1 /* 2 * linux/arch/arm/mach-sa1100/cpu-sa1110.c 3 * 4 * Copyright (C) 2001 Russell King 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 as 8 * published by the Free Software Foundation. 9 * 10 * Note: there are two erratas that apply to the SA1110 here: 11 * 7 - SDRAM auto-power-up failure (rev A0) 12 * 13 - Corruption of internal register reads/writes following 13 * SDRAM reads (rev A0, B0, B1) 14 * 15 * We ignore rev. A0 and B0 devices; I don't think they're worth supporting. 16 * 17 * The SDRAM type can be passed on the command line as cpu_sa1110.sdram=type 18 */ 19 #include <linux/cpufreq.h> 20 #include <linux/delay.h> 21 #include <linux/init.h> 22 #include <linux/io.h> 23 #include <linux/kernel.h> 24 #include <linux/moduleparam.h> 25 #include <linux/types.h> 26 27 #include <asm/cputype.h> 28 #include <asm/mach-types.h> 29 30 #include <mach/generic.h> 31 #include <mach/hardware.h> 32 33 #undef DEBUG 34 35 struct sdram_params { 36 const char name[20]; 37 u_char rows; /* bits */ 38 u_char cas_latency; /* cycles */ 39 u_char tck; /* clock cycle time (ns) */ 40 u_char trcd; /* activate to r/w (ns) */ 41 u_char trp; /* precharge to activate (ns) */ 42 u_char twr; /* write recovery time (ns) */ 43 u_short refresh; /* refresh time for array (us) */ 44 }; 45 46 struct sdram_info { 47 u_int mdcnfg; 48 u_int mdrefr; 49 u_int mdcas[3]; 50 }; 51 52 static struct sdram_params sdram_tbl[] __initdata = { 53 { /* Toshiba TC59SM716 CL2 */ 54 .name = "TC59SM716-CL2", 55 .rows = 12, 56 .tck = 10, 57 .trcd = 20, 58 .trp = 20, 59 .twr = 10, 60 .refresh = 64000, 61 .cas_latency = 2, 62 }, { /* Toshiba TC59SM716 CL3 */ 63 .name = "TC59SM716-CL3", 64 .rows = 12, 65 .tck = 8, 66 .trcd = 20, 67 .trp = 20, 68 .twr = 8, 69 .refresh = 64000, 70 .cas_latency = 3, 71 }, { /* Samsung K4S641632D TC75 */ 72 .name = "K4S641632D", 73 .rows = 14, 74 .tck = 9, 75 .trcd = 27, 76 .trp = 20, 77 .twr = 9, 78 .refresh = 64000, 79 .cas_latency = 3, 80 }, { /* Samsung K4S281632B-1H */ 81 .name = "K4S281632B-1H", 82 .rows = 12, 83 .tck = 10, 84 .trp = 20, 85 .twr = 10, 86 .refresh = 64000, 87 .cas_latency = 3, 88 }, { /* Samsung KM416S4030CT */ 89 .name = "KM416S4030CT", 90 .rows = 13, 91 .tck = 8, 92 .trcd = 24, /* 3 CLKs */ 93 .trp = 24, /* 3 CLKs */ 94 .twr = 16, /* Trdl: 2 CLKs */ 95 .refresh = 64000, 96 .cas_latency = 3, 97 }, { /* Winbond W982516AH75L CL3 */ 98 .name = "W982516AH75L", 99 .rows = 16, 100 .tck = 8, 101 .trcd = 20, 102 .trp = 20, 103 .twr = 8, 104 .refresh = 64000, 105 .cas_latency = 3, 106 }, { /* Micron MT48LC8M16A2TG-75 */ 107 .name = "MT48LC8M16A2TG-75", 108 .rows = 12, 109 .tck = 8, 110 .trcd = 20, 111 .trp = 20, 112 .twr = 8, 113 .refresh = 64000, 114 .cas_latency = 3, 115 }, 116 }; 117 118 static struct sdram_params sdram_params; 119 120 /* 121 * Given a period in ns and frequency in khz, calculate the number of 122 * cycles of frequency in period. Note that we round up to the next 123 * cycle, even if we are only slightly over. 124 */ 125 static inline u_int ns_to_cycles(u_int ns, u_int khz) 126 { 127 return (ns * khz + 999999) / 1000000; 128 } 129 130 /* 131 * Create the MDCAS register bit pattern. 132 */ 133 static inline void set_mdcas(u_int *mdcas, int delayed, u_int rcd) 134 { 135 u_int shift; 136 137 rcd = 2 * rcd - 1; 138 shift = delayed + 1 + rcd; 139 140 mdcas[0] = (1 << rcd) - 1; 141 mdcas[0] |= 0x55555555 << shift; 142 mdcas[1] = mdcas[2] = 0x55555555 << (shift & 1); 143 } 144 145 static void 146 sdram_calculate_timing(struct sdram_info *sd, u_int cpu_khz, 147 struct sdram_params *sdram) 148 { 149 u_int mem_khz, sd_khz, trp, twr; 150 151 mem_khz = cpu_khz / 2; 152 sd_khz = mem_khz; 153 154 /* 155 * If SDCLK would invalidate the SDRAM timings, 156 * run SDCLK at half speed. 157 * 158 * CPU steppings prior to B2 must either run the memory at 159 * half speed or use delayed read latching (errata 13). 160 */ 161 if ((ns_to_cycles(sdram->tck, sd_khz) > 1) || 162 (read_cpuid_revision() < ARM_CPU_REV_SA1110_B2 && sd_khz < 62000)) 163 sd_khz /= 2; 164 165 sd->mdcnfg = MDCNFG & 0x007f007f; 166 167 twr = ns_to_cycles(sdram->twr, mem_khz); 168 169 /* trp should always be >1 */ 170 trp = ns_to_cycles(sdram->trp, mem_khz) - 1; 171 if (trp < 1) 172 trp = 1; 173 174 sd->mdcnfg |= trp << 8; 175 sd->mdcnfg |= trp << 24; 176 sd->mdcnfg |= sdram->cas_latency << 12; 177 sd->mdcnfg |= sdram->cas_latency << 28; 178 sd->mdcnfg |= twr << 14; 179 sd->mdcnfg |= twr << 30; 180 181 sd->mdrefr = MDREFR & 0xffbffff0; 182 sd->mdrefr |= 7; 183 184 if (sd_khz != mem_khz) 185 sd->mdrefr |= MDREFR_K1DB2; 186 187 /* initial number of '1's in MDCAS + 1 */ 188 set_mdcas(sd->mdcas, sd_khz >= 62000, 189 ns_to_cycles(sdram->trcd, mem_khz)); 190 191 #ifdef DEBUG 192 printk(KERN_DEBUG "MDCNFG: %08x MDREFR: %08x MDCAS0: %08x MDCAS1: %08x MDCAS2: %08x\n", 193 sd->mdcnfg, sd->mdrefr, sd->mdcas[0], sd->mdcas[1], 194 sd->mdcas[2]); 195 #endif 196 } 197 198 /* 199 * Set the SDRAM refresh rate. 200 */ 201 static inline void sdram_set_refresh(u_int dri) 202 { 203 MDREFR = (MDREFR & 0xffff000f) | (dri << 4); 204 (void) MDREFR; 205 } 206 207 /* 208 * Update the refresh period. We do this such that we always refresh 209 * the SDRAMs within their permissible period. The refresh period is 210 * always a multiple of the memory clock (fixed at cpu_clock / 2). 211 * 212 * FIXME: we don't currently take account of burst accesses here, 213 * but neither do Intels DM nor Angel. 214 */ 215 static void 216 sdram_update_refresh(u_int cpu_khz, struct sdram_params *sdram) 217 { 218 u_int ns_row = (sdram->refresh * 1000) >> sdram->rows; 219 u_int dri = ns_to_cycles(ns_row, cpu_khz / 2) / 32; 220 221 #ifdef DEBUG 222 mdelay(250); 223 printk(KERN_DEBUG "new dri value = %d\n", dri); 224 #endif 225 226 sdram_set_refresh(dri); 227 } 228 229 /* 230 * Ok, set the CPU frequency. 231 */ 232 static int sa1110_target(struct cpufreq_policy *policy, unsigned int ppcr) 233 { 234 struct sdram_params *sdram = &sdram_params; 235 struct sdram_info sd; 236 unsigned long flags; 237 unsigned int unused; 238 239 sdram_calculate_timing(&sd, sa11x0_freq_table[ppcr].frequency, sdram); 240 241 #if 0 242 /* 243 * These values are wrong according to the SA1110 documentation 244 * and errata, but they seem to work. Need to get a storage 245 * scope on to the SDRAM signals to work out why. 246 */ 247 if (policy->max < 147500) { 248 sd.mdrefr |= MDREFR_K1DB2; 249 sd.mdcas[0] = 0xaaaaaa7f; 250 } else { 251 sd.mdrefr &= ~MDREFR_K1DB2; 252 sd.mdcas[0] = 0xaaaaaa9f; 253 } 254 sd.mdcas[1] = 0xaaaaaaaa; 255 sd.mdcas[2] = 0xaaaaaaaa; 256 #endif 257 258 /* 259 * The clock could be going away for some time. Set the SDRAMs 260 * to refresh rapidly (every 64 memory clock cycles). To get 261 * through the whole array, we need to wait 262144 mclk cycles. 262 * We wait 20ms to be safe. 263 */ 264 sdram_set_refresh(2); 265 if (!irqs_disabled()) 266 msleep(20); 267 else 268 mdelay(20); 269 270 /* 271 * Reprogram the DRAM timings with interrupts disabled, and 272 * ensure that we are doing this within a complete cache line. 273 * This means that we won't access SDRAM for the duration of 274 * the programming. 275 */ 276 local_irq_save(flags); 277 asm("mcr p15, 0, %0, c7, c10, 4" : : "r" (0)); 278 udelay(10); 279 __asm__ __volatile__("\n\ 280 b 2f \n\ 281 .align 5 \n\ 282 1: str %3, [%1, #0] @ MDCNFG \n\ 283 str %4, [%1, #28] @ MDREFR \n\ 284 str %5, [%1, #4] @ MDCAS0 \n\ 285 str %6, [%1, #8] @ MDCAS1 \n\ 286 str %7, [%1, #12] @ MDCAS2 \n\ 287 str %8, [%2, #0] @ PPCR \n\ 288 ldr %0, [%1, #0] \n\ 289 b 3f \n\ 290 2: b 1b \n\ 291 3: nop \n\ 292 nop" 293 : "=&r" (unused) 294 : "r" (&MDCNFG), "r" (&PPCR), "0" (sd.mdcnfg), 295 "r" (sd.mdrefr), "r" (sd.mdcas[0]), 296 "r" (sd.mdcas[1]), "r" (sd.mdcas[2]), "r" (ppcr)); 297 local_irq_restore(flags); 298 299 /* 300 * Now, return the SDRAM refresh back to normal. 301 */ 302 sdram_update_refresh(sa11x0_freq_table[ppcr].frequency, sdram); 303 304 return 0; 305 } 306 307 static int __init sa1110_cpu_init(struct cpufreq_policy *policy) 308 { 309 return cpufreq_generic_init(policy, sa11x0_freq_table, 0); 310 } 311 312 /* sa1110_driver needs __refdata because it must remain after init registers 313 * it with cpufreq_register_driver() */ 314 static struct cpufreq_driver sa1110_driver __refdata = { 315 .flags = CPUFREQ_STICKY | CPUFREQ_NEED_INITIAL_FREQ_CHECK | 316 CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING, 317 .verify = cpufreq_generic_frequency_table_verify, 318 .target_index = sa1110_target, 319 .get = sa11x0_getspeed, 320 .init = sa1110_cpu_init, 321 .name = "sa1110", 322 }; 323 324 static struct sdram_params *sa1110_find_sdram(const char *name) 325 { 326 struct sdram_params *sdram; 327 328 for (sdram = sdram_tbl; sdram < sdram_tbl + ARRAY_SIZE(sdram_tbl); 329 sdram++) 330 if (strcmp(name, sdram->name) == 0) 331 return sdram; 332 333 return NULL; 334 } 335 336 static char sdram_name[16]; 337 338 static int __init sa1110_clk_init(void) 339 { 340 struct sdram_params *sdram; 341 const char *name = sdram_name; 342 343 if (!cpu_is_sa1110()) 344 return -ENODEV; 345 346 if (!name[0]) { 347 if (machine_is_assabet()) 348 name = "TC59SM716-CL3"; 349 if (machine_is_pt_system3()) 350 name = "K4S641632D"; 351 if (machine_is_h3100()) 352 name = "KM416S4030CT"; 353 if (machine_is_jornada720() || machine_is_h3600()) 354 name = "K4S281632B-1H"; 355 if (machine_is_nanoengine()) 356 name = "MT48LC8M16A2TG-75"; 357 } 358 359 sdram = sa1110_find_sdram(name); 360 if (sdram) { 361 printk(KERN_DEBUG "SDRAM: tck: %d trcd: %d trp: %d" 362 " twr: %d refresh: %d cas_latency: %d\n", 363 sdram->tck, sdram->trcd, sdram->trp, 364 sdram->twr, sdram->refresh, sdram->cas_latency); 365 366 memcpy(&sdram_params, sdram, sizeof(sdram_params)); 367 368 return cpufreq_register_driver(&sa1110_driver); 369 } 370 371 return 0; 372 } 373 374 module_param_string(sdram, sdram_name, sizeof(sdram_name), 0); 375 arch_initcall(sa1110_clk_init); 376