1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * POWERNV cpufreq driver for the IBM POWER processors 4 * 5 * (C) Copyright IBM 2014 6 * 7 * Author: Vaidyanathan Srinivasan <svaidy at linux.vnet.ibm.com> 8 */ 9 10 #define pr_fmt(fmt) "powernv-cpufreq: " fmt 11 12 #include <linux/kernel.h> 13 #include <linux/sysfs.h> 14 #include <linux/cpumask.h> 15 #include <linux/module.h> 16 #include <linux/cpufreq.h> 17 #include <linux/smp.h> 18 #include <linux/of.h> 19 #include <linux/reboot.h> 20 #include <linux/slab.h> 21 #include <linux/cpu.h> 22 #include <linux/hashtable.h> 23 #include <trace/events/power.h> 24 25 #include <asm/cputhreads.h> 26 #include <asm/firmware.h> 27 #include <asm/reg.h> 28 #include <asm/smp.h> /* Required for cpu_sibling_mask() in UP configs */ 29 #include <asm/opal.h> 30 #include <linux/timer.h> 31 32 #define POWERNV_MAX_PSTATES_ORDER 8 33 #define POWERNV_MAX_PSTATES (1UL << (POWERNV_MAX_PSTATES_ORDER)) 34 #define PMSR_PSAFE_ENABLE (1UL << 30) 35 #define PMSR_SPR_EM_DISABLE (1UL << 31) 36 #define MAX_PSTATE_SHIFT 32 37 #define LPSTATE_SHIFT 48 38 #define GPSTATE_SHIFT 56 39 #define MAX_NR_CHIPS 32 40 41 #define MAX_RAMP_DOWN_TIME 5120 42 /* 43 * On an idle system we want the global pstate to ramp-down from max value to 44 * min over a span of ~5 secs. Also we want it to initially ramp-down slowly and 45 * then ramp-down rapidly later on. 46 * 47 * This gives a percentage rampdown for time elapsed in milliseconds. 48 * ramp_down_percentage = ((ms * ms) >> 18) 49 * ~= 3.8 * (sec * sec) 50 * 51 * At 0 ms ramp_down_percent = 0 52 * At 5120 ms ramp_down_percent = 100 53 */ 54 #define ramp_down_percent(time) ((time * time) >> 18) 55 56 /* Interval after which the timer is queued to bring down global pstate */ 57 #define GPSTATE_TIMER_INTERVAL 2000 58 59 /** 60 * struct global_pstate_info - Per policy data structure to maintain history of 61 * global pstates 62 * @highest_lpstate_idx: The local pstate index from which we are 63 * ramping down 64 * @elapsed_time: Time in ms spent in ramping down from 65 * highest_lpstate_idx 66 * @last_sampled_time: Time from boot in ms when global pstates were 67 * last set 68 * @last_lpstate_idx: Last set value of local pstate and global 69 * @last_gpstate_idx: pstate in terms of cpufreq table index 70 * @timer: Is used for ramping down if cpu goes idle for 71 * a long time with global pstate held high 72 * @gpstate_lock: A spinlock to maintain synchronization between 73 * routines called by the timer handler and 74 * governer's target_index calls 75 * @policy: Associated CPUFreq policy 76 */ 77 struct global_pstate_info { 78 int highest_lpstate_idx; 79 unsigned int elapsed_time; 80 unsigned int last_sampled_time; 81 int last_lpstate_idx; 82 int last_gpstate_idx; 83 spinlock_t gpstate_lock; 84 struct timer_list timer; 85 struct cpufreq_policy *policy; 86 }; 87 88 static struct cpufreq_frequency_table powernv_freqs[POWERNV_MAX_PSTATES+1]; 89 90 static DEFINE_HASHTABLE(pstate_revmap, POWERNV_MAX_PSTATES_ORDER); 91 /** 92 * struct pstate_idx_revmap_data: Entry in the hashmap pstate_revmap 93 * indexed by a function of pstate id. 94 * 95 * @pstate_id: pstate id for this entry. 96 * 97 * @cpufreq_table_idx: Index into the powernv_freqs 98 * cpufreq_frequency_table for frequency 99 * corresponding to pstate_id. 100 * 101 * @hentry: hlist_node that hooks this entry into the pstate_revmap 102 * hashtable 103 */ 104 struct pstate_idx_revmap_data { 105 u8 pstate_id; 106 unsigned int cpufreq_table_idx; 107 struct hlist_node hentry; 108 }; 109 110 static bool rebooting, throttled, occ_reset; 111 112 static const char * const throttle_reason[] = { 113 "No throttling", 114 "Power Cap", 115 "Processor Over Temperature", 116 "Power Supply Failure", 117 "Over Current", 118 "OCC Reset" 119 }; 120 121 enum throttle_reason_type { 122 NO_THROTTLE = 0, 123 POWERCAP, 124 CPU_OVERTEMP, 125 POWER_SUPPLY_FAILURE, 126 OVERCURRENT, 127 OCC_RESET_THROTTLE, 128 OCC_MAX_REASON 129 }; 130 131 static struct chip { 132 unsigned int id; 133 bool throttled; 134 bool restore; 135 u8 throttle_reason; 136 cpumask_t mask; 137 struct work_struct throttle; 138 int throttle_turbo; 139 int throttle_sub_turbo; 140 int reason[OCC_MAX_REASON]; 141 } *chips; 142 143 static int nr_chips; 144 static DEFINE_PER_CPU(struct chip *, chip_info); 145 146 /* 147 * Note: 148 * The set of pstates consists of contiguous integers. 149 * powernv_pstate_info stores the index of the frequency table for 150 * max, min and nominal frequencies. It also stores number of 151 * available frequencies. 152 * 153 * powernv_pstate_info.nominal indicates the index to the highest 154 * non-turbo frequency. 155 */ 156 static struct powernv_pstate_info { 157 unsigned int min; 158 unsigned int max; 159 unsigned int nominal; 160 unsigned int nr_pstates; 161 bool wof_enabled; 162 } powernv_pstate_info; 163 164 static inline u8 extract_pstate(u64 pmsr_val, unsigned int shift) 165 { 166 return ((pmsr_val >> shift) & 0xFF); 167 } 168 169 #define extract_local_pstate(x) extract_pstate(x, LPSTATE_SHIFT) 170 #define extract_global_pstate(x) extract_pstate(x, GPSTATE_SHIFT) 171 #define extract_max_pstate(x) extract_pstate(x, MAX_PSTATE_SHIFT) 172 173 /* Use following functions for conversions between pstate_id and index */ 174 175 /* 176 * idx_to_pstate : Returns the pstate id corresponding to the 177 * frequency in the cpufreq frequency table 178 * powernv_freqs indexed by @i. 179 * 180 * If @i is out of bound, this will return the pstate 181 * corresponding to the nominal frequency. 182 */ 183 static inline u8 idx_to_pstate(unsigned int i) 184 { 185 if (unlikely(i >= powernv_pstate_info.nr_pstates)) { 186 pr_warn_once("idx_to_pstate: index %u is out of bound\n", i); 187 return powernv_freqs[powernv_pstate_info.nominal].driver_data; 188 } 189 190 return powernv_freqs[i].driver_data; 191 } 192 193 /* 194 * pstate_to_idx : Returns the index in the cpufreq frequencytable 195 * powernv_freqs for the frequency whose corresponding 196 * pstate id is @pstate. 197 * 198 * If no frequency corresponding to @pstate is found, 199 * this will return the index of the nominal 200 * frequency. 201 */ 202 static unsigned int pstate_to_idx(u8 pstate) 203 { 204 unsigned int key = pstate % POWERNV_MAX_PSTATES; 205 struct pstate_idx_revmap_data *revmap_data; 206 207 hash_for_each_possible(pstate_revmap, revmap_data, hentry, key) { 208 if (revmap_data->pstate_id == pstate) 209 return revmap_data->cpufreq_table_idx; 210 } 211 212 pr_warn_once("pstate_to_idx: pstate 0x%x not found\n", pstate); 213 return powernv_pstate_info.nominal; 214 } 215 216 static inline void reset_gpstates(struct cpufreq_policy *policy) 217 { 218 struct global_pstate_info *gpstates = policy->driver_data; 219 220 gpstates->highest_lpstate_idx = 0; 221 gpstates->elapsed_time = 0; 222 gpstates->last_sampled_time = 0; 223 gpstates->last_lpstate_idx = 0; 224 gpstates->last_gpstate_idx = 0; 225 } 226 227 /* 228 * Initialize the freq table based on data obtained 229 * from the firmware passed via device-tree 230 */ 231 static int init_powernv_pstates(void) 232 { 233 struct device_node *power_mgt; 234 int i, nr_pstates = 0; 235 const __be32 *pstate_ids, *pstate_freqs; 236 u32 len_ids, len_freqs; 237 u32 pstate_min, pstate_max, pstate_nominal; 238 u32 pstate_turbo, pstate_ultra_turbo; 239 int rc = -ENODEV; 240 241 power_mgt = of_find_node_by_path("/ibm,opal/power-mgt"); 242 if (!power_mgt) { 243 pr_warn("power-mgt node not found\n"); 244 return -ENODEV; 245 } 246 247 if (of_property_read_u32(power_mgt, "ibm,pstate-min", &pstate_min)) { 248 pr_warn("ibm,pstate-min node not found\n"); 249 goto out; 250 } 251 252 if (of_property_read_u32(power_mgt, "ibm,pstate-max", &pstate_max)) { 253 pr_warn("ibm,pstate-max node not found\n"); 254 goto out; 255 } 256 257 if (of_property_read_u32(power_mgt, "ibm,pstate-nominal", 258 &pstate_nominal)) { 259 pr_warn("ibm,pstate-nominal not found\n"); 260 goto out; 261 } 262 263 if (of_property_read_u32(power_mgt, "ibm,pstate-ultra-turbo", 264 &pstate_ultra_turbo)) { 265 powernv_pstate_info.wof_enabled = false; 266 goto next; 267 } 268 269 if (of_property_read_u32(power_mgt, "ibm,pstate-turbo", 270 &pstate_turbo)) { 271 powernv_pstate_info.wof_enabled = false; 272 goto next; 273 } 274 275 if (pstate_turbo == pstate_ultra_turbo) 276 powernv_pstate_info.wof_enabled = false; 277 else 278 powernv_pstate_info.wof_enabled = true; 279 280 next: 281 pr_info("cpufreq pstate min 0x%x nominal 0x%x max 0x%x\n", pstate_min, 282 pstate_nominal, pstate_max); 283 pr_info("Workload Optimized Frequency is %s in the platform\n", 284 (powernv_pstate_info.wof_enabled) ? "enabled" : "disabled"); 285 286 pstate_ids = of_get_property(power_mgt, "ibm,pstate-ids", &len_ids); 287 if (!pstate_ids) { 288 pr_warn("ibm,pstate-ids not found\n"); 289 goto out; 290 } 291 292 pstate_freqs = of_get_property(power_mgt, "ibm,pstate-frequencies-mhz", 293 &len_freqs); 294 if (!pstate_freqs) { 295 pr_warn("ibm,pstate-frequencies-mhz not found\n"); 296 goto out; 297 } 298 299 if (len_ids != len_freqs) { 300 pr_warn("Entries in ibm,pstate-ids and " 301 "ibm,pstate-frequencies-mhz does not match\n"); 302 } 303 304 nr_pstates = min(len_ids, len_freqs) / sizeof(u32); 305 if (!nr_pstates) { 306 pr_warn("No PStates found\n"); 307 goto out; 308 } 309 310 powernv_pstate_info.nr_pstates = nr_pstates; 311 pr_debug("NR PStates %d\n", nr_pstates); 312 313 for (i = 0; i < nr_pstates; i++) { 314 u32 id = be32_to_cpu(pstate_ids[i]); 315 u32 freq = be32_to_cpu(pstate_freqs[i]); 316 struct pstate_idx_revmap_data *revmap_data; 317 unsigned int key; 318 319 pr_debug("PState id %d freq %d MHz\n", id, freq); 320 powernv_freqs[i].frequency = freq * 1000; /* kHz */ 321 powernv_freqs[i].driver_data = id & 0xFF; 322 323 revmap_data = kmalloc(sizeof(*revmap_data), GFP_KERNEL); 324 if (!revmap_data) { 325 rc = -ENOMEM; 326 goto out; 327 } 328 329 revmap_data->pstate_id = id & 0xFF; 330 revmap_data->cpufreq_table_idx = i; 331 key = (revmap_data->pstate_id) % POWERNV_MAX_PSTATES; 332 hash_add(pstate_revmap, &revmap_data->hentry, key); 333 334 if (id == pstate_max) 335 powernv_pstate_info.max = i; 336 if (id == pstate_nominal) 337 powernv_pstate_info.nominal = i; 338 if (id == pstate_min) 339 powernv_pstate_info.min = i; 340 341 if (powernv_pstate_info.wof_enabled && id == pstate_turbo) { 342 int j; 343 344 for (j = i - 1; j >= (int)powernv_pstate_info.max; j--) 345 powernv_freqs[j].flags = CPUFREQ_BOOST_FREQ; 346 } 347 } 348 349 /* End of list marker entry */ 350 powernv_freqs[i].frequency = CPUFREQ_TABLE_END; 351 352 of_node_put(power_mgt); 353 return 0; 354 out: 355 of_node_put(power_mgt); 356 return rc; 357 } 358 359 /* Returns the CPU frequency corresponding to the pstate_id. */ 360 static unsigned int pstate_id_to_freq(u8 pstate_id) 361 { 362 int i; 363 364 i = pstate_to_idx(pstate_id); 365 if (i >= powernv_pstate_info.nr_pstates || i < 0) { 366 pr_warn("PState id 0x%x outside of PState table, reporting nominal id 0x%x instead\n", 367 pstate_id, idx_to_pstate(powernv_pstate_info.nominal)); 368 i = powernv_pstate_info.nominal; 369 } 370 371 return powernv_freqs[i].frequency; 372 } 373 374 /* 375 * cpuinfo_nominal_freq_show - Show the nominal CPU frequency as indicated by 376 * the firmware 377 */ 378 static ssize_t cpuinfo_nominal_freq_show(struct cpufreq_policy *policy, 379 char *buf) 380 { 381 return sprintf(buf, "%u\n", 382 powernv_freqs[powernv_pstate_info.nominal].frequency); 383 } 384 385 static struct freq_attr cpufreq_freq_attr_cpuinfo_nominal_freq = 386 __ATTR_RO(cpuinfo_nominal_freq); 387 388 #define SCALING_BOOST_FREQS_ATTR_INDEX 2 389 390 static struct freq_attr *powernv_cpu_freq_attr[] = { 391 &cpufreq_freq_attr_scaling_available_freqs, 392 &cpufreq_freq_attr_cpuinfo_nominal_freq, 393 &cpufreq_freq_attr_scaling_boost_freqs, 394 NULL, 395 }; 396 397 #define throttle_attr(name, member) \ 398 static ssize_t name##_show(struct cpufreq_policy *policy, char *buf) \ 399 { \ 400 struct chip *chip = per_cpu(chip_info, policy->cpu); \ 401 \ 402 return sprintf(buf, "%u\n", chip->member); \ 403 } \ 404 \ 405 static struct freq_attr throttle_attr_##name = __ATTR_RO(name) \ 406 407 throttle_attr(unthrottle, reason[NO_THROTTLE]); 408 throttle_attr(powercap, reason[POWERCAP]); 409 throttle_attr(overtemp, reason[CPU_OVERTEMP]); 410 throttle_attr(supply_fault, reason[POWER_SUPPLY_FAILURE]); 411 throttle_attr(overcurrent, reason[OVERCURRENT]); 412 throttle_attr(occ_reset, reason[OCC_RESET_THROTTLE]); 413 throttle_attr(turbo_stat, throttle_turbo); 414 throttle_attr(sub_turbo_stat, throttle_sub_turbo); 415 416 static struct attribute *throttle_attrs[] = { 417 &throttle_attr_unthrottle.attr, 418 &throttle_attr_powercap.attr, 419 &throttle_attr_overtemp.attr, 420 &throttle_attr_supply_fault.attr, 421 &throttle_attr_overcurrent.attr, 422 &throttle_attr_occ_reset.attr, 423 &throttle_attr_turbo_stat.attr, 424 &throttle_attr_sub_turbo_stat.attr, 425 NULL, 426 }; 427 428 static const struct attribute_group throttle_attr_grp = { 429 .name = "throttle_stats", 430 .attrs = throttle_attrs, 431 }; 432 433 /* Helper routines */ 434 435 /* Access helpers to power mgt SPR */ 436 437 static inline unsigned long get_pmspr(unsigned long sprn) 438 { 439 switch (sprn) { 440 case SPRN_PMCR: 441 return mfspr(SPRN_PMCR); 442 443 case SPRN_PMICR: 444 return mfspr(SPRN_PMICR); 445 446 case SPRN_PMSR: 447 return mfspr(SPRN_PMSR); 448 } 449 BUG(); 450 } 451 452 static inline void set_pmspr(unsigned long sprn, unsigned long val) 453 { 454 switch (sprn) { 455 case SPRN_PMCR: 456 mtspr(SPRN_PMCR, val); 457 return; 458 459 case SPRN_PMICR: 460 mtspr(SPRN_PMICR, val); 461 return; 462 } 463 BUG(); 464 } 465 466 /* 467 * Use objects of this type to query/update 468 * pstates on a remote CPU via smp_call_function. 469 */ 470 struct powernv_smp_call_data { 471 unsigned int freq; 472 u8 pstate_id; 473 u8 gpstate_id; 474 }; 475 476 /* 477 * powernv_read_cpu_freq: Reads the current frequency on this CPU. 478 * 479 * Called via smp_call_function. 480 * 481 * Note: The caller of the smp_call_function should pass an argument of 482 * the type 'struct powernv_smp_call_data *' along with this function. 483 * 484 * The current frequency on this CPU will be returned via 485 * ((struct powernv_smp_call_data *)arg)->freq; 486 */ 487 static void powernv_read_cpu_freq(void *arg) 488 { 489 unsigned long pmspr_val; 490 struct powernv_smp_call_data *freq_data = arg; 491 492 pmspr_val = get_pmspr(SPRN_PMSR); 493 freq_data->pstate_id = extract_local_pstate(pmspr_val); 494 freq_data->freq = pstate_id_to_freq(freq_data->pstate_id); 495 496 pr_debug("cpu %d pmsr %016lX pstate_id 0x%x frequency %d kHz\n", 497 raw_smp_processor_id(), pmspr_val, freq_data->pstate_id, 498 freq_data->freq); 499 } 500 501 /* 502 * powernv_cpufreq_get: Returns the CPU frequency as reported by the 503 * firmware for CPU 'cpu'. This value is reported through the sysfs 504 * file cpuinfo_cur_freq. 505 */ 506 static unsigned int powernv_cpufreq_get(unsigned int cpu) 507 { 508 struct powernv_smp_call_data freq_data; 509 510 smp_call_function_any(cpu_sibling_mask(cpu), powernv_read_cpu_freq, 511 &freq_data, 1); 512 513 return freq_data.freq; 514 } 515 516 /* 517 * set_pstate: Sets the pstate on this CPU. 518 * 519 * This is called via an smp_call_function. 520 * 521 * The caller must ensure that freq_data is of the type 522 * (struct powernv_smp_call_data *) and the pstate_id which needs to be set 523 * on this CPU should be present in freq_data->pstate_id. 524 */ 525 static void set_pstate(void *data) 526 { 527 unsigned long val; 528 struct powernv_smp_call_data *freq_data = data; 529 unsigned long pstate_ul = freq_data->pstate_id; 530 unsigned long gpstate_ul = freq_data->gpstate_id; 531 532 val = get_pmspr(SPRN_PMCR); 533 val = val & 0x0000FFFFFFFFFFFFULL; 534 535 pstate_ul = pstate_ul & 0xFF; 536 gpstate_ul = gpstate_ul & 0xFF; 537 538 /* Set both global(bits 56..63) and local(bits 48..55) PStates */ 539 val = val | (gpstate_ul << 56) | (pstate_ul << 48); 540 541 pr_debug("Setting cpu %d pmcr to %016lX\n", 542 raw_smp_processor_id(), val); 543 set_pmspr(SPRN_PMCR, val); 544 } 545 546 /* 547 * get_nominal_index: Returns the index corresponding to the nominal 548 * pstate in the cpufreq table 549 */ 550 static inline unsigned int get_nominal_index(void) 551 { 552 return powernv_pstate_info.nominal; 553 } 554 555 static void powernv_cpufreq_throttle_check(void *data) 556 { 557 struct chip *chip; 558 unsigned int cpu = smp_processor_id(); 559 unsigned long pmsr; 560 u8 pmsr_pmax; 561 unsigned int pmsr_pmax_idx; 562 563 pmsr = get_pmspr(SPRN_PMSR); 564 chip = this_cpu_read(chip_info); 565 566 /* Check for Pmax Capping */ 567 pmsr_pmax = extract_max_pstate(pmsr); 568 pmsr_pmax_idx = pstate_to_idx(pmsr_pmax); 569 if (pmsr_pmax_idx != powernv_pstate_info.max) { 570 if (chip->throttled) 571 goto next; 572 chip->throttled = true; 573 if (pmsr_pmax_idx > powernv_pstate_info.nominal) { 574 pr_warn_once("CPU %d on Chip %u has Pmax(0x%x) reduced below that of nominal frequency(0x%x)\n", 575 cpu, chip->id, pmsr_pmax, 576 idx_to_pstate(powernv_pstate_info.nominal)); 577 chip->throttle_sub_turbo++; 578 } else { 579 chip->throttle_turbo++; 580 } 581 trace_powernv_throttle(chip->id, 582 throttle_reason[chip->throttle_reason], 583 pmsr_pmax); 584 } else if (chip->throttled) { 585 chip->throttled = false; 586 trace_powernv_throttle(chip->id, 587 throttle_reason[chip->throttle_reason], 588 pmsr_pmax); 589 } 590 591 /* Check if Psafe_mode_active is set in PMSR. */ 592 next: 593 if (pmsr & PMSR_PSAFE_ENABLE) { 594 throttled = true; 595 pr_info("Pstate set to safe frequency\n"); 596 } 597 598 /* Check if SPR_EM_DISABLE is set in PMSR */ 599 if (pmsr & PMSR_SPR_EM_DISABLE) { 600 throttled = true; 601 pr_info("Frequency Control disabled from OS\n"); 602 } 603 604 if (throttled) { 605 pr_info("PMSR = %16lx\n", pmsr); 606 pr_warn("CPU Frequency could be throttled\n"); 607 } 608 } 609 610 /** 611 * calc_global_pstate - Calculate global pstate 612 * @elapsed_time: Elapsed time in milliseconds 613 * @local_pstate_idx: New local pstate 614 * @highest_lpstate_idx: pstate from which its ramping down 615 * 616 * Finds the appropriate global pstate based on the pstate from which its 617 * ramping down and the time elapsed in ramping down. It follows a quadratic 618 * equation which ensures that it reaches ramping down to pmin in 5sec. 619 */ 620 static inline int calc_global_pstate(unsigned int elapsed_time, 621 int highest_lpstate_idx, 622 int local_pstate_idx) 623 { 624 int index_diff; 625 626 /* 627 * Using ramp_down_percent we get the percentage of rampdown 628 * that we are expecting to be dropping. Difference between 629 * highest_lpstate_idx and powernv_pstate_info.min will give a absolute 630 * number of how many pstates we will drop eventually by the end of 631 * 5 seconds, then just scale it get the number pstates to be dropped. 632 */ 633 index_diff = ((int)ramp_down_percent(elapsed_time) * 634 (powernv_pstate_info.min - highest_lpstate_idx)) / 100; 635 636 /* Ensure that global pstate is >= to local pstate */ 637 if (highest_lpstate_idx + index_diff >= local_pstate_idx) 638 return local_pstate_idx; 639 else 640 return highest_lpstate_idx + index_diff; 641 } 642 643 static inline void queue_gpstate_timer(struct global_pstate_info *gpstates) 644 { 645 unsigned int timer_interval; 646 647 /* 648 * Setting up timer to fire after GPSTATE_TIMER_INTERVAL ms, But 649 * if it exceeds MAX_RAMP_DOWN_TIME ms for ramp down time. 650 * Set timer such that it fires exactly at MAX_RAMP_DOWN_TIME 651 * seconds of ramp down time. 652 */ 653 if ((gpstates->elapsed_time + GPSTATE_TIMER_INTERVAL) 654 > MAX_RAMP_DOWN_TIME) 655 timer_interval = MAX_RAMP_DOWN_TIME - gpstates->elapsed_time; 656 else 657 timer_interval = GPSTATE_TIMER_INTERVAL; 658 659 mod_timer(&gpstates->timer, jiffies + msecs_to_jiffies(timer_interval)); 660 } 661 662 /** 663 * gpstate_timer_handler 664 * 665 * @t: Timer context used to fetch global pstate info struct 666 * 667 * This handler brings down the global pstate closer to the local pstate 668 * according quadratic equation. Queues a new timer if it is still not equal 669 * to local pstate 670 */ 671 static void gpstate_timer_handler(struct timer_list *t) 672 { 673 struct global_pstate_info *gpstates = from_timer(gpstates, t, timer); 674 struct cpufreq_policy *policy = gpstates->policy; 675 int gpstate_idx, lpstate_idx; 676 unsigned long val; 677 unsigned int time_diff = jiffies_to_msecs(jiffies) 678 - gpstates->last_sampled_time; 679 struct powernv_smp_call_data freq_data; 680 681 if (!spin_trylock(&gpstates->gpstate_lock)) 682 return; 683 /* 684 * If the timer has migrated to the different cpu then bring 685 * it back to one of the policy->cpus 686 */ 687 if (!cpumask_test_cpu(raw_smp_processor_id(), policy->cpus)) { 688 gpstates->timer.expires = jiffies + msecs_to_jiffies(1); 689 add_timer_on(&gpstates->timer, cpumask_first(policy->cpus)); 690 spin_unlock(&gpstates->gpstate_lock); 691 return; 692 } 693 694 /* 695 * If PMCR was last updated was using fast_swtich then 696 * We may have wrong in gpstate->last_lpstate_idx 697 * value. Hence, read from PMCR to get correct data. 698 */ 699 val = get_pmspr(SPRN_PMCR); 700 freq_data.gpstate_id = extract_global_pstate(val); 701 freq_data.pstate_id = extract_local_pstate(val); 702 if (freq_data.gpstate_id == freq_data.pstate_id) { 703 reset_gpstates(policy); 704 spin_unlock(&gpstates->gpstate_lock); 705 return; 706 } 707 708 gpstates->last_sampled_time += time_diff; 709 gpstates->elapsed_time += time_diff; 710 711 if (gpstates->elapsed_time > MAX_RAMP_DOWN_TIME) { 712 gpstate_idx = pstate_to_idx(freq_data.pstate_id); 713 lpstate_idx = gpstate_idx; 714 reset_gpstates(policy); 715 gpstates->highest_lpstate_idx = gpstate_idx; 716 } else { 717 lpstate_idx = pstate_to_idx(freq_data.pstate_id); 718 gpstate_idx = calc_global_pstate(gpstates->elapsed_time, 719 gpstates->highest_lpstate_idx, 720 lpstate_idx); 721 } 722 freq_data.gpstate_id = idx_to_pstate(gpstate_idx); 723 gpstates->last_gpstate_idx = gpstate_idx; 724 gpstates->last_lpstate_idx = lpstate_idx; 725 /* 726 * If local pstate is equal to global pstate, rampdown is over 727 * So timer is not required to be queued. 728 */ 729 if (gpstate_idx != gpstates->last_lpstate_idx) 730 queue_gpstate_timer(gpstates); 731 732 set_pstate(&freq_data); 733 spin_unlock(&gpstates->gpstate_lock); 734 } 735 736 /* 737 * powernv_cpufreq_target_index: Sets the frequency corresponding to 738 * the cpufreq table entry indexed by new_index on the cpus in the 739 * mask policy->cpus 740 */ 741 static int powernv_cpufreq_target_index(struct cpufreq_policy *policy, 742 unsigned int new_index) 743 { 744 struct powernv_smp_call_data freq_data; 745 unsigned int cur_msec, gpstate_idx; 746 struct global_pstate_info *gpstates = policy->driver_data; 747 748 if (unlikely(rebooting) && new_index != get_nominal_index()) 749 return 0; 750 751 if (!throttled) { 752 /* we don't want to be preempted while 753 * checking if the CPU frequency has been throttled 754 */ 755 preempt_disable(); 756 powernv_cpufreq_throttle_check(NULL); 757 preempt_enable(); 758 } 759 760 cur_msec = jiffies_to_msecs(get_jiffies_64()); 761 762 freq_data.pstate_id = idx_to_pstate(new_index); 763 if (!gpstates) { 764 freq_data.gpstate_id = freq_data.pstate_id; 765 goto no_gpstate; 766 } 767 768 spin_lock(&gpstates->gpstate_lock); 769 770 if (!gpstates->last_sampled_time) { 771 gpstate_idx = new_index; 772 gpstates->highest_lpstate_idx = new_index; 773 goto gpstates_done; 774 } 775 776 if (gpstates->last_gpstate_idx < new_index) { 777 gpstates->elapsed_time += cur_msec - 778 gpstates->last_sampled_time; 779 780 /* 781 * If its has been ramping down for more than MAX_RAMP_DOWN_TIME 782 * we should be resetting all global pstate related data. Set it 783 * equal to local pstate to start fresh. 784 */ 785 if (gpstates->elapsed_time > MAX_RAMP_DOWN_TIME) { 786 reset_gpstates(policy); 787 gpstates->highest_lpstate_idx = new_index; 788 gpstate_idx = new_index; 789 } else { 790 /* Elaspsed_time is less than 5 seconds, continue to rampdown */ 791 gpstate_idx = calc_global_pstate(gpstates->elapsed_time, 792 gpstates->highest_lpstate_idx, 793 new_index); 794 } 795 } else { 796 reset_gpstates(policy); 797 gpstates->highest_lpstate_idx = new_index; 798 gpstate_idx = new_index; 799 } 800 801 /* 802 * If local pstate is equal to global pstate, rampdown is over 803 * So timer is not required to be queued. 804 */ 805 if (gpstate_idx != new_index) 806 queue_gpstate_timer(gpstates); 807 else 808 del_timer_sync(&gpstates->timer); 809 810 gpstates_done: 811 freq_data.gpstate_id = idx_to_pstate(gpstate_idx); 812 gpstates->last_sampled_time = cur_msec; 813 gpstates->last_gpstate_idx = gpstate_idx; 814 gpstates->last_lpstate_idx = new_index; 815 816 spin_unlock(&gpstates->gpstate_lock); 817 818 no_gpstate: 819 /* 820 * Use smp_call_function to send IPI and execute the 821 * mtspr on target CPU. We could do that without IPI 822 * if current CPU is within policy->cpus (core) 823 */ 824 smp_call_function_any(policy->cpus, set_pstate, &freq_data, 1); 825 return 0; 826 } 827 828 static int powernv_cpufreq_cpu_init(struct cpufreq_policy *policy) 829 { 830 int base, i; 831 struct kernfs_node *kn; 832 struct global_pstate_info *gpstates; 833 834 base = cpu_first_thread_sibling(policy->cpu); 835 836 for (i = 0; i < threads_per_core; i++) 837 cpumask_set_cpu(base + i, policy->cpus); 838 839 kn = kernfs_find_and_get(policy->kobj.sd, throttle_attr_grp.name); 840 if (!kn) { 841 int ret; 842 843 ret = sysfs_create_group(&policy->kobj, &throttle_attr_grp); 844 if (ret) { 845 pr_info("Failed to create throttle stats directory for cpu %d\n", 846 policy->cpu); 847 return ret; 848 } 849 } else { 850 kernfs_put(kn); 851 } 852 853 policy->freq_table = powernv_freqs; 854 policy->fast_switch_possible = true; 855 856 if (pvr_version_is(PVR_POWER9)) 857 return 0; 858 859 /* Initialise Gpstate ramp-down timer only on POWER8 */ 860 gpstates = kzalloc(sizeof(*gpstates), GFP_KERNEL); 861 if (!gpstates) 862 return -ENOMEM; 863 864 policy->driver_data = gpstates; 865 866 /* initialize timer */ 867 gpstates->policy = policy; 868 timer_setup(&gpstates->timer, gpstate_timer_handler, 869 TIMER_PINNED | TIMER_DEFERRABLE); 870 gpstates->timer.expires = jiffies + 871 msecs_to_jiffies(GPSTATE_TIMER_INTERVAL); 872 spin_lock_init(&gpstates->gpstate_lock); 873 874 return 0; 875 } 876 877 static int powernv_cpufreq_cpu_exit(struct cpufreq_policy *policy) 878 { 879 struct powernv_smp_call_data freq_data; 880 struct global_pstate_info *gpstates = policy->driver_data; 881 882 freq_data.pstate_id = idx_to_pstate(powernv_pstate_info.min); 883 freq_data.gpstate_id = idx_to_pstate(powernv_pstate_info.min); 884 smp_call_function_single(policy->cpu, set_pstate, &freq_data, 1); 885 if (gpstates) 886 del_timer_sync(&gpstates->timer); 887 888 kfree(policy->driver_data); 889 890 return 0; 891 } 892 893 static int powernv_cpufreq_reboot_notifier(struct notifier_block *nb, 894 unsigned long action, void *unused) 895 { 896 int cpu; 897 struct cpufreq_policy *cpu_policy; 898 899 rebooting = true; 900 for_each_online_cpu(cpu) { 901 cpu_policy = cpufreq_cpu_get(cpu); 902 if (!cpu_policy) 903 continue; 904 powernv_cpufreq_target_index(cpu_policy, get_nominal_index()); 905 cpufreq_cpu_put(cpu_policy); 906 } 907 908 return NOTIFY_DONE; 909 } 910 911 static struct notifier_block powernv_cpufreq_reboot_nb = { 912 .notifier_call = powernv_cpufreq_reboot_notifier, 913 }; 914 915 static void powernv_cpufreq_work_fn(struct work_struct *work) 916 { 917 struct chip *chip = container_of(work, struct chip, throttle); 918 struct cpufreq_policy *policy; 919 unsigned int cpu; 920 cpumask_t mask; 921 922 cpus_read_lock(); 923 cpumask_and(&mask, &chip->mask, cpu_online_mask); 924 smp_call_function_any(&mask, 925 powernv_cpufreq_throttle_check, NULL, 0); 926 927 if (!chip->restore) 928 goto out; 929 930 chip->restore = false; 931 for_each_cpu(cpu, &mask) { 932 int index; 933 934 policy = cpufreq_cpu_get(cpu); 935 if (!policy) 936 continue; 937 index = cpufreq_table_find_index_c(policy, policy->cur, false); 938 powernv_cpufreq_target_index(policy, index); 939 cpumask_andnot(&mask, &mask, policy->cpus); 940 cpufreq_cpu_put(policy); 941 } 942 out: 943 cpus_read_unlock(); 944 } 945 946 static int powernv_cpufreq_occ_msg(struct notifier_block *nb, 947 unsigned long msg_type, void *_msg) 948 { 949 struct opal_msg *msg = _msg; 950 struct opal_occ_msg omsg; 951 int i; 952 953 if (msg_type != OPAL_MSG_OCC) 954 return 0; 955 956 omsg.type = be64_to_cpu(msg->params[0]); 957 958 switch (omsg.type) { 959 case OCC_RESET: 960 occ_reset = true; 961 pr_info("OCC (On Chip Controller - enforces hard thermal/power limits) Resetting\n"); 962 /* 963 * powernv_cpufreq_throttle_check() is called in 964 * target() callback which can detect the throttle state 965 * for governors like ondemand. 966 * But static governors will not call target() often thus 967 * report throttling here. 968 */ 969 if (!throttled) { 970 throttled = true; 971 pr_warn("CPU frequency is throttled for duration\n"); 972 } 973 974 break; 975 case OCC_LOAD: 976 pr_info("OCC Loading, CPU frequency is throttled until OCC is started\n"); 977 break; 978 case OCC_THROTTLE: 979 omsg.chip = be64_to_cpu(msg->params[1]); 980 omsg.throttle_status = be64_to_cpu(msg->params[2]); 981 982 if (occ_reset) { 983 occ_reset = false; 984 throttled = false; 985 pr_info("OCC Active, CPU frequency is no longer throttled\n"); 986 987 for (i = 0; i < nr_chips; i++) { 988 chips[i].restore = true; 989 schedule_work(&chips[i].throttle); 990 } 991 992 return 0; 993 } 994 995 for (i = 0; i < nr_chips; i++) 996 if (chips[i].id == omsg.chip) 997 break; 998 999 if (omsg.throttle_status >= 0 && 1000 omsg.throttle_status <= OCC_MAX_THROTTLE_STATUS) { 1001 chips[i].throttle_reason = omsg.throttle_status; 1002 chips[i].reason[omsg.throttle_status]++; 1003 } 1004 1005 if (!omsg.throttle_status) 1006 chips[i].restore = true; 1007 1008 schedule_work(&chips[i].throttle); 1009 } 1010 return 0; 1011 } 1012 1013 static struct notifier_block powernv_cpufreq_opal_nb = { 1014 .notifier_call = powernv_cpufreq_occ_msg, 1015 .next = NULL, 1016 .priority = 0, 1017 }; 1018 1019 static unsigned int powernv_fast_switch(struct cpufreq_policy *policy, 1020 unsigned int target_freq) 1021 { 1022 int index; 1023 struct powernv_smp_call_data freq_data; 1024 1025 index = cpufreq_table_find_index_dl(policy, target_freq, false); 1026 freq_data.pstate_id = powernv_freqs[index].driver_data; 1027 freq_data.gpstate_id = powernv_freqs[index].driver_data; 1028 set_pstate(&freq_data); 1029 1030 return powernv_freqs[index].frequency; 1031 } 1032 1033 static struct cpufreq_driver powernv_cpufreq_driver = { 1034 .name = "powernv-cpufreq", 1035 .flags = CPUFREQ_CONST_LOOPS, 1036 .init = powernv_cpufreq_cpu_init, 1037 .exit = powernv_cpufreq_cpu_exit, 1038 .verify = cpufreq_generic_frequency_table_verify, 1039 .target_index = powernv_cpufreq_target_index, 1040 .fast_switch = powernv_fast_switch, 1041 .get = powernv_cpufreq_get, 1042 .attr = powernv_cpu_freq_attr, 1043 }; 1044 1045 static int init_chip_info(void) 1046 { 1047 unsigned int *chip; 1048 unsigned int cpu, i; 1049 unsigned int prev_chip_id = UINT_MAX; 1050 cpumask_t *chip_cpu_mask; 1051 int ret = 0; 1052 1053 chip = kcalloc(num_possible_cpus(), sizeof(*chip), GFP_KERNEL); 1054 if (!chip) 1055 return -ENOMEM; 1056 1057 /* Allocate a chip cpu mask large enough to fit mask for all chips */ 1058 chip_cpu_mask = kcalloc(MAX_NR_CHIPS, sizeof(cpumask_t), GFP_KERNEL); 1059 if (!chip_cpu_mask) { 1060 ret = -ENOMEM; 1061 goto free_and_return; 1062 } 1063 1064 for_each_possible_cpu(cpu) { 1065 unsigned int id = cpu_to_chip_id(cpu); 1066 1067 if (prev_chip_id != id) { 1068 prev_chip_id = id; 1069 chip[nr_chips++] = id; 1070 } 1071 cpumask_set_cpu(cpu, &chip_cpu_mask[nr_chips-1]); 1072 } 1073 1074 chips = kcalloc(nr_chips, sizeof(struct chip), GFP_KERNEL); 1075 if (!chips) { 1076 ret = -ENOMEM; 1077 goto out_free_chip_cpu_mask; 1078 } 1079 1080 for (i = 0; i < nr_chips; i++) { 1081 chips[i].id = chip[i]; 1082 cpumask_copy(&chips[i].mask, &chip_cpu_mask[i]); 1083 INIT_WORK(&chips[i].throttle, powernv_cpufreq_work_fn); 1084 for_each_cpu(cpu, &chips[i].mask) 1085 per_cpu(chip_info, cpu) = &chips[i]; 1086 } 1087 1088 out_free_chip_cpu_mask: 1089 kfree(chip_cpu_mask); 1090 free_and_return: 1091 kfree(chip); 1092 return ret; 1093 } 1094 1095 static inline void clean_chip_info(void) 1096 { 1097 int i; 1098 1099 /* flush any pending work items */ 1100 if (chips) 1101 for (i = 0; i < nr_chips; i++) 1102 cancel_work_sync(&chips[i].throttle); 1103 kfree(chips); 1104 } 1105 1106 static inline void unregister_all_notifiers(void) 1107 { 1108 opal_message_notifier_unregister(OPAL_MSG_OCC, 1109 &powernv_cpufreq_opal_nb); 1110 unregister_reboot_notifier(&powernv_cpufreq_reboot_nb); 1111 } 1112 1113 static int __init powernv_cpufreq_init(void) 1114 { 1115 int rc = 0; 1116 1117 /* Don't probe on pseries (guest) platforms */ 1118 if (!firmware_has_feature(FW_FEATURE_OPAL)) 1119 return -ENODEV; 1120 1121 /* Discover pstates from device tree and init */ 1122 rc = init_powernv_pstates(); 1123 if (rc) 1124 goto out; 1125 1126 /* Populate chip info */ 1127 rc = init_chip_info(); 1128 if (rc) 1129 goto out; 1130 1131 if (powernv_pstate_info.wof_enabled) 1132 powernv_cpufreq_driver.boost_enabled = true; 1133 else 1134 powernv_cpu_freq_attr[SCALING_BOOST_FREQS_ATTR_INDEX] = NULL; 1135 1136 rc = cpufreq_register_driver(&powernv_cpufreq_driver); 1137 if (rc) { 1138 pr_info("Failed to register the cpufreq driver (%d)\n", rc); 1139 goto cleanup; 1140 } 1141 1142 if (powernv_pstate_info.wof_enabled) 1143 cpufreq_enable_boost_support(); 1144 1145 register_reboot_notifier(&powernv_cpufreq_reboot_nb); 1146 opal_message_notifier_register(OPAL_MSG_OCC, &powernv_cpufreq_opal_nb); 1147 1148 return 0; 1149 cleanup: 1150 clean_chip_info(); 1151 out: 1152 pr_info("Platform driver disabled. System does not support PState control\n"); 1153 return rc; 1154 } 1155 module_init(powernv_cpufreq_init); 1156 1157 static void __exit powernv_cpufreq_exit(void) 1158 { 1159 cpufreq_unregister_driver(&powernv_cpufreq_driver); 1160 unregister_all_notifiers(); 1161 clean_chip_info(); 1162 } 1163 module_exit(powernv_cpufreq_exit); 1164 1165 MODULE_LICENSE("GPL"); 1166 MODULE_AUTHOR("Vaidyanathan Srinivasan <svaidy at linux.vnet.ibm.com>"); 1167