1 /*
2  *  linux/arch/arm/mach-sa1100/cpu-sa1110.c
3  *
4  *  Copyright (C) 2001 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  *
10  * Note: there are two erratas that apply to the SA1110 here:
11  *  7 - SDRAM auto-power-up failure (rev A0)
12  * 13 - Corruption of internal register reads/writes following
13  *      SDRAM reads (rev A0, B0, B1)
14  *
15  * We ignore rev. A0 and B0 devices; I don't think they're worth supporting.
16  *
17  * The SDRAM type can be passed on the command line as cpu_sa1110.sdram=type
18  */
19 #include <linux/cpufreq.h>
20 #include <linux/delay.h>
21 #include <linux/init.h>
22 #include <linux/io.h>
23 #include <linux/kernel.h>
24 #include <linux/moduleparam.h>
25 #include <linux/types.h>
26 
27 #include <asm/cputype.h>
28 #include <asm/mach-types.h>
29 
30 #include <mach/generic.h>
31 #include <mach/hardware.h>
32 
33 #undef DEBUG
34 
35 struct sdram_params {
36 	const char name[20];
37 	u_char  rows;		/* bits				 */
38 	u_char  cas_latency;	/* cycles			 */
39 	u_char  tck;		/* clock cycle time (ns)	 */
40 	u_char  trcd;		/* activate to r/w (ns)		 */
41 	u_char  trp;		/* precharge to activate (ns)	 */
42 	u_char  twr;		/* write recovery time (ns)	 */
43 	u_short refresh;	/* refresh time for array (us)	 */
44 };
45 
46 struct sdram_info {
47 	u_int	mdcnfg;
48 	u_int	mdrefr;
49 	u_int	mdcas[3];
50 };
51 
52 static struct sdram_params sdram_tbl[] __initdata = {
53 	{	/* Toshiba TC59SM716 CL2 */
54 		.name		= "TC59SM716-CL2",
55 		.rows		= 12,
56 		.tck		= 10,
57 		.trcd		= 20,
58 		.trp		= 20,
59 		.twr		= 10,
60 		.refresh	= 64000,
61 		.cas_latency	= 2,
62 	}, {	/* Toshiba TC59SM716 CL3 */
63 		.name		= "TC59SM716-CL3",
64 		.rows		= 12,
65 		.tck		= 8,
66 		.trcd		= 20,
67 		.trp		= 20,
68 		.twr		= 8,
69 		.refresh	= 64000,
70 		.cas_latency	= 3,
71 	}, {	/* Samsung K4S641632D TC75 */
72 		.name		= "K4S641632D",
73 		.rows		= 14,
74 		.tck		= 9,
75 		.trcd		= 27,
76 		.trp		= 20,
77 		.twr		= 9,
78 		.refresh	= 64000,
79 		.cas_latency	= 3,
80 	}, {	/* Samsung K4S281632B-1H */
81 		.name           = "K4S281632B-1H",
82 		.rows		= 12,
83 		.tck		= 10,
84 		.trp		= 20,
85 		.twr		= 10,
86 		.refresh	= 64000,
87 		.cas_latency	= 3,
88 	}, {	/* Samsung KM416S4030CT */
89 		.name		= "KM416S4030CT",
90 		.rows		= 13,
91 		.tck		= 8,
92 		.trcd		= 24,	/* 3 CLKs */
93 		.trp		= 24,	/* 3 CLKs */
94 		.twr		= 16,	/* Trdl: 2 CLKs */
95 		.refresh	= 64000,
96 		.cas_latency	= 3,
97 	}, {	/* Winbond W982516AH75L CL3 */
98 		.name		= "W982516AH75L",
99 		.rows		= 16,
100 		.tck		= 8,
101 		.trcd		= 20,
102 		.trp		= 20,
103 		.twr		= 8,
104 		.refresh	= 64000,
105 		.cas_latency	= 3,
106 	}, {	/* Micron MT48LC8M16A2TG-75 */
107 		.name		= "MT48LC8M16A2TG-75",
108 		.rows		= 12,
109 		.tck		= 8,
110 		.trcd		= 20,
111 		.trp		= 20,
112 		.twr		= 8,
113 		.refresh	= 64000,
114 		.cas_latency	= 3,
115 	},
116 };
117 
118 static struct sdram_params sdram_params;
119 
120 /*
121  * Given a period in ns and frequency in khz, calculate the number of
122  * cycles of frequency in period.  Note that we round up to the next
123  * cycle, even if we are only slightly over.
124  */
125 static inline u_int ns_to_cycles(u_int ns, u_int khz)
126 {
127 	return (ns * khz + 999999) / 1000000;
128 }
129 
130 /*
131  * Create the MDCAS register bit pattern.
132  */
133 static inline void set_mdcas(u_int *mdcas, int delayed, u_int rcd)
134 {
135 	u_int shift;
136 
137 	rcd = 2 * rcd - 1;
138 	shift = delayed + 1 + rcd;
139 
140 	mdcas[0]  = (1 << rcd) - 1;
141 	mdcas[0] |= 0x55555555 << shift;
142 	mdcas[1]  = mdcas[2] = 0x55555555 << (shift & 1);
143 }
144 
145 static void
146 sdram_calculate_timing(struct sdram_info *sd, u_int cpu_khz,
147 		       struct sdram_params *sdram)
148 {
149 	u_int mem_khz, sd_khz, trp, twr;
150 
151 	mem_khz = cpu_khz / 2;
152 	sd_khz = mem_khz;
153 
154 	/*
155 	 * If SDCLK would invalidate the SDRAM timings,
156 	 * run SDCLK at half speed.
157 	 *
158 	 * CPU steppings prior to B2 must either run the memory at
159 	 * half speed or use delayed read latching (errata 13).
160 	 */
161 	if ((ns_to_cycles(sdram->tck, sd_khz) > 1) ||
162 	    (CPU_REVISION < CPU_SA1110_B2 && sd_khz < 62000))
163 		sd_khz /= 2;
164 
165 	sd->mdcnfg = MDCNFG & 0x007f007f;
166 
167 	twr = ns_to_cycles(sdram->twr, mem_khz);
168 
169 	/* trp should always be >1 */
170 	trp = ns_to_cycles(sdram->trp, mem_khz) - 1;
171 	if (trp < 1)
172 		trp = 1;
173 
174 	sd->mdcnfg |= trp << 8;
175 	sd->mdcnfg |= trp << 24;
176 	sd->mdcnfg |= sdram->cas_latency << 12;
177 	sd->mdcnfg |= sdram->cas_latency << 28;
178 	sd->mdcnfg |= twr << 14;
179 	sd->mdcnfg |= twr << 30;
180 
181 	sd->mdrefr = MDREFR & 0xffbffff0;
182 	sd->mdrefr |= 7;
183 
184 	if (sd_khz != mem_khz)
185 		sd->mdrefr |= MDREFR_K1DB2;
186 
187 	/* initial number of '1's in MDCAS + 1 */
188 	set_mdcas(sd->mdcas, sd_khz >= 62000,
189 		ns_to_cycles(sdram->trcd, mem_khz));
190 
191 #ifdef DEBUG
192 	printk(KERN_DEBUG "MDCNFG: %08x MDREFR: %08x MDCAS0: %08x MDCAS1: %08x MDCAS2: %08x\n",
193 		sd->mdcnfg, sd->mdrefr, sd->mdcas[0], sd->mdcas[1],
194 		sd->mdcas[2]);
195 #endif
196 }
197 
198 /*
199  * Set the SDRAM refresh rate.
200  */
201 static inline void sdram_set_refresh(u_int dri)
202 {
203 	MDREFR = (MDREFR & 0xffff000f) | (dri << 4);
204 	(void) MDREFR;
205 }
206 
207 /*
208  * Update the refresh period.  We do this such that we always refresh
209  * the SDRAMs within their permissible period.  The refresh period is
210  * always a multiple of the memory clock (fixed at cpu_clock / 2).
211  *
212  * FIXME: we don't currently take account of burst accesses here,
213  * but neither do Intels DM nor Angel.
214  */
215 static void
216 sdram_update_refresh(u_int cpu_khz, struct sdram_params *sdram)
217 {
218 	u_int ns_row = (sdram->refresh * 1000) >> sdram->rows;
219 	u_int dri = ns_to_cycles(ns_row, cpu_khz / 2) / 32;
220 
221 #ifdef DEBUG
222 	mdelay(250);
223 	printk(KERN_DEBUG "new dri value = %d\n", dri);
224 #endif
225 
226 	sdram_set_refresh(dri);
227 }
228 
229 /*
230  * Ok, set the CPU frequency.
231  */
232 static int sa1110_target(struct cpufreq_policy *policy,
233 			 unsigned int target_freq,
234 			 unsigned int relation)
235 {
236 	struct sdram_params *sdram = &sdram_params;
237 	struct cpufreq_freqs freqs;
238 	struct sdram_info sd;
239 	unsigned long flags;
240 	unsigned int ppcr, unused;
241 
242 	switch (relation) {
243 	case CPUFREQ_RELATION_L:
244 		ppcr = sa11x0_freq_to_ppcr(target_freq);
245 		if (sa11x0_ppcr_to_freq(ppcr) > policy->max)
246 			ppcr--;
247 		break;
248 	case CPUFREQ_RELATION_H:
249 		ppcr = sa11x0_freq_to_ppcr(target_freq);
250 		if (ppcr && (sa11x0_ppcr_to_freq(ppcr) > target_freq) &&
251 		    (sa11x0_ppcr_to_freq(ppcr-1) >= policy->min))
252 			ppcr--;
253 		break;
254 	default:
255 		return -EINVAL;
256 	}
257 
258 	freqs.old = sa11x0_getspeed(0);
259 	freqs.new = sa11x0_ppcr_to_freq(ppcr);
260 
261 	sdram_calculate_timing(&sd, freqs.new, sdram);
262 
263 #if 0
264 	/*
265 	 * These values are wrong according to the SA1110 documentation
266 	 * and errata, but they seem to work.  Need to get a storage
267 	 * scope on to the SDRAM signals to work out why.
268 	 */
269 	if (policy->max < 147500) {
270 		sd.mdrefr |= MDREFR_K1DB2;
271 		sd.mdcas[0] = 0xaaaaaa7f;
272 	} else {
273 		sd.mdrefr &= ~MDREFR_K1DB2;
274 		sd.mdcas[0] = 0xaaaaaa9f;
275 	}
276 	sd.mdcas[1] = 0xaaaaaaaa;
277 	sd.mdcas[2] = 0xaaaaaaaa;
278 #endif
279 
280 	cpufreq_notify_transition(policy, &freqs, CPUFREQ_PRECHANGE);
281 
282 	/*
283 	 * The clock could be going away for some time.  Set the SDRAMs
284 	 * to refresh rapidly (every 64 memory clock cycles).  To get
285 	 * through the whole array, we need to wait 262144 mclk cycles.
286 	 * We wait 20ms to be safe.
287 	 */
288 	sdram_set_refresh(2);
289 	if (!irqs_disabled())
290 		msleep(20);
291 	else
292 		mdelay(20);
293 
294 	/*
295 	 * Reprogram the DRAM timings with interrupts disabled, and
296 	 * ensure that we are doing this within a complete cache line.
297 	 * This means that we won't access SDRAM for the duration of
298 	 * the programming.
299 	 */
300 	local_irq_save(flags);
301 	asm("mcr p15, 0, %0, c7, c10, 4" : : "r" (0));
302 	udelay(10);
303 	__asm__ __volatile__("\n\
304 		b	2f					\n\
305 		.align	5					\n\
306 1:		str	%3, [%1, #0]		@ MDCNFG	\n\
307 		str	%4, [%1, #28]		@ MDREFR	\n\
308 		str	%5, [%1, #4]		@ MDCAS0	\n\
309 		str	%6, [%1, #8]		@ MDCAS1	\n\
310 		str	%7, [%1, #12]		@ MDCAS2	\n\
311 		str	%8, [%2, #0]		@ PPCR		\n\
312 		ldr	%0, [%1, #0]				\n\
313 		b	3f					\n\
314 2:		b	1b					\n\
315 3:		nop						\n\
316 		nop"
317 		: "=&r" (unused)
318 		: "r" (&MDCNFG), "r" (&PPCR), "0" (sd.mdcnfg),
319 		  "r" (sd.mdrefr), "r" (sd.mdcas[0]),
320 		  "r" (sd.mdcas[1]), "r" (sd.mdcas[2]), "r" (ppcr));
321 	local_irq_restore(flags);
322 
323 	/*
324 	 * Now, return the SDRAM refresh back to normal.
325 	 */
326 	sdram_update_refresh(freqs.new, sdram);
327 
328 	cpufreq_notify_transition(policy, &freqs, CPUFREQ_POSTCHANGE);
329 
330 	return 0;
331 }
332 
333 static int __init sa1110_cpu_init(struct cpufreq_policy *policy)
334 {
335 	if (policy->cpu != 0)
336 		return -EINVAL;
337 	policy->cur = policy->min = policy->max = sa11x0_getspeed(0);
338 	policy->cpuinfo.min_freq = 59000;
339 	policy->cpuinfo.max_freq = 287000;
340 	policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
341 	return 0;
342 }
343 
344 /* sa1110_driver needs __refdata because it must remain after init registers
345  * it with cpufreq_register_driver() */
346 static struct cpufreq_driver sa1110_driver __refdata = {
347 	.flags		= CPUFREQ_STICKY,
348 	.verify		= sa11x0_verify_speed,
349 	.target		= sa1110_target,
350 	.get		= sa11x0_getspeed,
351 	.init		= sa1110_cpu_init,
352 	.name		= "sa1110",
353 };
354 
355 static struct sdram_params *sa1110_find_sdram(const char *name)
356 {
357 	struct sdram_params *sdram;
358 
359 	for (sdram = sdram_tbl; sdram < sdram_tbl + ARRAY_SIZE(sdram_tbl);
360 	     sdram++)
361 		if (strcmp(name, sdram->name) == 0)
362 			return sdram;
363 
364 	return NULL;
365 }
366 
367 static char sdram_name[16];
368 
369 static int __init sa1110_clk_init(void)
370 {
371 	struct sdram_params *sdram;
372 	const char *name = sdram_name;
373 
374 	if (!cpu_is_sa1110())
375 		return -ENODEV;
376 
377 	if (!name[0]) {
378 		if (machine_is_assabet())
379 			name = "TC59SM716-CL3";
380 		if (machine_is_pt_system3())
381 			name = "K4S641632D";
382 		if (machine_is_h3100())
383 			name = "KM416S4030CT";
384 		if (machine_is_jornada720())
385 			name = "K4S281632B-1H";
386 		if (machine_is_nanoengine())
387 			name = "MT48LC8M16A2TG-75";
388 	}
389 
390 	sdram = sa1110_find_sdram(name);
391 	if (sdram) {
392 		printk(KERN_DEBUG "SDRAM: tck: %d trcd: %d trp: %d"
393 			" twr: %d refresh: %d cas_latency: %d\n",
394 			sdram->tck, sdram->trcd, sdram->trp,
395 			sdram->twr, sdram->refresh, sdram->cas_latency);
396 
397 		memcpy(&sdram_params, sdram, sizeof(sdram_params));
398 
399 		return cpufreq_register_driver(&sa1110_driver);
400 	}
401 
402 	return 0;
403 }
404 
405 module_param_string(sdram, sdram_name, sizeof(sdram_name), 0);
406 arch_initcall(sa1110_clk_init);
407