1 /*
2  * POWERNV cpufreq driver for the IBM POWER processors
3  *
4  * (C) Copyright IBM 2014
5  *
6  * Author: Vaidyanathan Srinivasan <svaidy at linux.vnet.ibm.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2, or (at your option)
11  * any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  */
19 
20 #define pr_fmt(fmt)	"powernv-cpufreq: " fmt
21 
22 #include <linux/kernel.h>
23 #include <linux/sysfs.h>
24 #include <linux/cpumask.h>
25 #include <linux/module.h>
26 #include <linux/cpufreq.h>
27 #include <linux/smp.h>
28 #include <linux/of.h>
29 #include <linux/reboot.h>
30 #include <linux/slab.h>
31 #include <linux/cpu.h>
32 #include <trace/events/power.h>
33 
34 #include <asm/cputhreads.h>
35 #include <asm/firmware.h>
36 #include <asm/reg.h>
37 #include <asm/smp.h> /* Required for cpu_sibling_mask() in UP configs */
38 #include <asm/opal.h>
39 #include <linux/timer.h>
40 
41 #define POWERNV_MAX_PSTATES	256
42 #define PMSR_PSAFE_ENABLE	(1UL << 30)
43 #define PMSR_SPR_EM_DISABLE	(1UL << 31)
44 #define PMSR_MAX(x)		((x >> 32) & 0xFF)
45 #define LPSTATE_SHIFT		48
46 #define GPSTATE_SHIFT		56
47 #define GET_LPSTATE(x)		(((x) >> LPSTATE_SHIFT) & 0xFF)
48 #define GET_GPSTATE(x)		(((x) >> GPSTATE_SHIFT) & 0xFF)
49 
50 #define MAX_RAMP_DOWN_TIME				5120
51 /*
52  * On an idle system we want the global pstate to ramp-down from max value to
53  * min over a span of ~5 secs. Also we want it to initially ramp-down slowly and
54  * then ramp-down rapidly later on.
55  *
56  * This gives a percentage rampdown for time elapsed in milliseconds.
57  * ramp_down_percentage = ((ms * ms) >> 18)
58  *			~= 3.8 * (sec * sec)
59  *
60  * At 0 ms	ramp_down_percent = 0
61  * At 5120 ms	ramp_down_percent = 100
62  */
63 #define ramp_down_percent(time)		((time * time) >> 18)
64 
65 /* Interval after which the timer is queued to bring down global pstate */
66 #define GPSTATE_TIMER_INTERVAL				2000
67 
68 /**
69  * struct global_pstate_info -	Per policy data structure to maintain history of
70  *				global pstates
71  * @highest_lpstate_idx:	The local pstate index from which we are
72  *				ramping down
73  * @elapsed_time:		Time in ms spent in ramping down from
74  *				highest_lpstate_idx
75  * @last_sampled_time:		Time from boot in ms when global pstates were
76  *				last set
77  * @last_lpstate_idx,		Last set value of local pstate and global
78  * last_gpstate_idx		pstate in terms of cpufreq table index
79  * @timer:			Is used for ramping down if cpu goes idle for
80  *				a long time with global pstate held high
81  * @gpstate_lock:		A spinlock to maintain synchronization between
82  *				routines called by the timer handler and
83  *				governer's target_index calls
84  */
85 struct global_pstate_info {
86 	int highest_lpstate_idx;
87 	unsigned int elapsed_time;
88 	unsigned int last_sampled_time;
89 	int last_lpstate_idx;
90 	int last_gpstate_idx;
91 	spinlock_t gpstate_lock;
92 	struct timer_list timer;
93 	struct cpufreq_policy *policy;
94 };
95 
96 static struct cpufreq_frequency_table powernv_freqs[POWERNV_MAX_PSTATES+1];
97 static bool rebooting, throttled, occ_reset;
98 
99 static const char * const throttle_reason[] = {
100 	"No throttling",
101 	"Power Cap",
102 	"Processor Over Temperature",
103 	"Power Supply Failure",
104 	"Over Current",
105 	"OCC Reset"
106 };
107 
108 enum throttle_reason_type {
109 	NO_THROTTLE = 0,
110 	POWERCAP,
111 	CPU_OVERTEMP,
112 	POWER_SUPPLY_FAILURE,
113 	OVERCURRENT,
114 	OCC_RESET_THROTTLE,
115 	OCC_MAX_REASON
116 };
117 
118 static struct chip {
119 	unsigned int id;
120 	bool throttled;
121 	bool restore;
122 	u8 throttle_reason;
123 	cpumask_t mask;
124 	struct work_struct throttle;
125 	int throttle_turbo;
126 	int throttle_sub_turbo;
127 	int reason[OCC_MAX_REASON];
128 } *chips;
129 
130 static int nr_chips;
131 static DEFINE_PER_CPU(struct chip *, chip_info);
132 
133 /*
134  * Note:
135  * The set of pstates consists of contiguous integers.
136  * powernv_pstate_info stores the index of the frequency table for
137  * max, min and nominal frequencies. It also stores number of
138  * available frequencies.
139  *
140  * powernv_pstate_info.nominal indicates the index to the highest
141  * non-turbo frequency.
142  */
143 static struct powernv_pstate_info {
144 	unsigned int min;
145 	unsigned int max;
146 	unsigned int nominal;
147 	unsigned int nr_pstates;
148 	bool wof_enabled;
149 } powernv_pstate_info;
150 
151 /* Use following macros for conversions between pstate_id and index */
152 static inline int idx_to_pstate(unsigned int i)
153 {
154 	if (unlikely(i >= powernv_pstate_info.nr_pstates)) {
155 		pr_warn_once("index %u is out of bound\n", i);
156 		return powernv_freqs[powernv_pstate_info.nominal].driver_data;
157 	}
158 
159 	return powernv_freqs[i].driver_data;
160 }
161 
162 static inline unsigned int pstate_to_idx(int pstate)
163 {
164 	int min = powernv_freqs[powernv_pstate_info.min].driver_data;
165 	int max = powernv_freqs[powernv_pstate_info.max].driver_data;
166 
167 	if (min > 0) {
168 		if (unlikely((pstate < max) || (pstate > min))) {
169 			pr_warn_once("pstate %d is out of bound\n", pstate);
170 			return powernv_pstate_info.nominal;
171 		}
172 	} else {
173 		if (unlikely((pstate > max) || (pstate < min))) {
174 			pr_warn_once("pstate %d is out of bound\n", pstate);
175 			return powernv_pstate_info.nominal;
176 		}
177 	}
178 	/*
179 	 * abs() is deliberately used so that is works with
180 	 * both monotonically increasing and decreasing
181 	 * pstate values
182 	 */
183 	return abs(pstate - idx_to_pstate(powernv_pstate_info.max));
184 }
185 
186 static inline void reset_gpstates(struct cpufreq_policy *policy)
187 {
188 	struct global_pstate_info *gpstates = policy->driver_data;
189 
190 	gpstates->highest_lpstate_idx = 0;
191 	gpstates->elapsed_time = 0;
192 	gpstates->last_sampled_time = 0;
193 	gpstates->last_lpstate_idx = 0;
194 	gpstates->last_gpstate_idx = 0;
195 }
196 
197 /*
198  * Initialize the freq table based on data obtained
199  * from the firmware passed via device-tree
200  */
201 static int init_powernv_pstates(void)
202 {
203 	struct device_node *power_mgt;
204 	int i, nr_pstates = 0;
205 	const __be32 *pstate_ids, *pstate_freqs;
206 	u32 len_ids, len_freqs;
207 	u32 pstate_min, pstate_max, pstate_nominal;
208 	u32 pstate_turbo, pstate_ultra_turbo;
209 
210 	power_mgt = of_find_node_by_path("/ibm,opal/power-mgt");
211 	if (!power_mgt) {
212 		pr_warn("power-mgt node not found\n");
213 		return -ENODEV;
214 	}
215 
216 	if (of_property_read_u32(power_mgt, "ibm,pstate-min", &pstate_min)) {
217 		pr_warn("ibm,pstate-min node not found\n");
218 		return -ENODEV;
219 	}
220 
221 	if (of_property_read_u32(power_mgt, "ibm,pstate-max", &pstate_max)) {
222 		pr_warn("ibm,pstate-max node not found\n");
223 		return -ENODEV;
224 	}
225 
226 	if (of_property_read_u32(power_mgt, "ibm,pstate-nominal",
227 				 &pstate_nominal)) {
228 		pr_warn("ibm,pstate-nominal not found\n");
229 		return -ENODEV;
230 	}
231 
232 	if (of_property_read_u32(power_mgt, "ibm,pstate-ultra-turbo",
233 				 &pstate_ultra_turbo)) {
234 		powernv_pstate_info.wof_enabled = false;
235 		goto next;
236 	}
237 
238 	if (of_property_read_u32(power_mgt, "ibm,pstate-turbo",
239 				 &pstate_turbo)) {
240 		powernv_pstate_info.wof_enabled = false;
241 		goto next;
242 	}
243 
244 	if (pstate_turbo == pstate_ultra_turbo)
245 		powernv_pstate_info.wof_enabled = false;
246 	else
247 		powernv_pstate_info.wof_enabled = true;
248 
249 next:
250 	pr_info("cpufreq pstate min %d nominal %d max %d\n", pstate_min,
251 		pstate_nominal, pstate_max);
252 	pr_info("Workload Optimized Frequency is %s in the platform\n",
253 		(powernv_pstate_info.wof_enabled) ? "enabled" : "disabled");
254 
255 	pstate_ids = of_get_property(power_mgt, "ibm,pstate-ids", &len_ids);
256 	if (!pstate_ids) {
257 		pr_warn("ibm,pstate-ids not found\n");
258 		return -ENODEV;
259 	}
260 
261 	pstate_freqs = of_get_property(power_mgt, "ibm,pstate-frequencies-mhz",
262 				      &len_freqs);
263 	if (!pstate_freqs) {
264 		pr_warn("ibm,pstate-frequencies-mhz not found\n");
265 		return -ENODEV;
266 	}
267 
268 	if (len_ids != len_freqs) {
269 		pr_warn("Entries in ibm,pstate-ids and "
270 			"ibm,pstate-frequencies-mhz does not match\n");
271 	}
272 
273 	nr_pstates = min(len_ids, len_freqs) / sizeof(u32);
274 	if (!nr_pstates) {
275 		pr_warn("No PStates found\n");
276 		return -ENODEV;
277 	}
278 
279 	powernv_pstate_info.nr_pstates = nr_pstates;
280 	pr_debug("NR PStates %d\n", nr_pstates);
281 	for (i = 0; i < nr_pstates; i++) {
282 		u32 id = be32_to_cpu(pstate_ids[i]);
283 		u32 freq = be32_to_cpu(pstate_freqs[i]);
284 
285 		pr_debug("PState id %d freq %d MHz\n", id, freq);
286 		powernv_freqs[i].frequency = freq * 1000; /* kHz */
287 		powernv_freqs[i].driver_data = id;
288 
289 		if (id == pstate_max)
290 			powernv_pstate_info.max = i;
291 		else if (id == pstate_nominal)
292 			powernv_pstate_info.nominal = i;
293 		else if (id == pstate_min)
294 			powernv_pstate_info.min = i;
295 
296 		if (powernv_pstate_info.wof_enabled && id == pstate_turbo) {
297 			int j;
298 
299 			for (j = i - 1; j >= (int)powernv_pstate_info.max; j--)
300 				powernv_freqs[j].flags = CPUFREQ_BOOST_FREQ;
301 		}
302 	}
303 
304 	/* End of list marker entry */
305 	powernv_freqs[i].frequency = CPUFREQ_TABLE_END;
306 	return 0;
307 }
308 
309 /* Returns the CPU frequency corresponding to the pstate_id. */
310 static unsigned int pstate_id_to_freq(int pstate_id)
311 {
312 	int i;
313 
314 	i = pstate_to_idx(pstate_id);
315 	if (i >= powernv_pstate_info.nr_pstates || i < 0) {
316 		pr_warn("PState id %d outside of PState table, "
317 			"reporting nominal id %d instead\n",
318 			pstate_id, idx_to_pstate(powernv_pstate_info.nominal));
319 		i = powernv_pstate_info.nominal;
320 	}
321 
322 	return powernv_freqs[i].frequency;
323 }
324 
325 /*
326  * cpuinfo_nominal_freq_show - Show the nominal CPU frequency as indicated by
327  * the firmware
328  */
329 static ssize_t cpuinfo_nominal_freq_show(struct cpufreq_policy *policy,
330 					char *buf)
331 {
332 	return sprintf(buf, "%u\n",
333 		powernv_freqs[powernv_pstate_info.nominal].frequency);
334 }
335 
336 struct freq_attr cpufreq_freq_attr_cpuinfo_nominal_freq =
337 	__ATTR_RO(cpuinfo_nominal_freq);
338 
339 #define SCALING_BOOST_FREQS_ATTR_INDEX		2
340 
341 static struct freq_attr *powernv_cpu_freq_attr[] = {
342 	&cpufreq_freq_attr_scaling_available_freqs,
343 	&cpufreq_freq_attr_cpuinfo_nominal_freq,
344 	&cpufreq_freq_attr_scaling_boost_freqs,
345 	NULL,
346 };
347 
348 #define throttle_attr(name, member)					\
349 static ssize_t name##_show(struct cpufreq_policy *policy, char *buf)	\
350 {									\
351 	struct chip *chip = per_cpu(chip_info, policy->cpu);		\
352 									\
353 	return sprintf(buf, "%u\n", chip->member);			\
354 }									\
355 									\
356 static struct freq_attr throttle_attr_##name = __ATTR_RO(name)		\
357 
358 throttle_attr(unthrottle, reason[NO_THROTTLE]);
359 throttle_attr(powercap, reason[POWERCAP]);
360 throttle_attr(overtemp, reason[CPU_OVERTEMP]);
361 throttle_attr(supply_fault, reason[POWER_SUPPLY_FAILURE]);
362 throttle_attr(overcurrent, reason[OVERCURRENT]);
363 throttle_attr(occ_reset, reason[OCC_RESET_THROTTLE]);
364 throttle_attr(turbo_stat, throttle_turbo);
365 throttle_attr(sub_turbo_stat, throttle_sub_turbo);
366 
367 static struct attribute *throttle_attrs[] = {
368 	&throttle_attr_unthrottle.attr,
369 	&throttle_attr_powercap.attr,
370 	&throttle_attr_overtemp.attr,
371 	&throttle_attr_supply_fault.attr,
372 	&throttle_attr_overcurrent.attr,
373 	&throttle_attr_occ_reset.attr,
374 	&throttle_attr_turbo_stat.attr,
375 	&throttle_attr_sub_turbo_stat.attr,
376 	NULL,
377 };
378 
379 static const struct attribute_group throttle_attr_grp = {
380 	.name	= "throttle_stats",
381 	.attrs	= throttle_attrs,
382 };
383 
384 /* Helper routines */
385 
386 /* Access helpers to power mgt SPR */
387 
388 static inline unsigned long get_pmspr(unsigned long sprn)
389 {
390 	switch (sprn) {
391 	case SPRN_PMCR:
392 		return mfspr(SPRN_PMCR);
393 
394 	case SPRN_PMICR:
395 		return mfspr(SPRN_PMICR);
396 
397 	case SPRN_PMSR:
398 		return mfspr(SPRN_PMSR);
399 	}
400 	BUG();
401 }
402 
403 static inline void set_pmspr(unsigned long sprn, unsigned long val)
404 {
405 	switch (sprn) {
406 	case SPRN_PMCR:
407 		mtspr(SPRN_PMCR, val);
408 		return;
409 
410 	case SPRN_PMICR:
411 		mtspr(SPRN_PMICR, val);
412 		return;
413 	}
414 	BUG();
415 }
416 
417 /*
418  * Use objects of this type to query/update
419  * pstates on a remote CPU via smp_call_function.
420  */
421 struct powernv_smp_call_data {
422 	unsigned int freq;
423 	int pstate_id;
424 	int gpstate_id;
425 };
426 
427 /*
428  * powernv_read_cpu_freq: Reads the current frequency on this CPU.
429  *
430  * Called via smp_call_function.
431  *
432  * Note: The caller of the smp_call_function should pass an argument of
433  * the type 'struct powernv_smp_call_data *' along with this function.
434  *
435  * The current frequency on this CPU will be returned via
436  * ((struct powernv_smp_call_data *)arg)->freq;
437  */
438 static void powernv_read_cpu_freq(void *arg)
439 {
440 	unsigned long pmspr_val;
441 	s8 local_pstate_id;
442 	struct powernv_smp_call_data *freq_data = arg;
443 
444 	pmspr_val = get_pmspr(SPRN_PMSR);
445 
446 	/*
447 	 * The local pstate id corresponds bits 48..55 in the PMSR.
448 	 * Note: Watch out for the sign!
449 	 */
450 	local_pstate_id = (pmspr_val >> 48) & 0xFF;
451 	freq_data->pstate_id = local_pstate_id;
452 	freq_data->freq = pstate_id_to_freq(freq_data->pstate_id);
453 
454 	pr_debug("cpu %d pmsr %016lX pstate_id %d frequency %d kHz\n",
455 		raw_smp_processor_id(), pmspr_val, freq_data->pstate_id,
456 		freq_data->freq);
457 }
458 
459 /*
460  * powernv_cpufreq_get: Returns the CPU frequency as reported by the
461  * firmware for CPU 'cpu'. This value is reported through the sysfs
462  * file cpuinfo_cur_freq.
463  */
464 static unsigned int powernv_cpufreq_get(unsigned int cpu)
465 {
466 	struct powernv_smp_call_data freq_data;
467 
468 	smp_call_function_any(cpu_sibling_mask(cpu), powernv_read_cpu_freq,
469 			&freq_data, 1);
470 
471 	return freq_data.freq;
472 }
473 
474 /*
475  * set_pstate: Sets the pstate on this CPU.
476  *
477  * This is called via an smp_call_function.
478  *
479  * The caller must ensure that freq_data is of the type
480  * (struct powernv_smp_call_data *) and the pstate_id which needs to be set
481  * on this CPU should be present in freq_data->pstate_id.
482  */
483 static void set_pstate(void *data)
484 {
485 	unsigned long val;
486 	struct powernv_smp_call_data *freq_data = data;
487 	unsigned long pstate_ul = freq_data->pstate_id;
488 	unsigned long gpstate_ul = freq_data->gpstate_id;
489 
490 	val = get_pmspr(SPRN_PMCR);
491 	val = val & 0x0000FFFFFFFFFFFFULL;
492 
493 	pstate_ul = pstate_ul & 0xFF;
494 	gpstate_ul = gpstate_ul & 0xFF;
495 
496 	/* Set both global(bits 56..63) and local(bits 48..55) PStates */
497 	val = val | (gpstate_ul << 56) | (pstate_ul << 48);
498 
499 	pr_debug("Setting cpu %d pmcr to %016lX\n",
500 			raw_smp_processor_id(), val);
501 	set_pmspr(SPRN_PMCR, val);
502 }
503 
504 /*
505  * get_nominal_index: Returns the index corresponding to the nominal
506  * pstate in the cpufreq table
507  */
508 static inline unsigned int get_nominal_index(void)
509 {
510 	return powernv_pstate_info.nominal;
511 }
512 
513 static void powernv_cpufreq_throttle_check(void *data)
514 {
515 	struct chip *chip;
516 	unsigned int cpu = smp_processor_id();
517 	unsigned long pmsr;
518 	int pmsr_pmax;
519 	unsigned int pmsr_pmax_idx;
520 
521 	pmsr = get_pmspr(SPRN_PMSR);
522 	chip = this_cpu_read(chip_info);
523 
524 	/* Check for Pmax Capping */
525 	pmsr_pmax = (s8)PMSR_MAX(pmsr);
526 	pmsr_pmax_idx = pstate_to_idx(pmsr_pmax);
527 	if (pmsr_pmax_idx != powernv_pstate_info.max) {
528 		if (chip->throttled)
529 			goto next;
530 		chip->throttled = true;
531 		if (pmsr_pmax_idx > powernv_pstate_info.nominal) {
532 			pr_warn_once("CPU %d on Chip %u has Pmax(%d) reduced below nominal frequency(%d)\n",
533 				     cpu, chip->id, pmsr_pmax,
534 				     idx_to_pstate(powernv_pstate_info.nominal));
535 			chip->throttle_sub_turbo++;
536 		} else {
537 			chip->throttle_turbo++;
538 		}
539 		trace_powernv_throttle(chip->id,
540 				      throttle_reason[chip->throttle_reason],
541 				      pmsr_pmax);
542 	} else if (chip->throttled) {
543 		chip->throttled = false;
544 		trace_powernv_throttle(chip->id,
545 				      throttle_reason[chip->throttle_reason],
546 				      pmsr_pmax);
547 	}
548 
549 	/* Check if Psafe_mode_active is set in PMSR. */
550 next:
551 	if (pmsr & PMSR_PSAFE_ENABLE) {
552 		throttled = true;
553 		pr_info("Pstate set to safe frequency\n");
554 	}
555 
556 	/* Check if SPR_EM_DISABLE is set in PMSR */
557 	if (pmsr & PMSR_SPR_EM_DISABLE) {
558 		throttled = true;
559 		pr_info("Frequency Control disabled from OS\n");
560 	}
561 
562 	if (throttled) {
563 		pr_info("PMSR = %16lx\n", pmsr);
564 		pr_warn("CPU Frequency could be throttled\n");
565 	}
566 }
567 
568 /**
569  * calc_global_pstate - Calculate global pstate
570  * @elapsed_time:		Elapsed time in milliseconds
571  * @local_pstate_idx:		New local pstate
572  * @highest_lpstate_idx:	pstate from which its ramping down
573  *
574  * Finds the appropriate global pstate based on the pstate from which its
575  * ramping down and the time elapsed in ramping down. It follows a quadratic
576  * equation which ensures that it reaches ramping down to pmin in 5sec.
577  */
578 static inline int calc_global_pstate(unsigned int elapsed_time,
579 				     int highest_lpstate_idx,
580 				     int local_pstate_idx)
581 {
582 	int index_diff;
583 
584 	/*
585 	 * Using ramp_down_percent we get the percentage of rampdown
586 	 * that we are expecting to be dropping. Difference between
587 	 * highest_lpstate_idx and powernv_pstate_info.min will give a absolute
588 	 * number of how many pstates we will drop eventually by the end of
589 	 * 5 seconds, then just scale it get the number pstates to be dropped.
590 	 */
591 	index_diff =  ((int)ramp_down_percent(elapsed_time) *
592 			(powernv_pstate_info.min - highest_lpstate_idx)) / 100;
593 
594 	/* Ensure that global pstate is >= to local pstate */
595 	if (highest_lpstate_idx + index_diff >= local_pstate_idx)
596 		return local_pstate_idx;
597 	else
598 		return highest_lpstate_idx + index_diff;
599 }
600 
601 static inline void  queue_gpstate_timer(struct global_pstate_info *gpstates)
602 {
603 	unsigned int timer_interval;
604 
605 	/*
606 	 * Setting up timer to fire after GPSTATE_TIMER_INTERVAL ms, But
607 	 * if it exceeds MAX_RAMP_DOWN_TIME ms for ramp down time.
608 	 * Set timer such that it fires exactly at MAX_RAMP_DOWN_TIME
609 	 * seconds of ramp down time.
610 	 */
611 	if ((gpstates->elapsed_time + GPSTATE_TIMER_INTERVAL)
612 	     > MAX_RAMP_DOWN_TIME)
613 		timer_interval = MAX_RAMP_DOWN_TIME - gpstates->elapsed_time;
614 	else
615 		timer_interval = GPSTATE_TIMER_INTERVAL;
616 
617 	mod_timer(&gpstates->timer, jiffies + msecs_to_jiffies(timer_interval));
618 }
619 
620 /**
621  * gpstate_timer_handler
622  *
623  * @data: pointer to cpufreq_policy on which timer was queued
624  *
625  * This handler brings down the global pstate closer to the local pstate
626  * according quadratic equation. Queues a new timer if it is still not equal
627  * to local pstate
628  */
629 void gpstate_timer_handler(struct timer_list *t)
630 {
631 	struct global_pstate_info *gpstates = from_timer(gpstates, t, timer);
632 	struct cpufreq_policy *policy = gpstates->policy;
633 	int gpstate_idx, lpstate_idx;
634 	unsigned long val;
635 	unsigned int time_diff = jiffies_to_msecs(jiffies)
636 					- gpstates->last_sampled_time;
637 	struct powernv_smp_call_data freq_data;
638 
639 	if (!spin_trylock(&gpstates->gpstate_lock))
640 		return;
641 
642 	/*
643 	 * If PMCR was last updated was using fast_swtich then
644 	 * We may have wrong in gpstate->last_lpstate_idx
645 	 * value. Hence, read from PMCR to get correct data.
646 	 */
647 	val = get_pmspr(SPRN_PMCR);
648 	freq_data.gpstate_id = (s8)GET_GPSTATE(val);
649 	freq_data.pstate_id = (s8)GET_LPSTATE(val);
650 	if (freq_data.gpstate_id  == freq_data.pstate_id) {
651 		reset_gpstates(policy);
652 		spin_unlock(&gpstates->gpstate_lock);
653 		return;
654 	}
655 
656 	gpstates->last_sampled_time += time_diff;
657 	gpstates->elapsed_time += time_diff;
658 
659 	if (gpstates->elapsed_time > MAX_RAMP_DOWN_TIME) {
660 		gpstate_idx = pstate_to_idx(freq_data.pstate_id);
661 		lpstate_idx = gpstate_idx;
662 		reset_gpstates(policy);
663 		gpstates->highest_lpstate_idx = gpstate_idx;
664 	} else {
665 		lpstate_idx = pstate_to_idx(freq_data.pstate_id);
666 		gpstate_idx = calc_global_pstate(gpstates->elapsed_time,
667 						 gpstates->highest_lpstate_idx,
668 						 lpstate_idx);
669 	}
670 	freq_data.gpstate_id = idx_to_pstate(gpstate_idx);
671 	gpstates->last_gpstate_idx = gpstate_idx;
672 	gpstates->last_lpstate_idx = lpstate_idx;
673 	/*
674 	 * If local pstate is equal to global pstate, rampdown is over
675 	 * So timer is not required to be queued.
676 	 */
677 	if (gpstate_idx != gpstates->last_lpstate_idx)
678 		queue_gpstate_timer(gpstates);
679 
680 	spin_unlock(&gpstates->gpstate_lock);
681 
682 	/* Timer may get migrated to a different cpu on cpu hot unplug */
683 	smp_call_function_any(policy->cpus, set_pstate, &freq_data, 1);
684 }
685 
686 /*
687  * powernv_cpufreq_target_index: Sets the frequency corresponding to
688  * the cpufreq table entry indexed by new_index on the cpus in the
689  * mask policy->cpus
690  */
691 static int powernv_cpufreq_target_index(struct cpufreq_policy *policy,
692 					unsigned int new_index)
693 {
694 	struct powernv_smp_call_data freq_data;
695 	unsigned int cur_msec, gpstate_idx;
696 	struct global_pstate_info *gpstates = policy->driver_data;
697 
698 	if (unlikely(rebooting) && new_index != get_nominal_index())
699 		return 0;
700 
701 	if (!throttled) {
702 		/* we don't want to be preempted while
703 		 * checking if the CPU frequency has been throttled
704 		 */
705 		preempt_disable();
706 		powernv_cpufreq_throttle_check(NULL);
707 		preempt_enable();
708 	}
709 
710 	cur_msec = jiffies_to_msecs(get_jiffies_64());
711 
712 	spin_lock(&gpstates->gpstate_lock);
713 	freq_data.pstate_id = idx_to_pstate(new_index);
714 
715 	if (!gpstates->last_sampled_time) {
716 		gpstate_idx = new_index;
717 		gpstates->highest_lpstate_idx = new_index;
718 		goto gpstates_done;
719 	}
720 
721 	if (gpstates->last_gpstate_idx < new_index) {
722 		gpstates->elapsed_time += cur_msec -
723 						 gpstates->last_sampled_time;
724 
725 		/*
726 		 * If its has been ramping down for more than MAX_RAMP_DOWN_TIME
727 		 * we should be resetting all global pstate related data. Set it
728 		 * equal to local pstate to start fresh.
729 		 */
730 		if (gpstates->elapsed_time > MAX_RAMP_DOWN_TIME) {
731 			reset_gpstates(policy);
732 			gpstates->highest_lpstate_idx = new_index;
733 			gpstate_idx = new_index;
734 		} else {
735 		/* Elaspsed_time is less than 5 seconds, continue to rampdown */
736 			gpstate_idx = calc_global_pstate(gpstates->elapsed_time,
737 							 gpstates->highest_lpstate_idx,
738 							 new_index);
739 		}
740 	} else {
741 		reset_gpstates(policy);
742 		gpstates->highest_lpstate_idx = new_index;
743 		gpstate_idx = new_index;
744 	}
745 
746 	/*
747 	 * If local pstate is equal to global pstate, rampdown is over
748 	 * So timer is not required to be queued.
749 	 */
750 	if (gpstate_idx != new_index)
751 		queue_gpstate_timer(gpstates);
752 	else
753 		del_timer_sync(&gpstates->timer);
754 
755 gpstates_done:
756 	freq_data.gpstate_id = idx_to_pstate(gpstate_idx);
757 	gpstates->last_sampled_time = cur_msec;
758 	gpstates->last_gpstate_idx = gpstate_idx;
759 	gpstates->last_lpstate_idx = new_index;
760 
761 	spin_unlock(&gpstates->gpstate_lock);
762 
763 	/*
764 	 * Use smp_call_function to send IPI and execute the
765 	 * mtspr on target CPU.  We could do that without IPI
766 	 * if current CPU is within policy->cpus (core)
767 	 */
768 	smp_call_function_any(policy->cpus, set_pstate, &freq_data, 1);
769 	return 0;
770 }
771 
772 static int powernv_cpufreq_cpu_init(struct cpufreq_policy *policy)
773 {
774 	int base, i, ret;
775 	struct kernfs_node *kn;
776 	struct global_pstate_info *gpstates;
777 
778 	base = cpu_first_thread_sibling(policy->cpu);
779 
780 	for (i = 0; i < threads_per_core; i++)
781 		cpumask_set_cpu(base + i, policy->cpus);
782 
783 	kn = kernfs_find_and_get(policy->kobj.sd, throttle_attr_grp.name);
784 	if (!kn) {
785 		int ret;
786 
787 		ret = sysfs_create_group(&policy->kobj, &throttle_attr_grp);
788 		if (ret) {
789 			pr_info("Failed to create throttle stats directory for cpu %d\n",
790 				policy->cpu);
791 			return ret;
792 		}
793 	} else {
794 		kernfs_put(kn);
795 	}
796 
797 	gpstates =  kzalloc(sizeof(*gpstates), GFP_KERNEL);
798 	if (!gpstates)
799 		return -ENOMEM;
800 
801 	policy->driver_data = gpstates;
802 
803 	/* initialize timer */
804 	gpstates->policy = policy;
805 	timer_setup(&gpstates->timer, gpstate_timer_handler,
806 		    TIMER_PINNED | TIMER_DEFERRABLE);
807 	gpstates->timer.expires = jiffies +
808 				msecs_to_jiffies(GPSTATE_TIMER_INTERVAL);
809 	spin_lock_init(&gpstates->gpstate_lock);
810 	ret = cpufreq_table_validate_and_show(policy, powernv_freqs);
811 
812 	if (ret < 0) {
813 		kfree(policy->driver_data);
814 		return ret;
815 	}
816 
817 	policy->fast_switch_possible = true;
818 	return ret;
819 }
820 
821 static int powernv_cpufreq_cpu_exit(struct cpufreq_policy *policy)
822 {
823 	/* timer is deleted in cpufreq_cpu_stop() */
824 	kfree(policy->driver_data);
825 
826 	return 0;
827 }
828 
829 static int powernv_cpufreq_reboot_notifier(struct notifier_block *nb,
830 				unsigned long action, void *unused)
831 {
832 	int cpu;
833 	struct cpufreq_policy cpu_policy;
834 
835 	rebooting = true;
836 	for_each_online_cpu(cpu) {
837 		cpufreq_get_policy(&cpu_policy, cpu);
838 		powernv_cpufreq_target_index(&cpu_policy, get_nominal_index());
839 	}
840 
841 	return NOTIFY_DONE;
842 }
843 
844 static struct notifier_block powernv_cpufreq_reboot_nb = {
845 	.notifier_call = powernv_cpufreq_reboot_notifier,
846 };
847 
848 void powernv_cpufreq_work_fn(struct work_struct *work)
849 {
850 	struct chip *chip = container_of(work, struct chip, throttle);
851 	unsigned int cpu;
852 	cpumask_t mask;
853 
854 	get_online_cpus();
855 	cpumask_and(&mask, &chip->mask, cpu_online_mask);
856 	smp_call_function_any(&mask,
857 			      powernv_cpufreq_throttle_check, NULL, 0);
858 
859 	if (!chip->restore)
860 		goto out;
861 
862 	chip->restore = false;
863 	for_each_cpu(cpu, &mask) {
864 		int index;
865 		struct cpufreq_policy policy;
866 
867 		cpufreq_get_policy(&policy, cpu);
868 		index = cpufreq_table_find_index_c(&policy, policy.cur);
869 		powernv_cpufreq_target_index(&policy, index);
870 		cpumask_andnot(&mask, &mask, policy.cpus);
871 	}
872 out:
873 	put_online_cpus();
874 }
875 
876 static int powernv_cpufreq_occ_msg(struct notifier_block *nb,
877 				   unsigned long msg_type, void *_msg)
878 {
879 	struct opal_msg *msg = _msg;
880 	struct opal_occ_msg omsg;
881 	int i;
882 
883 	if (msg_type != OPAL_MSG_OCC)
884 		return 0;
885 
886 	omsg.type = be64_to_cpu(msg->params[0]);
887 
888 	switch (omsg.type) {
889 	case OCC_RESET:
890 		occ_reset = true;
891 		pr_info("OCC (On Chip Controller - enforces hard thermal/power limits) Resetting\n");
892 		/*
893 		 * powernv_cpufreq_throttle_check() is called in
894 		 * target() callback which can detect the throttle state
895 		 * for governors like ondemand.
896 		 * But static governors will not call target() often thus
897 		 * report throttling here.
898 		 */
899 		if (!throttled) {
900 			throttled = true;
901 			pr_warn("CPU frequency is throttled for duration\n");
902 		}
903 
904 		break;
905 	case OCC_LOAD:
906 		pr_info("OCC Loading, CPU frequency is throttled until OCC is started\n");
907 		break;
908 	case OCC_THROTTLE:
909 		omsg.chip = be64_to_cpu(msg->params[1]);
910 		omsg.throttle_status = be64_to_cpu(msg->params[2]);
911 
912 		if (occ_reset) {
913 			occ_reset = false;
914 			throttled = false;
915 			pr_info("OCC Active, CPU frequency is no longer throttled\n");
916 
917 			for (i = 0; i < nr_chips; i++) {
918 				chips[i].restore = true;
919 				schedule_work(&chips[i].throttle);
920 			}
921 
922 			return 0;
923 		}
924 
925 		for (i = 0; i < nr_chips; i++)
926 			if (chips[i].id == omsg.chip)
927 				break;
928 
929 		if (omsg.throttle_status >= 0 &&
930 		    omsg.throttle_status <= OCC_MAX_THROTTLE_STATUS) {
931 			chips[i].throttle_reason = omsg.throttle_status;
932 			chips[i].reason[omsg.throttle_status]++;
933 		}
934 
935 		if (!omsg.throttle_status)
936 			chips[i].restore = true;
937 
938 		schedule_work(&chips[i].throttle);
939 	}
940 	return 0;
941 }
942 
943 static struct notifier_block powernv_cpufreq_opal_nb = {
944 	.notifier_call	= powernv_cpufreq_occ_msg,
945 	.next		= NULL,
946 	.priority	= 0,
947 };
948 
949 static void powernv_cpufreq_stop_cpu(struct cpufreq_policy *policy)
950 {
951 	struct powernv_smp_call_data freq_data;
952 	struct global_pstate_info *gpstates = policy->driver_data;
953 
954 	freq_data.pstate_id = idx_to_pstate(powernv_pstate_info.min);
955 	freq_data.gpstate_id = idx_to_pstate(powernv_pstate_info.min);
956 	smp_call_function_single(policy->cpu, set_pstate, &freq_data, 1);
957 	del_timer_sync(&gpstates->timer);
958 }
959 
960 static unsigned int powernv_fast_switch(struct cpufreq_policy *policy,
961 					unsigned int target_freq)
962 {
963 	int index;
964 	struct powernv_smp_call_data freq_data;
965 
966 	index = cpufreq_table_find_index_dl(policy, target_freq);
967 	freq_data.pstate_id = powernv_freqs[index].driver_data;
968 	freq_data.gpstate_id = powernv_freqs[index].driver_data;
969 	set_pstate(&freq_data);
970 
971 	return powernv_freqs[index].frequency;
972 }
973 
974 static struct cpufreq_driver powernv_cpufreq_driver = {
975 	.name		= "powernv-cpufreq",
976 	.flags		= CPUFREQ_CONST_LOOPS,
977 	.init		= powernv_cpufreq_cpu_init,
978 	.exit		= powernv_cpufreq_cpu_exit,
979 	.verify		= cpufreq_generic_frequency_table_verify,
980 	.target_index	= powernv_cpufreq_target_index,
981 	.fast_switch	= powernv_fast_switch,
982 	.get		= powernv_cpufreq_get,
983 	.stop_cpu	= powernv_cpufreq_stop_cpu,
984 	.attr		= powernv_cpu_freq_attr,
985 };
986 
987 static int init_chip_info(void)
988 {
989 	unsigned int chip[256];
990 	unsigned int cpu, i;
991 	unsigned int prev_chip_id = UINT_MAX;
992 
993 	for_each_possible_cpu(cpu) {
994 		unsigned int id = cpu_to_chip_id(cpu);
995 
996 		if (prev_chip_id != id) {
997 			prev_chip_id = id;
998 			chip[nr_chips++] = id;
999 		}
1000 	}
1001 
1002 	chips = kcalloc(nr_chips, sizeof(struct chip), GFP_KERNEL);
1003 	if (!chips)
1004 		return -ENOMEM;
1005 
1006 	for (i = 0; i < nr_chips; i++) {
1007 		chips[i].id = chip[i];
1008 		cpumask_copy(&chips[i].mask, cpumask_of_node(chip[i]));
1009 		INIT_WORK(&chips[i].throttle, powernv_cpufreq_work_fn);
1010 		for_each_cpu(cpu, &chips[i].mask)
1011 			per_cpu(chip_info, cpu) =  &chips[i];
1012 	}
1013 
1014 	return 0;
1015 }
1016 
1017 static inline void clean_chip_info(void)
1018 {
1019 	kfree(chips);
1020 }
1021 
1022 static inline void unregister_all_notifiers(void)
1023 {
1024 	opal_message_notifier_unregister(OPAL_MSG_OCC,
1025 					 &powernv_cpufreq_opal_nb);
1026 	unregister_reboot_notifier(&powernv_cpufreq_reboot_nb);
1027 }
1028 
1029 static int __init powernv_cpufreq_init(void)
1030 {
1031 	int rc = 0;
1032 
1033 	/* Don't probe on pseries (guest) platforms */
1034 	if (!firmware_has_feature(FW_FEATURE_OPAL))
1035 		return -ENODEV;
1036 
1037 	/* Discover pstates from device tree and init */
1038 	rc = init_powernv_pstates();
1039 	if (rc)
1040 		goto out;
1041 
1042 	/* Populate chip info */
1043 	rc = init_chip_info();
1044 	if (rc)
1045 		goto out;
1046 
1047 	register_reboot_notifier(&powernv_cpufreq_reboot_nb);
1048 	opal_message_notifier_register(OPAL_MSG_OCC, &powernv_cpufreq_opal_nb);
1049 
1050 	if (powernv_pstate_info.wof_enabled)
1051 		powernv_cpufreq_driver.boost_enabled = true;
1052 	else
1053 		powernv_cpu_freq_attr[SCALING_BOOST_FREQS_ATTR_INDEX] = NULL;
1054 
1055 	rc = cpufreq_register_driver(&powernv_cpufreq_driver);
1056 	if (rc) {
1057 		pr_info("Failed to register the cpufreq driver (%d)\n", rc);
1058 		goto cleanup_notifiers;
1059 	}
1060 
1061 	if (powernv_pstate_info.wof_enabled)
1062 		cpufreq_enable_boost_support();
1063 
1064 	return 0;
1065 cleanup_notifiers:
1066 	unregister_all_notifiers();
1067 	clean_chip_info();
1068 out:
1069 	pr_info("Platform driver disabled. System does not support PState control\n");
1070 	return rc;
1071 }
1072 module_init(powernv_cpufreq_init);
1073 
1074 static void __exit powernv_cpufreq_exit(void)
1075 {
1076 	cpufreq_unregister_driver(&powernv_cpufreq_driver);
1077 	unregister_all_notifiers();
1078 	clean_chip_info();
1079 }
1080 module_exit(powernv_cpufreq_exit);
1081 
1082 MODULE_LICENSE("GPL");
1083 MODULE_AUTHOR("Vaidyanathan Srinivasan <svaidy at linux.vnet.ibm.com>");
1084