1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2018, The Linux Foundation. All rights reserved. 4 */ 5 6 /* 7 * In Certain QCOM SoCs like apq8096 and msm8996 that have KRYO processors, 8 * the CPU frequency subset and voltage value of each OPP varies 9 * based on the silicon variant in use. Qualcomm Process Voltage Scaling Tables 10 * defines the voltage and frequency value based on the msm-id in SMEM 11 * and speedbin blown in the efuse combination. 12 * The qcom-cpufreq-nvmem driver reads the msm-id and efuse value from the SoC 13 * to provide the OPP framework with required information. 14 * This is used to determine the voltage and frequency value for each OPP of 15 * operating-points-v2 table when it is parsed by the OPP framework. 16 */ 17 18 #include <linux/cpu.h> 19 #include <linux/err.h> 20 #include <linux/init.h> 21 #include <linux/kernel.h> 22 #include <linux/module.h> 23 #include <linux/nvmem-consumer.h> 24 #include <linux/of.h> 25 #include <linux/of_device.h> 26 #include <linux/platform_device.h> 27 #include <linux/pm_domain.h> 28 #include <linux/pm_opp.h> 29 #include <linux/slab.h> 30 #include <linux/soc/qcom/smem.h> 31 32 #define MSM_ID_SMEM 137 33 34 enum _msm_id { 35 MSM8996V3 = 0xF6ul, 36 APQ8096V3 = 0x123ul, 37 MSM8996SG = 0x131ul, 38 APQ8096SG = 0x138ul, 39 }; 40 41 enum _msm8996_version { 42 MSM8996_V3, 43 MSM8996_SG, 44 NUM_OF_MSM8996_VERSIONS, 45 }; 46 47 struct qcom_cpufreq_drv; 48 49 struct qcom_cpufreq_match_data { 50 int (*get_version)(struct device *cpu_dev, 51 struct nvmem_cell *speedbin_nvmem, 52 char **pvs_name, 53 struct qcom_cpufreq_drv *drv); 54 const char **genpd_names; 55 }; 56 57 struct qcom_cpufreq_drv { 58 struct opp_table **names_opp_tables; 59 struct opp_table **hw_opp_tables; 60 struct opp_table **genpd_opp_tables; 61 u32 versions; 62 const struct qcom_cpufreq_match_data *data; 63 }; 64 65 static struct platform_device *cpufreq_dt_pdev, *cpufreq_pdev; 66 67 static void get_krait_bin_format_a(struct device *cpu_dev, 68 int *speed, int *pvs, int *pvs_ver, 69 struct nvmem_cell *pvs_nvmem, u8 *buf) 70 { 71 u32 pte_efuse; 72 73 pte_efuse = *((u32 *)buf); 74 75 *speed = pte_efuse & 0xf; 76 if (*speed == 0xf) 77 *speed = (pte_efuse >> 4) & 0xf; 78 79 if (*speed == 0xf) { 80 *speed = 0; 81 dev_warn(cpu_dev, "Speed bin: Defaulting to %d\n", *speed); 82 } else { 83 dev_dbg(cpu_dev, "Speed bin: %d\n", *speed); 84 } 85 86 *pvs = (pte_efuse >> 10) & 0x7; 87 if (*pvs == 0x7) 88 *pvs = (pte_efuse >> 13) & 0x7; 89 90 if (*pvs == 0x7) { 91 *pvs = 0; 92 dev_warn(cpu_dev, "PVS bin: Defaulting to %d\n", *pvs); 93 } else { 94 dev_dbg(cpu_dev, "PVS bin: %d\n", *pvs); 95 } 96 } 97 98 static void get_krait_bin_format_b(struct device *cpu_dev, 99 int *speed, int *pvs, int *pvs_ver, 100 struct nvmem_cell *pvs_nvmem, u8 *buf) 101 { 102 u32 pte_efuse, redundant_sel; 103 104 pte_efuse = *((u32 *)buf); 105 redundant_sel = (pte_efuse >> 24) & 0x7; 106 107 *pvs_ver = (pte_efuse >> 4) & 0x3; 108 109 switch (redundant_sel) { 110 case 1: 111 *pvs = ((pte_efuse >> 28) & 0x8) | ((pte_efuse >> 6) & 0x7); 112 *speed = (pte_efuse >> 27) & 0xf; 113 break; 114 case 2: 115 *pvs = (pte_efuse >> 27) & 0xf; 116 *speed = pte_efuse & 0x7; 117 break; 118 default: 119 /* 4 bits of PVS are in efuse register bits 31, 8-6. */ 120 *pvs = ((pte_efuse >> 28) & 0x8) | ((pte_efuse >> 6) & 0x7); 121 *speed = pte_efuse & 0x7; 122 } 123 124 /* Check SPEED_BIN_BLOW_STATUS */ 125 if (pte_efuse & BIT(3)) { 126 dev_dbg(cpu_dev, "Speed bin: %d\n", *speed); 127 } else { 128 dev_warn(cpu_dev, "Speed bin not set. Defaulting to 0!\n"); 129 *speed = 0; 130 } 131 132 /* Check PVS_BLOW_STATUS */ 133 pte_efuse = *(((u32 *)buf) + 4); 134 pte_efuse &= BIT(21); 135 if (pte_efuse) { 136 dev_dbg(cpu_dev, "PVS bin: %d\n", *pvs); 137 } else { 138 dev_warn(cpu_dev, "PVS bin not set. Defaulting to 0!\n"); 139 *pvs = 0; 140 } 141 142 dev_dbg(cpu_dev, "PVS version: %d\n", *pvs_ver); 143 } 144 145 static enum _msm8996_version qcom_cpufreq_get_msm_id(void) 146 { 147 size_t len; 148 u32 *msm_id; 149 enum _msm8996_version version; 150 151 msm_id = qcom_smem_get(QCOM_SMEM_HOST_ANY, MSM_ID_SMEM, &len); 152 if (IS_ERR(msm_id)) 153 return NUM_OF_MSM8996_VERSIONS; 154 155 /* The first 4 bytes are format, next to them is the actual msm-id */ 156 msm_id++; 157 158 switch ((enum _msm_id)*msm_id) { 159 case MSM8996V3: 160 case APQ8096V3: 161 version = MSM8996_V3; 162 break; 163 case MSM8996SG: 164 case APQ8096SG: 165 version = MSM8996_SG; 166 break; 167 default: 168 version = NUM_OF_MSM8996_VERSIONS; 169 } 170 171 return version; 172 } 173 174 static int qcom_cpufreq_kryo_name_version(struct device *cpu_dev, 175 struct nvmem_cell *speedbin_nvmem, 176 char **pvs_name, 177 struct qcom_cpufreq_drv *drv) 178 { 179 size_t len; 180 u8 *speedbin; 181 enum _msm8996_version msm8996_version; 182 *pvs_name = NULL; 183 184 msm8996_version = qcom_cpufreq_get_msm_id(); 185 if (NUM_OF_MSM8996_VERSIONS == msm8996_version) { 186 dev_err(cpu_dev, "Not Snapdragon 820/821!"); 187 return -ENODEV; 188 } 189 190 speedbin = nvmem_cell_read(speedbin_nvmem, &len); 191 if (IS_ERR(speedbin)) 192 return PTR_ERR(speedbin); 193 194 switch (msm8996_version) { 195 case MSM8996_V3: 196 drv->versions = 1 << (unsigned int)(*speedbin); 197 break; 198 case MSM8996_SG: 199 drv->versions = 1 << ((unsigned int)(*speedbin) + 4); 200 break; 201 default: 202 BUG(); 203 break; 204 } 205 206 kfree(speedbin); 207 return 0; 208 } 209 210 static int qcom_cpufreq_krait_name_version(struct device *cpu_dev, 211 struct nvmem_cell *speedbin_nvmem, 212 char **pvs_name, 213 struct qcom_cpufreq_drv *drv) 214 { 215 int speed = 0, pvs = 0, pvs_ver = 0; 216 u8 *speedbin; 217 size_t len; 218 219 speedbin = nvmem_cell_read(speedbin_nvmem, &len); 220 221 if (IS_ERR(speedbin)) 222 return PTR_ERR(speedbin); 223 224 switch (len) { 225 case 4: 226 get_krait_bin_format_a(cpu_dev, &speed, &pvs, &pvs_ver, 227 speedbin_nvmem, speedbin); 228 break; 229 case 8: 230 get_krait_bin_format_b(cpu_dev, &speed, &pvs, &pvs_ver, 231 speedbin_nvmem, speedbin); 232 break; 233 default: 234 dev_err(cpu_dev, "Unable to read nvmem data. Defaulting to 0!\n"); 235 return -ENODEV; 236 } 237 238 snprintf(*pvs_name, sizeof("speedXX-pvsXX-vXX"), "speed%d-pvs%d-v%d", 239 speed, pvs, pvs_ver); 240 241 drv->versions = (1 << speed); 242 243 kfree(speedbin); 244 return 0; 245 } 246 247 static const struct qcom_cpufreq_match_data match_data_kryo = { 248 .get_version = qcom_cpufreq_kryo_name_version, 249 }; 250 251 static const struct qcom_cpufreq_match_data match_data_krait = { 252 .get_version = qcom_cpufreq_krait_name_version, 253 }; 254 255 static const char *qcs404_genpd_names[] = { "cpr", NULL }; 256 257 static const struct qcom_cpufreq_match_data match_data_qcs404 = { 258 .genpd_names = qcs404_genpd_names, 259 }; 260 261 static int qcom_cpufreq_probe(struct platform_device *pdev) 262 { 263 struct qcom_cpufreq_drv *drv; 264 struct nvmem_cell *speedbin_nvmem; 265 struct device_node *np; 266 struct device *cpu_dev; 267 char *pvs_name = "speedXX-pvsXX-vXX"; 268 unsigned cpu; 269 const struct of_device_id *match; 270 int ret; 271 272 cpu_dev = get_cpu_device(0); 273 if (!cpu_dev) 274 return -ENODEV; 275 276 np = dev_pm_opp_of_get_opp_desc_node(cpu_dev); 277 if (!np) 278 return -ENOENT; 279 280 ret = of_device_is_compatible(np, "operating-points-v2-kryo-cpu"); 281 if (!ret) { 282 of_node_put(np); 283 return -ENOENT; 284 } 285 286 drv = kzalloc(sizeof(*drv), GFP_KERNEL); 287 if (!drv) 288 return -ENOMEM; 289 290 match = pdev->dev.platform_data; 291 drv->data = match->data; 292 if (!drv->data) { 293 ret = -ENODEV; 294 goto free_drv; 295 } 296 297 if (drv->data->get_version) { 298 speedbin_nvmem = of_nvmem_cell_get(np, NULL); 299 if (IS_ERR(speedbin_nvmem)) { 300 if (PTR_ERR(speedbin_nvmem) != -EPROBE_DEFER) 301 dev_err(cpu_dev, 302 "Could not get nvmem cell: %ld\n", 303 PTR_ERR(speedbin_nvmem)); 304 ret = PTR_ERR(speedbin_nvmem); 305 goto free_drv; 306 } 307 308 ret = drv->data->get_version(cpu_dev, 309 speedbin_nvmem, &pvs_name, drv); 310 if (ret) { 311 nvmem_cell_put(speedbin_nvmem); 312 goto free_drv; 313 } 314 nvmem_cell_put(speedbin_nvmem); 315 } 316 of_node_put(np); 317 318 drv->names_opp_tables = kcalloc(num_possible_cpus(), 319 sizeof(*drv->names_opp_tables), 320 GFP_KERNEL); 321 if (!drv->names_opp_tables) { 322 ret = -ENOMEM; 323 goto free_drv; 324 } 325 drv->hw_opp_tables = kcalloc(num_possible_cpus(), 326 sizeof(*drv->hw_opp_tables), 327 GFP_KERNEL); 328 if (!drv->hw_opp_tables) { 329 ret = -ENOMEM; 330 goto free_opp_names; 331 } 332 333 drv->genpd_opp_tables = kcalloc(num_possible_cpus(), 334 sizeof(*drv->genpd_opp_tables), 335 GFP_KERNEL); 336 if (!drv->genpd_opp_tables) { 337 ret = -ENOMEM; 338 goto free_opp; 339 } 340 341 for_each_possible_cpu(cpu) { 342 cpu_dev = get_cpu_device(cpu); 343 if (NULL == cpu_dev) { 344 ret = -ENODEV; 345 goto free_genpd_opp; 346 } 347 348 if (drv->data->get_version) { 349 350 if (pvs_name) { 351 drv->names_opp_tables[cpu] = dev_pm_opp_set_prop_name( 352 cpu_dev, 353 pvs_name); 354 if (IS_ERR(drv->names_opp_tables[cpu])) { 355 ret = PTR_ERR(drv->names_opp_tables[cpu]); 356 dev_err(cpu_dev, "Failed to add OPP name %s\n", 357 pvs_name); 358 goto free_opp; 359 } 360 } 361 362 drv->hw_opp_tables[cpu] = dev_pm_opp_set_supported_hw( 363 cpu_dev, &drv->versions, 1); 364 if (IS_ERR(drv->hw_opp_tables[cpu])) { 365 ret = PTR_ERR(drv->hw_opp_tables[cpu]); 366 dev_err(cpu_dev, 367 "Failed to set supported hardware\n"); 368 goto free_genpd_opp; 369 } 370 } 371 372 if (drv->data->genpd_names) { 373 drv->genpd_opp_tables[cpu] = 374 dev_pm_opp_attach_genpd(cpu_dev, 375 drv->data->genpd_names, 376 NULL); 377 if (IS_ERR(drv->genpd_opp_tables[cpu])) { 378 ret = PTR_ERR(drv->genpd_opp_tables[cpu]); 379 if (ret != -EPROBE_DEFER) 380 dev_err(cpu_dev, 381 "Could not attach to pm_domain: %d\n", 382 ret); 383 goto free_genpd_opp; 384 } 385 } 386 } 387 388 cpufreq_dt_pdev = platform_device_register_simple("cpufreq-dt", -1, 389 NULL, 0); 390 if (!IS_ERR(cpufreq_dt_pdev)) { 391 platform_set_drvdata(pdev, drv); 392 return 0; 393 } 394 395 ret = PTR_ERR(cpufreq_dt_pdev); 396 dev_err(cpu_dev, "Failed to register platform device\n"); 397 398 free_genpd_opp: 399 for_each_possible_cpu(cpu) { 400 if (IS_ERR(drv->genpd_opp_tables[cpu])) 401 break; 402 dev_pm_opp_detach_genpd(drv->genpd_opp_tables[cpu]); 403 } 404 kfree(drv->genpd_opp_tables); 405 free_opp: 406 for_each_possible_cpu(cpu) { 407 if (IS_ERR(drv->names_opp_tables[cpu])) 408 break; 409 dev_pm_opp_put_prop_name(drv->names_opp_tables[cpu]); 410 } 411 for_each_possible_cpu(cpu) { 412 if (IS_ERR(drv->hw_opp_tables[cpu])) 413 break; 414 dev_pm_opp_put_supported_hw(drv->hw_opp_tables[cpu]); 415 } 416 kfree(drv->hw_opp_tables); 417 free_opp_names: 418 kfree(drv->names_opp_tables); 419 free_drv: 420 kfree(drv); 421 422 return ret; 423 } 424 425 static int qcom_cpufreq_remove(struct platform_device *pdev) 426 { 427 struct qcom_cpufreq_drv *drv = platform_get_drvdata(pdev); 428 unsigned int cpu; 429 430 platform_device_unregister(cpufreq_dt_pdev); 431 432 for_each_possible_cpu(cpu) { 433 dev_pm_opp_put_supported_hw(drv->names_opp_tables[cpu]); 434 dev_pm_opp_put_supported_hw(drv->hw_opp_tables[cpu]); 435 dev_pm_opp_detach_genpd(drv->genpd_opp_tables[cpu]); 436 } 437 438 kfree(drv->names_opp_tables); 439 kfree(drv->hw_opp_tables); 440 kfree(drv->genpd_opp_tables); 441 kfree(drv); 442 443 return 0; 444 } 445 446 static struct platform_driver qcom_cpufreq_driver = { 447 .probe = qcom_cpufreq_probe, 448 .remove = qcom_cpufreq_remove, 449 .driver = { 450 .name = "qcom-cpufreq-nvmem", 451 }, 452 }; 453 454 static const struct of_device_id qcom_cpufreq_match_list[] __initconst = { 455 { .compatible = "qcom,apq8096", .data = &match_data_kryo }, 456 { .compatible = "qcom,msm8996", .data = &match_data_kryo }, 457 { .compatible = "qcom,qcs404", .data = &match_data_qcs404 }, 458 { .compatible = "qcom,ipq8064", .data = &match_data_krait }, 459 { .compatible = "qcom,apq8064", .data = &match_data_krait }, 460 { .compatible = "qcom,msm8974", .data = &match_data_krait }, 461 { .compatible = "qcom,msm8960", .data = &match_data_krait }, 462 {}, 463 }; 464 MODULE_DEVICE_TABLE(of, qcom_cpufreq_match_list); 465 466 /* 467 * Since the driver depends on smem and nvmem drivers, which may 468 * return EPROBE_DEFER, all the real activity is done in the probe, 469 * which may be defered as well. The init here is only registering 470 * the driver and the platform device. 471 */ 472 static int __init qcom_cpufreq_init(void) 473 { 474 struct device_node *np = of_find_node_by_path("/"); 475 const struct of_device_id *match; 476 int ret; 477 478 if (!np) 479 return -ENODEV; 480 481 match = of_match_node(qcom_cpufreq_match_list, np); 482 of_node_put(np); 483 if (!match) 484 return -ENODEV; 485 486 ret = platform_driver_register(&qcom_cpufreq_driver); 487 if (unlikely(ret < 0)) 488 return ret; 489 490 cpufreq_pdev = platform_device_register_data(NULL, "qcom-cpufreq-nvmem", 491 -1, match, sizeof(*match)); 492 ret = PTR_ERR_OR_ZERO(cpufreq_pdev); 493 if (0 == ret) 494 return 0; 495 496 platform_driver_unregister(&qcom_cpufreq_driver); 497 return ret; 498 } 499 module_init(qcom_cpufreq_init); 500 501 static void __exit qcom_cpufreq_exit(void) 502 { 503 platform_device_unregister(cpufreq_pdev); 504 platform_driver_unregister(&qcom_cpufreq_driver); 505 } 506 module_exit(qcom_cpufreq_exit); 507 508 MODULE_DESCRIPTION("Qualcomm Technologies, Inc. CPUfreq driver"); 509 MODULE_LICENSE("GPL v2"); 510