI_PHYS_BYPASS_EC_E));
56 	return ret;
57 }
58 
59 static void write_hbreg(unsigned long addr, unsigned long val)
60 {
61 	__asm__ __volatile__("stxa	%0, [%1] %2\n\t"
62 			     "membar	#Sync"
63 			     : /* no outputs */
64 			     : "r" (val), "r" (addr), "i" (ASI_PHYS_BYPASS_EC_E)
65 			     : "memory");
66 	if (addr == HBIRD_ESTAR_MODE_ADDR) {
67 		/* Need to wait 16 clock cycles for the PLL to lock.  */
68 		udelay(1);
69 	}
70 }
71 
72 static void self_refresh_ctl(int enable)
73 {
74 	unsigned long mctrl = read_hbreg(HBIRD_MEM_CNTL0_ADDR);
75 
76 	if (enable)
77 		mctrl |= MCTRL0_SREFRESH_ENAB;
78 	else
79 		mctrl &= ~MCTRL0_SREFRESH_ENAB;
80 	write_hbreg(HBIRD_MEM_CNTL0_ADDR, mctrl);
81 	(void) read_hbreg(HBIRD_MEM_CNTL0_ADDR);
82 }
83 
84 static void frob_mem_refresh(int cpu_slowing_down,
85 			     unsigned long clock_tick,
86 			     unsigned long old_divisor, unsigned long divisor)
87 {
88 	unsigned long old_refr_count, refr_count, mctrl;
89 
90 	refr_count  = (clock_tick * MCTRL0_REFR_INTERVAL);
91 	refr_count /= (MCTRL0_REFR_CLKS_P_CNT * divisor * 1000000000UL);
92 
93 	mctrl = read_hbreg(HBIRD_MEM_CNTL0_ADDR);
94 	old_refr_count = (mctrl & MCTRL0_REFR_COUNT_MASK)
95 		>> MCTRL0_REFR_COUNT_SHIFT;
96 
97 	mctrl &= ~MCTRL0_REFR_COUNT_MASK;
98 	mctrl |= refr_count << MCTRL0_REFR_COUNT_SHIFT;
99 	write_hbreg(HBIRD_MEM_CNTL0_ADDR, mctrl);
100 	mctrl = read_hbreg(HBIRD_MEM_CNTL0_ADDR);
101 
102 	if (cpu_slowing_down && !(mctrl & MCTRL0_SREFRESH_ENAB)) {
103 		unsigned long usecs;
104 
105 		/* We have to wait for both refresh counts (old
106 		 * and new) to go to zero.
107 		 */
108 		usecs = (MCTRL0_REFR_CLKS_P_CNT *
109 			 (refr_count + old_refr_count) *
110 			 1000000UL *
111 			 old_divisor) / clock_tick;
112 		udelay(usecs + 1UL);
113 	}
114 }
115 
116 static void us2e_transition(unsigned long estar, unsigned long new_bits,
117 			    unsigned long clock_tick,
118 			    unsigned long old_divisor, unsigned long divisor)
119 {
120 	estar &= ~ESTAR_MODE_DIV_MASK;
121 
122 	/* This is based upon the state transition diagram in the IIe manual.  */
123 	if (old_divisor == 2 && divisor == 1) {
124 		self_refresh_ctl(0);
125 		write_hbreg(HBIRD_ESTAR_MODE_ADDR, estar | new_bits);
126 		frob_mem_refresh(0, clock_tick, old_divisor, divisor);
127 	} else if (old_divisor == 1 && divisor == 2) {
128 		frob_mem_refresh(1, clock_tick, old_divisor, divisor);
129 		write_hbreg(HBIRD_ESTAR_MODE_ADDR, estar | new_bits);
130 		self_refresh_ctl(1);
131 	} else if (old_divisor == 1 && divisor > 2) {
132 		us2e_transition(estar, ESTAR_MODE_DIV_2, clock_tick,
133 				1, 2);
134 		us2e_transition(estar, new_bits, clock_tick,
135 				2, divisor);
136 	} else if (old_divisor > 2 && divisor == 1) {
137 		us2e_transition(estar, ESTAR_MODE_DIV_2, clock_tick,
138 				old_divisor, 2);
139 		us2e_transition(estar, new_bits, clock_tick,
140 				2, divisor);
141 	} else if (old_divisor < divisor) {
142 		frob_mem_refresh(0, clock_tick, old_divisor, divisor);
143 		write_hbreg(HBIRD_ESTAR_MODE_ADDR, estar | new_bits);
144 	} else if (old_divisor > divisor) {
145 		write_hbreg(HBIRD_ESTAR_MODE_ADDR, estar | new_bits);
146 		frob_mem_refresh(1, clock_tick, old_divisor, divisor);
147 	} else {
148 		BUG();
149 	}
150 }
151 
152 static unsigned long index_to_estar_mode(unsigned int index)
153 {
154 	switch (index) {
155 	case 0:
156 		return ESTAR_MODE_DIV_1;
157 
158 	case 1:
159 		return ESTAR_MODE_DIV_2;
160 
161 	case 2:
162 		return ESTAR_MODE_DIV_4;
163 
164 	case 3:
165 		return ESTAR_MODE_DIV_6;
166 
167 	case 4:
168 		return ESTAR_MODE_DIV_8;
169 
170 	default:
171 		BUG();
172 	}
173 }
174 
175 static unsigned long index_to_divisor(unsigned int index)
176 {
177 	switch (index) {
178 	case 0:
179 		return 1;
180 
181 	case 1:
182 		return 2;
183 
184 	case 2:
185 		return 4;
186 
187 	case 3:
188 		return 6;
189 
190 	case 4:
191 		return 8;
192 
193 	default:
194 		BUG();
195 	}
196 }
197 
198 static unsigned long estar_to_divisor(unsigned long estar)
199 {
200 	unsigned long ret;
201 
202 	switch (estar & ESTAR_MODE_DIV_MASK) {
203 	case ESTAR_MODE_DIV_1:
204 		ret = 1;
205 		break;
206 	case ESTAR_MODE_DIV_2:
207 		ret = 2;
208 		break;
209 	case ESTAR_MODE_DIV_4:
210 		ret = 4;
211 		break;
212 	case ESTAR_MODE_DIV_6:
213 		ret = 6;
214 		break;
215 	case ESTAR_MODE_DIV_8:
216 		ret = 8;
217 		break;
218 	default:
219 		BUG();
220 	}
221 
222 	return ret;
223 }
224 
225 static void __us2e_freq_get(void *arg)
226 {
227 	unsigned long *estar = arg;
228 
229 	*estar = read_hbreg(HBIRD_ESTAR_MODE_ADDR);
230 }
231 
232 static unsigned int us2e_freq_get(unsigned int cpu)
233 {
234 	unsigned long clock_tick, estar;
235 
236 	clock_tick = sparc64_get_clock_tick(cpu) / 1000;
237 	if (smp_call_function_single(cpu, __us2e_freq_get, &estar, 1))
238 		return 0;
239 
240 	return clock_tick / estar_to_divisor(estar);
241 }
242 
243 static void __us2e_freq_target(void *arg)
244 {
245 	unsigned int cpu = smp_processor_id();
246 	unsigned int *index = arg;
247 	unsigned long new_bits, new_freq;
248 	unsigned long clock_tick, divisor, old_divisor, estar;
249 
250 	new_freq = clock_tick = sparc64_get_clock_tick(cpu) / 1000;
251 	new_bits = index_to_estar_mode(*index);
252 	divisor = index_to_divisor(*index);
253 	new_freq /= divisor;
254 
255 	estar = read_hbreg(HBIRD_ESTAR_MODE_ADDR);
256 
257 	old_divisor = estar_to_divisor(estar);
258 
259 	if (old_divisor != divisor) {
260 		us2e_transition(estar, new_bits, clock_tick * 1000,
261 				old_divisor, divisor);
262 	}
263 }
264 
265 static int us2e_freq_target(struct cpufreq_policy *policy, unsigned int index)
266 {
267 	unsigned int cpu = policy->cpu;
268 
269 	return smp_call_function_single(cpu, __us2e_freq_target, &index, 1);
270 }
271 
272 static int __init us2e_freq_cpu_init(struct cpufreq_policy *policy)
273 {
274 	unsigned int cpu = policy->cpu;
275 	unsigned long clock_tick = sparc64_get_clock_tick(cpu) / 1000;
276 	struct cpufreq_frequency_table *table =
277 		&us2e_freq_table[cpu].table[0];
278 
279 	table[0].driver_data = 0;
280 	table[0].frequency = clock_tick / 1;
281 	table[1].driver_data = 1;
282 	table[1].frequency = clock_tick / 2;
283 	table[2].driver_data = 2;
284 	table[2].frequency = clock_tick / 4;
285 	table[2].driver_data = 3;
286 	table[2].frequency = clock_tick / 6;
287 	table[2].driver_data = 4;
288 	table[2].frequency = clock_tick / 8;
289 	table[2].driver_data = 5;
290 	table[3].frequency = CPUFREQ_TABLE_END;
291 
292 	policy->cpuinfo.transition_latency = 0;
293 	policy->cur = clock_tick;
294 	policy->freq_table = table;
295 
296 	return 0;
297 }
298 
299 static int us2e_freq_cpu_exit(struct cpufreq_policy *policy)
300 {
301 	us2e_freq_target(policy, 0);
302 	return 0;
303 }
304 
305 static struct cpufreq_driver cpufreq_us2e_driver = {
306 	.name = "UltraSPARC-IIe",
307 	.init = us2e_freq_cpu_init,
308 	.verify = cpufreq_generic_frequency_table_verify,
309 	.target_index = us2e_freq_target,
310 	.get = us2e_freq_get,
311 	.exit = us2e_freq_cpu_exit,
312 };
313 
314 static int __init us2e_freq_init(void)
315 {
316 	unsigned long manuf, impl, ver;
317 	int ret;
318 
319 	if (tlb_type != spitfire)
320 		return -ENODEV;
321 
322 	__asm__("rdpr %%ver, %0" : "=r" (ver));
323 	manuf = ((ver >> 48) & 0xffff);
324 	impl  = ((ver >> 32) & 0xffff);
325 
326 	if (manuf == 0x17 && impl == 0x13) {
327 		us2e_freq_table = kzalloc(NR_CPUS * sizeof(*us2e_freq_table),
328 					  GFP_KERNEL);
329 		if (!us2e_freq_table)
330 			return -ENOMEM;
331 
332 		ret = cpufreq_register_driver(&cpufreq_us2e_driver);
333 		if (ret)
334 			kfree(us2e_freq_table);
335 
336 		return ret;
337 	}
338 
339 	return -ENODEV;
340 }
341 
342 static void __exit us2e_freq_exit(void)
343 {
344 	cpufreq_unregister_driver(&cpufreq_us2e_driver);
345 	kfree(us2e_freq_table);
346 }
347 
348 MODULE_AUTHOR("David S. Miller <davem@redhat.com>");
349 MODULE_DESCRIPTION("cpufreq driver for UltraSPARC-IIe");
350 MODULE_LICENSE("GPL");
351 
352 module_init(us2e_freq_init);
353 module_exit(us2e_freq_exit);
354