1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2010 Samsung Electronics Co., Ltd. 4 * http://www.samsung.com 5 * 6 * CPU frequency scaling for S5PC110/S5PV210 7 */ 8 9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 10 11 #include <linux/types.h> 12 #include <linux/kernel.h> 13 #include <linux/init.h> 14 #include <linux/err.h> 15 #include <linux/clk.h> 16 #include <linux/io.h> 17 #include <linux/cpufreq.h> 18 #include <linux/of.h> 19 #include <linux/of_address.h> 20 #include <linux/platform_device.h> 21 #include <linux/reboot.h> 22 #include <linux/regulator/consumer.h> 23 24 static void __iomem *clk_base; 25 static void __iomem *dmc_base[2]; 26 27 #define S5P_CLKREG(x) (clk_base + (x)) 28 29 #define S5P_APLL_LOCK S5P_CLKREG(0x00) 30 #define S5P_APLL_CON S5P_CLKREG(0x100) 31 #define S5P_CLK_SRC0 S5P_CLKREG(0x200) 32 #define S5P_CLK_SRC2 S5P_CLKREG(0x208) 33 #define S5P_CLK_DIV0 S5P_CLKREG(0x300) 34 #define S5P_CLK_DIV2 S5P_CLKREG(0x308) 35 #define S5P_CLK_DIV6 S5P_CLKREG(0x318) 36 #define S5P_CLKDIV_STAT0 S5P_CLKREG(0x1000) 37 #define S5P_CLKDIV_STAT1 S5P_CLKREG(0x1004) 38 #define S5P_CLKMUX_STAT0 S5P_CLKREG(0x1100) 39 #define S5P_CLKMUX_STAT1 S5P_CLKREG(0x1104) 40 41 #define S5P_ARM_MCS_CON S5P_CLKREG(0x6100) 42 43 /* CLKSRC0 */ 44 #define S5P_CLKSRC0_MUX200_SHIFT (16) 45 #define S5P_CLKSRC0_MUX200_MASK (0x1 << S5P_CLKSRC0_MUX200_SHIFT) 46 #define S5P_CLKSRC0_MUX166_MASK (0x1<<20) 47 #define S5P_CLKSRC0_MUX133_MASK (0x1<<24) 48 49 /* CLKSRC2 */ 50 #define S5P_CLKSRC2_G3D_SHIFT (0) 51 #define S5P_CLKSRC2_G3D_MASK (0x3 << S5P_CLKSRC2_G3D_SHIFT) 52 #define S5P_CLKSRC2_MFC_SHIFT (4) 53 #define S5P_CLKSRC2_MFC_MASK (0x3 << S5P_CLKSRC2_MFC_SHIFT) 54 55 /* CLKDIV0 */ 56 #define S5P_CLKDIV0_APLL_SHIFT (0) 57 #define S5P_CLKDIV0_APLL_MASK (0x7 << S5P_CLKDIV0_APLL_SHIFT) 58 #define S5P_CLKDIV0_A2M_SHIFT (4) 59 #define S5P_CLKDIV0_A2M_MASK (0x7 << S5P_CLKDIV0_A2M_SHIFT) 60 #define S5P_CLKDIV0_HCLK200_SHIFT (8) 61 #define S5P_CLKDIV0_HCLK200_MASK (0x7 << S5P_CLKDIV0_HCLK200_SHIFT) 62 #define S5P_CLKDIV0_PCLK100_SHIFT (12) 63 #define S5P_CLKDIV0_PCLK100_MASK (0x7 << S5P_CLKDIV0_PCLK100_SHIFT) 64 #define S5P_CLKDIV0_HCLK166_SHIFT (16) 65 #define S5P_CLKDIV0_HCLK166_MASK (0xF << S5P_CLKDIV0_HCLK166_SHIFT) 66 #define S5P_CLKDIV0_PCLK83_SHIFT (20) 67 #define S5P_CLKDIV0_PCLK83_MASK (0x7 << S5P_CLKDIV0_PCLK83_SHIFT) 68 #define S5P_CLKDIV0_HCLK133_SHIFT (24) 69 #define S5P_CLKDIV0_HCLK133_MASK (0xF << S5P_CLKDIV0_HCLK133_SHIFT) 70 #define S5P_CLKDIV0_PCLK66_SHIFT (28) 71 #define S5P_CLKDIV0_PCLK66_MASK (0x7 << S5P_CLKDIV0_PCLK66_SHIFT) 72 73 /* CLKDIV2 */ 74 #define S5P_CLKDIV2_G3D_SHIFT (0) 75 #define S5P_CLKDIV2_G3D_MASK (0xF << S5P_CLKDIV2_G3D_SHIFT) 76 #define S5P_CLKDIV2_MFC_SHIFT (4) 77 #define S5P_CLKDIV2_MFC_MASK (0xF << S5P_CLKDIV2_MFC_SHIFT) 78 79 /* CLKDIV6 */ 80 #define S5P_CLKDIV6_ONEDRAM_SHIFT (28) 81 #define S5P_CLKDIV6_ONEDRAM_MASK (0xF << S5P_CLKDIV6_ONEDRAM_SHIFT) 82 83 static struct clk *dmc0_clk; 84 static struct clk *dmc1_clk; 85 static DEFINE_MUTEX(set_freq_lock); 86 87 /* APLL M,P,S values for 1G/800Mhz */ 88 #define APLL_VAL_1000 ((1 << 31) | (125 << 16) | (3 << 8) | 1) 89 #define APLL_VAL_800 ((1 << 31) | (100 << 16) | (3 << 8) | 1) 90 91 /* Use 800MHz when entering sleep mode */ 92 #define SLEEP_FREQ (800 * 1000) 93 94 /* Tracks if cpu freqency can be updated anymore */ 95 static bool no_cpufreq_access; 96 97 /* 98 * DRAM configurations to calculate refresh counter for changing 99 * frequency of memory. 100 */ 101 struct dram_conf { 102 unsigned long freq; /* HZ */ 103 unsigned long refresh; /* DRAM refresh counter * 1000 */ 104 }; 105 106 /* DRAM configuration (DMC0 and DMC1) */ 107 static struct dram_conf s5pv210_dram_conf[2]; 108 109 enum perf_level { 110 L0, L1, L2, L3, L4, 111 }; 112 113 enum s5pv210_mem_type { 114 LPDDR = 0x1, 115 LPDDR2 = 0x2, 116 DDR2 = 0x4, 117 }; 118 119 enum s5pv210_dmc_port { 120 DMC0 = 0, 121 DMC1, 122 }; 123 124 static struct cpufreq_frequency_table s5pv210_freq_table[] = { 125 {0, L0, 1000*1000}, 126 {0, L1, 800*1000}, 127 {0, L2, 400*1000}, 128 {0, L3, 200*1000}, 129 {0, L4, 100*1000}, 130 {0, 0, CPUFREQ_TABLE_END}, 131 }; 132 133 static struct regulator *arm_regulator; 134 static struct regulator *int_regulator; 135 136 struct s5pv210_dvs_conf { 137 int arm_volt; /* uV */ 138 int int_volt; /* uV */ 139 }; 140 141 static const int arm_volt_max = 1350000; 142 static const int int_volt_max = 1250000; 143 144 static struct s5pv210_dvs_conf dvs_conf[] = { 145 [L0] = { 146 .arm_volt = 1250000, 147 .int_volt = 1100000, 148 }, 149 [L1] = { 150 .arm_volt = 1200000, 151 .int_volt = 1100000, 152 }, 153 [L2] = { 154 .arm_volt = 1050000, 155 .int_volt = 1100000, 156 }, 157 [L3] = { 158 .arm_volt = 950000, 159 .int_volt = 1100000, 160 }, 161 [L4] = { 162 .arm_volt = 950000, 163 .int_volt = 1000000, 164 }, 165 }; 166 167 static u32 clkdiv_val[5][11] = { 168 /* 169 * Clock divider value for following 170 * { APLL, A2M, HCLK_MSYS, PCLK_MSYS, 171 * HCLK_DSYS, PCLK_DSYS, HCLK_PSYS, PCLK_PSYS, 172 * ONEDRAM, MFC, G3D } 173 */ 174 175 /* L0 : [1000/200/100][166/83][133/66][200/200] */ 176 {0, 4, 4, 1, 3, 1, 4, 1, 3, 0, 0}, 177 178 /* L1 : [800/200/100][166/83][133/66][200/200] */ 179 {0, 3, 3, 1, 3, 1, 4, 1, 3, 0, 0}, 180 181 /* L2 : [400/200/100][166/83][133/66][200/200] */ 182 {1, 3, 1, 1, 3, 1, 4, 1, 3, 0, 0}, 183 184 /* L3 : [200/200/100][166/83][133/66][200/200] */ 185 {3, 3, 1, 1, 3, 1, 4, 1, 3, 0, 0}, 186 187 /* L4 : [100/100/100][83/83][66/66][100/100] */ 188 {7, 7, 0, 0, 7, 0, 9, 0, 7, 0, 0}, 189 }; 190 191 /* 192 * This function set DRAM refresh counter 193 * accoriding to operating frequency of DRAM 194 * ch: DMC port number 0 or 1 195 * freq: Operating frequency of DRAM(KHz) 196 */ 197 static void s5pv210_set_refresh(enum s5pv210_dmc_port ch, unsigned long freq) 198 { 199 unsigned long tmp, tmp1; 200 void __iomem *reg = NULL; 201 202 if (ch == DMC0) { 203 reg = (dmc_base[0] + 0x30); 204 } else if (ch == DMC1) { 205 reg = (dmc_base[1] + 0x30); 206 } else { 207 pr_err("Cannot find DMC port\n"); 208 return; 209 } 210 211 /* Find current DRAM frequency */ 212 tmp = s5pv210_dram_conf[ch].freq; 213 214 tmp /= freq; 215 216 tmp1 = s5pv210_dram_conf[ch].refresh; 217 218 tmp1 /= tmp; 219 220 writel_relaxed(tmp1, reg); 221 } 222 223 static int s5pv210_target(struct cpufreq_policy *policy, unsigned int index) 224 { 225 unsigned long reg; 226 unsigned int priv_index; 227 unsigned int pll_changing = 0; 228 unsigned int bus_speed_changing = 0; 229 unsigned int old_freq, new_freq; 230 int arm_volt, int_volt; 231 int ret = 0; 232 233 mutex_lock(&set_freq_lock); 234 235 if (no_cpufreq_access) { 236 pr_err("Denied access to %s as it is disabled temporarily\n", 237 __func__); 238 ret = -EINVAL; 239 goto exit; 240 } 241 242 old_freq = policy->cur; 243 new_freq = s5pv210_freq_table[index].frequency; 244 245 /* Finding current running level index */ 246 priv_index = cpufreq_table_find_index_h(policy, old_freq); 247 248 arm_volt = dvs_conf[index].arm_volt; 249 int_volt = dvs_conf[index].int_volt; 250 251 if (new_freq > old_freq) { 252 ret = regulator_set_voltage(arm_regulator, 253 arm_volt, arm_volt_max); 254 if (ret) 255 goto exit; 256 257 ret = regulator_set_voltage(int_regulator, 258 int_volt, int_volt_max); 259 if (ret) 260 goto exit; 261 } 262 263 /* Check if there need to change PLL */ 264 if ((index == L0) || (priv_index == L0)) 265 pll_changing = 1; 266 267 /* Check if there need to change System bus clock */ 268 if ((index == L4) || (priv_index == L4)) 269 bus_speed_changing = 1; 270 271 if (bus_speed_changing) { 272 /* 273 * Reconfigure DRAM refresh counter value for minimum 274 * temporary clock while changing divider. 275 * expected clock is 83Mhz : 7.8usec/(1/83Mhz) = 0x287 276 */ 277 if (pll_changing) 278 s5pv210_set_refresh(DMC1, 83000); 279 else 280 s5pv210_set_refresh(DMC1, 100000); 281 282 s5pv210_set_refresh(DMC0, 83000); 283 } 284 285 /* 286 * APLL should be changed in this level 287 * APLL -> MPLL(for stable transition) -> APLL 288 * Some clock source's clock API are not prepared. 289 * Do not use clock API in below code. 290 */ 291 if (pll_changing) { 292 /* 293 * 1. Temporary Change divider for MFC and G3D 294 * SCLKA2M(200/1=200)->(200/4=50)Mhz 295 */ 296 reg = readl_relaxed(S5P_CLK_DIV2); 297 reg &= ~(S5P_CLKDIV2_G3D_MASK | S5P_CLKDIV2_MFC_MASK); 298 reg |= (3 << S5P_CLKDIV2_G3D_SHIFT) | 299 (3 << S5P_CLKDIV2_MFC_SHIFT); 300 writel_relaxed(reg, S5P_CLK_DIV2); 301 302 /* For MFC, G3D dividing */ 303 do { 304 reg = readl_relaxed(S5P_CLKDIV_STAT0); 305 } while (reg & ((1 << 16) | (1 << 17))); 306 307 /* 308 * 2. Change SCLKA2M(200Mhz)to SCLKMPLL in MFC_MUX, G3D MUX 309 * (200/4=50)->(667/4=166)Mhz 310 */ 311 reg = readl_relaxed(S5P_CLK_SRC2); 312 reg &= ~(S5P_CLKSRC2_G3D_MASK | S5P_CLKSRC2_MFC_MASK); 313 reg |= (1 << S5P_CLKSRC2_G3D_SHIFT) | 314 (1 << S5P_CLKSRC2_MFC_SHIFT); 315 writel_relaxed(reg, S5P_CLK_SRC2); 316 317 do { 318 reg = readl_relaxed(S5P_CLKMUX_STAT1); 319 } while (reg & ((1 << 7) | (1 << 3))); 320 321 /* 322 * 3. DMC1 refresh count for 133Mhz if (index == L4) is 323 * true refresh counter is already programed in upper 324 * code. 0x287@83Mhz 325 */ 326 if (!bus_speed_changing) 327 s5pv210_set_refresh(DMC1, 133000); 328 329 /* 4. SCLKAPLL -> SCLKMPLL */ 330 reg = readl_relaxed(S5P_CLK_SRC0); 331 reg &= ~(S5P_CLKSRC0_MUX200_MASK); 332 reg |= (0x1 << S5P_CLKSRC0_MUX200_SHIFT); 333 writel_relaxed(reg, S5P_CLK_SRC0); 334 335 do { 336 reg = readl_relaxed(S5P_CLKMUX_STAT0); 337 } while (reg & (0x1 << 18)); 338 339 } 340 341 /* Change divider */ 342 reg = readl_relaxed(S5P_CLK_DIV0); 343 344 reg &= ~(S5P_CLKDIV0_APLL_MASK | S5P_CLKDIV0_A2M_MASK | 345 S5P_CLKDIV0_HCLK200_MASK | S5P_CLKDIV0_PCLK100_MASK | 346 S5P_CLKDIV0_HCLK166_MASK | S5P_CLKDIV0_PCLK83_MASK | 347 S5P_CLKDIV0_HCLK133_MASK | S5P_CLKDIV0_PCLK66_MASK); 348 349 reg |= ((clkdiv_val[index][0] << S5P_CLKDIV0_APLL_SHIFT) | 350 (clkdiv_val[index][1] << S5P_CLKDIV0_A2M_SHIFT) | 351 (clkdiv_val[index][2] << S5P_CLKDIV0_HCLK200_SHIFT) | 352 (clkdiv_val[index][3] << S5P_CLKDIV0_PCLK100_SHIFT) | 353 (clkdiv_val[index][4] << S5P_CLKDIV0_HCLK166_SHIFT) | 354 (clkdiv_val[index][5] << S5P_CLKDIV0_PCLK83_SHIFT) | 355 (clkdiv_val[index][6] << S5P_CLKDIV0_HCLK133_SHIFT) | 356 (clkdiv_val[index][7] << S5P_CLKDIV0_PCLK66_SHIFT)); 357 358 writel_relaxed(reg, S5P_CLK_DIV0); 359 360 do { 361 reg = readl_relaxed(S5P_CLKDIV_STAT0); 362 } while (reg & 0xff); 363 364 /* ARM MCS value changed */ 365 reg = readl_relaxed(S5P_ARM_MCS_CON); 366 reg &= ~0x3; 367 if (index >= L3) 368 reg |= 0x3; 369 else 370 reg |= 0x1; 371 372 writel_relaxed(reg, S5P_ARM_MCS_CON); 373 374 if (pll_changing) { 375 /* 5. Set Lock time = 30us*24Mhz = 0x2cf */ 376 writel_relaxed(0x2cf, S5P_APLL_LOCK); 377 378 /* 379 * 6. Turn on APLL 380 * 6-1. Set PMS values 381 * 6-2. Wait untile the PLL is locked 382 */ 383 if (index == L0) 384 writel_relaxed(APLL_VAL_1000, S5P_APLL_CON); 385 else 386 writel_relaxed(APLL_VAL_800, S5P_APLL_CON); 387 388 do { 389 reg = readl_relaxed(S5P_APLL_CON); 390 } while (!(reg & (0x1 << 29))); 391 392 /* 393 * 7. Change souce clock from SCLKMPLL(667Mhz) 394 * to SCLKA2M(200Mhz) in MFC_MUX and G3D MUX 395 * (667/4=166)->(200/4=50)Mhz 396 */ 397 reg = readl_relaxed(S5P_CLK_SRC2); 398 reg &= ~(S5P_CLKSRC2_G3D_MASK | S5P_CLKSRC2_MFC_MASK); 399 reg |= (0 << S5P_CLKSRC2_G3D_SHIFT) | 400 (0 << S5P_CLKSRC2_MFC_SHIFT); 401 writel_relaxed(reg, S5P_CLK_SRC2); 402 403 do { 404 reg = readl_relaxed(S5P_CLKMUX_STAT1); 405 } while (reg & ((1 << 7) | (1 << 3))); 406 407 /* 408 * 8. Change divider for MFC and G3D 409 * (200/4=50)->(200/1=200)Mhz 410 */ 411 reg = readl_relaxed(S5P_CLK_DIV2); 412 reg &= ~(S5P_CLKDIV2_G3D_MASK | S5P_CLKDIV2_MFC_MASK); 413 reg |= (clkdiv_val[index][10] << S5P_CLKDIV2_G3D_SHIFT) | 414 (clkdiv_val[index][9] << S5P_CLKDIV2_MFC_SHIFT); 415 writel_relaxed(reg, S5P_CLK_DIV2); 416 417 /* For MFC, G3D dividing */ 418 do { 419 reg = readl_relaxed(S5P_CLKDIV_STAT0); 420 } while (reg & ((1 << 16) | (1 << 17))); 421 422 /* 9. Change MPLL to APLL in MSYS_MUX */ 423 reg = readl_relaxed(S5P_CLK_SRC0); 424 reg &= ~(S5P_CLKSRC0_MUX200_MASK); 425 reg |= (0x0 << S5P_CLKSRC0_MUX200_SHIFT); 426 writel_relaxed(reg, S5P_CLK_SRC0); 427 428 do { 429 reg = readl_relaxed(S5P_CLKMUX_STAT0); 430 } while (reg & (0x1 << 18)); 431 432 /* 433 * 10. DMC1 refresh counter 434 * L4 : DMC1 = 100Mhz 7.8us/(1/100) = 0x30c 435 * Others : DMC1 = 200Mhz 7.8us/(1/200) = 0x618 436 */ 437 if (!bus_speed_changing) 438 s5pv210_set_refresh(DMC1, 200000); 439 } 440 441 /* 442 * L4 level need to change memory bus speed, hence onedram clock divier 443 * and memory refresh parameter should be changed 444 */ 445 if (bus_speed_changing) { 446 reg = readl_relaxed(S5P_CLK_DIV6); 447 reg &= ~S5P_CLKDIV6_ONEDRAM_MASK; 448 reg |= (clkdiv_val[index][8] << S5P_CLKDIV6_ONEDRAM_SHIFT); 449 writel_relaxed(reg, S5P_CLK_DIV6); 450 451 do { 452 reg = readl_relaxed(S5P_CLKDIV_STAT1); 453 } while (reg & (1 << 15)); 454 455 /* Reconfigure DRAM refresh counter value */ 456 if (index != L4) { 457 /* 458 * DMC0 : 166Mhz 459 * DMC1 : 200Mhz 460 */ 461 s5pv210_set_refresh(DMC0, 166000); 462 s5pv210_set_refresh(DMC1, 200000); 463 } else { 464 /* 465 * DMC0 : 83Mhz 466 * DMC1 : 100Mhz 467 */ 468 s5pv210_set_refresh(DMC0, 83000); 469 s5pv210_set_refresh(DMC1, 100000); 470 } 471 } 472 473 if (new_freq < old_freq) { 474 regulator_set_voltage(int_regulator, 475 int_volt, int_volt_max); 476 477 regulator_set_voltage(arm_regulator, 478 arm_volt, arm_volt_max); 479 } 480 481 pr_debug("Perf changed[L%d]\n", index); 482 483 exit: 484 mutex_unlock(&set_freq_lock); 485 return ret; 486 } 487 488 static int check_mem_type(void __iomem *dmc_reg) 489 { 490 unsigned long val; 491 492 val = readl_relaxed(dmc_reg + 0x4); 493 val = (val & (0xf << 8)); 494 495 return val >> 8; 496 } 497 498 static int s5pv210_cpu_init(struct cpufreq_policy *policy) 499 { 500 unsigned long mem_type; 501 int ret; 502 503 policy->clk = clk_get(NULL, "armclk"); 504 if (IS_ERR(policy->clk)) 505 return PTR_ERR(policy->clk); 506 507 dmc0_clk = clk_get(NULL, "sclk_dmc0"); 508 if (IS_ERR(dmc0_clk)) { 509 ret = PTR_ERR(dmc0_clk); 510 goto out_dmc0; 511 } 512 513 dmc1_clk = clk_get(NULL, "hclk_msys"); 514 if (IS_ERR(dmc1_clk)) { 515 ret = PTR_ERR(dmc1_clk); 516 goto out_dmc1; 517 } 518 519 if (policy->cpu != 0) { 520 ret = -EINVAL; 521 goto out_dmc1; 522 } 523 524 /* 525 * check_mem_type : This driver only support LPDDR & LPDDR2. 526 * other memory type is not supported. 527 */ 528 mem_type = check_mem_type(dmc_base[0]); 529 530 if ((mem_type != LPDDR) && (mem_type != LPDDR2)) { 531 pr_err("CPUFreq doesn't support this memory type\n"); 532 ret = -EINVAL; 533 goto out_dmc1; 534 } 535 536 /* Find current refresh counter and frequency each DMC */ 537 s5pv210_dram_conf[0].refresh = (readl_relaxed(dmc_base[0] + 0x30) * 1000); 538 s5pv210_dram_conf[0].freq = clk_get_rate(dmc0_clk); 539 540 s5pv210_dram_conf[1].refresh = (readl_relaxed(dmc_base[1] + 0x30) * 1000); 541 s5pv210_dram_conf[1].freq = clk_get_rate(dmc1_clk); 542 543 policy->suspend_freq = SLEEP_FREQ; 544 cpufreq_generic_init(policy, s5pv210_freq_table, 40000); 545 return 0; 546 547 out_dmc1: 548 clk_put(dmc0_clk); 549 out_dmc0: 550 clk_put(policy->clk); 551 return ret; 552 } 553 554 static int s5pv210_cpufreq_reboot_notifier_event(struct notifier_block *this, 555 unsigned long event, void *ptr) 556 { 557 int ret; 558 struct cpufreq_policy *policy; 559 560 policy = cpufreq_cpu_get(0); 561 if (!policy) { 562 pr_debug("cpufreq: get no policy for cpu0\n"); 563 return NOTIFY_BAD; 564 } 565 566 ret = cpufreq_driver_target(policy, SLEEP_FREQ, 0); 567 cpufreq_cpu_put(policy); 568 569 if (ret < 0) 570 return NOTIFY_BAD; 571 572 no_cpufreq_access = true; 573 return NOTIFY_DONE; 574 } 575 576 static struct cpufreq_driver s5pv210_driver = { 577 .flags = CPUFREQ_STICKY | CPUFREQ_NEED_INITIAL_FREQ_CHECK, 578 .verify = cpufreq_generic_frequency_table_verify, 579 .target_index = s5pv210_target, 580 .get = cpufreq_generic_get, 581 .init = s5pv210_cpu_init, 582 .name = "s5pv210", 583 .suspend = cpufreq_generic_suspend, 584 .resume = cpufreq_generic_suspend, /* We need to set SLEEP FREQ again */ 585 }; 586 587 static struct notifier_block s5pv210_cpufreq_reboot_notifier = { 588 .notifier_call = s5pv210_cpufreq_reboot_notifier_event, 589 }; 590 591 static int s5pv210_cpufreq_probe(struct platform_device *pdev) 592 { 593 struct device_node *np; 594 int id, result = 0; 595 596 /* 597 * HACK: This is a temporary workaround to get access to clock 598 * and DMC controller registers directly and remove static mappings 599 * and dependencies on platform headers. It is necessary to enable 600 * S5PV210 multi-platform support and will be removed together with 601 * this whole driver as soon as S5PV210 gets migrated to use 602 * cpufreq-dt driver. 603 */ 604 arm_regulator = regulator_get(NULL, "vddarm"); 605 if (IS_ERR(arm_regulator)) { 606 if (PTR_ERR(arm_regulator) == -EPROBE_DEFER) 607 pr_debug("vddarm regulator not ready, defer\n"); 608 else 609 pr_err("failed to get regulator vddarm\n"); 610 return PTR_ERR(arm_regulator); 611 } 612 613 int_regulator = regulator_get(NULL, "vddint"); 614 if (IS_ERR(int_regulator)) { 615 if (PTR_ERR(int_regulator) == -EPROBE_DEFER) 616 pr_debug("vddint regulator not ready, defer\n"); 617 else 618 pr_err("failed to get regulator vddint\n"); 619 result = PTR_ERR(int_regulator); 620 goto err_int_regulator; 621 } 622 623 np = of_find_compatible_node(NULL, NULL, "samsung,s5pv210-clock"); 624 if (!np) { 625 pr_err("%s: failed to find clock controller DT node\n", 626 __func__); 627 result = -ENODEV; 628 goto err_clock; 629 } 630 631 clk_base = of_iomap(np, 0); 632 of_node_put(np); 633 if (!clk_base) { 634 pr_err("%s: failed to map clock registers\n", __func__); 635 result = -EFAULT; 636 goto err_clock; 637 } 638 639 for_each_compatible_node(np, NULL, "samsung,s5pv210-dmc") { 640 id = of_alias_get_id(np, "dmc"); 641 if (id < 0 || id >= ARRAY_SIZE(dmc_base)) { 642 pr_err("%s: failed to get alias of dmc node '%pOFn'\n", 643 __func__, np); 644 of_node_put(np); 645 result = id; 646 goto err_clk_base; 647 } 648 649 dmc_base[id] = of_iomap(np, 0); 650 if (!dmc_base[id]) { 651 pr_err("%s: failed to map dmc%d registers\n", 652 __func__, id); 653 of_node_put(np); 654 result = -EFAULT; 655 goto err_dmc; 656 } 657 } 658 659 for (id = 0; id < ARRAY_SIZE(dmc_base); ++id) { 660 if (!dmc_base[id]) { 661 pr_err("%s: failed to find dmc%d node\n", __func__, id); 662 result = -ENODEV; 663 goto err_dmc; 664 } 665 } 666 667 register_reboot_notifier(&s5pv210_cpufreq_reboot_notifier); 668 669 return cpufreq_register_driver(&s5pv210_driver); 670 671 err_dmc: 672 for (id = 0; id < ARRAY_SIZE(dmc_base); ++id) 673 if (dmc_base[id]) { 674 iounmap(dmc_base[id]); 675 dmc_base[id] = NULL; 676 } 677 678 err_clk_base: 679 iounmap(clk_base); 680 681 err_clock: 682 regulator_put(int_regulator); 683 684 err_int_regulator: 685 regulator_put(arm_regulator); 686 687 return result; 688 } 689 690 static struct platform_driver s5pv210_cpufreq_platdrv = { 691 .driver = { 692 .name = "s5pv210-cpufreq", 693 }, 694 .probe = s5pv210_cpufreq_probe, 695 }; 696 builtin_platform_driver(s5pv210_cpufreq_platdrv); 697