1 /*
2  * POWERNV cpufreq driver for the IBM POWER processors
3  *
4  * (C) Copyright IBM 2014
5  *
6  * Author: Vaidyanathan Srinivasan <svaidy at linux.vnet.ibm.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2, or (at your option)
11  * any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  */
19 
20 #define pr_fmt(fmt)	"powernv-cpufreq: " fmt
21 
22 #include <linux/kernel.h>
23 #include <linux/sysfs.h>
24 #include <linux/cpumask.h>
25 #include <linux/module.h>
26 #include <linux/cpufreq.h>
27 #include <linux/smp.h>
28 #include <linux/of.h>
29 #include <linux/reboot.h>
30 #include <linux/slab.h>
31 #include <linux/cpu.h>
32 #include <trace/events/power.h>
33 
34 #include <asm/cputhreads.h>
35 #include <asm/firmware.h>
36 #include <asm/reg.h>
37 #include <asm/smp.h> /* Required for cpu_sibling_mask() in UP configs */
38 #include <asm/opal.h>
39 #include <linux/timer.h>
40 
41 #define POWERNV_MAX_PSTATES	256
42 #define PMSR_PSAFE_ENABLE	(1UL << 30)
43 #define PMSR_SPR_EM_DISABLE	(1UL << 31)
44 #define PMSR_MAX(x)		((x >> 32) & 0xFF)
45 
46 #define MAX_RAMP_DOWN_TIME				5120
47 /*
48  * On an idle system we want the global pstate to ramp-down from max value to
49  * min over a span of ~5 secs. Also we want it to initially ramp-down slowly and
50  * then ramp-down rapidly later on.
51  *
52  * This gives a percentage rampdown for time elapsed in milliseconds.
53  * ramp_down_percentage = ((ms * ms) >> 18)
54  *			~= 3.8 * (sec * sec)
55  *
56  * At 0 ms	ramp_down_percent = 0
57  * At 5120 ms	ramp_down_percent = 100
58  */
59 #define ramp_down_percent(time)		((time * time) >> 18)
60 
61 /* Interval after which the timer is queued to bring down global pstate */
62 #define GPSTATE_TIMER_INTERVAL				2000
63 
64 /**
65  * struct global_pstate_info -	Per policy data structure to maintain history of
66  *				global pstates
67  * @highest_lpstate_idx:	The local pstate index from which we are
68  *				ramping down
69  * @elapsed_time:		Time in ms spent in ramping down from
70  *				highest_lpstate_idx
71  * @last_sampled_time:		Time from boot in ms when global pstates were
72  *				last set
73  * @last_lpstate_idx,		Last set value of local pstate and global
74  * last_gpstate_idx		pstate in terms of cpufreq table index
75  * @timer:			Is used for ramping down if cpu goes idle for
76  *				a long time with global pstate held high
77  * @gpstate_lock:		A spinlock to maintain synchronization between
78  *				routines called by the timer handler and
79  *				governer's target_index calls
80  */
81 struct global_pstate_info {
82 	int highest_lpstate_idx;
83 	unsigned int elapsed_time;
84 	unsigned int last_sampled_time;
85 	int last_lpstate_idx;
86 	int last_gpstate_idx;
87 	spinlock_t gpstate_lock;
88 	struct timer_list timer;
89 };
90 
91 static struct cpufreq_frequency_table powernv_freqs[POWERNV_MAX_PSTATES+1];
92 static bool rebooting, throttled, occ_reset;
93 
94 static const char * const throttle_reason[] = {
95 	"No throttling",
96 	"Power Cap",
97 	"Processor Over Temperature",
98 	"Power Supply Failure",
99 	"Over Current",
100 	"OCC Reset"
101 };
102 
103 enum throttle_reason_type {
104 	NO_THROTTLE = 0,
105 	POWERCAP,
106 	CPU_OVERTEMP,
107 	POWER_SUPPLY_FAILURE,
108 	OVERCURRENT,
109 	OCC_RESET_THROTTLE,
110 	OCC_MAX_REASON
111 };
112 
113 static struct chip {
114 	unsigned int id;
115 	bool throttled;
116 	bool restore;
117 	u8 throttle_reason;
118 	cpumask_t mask;
119 	struct work_struct throttle;
120 	int throttle_turbo;
121 	int throttle_sub_turbo;
122 	int reason[OCC_MAX_REASON];
123 } *chips;
124 
125 static int nr_chips;
126 static DEFINE_PER_CPU(struct chip *, chip_info);
127 
128 /*
129  * Note:
130  * The set of pstates consists of contiguous integers.
131  * powernv_pstate_info stores the index of the frequency table for
132  * max, min and nominal frequencies. It also stores number of
133  * available frequencies.
134  *
135  * powernv_pstate_info.nominal indicates the index to the highest
136  * non-turbo frequency.
137  */
138 static struct powernv_pstate_info {
139 	unsigned int min;
140 	unsigned int max;
141 	unsigned int nominal;
142 	unsigned int nr_pstates;
143 } powernv_pstate_info;
144 
145 /* Use following macros for conversions between pstate_id and index */
146 static inline int idx_to_pstate(unsigned int i)
147 {
148 	return powernv_freqs[i].driver_data;
149 }
150 
151 static inline unsigned int pstate_to_idx(int pstate)
152 {
153 	/*
154 	 * abs() is deliberately used so that is works with
155 	 * both monotonically increasing and decreasing
156 	 * pstate values
157 	 */
158 	return abs(pstate - idx_to_pstate(powernv_pstate_info.max));
159 }
160 
161 static inline void reset_gpstates(struct cpufreq_policy *policy)
162 {
163 	struct global_pstate_info *gpstates = policy->driver_data;
164 
165 	gpstates->highest_lpstate_idx = 0;
166 	gpstates->elapsed_time = 0;
167 	gpstates->last_sampled_time = 0;
168 	gpstates->last_lpstate_idx = 0;
169 	gpstates->last_gpstate_idx = 0;
170 }
171 
172 /*
173  * Initialize the freq table based on data obtained
174  * from the firmware passed via device-tree
175  */
176 static int init_powernv_pstates(void)
177 {
178 	struct device_node *power_mgt;
179 	int i, nr_pstates = 0;
180 	const __be32 *pstate_ids, *pstate_freqs;
181 	u32 len_ids, len_freqs;
182 	u32 pstate_min, pstate_max, pstate_nominal;
183 
184 	power_mgt = of_find_node_by_path("/ibm,opal/power-mgt");
185 	if (!power_mgt) {
186 		pr_warn("power-mgt node not found\n");
187 		return -ENODEV;
188 	}
189 
190 	if (of_property_read_u32(power_mgt, "ibm,pstate-min", &pstate_min)) {
191 		pr_warn("ibm,pstate-min node not found\n");
192 		return -ENODEV;
193 	}
194 
195 	if (of_property_read_u32(power_mgt, "ibm,pstate-max", &pstate_max)) {
196 		pr_warn("ibm,pstate-max node not found\n");
197 		return -ENODEV;
198 	}
199 
200 	if (of_property_read_u32(power_mgt, "ibm,pstate-nominal",
201 				 &pstate_nominal)) {
202 		pr_warn("ibm,pstate-nominal not found\n");
203 		return -ENODEV;
204 	}
205 	pr_info("cpufreq pstate min %d nominal %d max %d\n", pstate_min,
206 		pstate_nominal, pstate_max);
207 
208 	pstate_ids = of_get_property(power_mgt, "ibm,pstate-ids", &len_ids);
209 	if (!pstate_ids) {
210 		pr_warn("ibm,pstate-ids not found\n");
211 		return -ENODEV;
212 	}
213 
214 	pstate_freqs = of_get_property(power_mgt, "ibm,pstate-frequencies-mhz",
215 				      &len_freqs);
216 	if (!pstate_freqs) {
217 		pr_warn("ibm,pstate-frequencies-mhz not found\n");
218 		return -ENODEV;
219 	}
220 
221 	if (len_ids != len_freqs) {
222 		pr_warn("Entries in ibm,pstate-ids and "
223 			"ibm,pstate-frequencies-mhz does not match\n");
224 	}
225 
226 	nr_pstates = min(len_ids, len_freqs) / sizeof(u32);
227 	if (!nr_pstates) {
228 		pr_warn("No PStates found\n");
229 		return -ENODEV;
230 	}
231 
232 	powernv_pstate_info.nr_pstates = nr_pstates;
233 	pr_debug("NR PStates %d\n", nr_pstates);
234 	for (i = 0; i < nr_pstates; i++) {
235 		u32 id = be32_to_cpu(pstate_ids[i]);
236 		u32 freq = be32_to_cpu(pstate_freqs[i]);
237 
238 		pr_debug("PState id %d freq %d MHz\n", id, freq);
239 		powernv_freqs[i].frequency = freq * 1000; /* kHz */
240 		powernv_freqs[i].driver_data = id;
241 
242 		if (id == pstate_max)
243 			powernv_pstate_info.max = i;
244 		else if (id == pstate_nominal)
245 			powernv_pstate_info.nominal = i;
246 		else if (id == pstate_min)
247 			powernv_pstate_info.min = i;
248 	}
249 
250 	/* End of list marker entry */
251 	powernv_freqs[i].frequency = CPUFREQ_TABLE_END;
252 	return 0;
253 }
254 
255 /* Returns the CPU frequency corresponding to the pstate_id. */
256 static unsigned int pstate_id_to_freq(int pstate_id)
257 {
258 	int i;
259 
260 	i = pstate_to_idx(pstate_id);
261 	if (i >= powernv_pstate_info.nr_pstates || i < 0) {
262 		pr_warn("PState id %d outside of PState table, "
263 			"reporting nominal id %d instead\n",
264 			pstate_id, idx_to_pstate(powernv_pstate_info.nominal));
265 		i = powernv_pstate_info.nominal;
266 	}
267 
268 	return powernv_freqs[i].frequency;
269 }
270 
271 /*
272  * cpuinfo_nominal_freq_show - Show the nominal CPU frequency as indicated by
273  * the firmware
274  */
275 static ssize_t cpuinfo_nominal_freq_show(struct cpufreq_policy *policy,
276 					char *buf)
277 {
278 	return sprintf(buf, "%u\n",
279 		powernv_freqs[powernv_pstate_info.nominal].frequency);
280 }
281 
282 struct freq_attr cpufreq_freq_attr_cpuinfo_nominal_freq =
283 	__ATTR_RO(cpuinfo_nominal_freq);
284 
285 static struct freq_attr *powernv_cpu_freq_attr[] = {
286 	&cpufreq_freq_attr_scaling_available_freqs,
287 	&cpufreq_freq_attr_cpuinfo_nominal_freq,
288 	NULL,
289 };
290 
291 #define throttle_attr(name, member)					\
292 static ssize_t name##_show(struct cpufreq_policy *policy, char *buf)	\
293 {									\
294 	struct chip *chip = per_cpu(chip_info, policy->cpu);		\
295 									\
296 	return sprintf(buf, "%u\n", chip->member);			\
297 }									\
298 									\
299 static struct freq_attr throttle_attr_##name = __ATTR_RO(name)		\
300 
301 throttle_attr(unthrottle, reason[NO_THROTTLE]);
302 throttle_attr(powercap, reason[POWERCAP]);
303 throttle_attr(overtemp, reason[CPU_OVERTEMP]);
304 throttle_attr(supply_fault, reason[POWER_SUPPLY_FAILURE]);
305 throttle_attr(overcurrent, reason[OVERCURRENT]);
306 throttle_attr(occ_reset, reason[OCC_RESET_THROTTLE]);
307 throttle_attr(turbo_stat, throttle_turbo);
308 throttle_attr(sub_turbo_stat, throttle_sub_turbo);
309 
310 static struct attribute *throttle_attrs[] = {
311 	&throttle_attr_unthrottle.attr,
312 	&throttle_attr_powercap.attr,
313 	&throttle_attr_overtemp.attr,
314 	&throttle_attr_supply_fault.attr,
315 	&throttle_attr_overcurrent.attr,
316 	&throttle_attr_occ_reset.attr,
317 	&throttle_attr_turbo_stat.attr,
318 	&throttle_attr_sub_turbo_stat.attr,
319 	NULL,
320 };
321 
322 static const struct attribute_group throttle_attr_grp = {
323 	.name	= "throttle_stats",
324 	.attrs	= throttle_attrs,
325 };
326 
327 /* Helper routines */
328 
329 /* Access helpers to power mgt SPR */
330 
331 static inline unsigned long get_pmspr(unsigned long sprn)
332 {
333 	switch (sprn) {
334 	case SPRN_PMCR:
335 		return mfspr(SPRN_PMCR);
336 
337 	case SPRN_PMICR:
338 		return mfspr(SPRN_PMICR);
339 
340 	case SPRN_PMSR:
341 		return mfspr(SPRN_PMSR);
342 	}
343 	BUG();
344 }
345 
346 static inline void set_pmspr(unsigned long sprn, unsigned long val)
347 {
348 	switch (sprn) {
349 	case SPRN_PMCR:
350 		mtspr(SPRN_PMCR, val);
351 		return;
352 
353 	case SPRN_PMICR:
354 		mtspr(SPRN_PMICR, val);
355 		return;
356 	}
357 	BUG();
358 }
359 
360 /*
361  * Use objects of this type to query/update
362  * pstates on a remote CPU via smp_call_function.
363  */
364 struct powernv_smp_call_data {
365 	unsigned int freq;
366 	int pstate_id;
367 	int gpstate_id;
368 };
369 
370 /*
371  * powernv_read_cpu_freq: Reads the current frequency on this CPU.
372  *
373  * Called via smp_call_function.
374  *
375  * Note: The caller of the smp_call_function should pass an argument of
376  * the type 'struct powernv_smp_call_data *' along with this function.
377  *
378  * The current frequency on this CPU will be returned via
379  * ((struct powernv_smp_call_data *)arg)->freq;
380  */
381 static void powernv_read_cpu_freq(void *arg)
382 {
383 	unsigned long pmspr_val;
384 	s8 local_pstate_id;
385 	struct powernv_smp_call_data *freq_data = arg;
386 
387 	pmspr_val = get_pmspr(SPRN_PMSR);
388 
389 	/*
390 	 * The local pstate id corresponds bits 48..55 in the PMSR.
391 	 * Note: Watch out for the sign!
392 	 */
393 	local_pstate_id = (pmspr_val >> 48) & 0xFF;
394 	freq_data->pstate_id = local_pstate_id;
395 	freq_data->freq = pstate_id_to_freq(freq_data->pstate_id);
396 
397 	pr_debug("cpu %d pmsr %016lX pstate_id %d frequency %d kHz\n",
398 		raw_smp_processor_id(), pmspr_val, freq_data->pstate_id,
399 		freq_data->freq);
400 }
401 
402 /*
403  * powernv_cpufreq_get: Returns the CPU frequency as reported by the
404  * firmware for CPU 'cpu'. This value is reported through the sysfs
405  * file cpuinfo_cur_freq.
406  */
407 static unsigned int powernv_cpufreq_get(unsigned int cpu)
408 {
409 	struct powernv_smp_call_data freq_data;
410 
411 	smp_call_function_any(cpu_sibling_mask(cpu), powernv_read_cpu_freq,
412 			&freq_data, 1);
413 
414 	return freq_data.freq;
415 }
416 
417 /*
418  * set_pstate: Sets the pstate on this CPU.
419  *
420  * This is called via an smp_call_function.
421  *
422  * The caller must ensure that freq_data is of the type
423  * (struct powernv_smp_call_data *) and the pstate_id which needs to be set
424  * on this CPU should be present in freq_data->pstate_id.
425  */
426 static void set_pstate(void *data)
427 {
428 	unsigned long val;
429 	struct powernv_smp_call_data *freq_data = data;
430 	unsigned long pstate_ul = freq_data->pstate_id;
431 	unsigned long gpstate_ul = freq_data->gpstate_id;
432 
433 	val = get_pmspr(SPRN_PMCR);
434 	val = val & 0x0000FFFFFFFFFFFFULL;
435 
436 	pstate_ul = pstate_ul & 0xFF;
437 	gpstate_ul = gpstate_ul & 0xFF;
438 
439 	/* Set both global(bits 56..63) and local(bits 48..55) PStates */
440 	val = val | (gpstate_ul << 56) | (pstate_ul << 48);
441 
442 	pr_debug("Setting cpu %d pmcr to %016lX\n",
443 			raw_smp_processor_id(), val);
444 	set_pmspr(SPRN_PMCR, val);
445 }
446 
447 /*
448  * get_nominal_index: Returns the index corresponding to the nominal
449  * pstate in the cpufreq table
450  */
451 static inline unsigned int get_nominal_index(void)
452 {
453 	return powernv_pstate_info.nominal;
454 }
455 
456 static void powernv_cpufreq_throttle_check(void *data)
457 {
458 	struct chip *chip;
459 	unsigned int cpu = smp_processor_id();
460 	unsigned long pmsr;
461 	int pmsr_pmax;
462 	unsigned int pmsr_pmax_idx;
463 
464 	pmsr = get_pmspr(SPRN_PMSR);
465 	chip = this_cpu_read(chip_info);
466 
467 	/* Check for Pmax Capping */
468 	pmsr_pmax = (s8)PMSR_MAX(pmsr);
469 	pmsr_pmax_idx = pstate_to_idx(pmsr_pmax);
470 	if (pmsr_pmax_idx != powernv_pstate_info.max) {
471 		if (chip->throttled)
472 			goto next;
473 		chip->throttled = true;
474 		if (pmsr_pmax_idx > powernv_pstate_info.nominal) {
475 			pr_warn_once("CPU %d on Chip %u has Pmax(%d) reduced below nominal frequency(%d)\n",
476 				     cpu, chip->id, pmsr_pmax,
477 				     idx_to_pstate(powernv_pstate_info.nominal));
478 			chip->throttle_sub_turbo++;
479 		} else {
480 			chip->throttle_turbo++;
481 		}
482 		trace_powernv_throttle(chip->id,
483 				      throttle_reason[chip->throttle_reason],
484 				      pmsr_pmax);
485 	} else if (chip->throttled) {
486 		chip->throttled = false;
487 		trace_powernv_throttle(chip->id,
488 				      throttle_reason[chip->throttle_reason],
489 				      pmsr_pmax);
490 	}
491 
492 	/* Check if Psafe_mode_active is set in PMSR. */
493 next:
494 	if (pmsr & PMSR_PSAFE_ENABLE) {
495 		throttled = true;
496 		pr_info("Pstate set to safe frequency\n");
497 	}
498 
499 	/* Check if SPR_EM_DISABLE is set in PMSR */
500 	if (pmsr & PMSR_SPR_EM_DISABLE) {
501 		throttled = true;
502 		pr_info("Frequency Control disabled from OS\n");
503 	}
504 
505 	if (throttled) {
506 		pr_info("PMSR = %16lx\n", pmsr);
507 		pr_warn("CPU Frequency could be throttled\n");
508 	}
509 }
510 
511 /**
512  * calc_global_pstate - Calculate global pstate
513  * @elapsed_time:		Elapsed time in milliseconds
514  * @local_pstate_idx:		New local pstate
515  * @highest_lpstate_idx:	pstate from which its ramping down
516  *
517  * Finds the appropriate global pstate based on the pstate from which its
518  * ramping down and the time elapsed in ramping down. It follows a quadratic
519  * equation which ensures that it reaches ramping down to pmin in 5sec.
520  */
521 static inline int calc_global_pstate(unsigned int elapsed_time,
522 				     int highest_lpstate_idx,
523 				     int local_pstate_idx)
524 {
525 	int index_diff;
526 
527 	/*
528 	 * Using ramp_down_percent we get the percentage of rampdown
529 	 * that we are expecting to be dropping. Difference between
530 	 * highest_lpstate_idx and powernv_pstate_info.min will give a absolute
531 	 * number of how many pstates we will drop eventually by the end of
532 	 * 5 seconds, then just scale it get the number pstates to be dropped.
533 	 */
534 	index_diff =  ((int)ramp_down_percent(elapsed_time) *
535 			(powernv_pstate_info.min - highest_lpstate_idx)) / 100;
536 
537 	/* Ensure that global pstate is >= to local pstate */
538 	if (highest_lpstate_idx + index_diff >= local_pstate_idx)
539 		return local_pstate_idx;
540 	else
541 		return highest_lpstate_idx + index_diff;
542 }
543 
544 static inline void  queue_gpstate_timer(struct global_pstate_info *gpstates)
545 {
546 	unsigned int timer_interval;
547 
548 	/*
549 	 * Setting up timer to fire after GPSTATE_TIMER_INTERVAL ms, But
550 	 * if it exceeds MAX_RAMP_DOWN_TIME ms for ramp down time.
551 	 * Set timer such that it fires exactly at MAX_RAMP_DOWN_TIME
552 	 * seconds of ramp down time.
553 	 */
554 	if ((gpstates->elapsed_time + GPSTATE_TIMER_INTERVAL)
555 	     > MAX_RAMP_DOWN_TIME)
556 		timer_interval = MAX_RAMP_DOWN_TIME - gpstates->elapsed_time;
557 	else
558 		timer_interval = GPSTATE_TIMER_INTERVAL;
559 
560 	mod_timer(&gpstates->timer, jiffies + msecs_to_jiffies(timer_interval));
561 }
562 
563 /**
564  * gpstate_timer_handler
565  *
566  * @data: pointer to cpufreq_policy on which timer was queued
567  *
568  * This handler brings down the global pstate closer to the local pstate
569  * according quadratic equation. Queues a new timer if it is still not equal
570  * to local pstate
571  */
572 void gpstate_timer_handler(unsigned long data)
573 {
574 	struct cpufreq_policy *policy = (struct cpufreq_policy *)data;
575 	struct global_pstate_info *gpstates = policy->driver_data;
576 	int gpstate_idx;
577 	unsigned int time_diff = jiffies_to_msecs(jiffies)
578 					- gpstates->last_sampled_time;
579 	struct powernv_smp_call_data freq_data;
580 
581 	if (!spin_trylock(&gpstates->gpstate_lock))
582 		return;
583 
584 	gpstates->last_sampled_time += time_diff;
585 	gpstates->elapsed_time += time_diff;
586 	freq_data.pstate_id = idx_to_pstate(gpstates->last_lpstate_idx);
587 
588 	if ((gpstates->last_gpstate_idx == gpstates->last_lpstate_idx) ||
589 	    (gpstates->elapsed_time > MAX_RAMP_DOWN_TIME)) {
590 		gpstate_idx = pstate_to_idx(freq_data.pstate_id);
591 		reset_gpstates(policy);
592 		gpstates->highest_lpstate_idx = gpstate_idx;
593 	} else {
594 		gpstate_idx = calc_global_pstate(gpstates->elapsed_time,
595 						 gpstates->highest_lpstate_idx,
596 						 freq_data.pstate_id);
597 	}
598 
599 	/*
600 	 * If local pstate is equal to global pstate, rampdown is over
601 	 * So timer is not required to be queued.
602 	 */
603 	if (gpstate_idx != gpstates->last_lpstate_idx)
604 		queue_gpstate_timer(gpstates);
605 
606 	freq_data.gpstate_id = idx_to_pstate(gpstate_idx);
607 	gpstates->last_gpstate_idx = pstate_to_idx(freq_data.gpstate_id);
608 	gpstates->last_lpstate_idx = pstate_to_idx(freq_data.pstate_id);
609 
610 	spin_unlock(&gpstates->gpstate_lock);
611 
612 	/* Timer may get migrated to a different cpu on cpu hot unplug */
613 	smp_call_function_any(policy->cpus, set_pstate, &freq_data, 1);
614 }
615 
616 /*
617  * powernv_cpufreq_target_index: Sets the frequency corresponding to
618  * the cpufreq table entry indexed by new_index on the cpus in the
619  * mask policy->cpus
620  */
621 static int powernv_cpufreq_target_index(struct cpufreq_policy *policy,
622 					unsigned int new_index)
623 {
624 	struct powernv_smp_call_data freq_data;
625 	unsigned int cur_msec, gpstate_idx;
626 	struct global_pstate_info *gpstates = policy->driver_data;
627 
628 	if (unlikely(rebooting) && new_index != get_nominal_index())
629 		return 0;
630 
631 	if (!throttled)
632 		powernv_cpufreq_throttle_check(NULL);
633 
634 	cur_msec = jiffies_to_msecs(get_jiffies_64());
635 
636 	spin_lock(&gpstates->gpstate_lock);
637 	freq_data.pstate_id = idx_to_pstate(new_index);
638 
639 	if (!gpstates->last_sampled_time) {
640 		gpstate_idx = new_index;
641 		gpstates->highest_lpstate_idx = new_index;
642 		goto gpstates_done;
643 	}
644 
645 	if (gpstates->last_gpstate_idx < new_index) {
646 		gpstates->elapsed_time += cur_msec -
647 						 gpstates->last_sampled_time;
648 
649 		/*
650 		 * If its has been ramping down for more than MAX_RAMP_DOWN_TIME
651 		 * we should be resetting all global pstate related data. Set it
652 		 * equal to local pstate to start fresh.
653 		 */
654 		if (gpstates->elapsed_time > MAX_RAMP_DOWN_TIME) {
655 			reset_gpstates(policy);
656 			gpstates->highest_lpstate_idx = new_index;
657 			gpstate_idx = new_index;
658 		} else {
659 		/* Elaspsed_time is less than 5 seconds, continue to rampdown */
660 			gpstate_idx = calc_global_pstate(gpstates->elapsed_time,
661 							 gpstates->highest_lpstate_idx,
662 							 new_index);
663 		}
664 	} else {
665 		reset_gpstates(policy);
666 		gpstates->highest_lpstate_idx = new_index;
667 		gpstate_idx = new_index;
668 	}
669 
670 	/*
671 	 * If local pstate is equal to global pstate, rampdown is over
672 	 * So timer is not required to be queued.
673 	 */
674 	if (gpstate_idx != new_index)
675 		queue_gpstate_timer(gpstates);
676 	else
677 		del_timer_sync(&gpstates->timer);
678 
679 gpstates_done:
680 	freq_data.gpstate_id = idx_to_pstate(gpstate_idx);
681 	gpstates->last_sampled_time = cur_msec;
682 	gpstates->last_gpstate_idx = gpstate_idx;
683 	gpstates->last_lpstate_idx = new_index;
684 
685 	spin_unlock(&gpstates->gpstate_lock);
686 
687 	/*
688 	 * Use smp_call_function to send IPI and execute the
689 	 * mtspr on target CPU.  We could do that without IPI
690 	 * if current CPU is within policy->cpus (core)
691 	 */
692 	smp_call_function_any(policy->cpus, set_pstate, &freq_data, 1);
693 	return 0;
694 }
695 
696 static int powernv_cpufreq_cpu_init(struct cpufreq_policy *policy)
697 {
698 	int base, i, ret;
699 	struct kernfs_node *kn;
700 	struct global_pstate_info *gpstates;
701 
702 	base = cpu_first_thread_sibling(policy->cpu);
703 
704 	for (i = 0; i < threads_per_core; i++)
705 		cpumask_set_cpu(base + i, policy->cpus);
706 
707 	kn = kernfs_find_and_get(policy->kobj.sd, throttle_attr_grp.name);
708 	if (!kn) {
709 		int ret;
710 
711 		ret = sysfs_create_group(&policy->kobj, &throttle_attr_grp);
712 		if (ret) {
713 			pr_info("Failed to create throttle stats directory for cpu %d\n",
714 				policy->cpu);
715 			return ret;
716 		}
717 	} else {
718 		kernfs_put(kn);
719 	}
720 
721 	gpstates =  kzalloc(sizeof(*gpstates), GFP_KERNEL);
722 	if (!gpstates)
723 		return -ENOMEM;
724 
725 	policy->driver_data = gpstates;
726 
727 	/* initialize timer */
728 	init_timer_pinned_deferrable(&gpstates->timer);
729 	gpstates->timer.data = (unsigned long)policy;
730 	gpstates->timer.function = gpstate_timer_handler;
731 	gpstates->timer.expires = jiffies +
732 				msecs_to_jiffies(GPSTATE_TIMER_INTERVAL);
733 	spin_lock_init(&gpstates->gpstate_lock);
734 	ret = cpufreq_table_validate_and_show(policy, powernv_freqs);
735 
736 	if (ret < 0)
737 		kfree(policy->driver_data);
738 
739 	return ret;
740 }
741 
742 static int powernv_cpufreq_cpu_exit(struct cpufreq_policy *policy)
743 {
744 	/* timer is deleted in cpufreq_cpu_stop() */
745 	kfree(policy->driver_data);
746 
747 	return 0;
748 }
749 
750 static int powernv_cpufreq_reboot_notifier(struct notifier_block *nb,
751 				unsigned long action, void *unused)
752 {
753 	int cpu;
754 	struct cpufreq_policy cpu_policy;
755 
756 	rebooting = true;
757 	for_each_online_cpu(cpu) {
758 		cpufreq_get_policy(&cpu_policy, cpu);
759 		powernv_cpufreq_target_index(&cpu_policy, get_nominal_index());
760 	}
761 
762 	return NOTIFY_DONE;
763 }
764 
765 static struct notifier_block powernv_cpufreq_reboot_nb = {
766 	.notifier_call = powernv_cpufreq_reboot_notifier,
767 };
768 
769 void powernv_cpufreq_work_fn(struct work_struct *work)
770 {
771 	struct chip *chip = container_of(work, struct chip, throttle);
772 	unsigned int cpu;
773 	cpumask_t mask;
774 
775 	get_online_cpus();
776 	cpumask_and(&mask, &chip->mask, cpu_online_mask);
777 	smp_call_function_any(&mask,
778 			      powernv_cpufreq_throttle_check, NULL, 0);
779 
780 	if (!chip->restore)
781 		goto out;
782 
783 	chip->restore = false;
784 	for_each_cpu(cpu, &mask) {
785 		int index;
786 		struct cpufreq_policy policy;
787 
788 		cpufreq_get_policy(&policy, cpu);
789 		index = cpufreq_table_find_index_c(&policy, policy.cur);
790 		powernv_cpufreq_target_index(&policy, index);
791 		cpumask_andnot(&mask, &mask, policy.cpus);
792 	}
793 out:
794 	put_online_cpus();
795 }
796 
797 static int powernv_cpufreq_occ_msg(struct notifier_block *nb,
798 				   unsigned long msg_type, void *_msg)
799 {
800 	struct opal_msg *msg = _msg;
801 	struct opal_occ_msg omsg;
802 	int i;
803 
804 	if (msg_type != OPAL_MSG_OCC)
805 		return 0;
806 
807 	omsg.type = be64_to_cpu(msg->params[0]);
808 
809 	switch (omsg.type) {
810 	case OCC_RESET:
811 		occ_reset = true;
812 		pr_info("OCC (On Chip Controller - enforces hard thermal/power limits) Resetting\n");
813 		/*
814 		 * powernv_cpufreq_throttle_check() is called in
815 		 * target() callback which can detect the throttle state
816 		 * for governors like ondemand.
817 		 * But static governors will not call target() often thus
818 		 * report throttling here.
819 		 */
820 		if (!throttled) {
821 			throttled = true;
822 			pr_warn("CPU frequency is throttled for duration\n");
823 		}
824 
825 		break;
826 	case OCC_LOAD:
827 		pr_info("OCC Loading, CPU frequency is throttled until OCC is started\n");
828 		break;
829 	case OCC_THROTTLE:
830 		omsg.chip = be64_to_cpu(msg->params[1]);
831 		omsg.throttle_status = be64_to_cpu(msg->params[2]);
832 
833 		if (occ_reset) {
834 			occ_reset = false;
835 			throttled = false;
836 			pr_info("OCC Active, CPU frequency is no longer throttled\n");
837 
838 			for (i = 0; i < nr_chips; i++) {
839 				chips[i].restore = true;
840 				schedule_work(&chips[i].throttle);
841 			}
842 
843 			return 0;
844 		}
845 
846 		for (i = 0; i < nr_chips; i++)
847 			if (chips[i].id == omsg.chip)
848 				break;
849 
850 		if (omsg.throttle_status >= 0 &&
851 		    omsg.throttle_status <= OCC_MAX_THROTTLE_STATUS) {
852 			chips[i].throttle_reason = omsg.throttle_status;
853 			chips[i].reason[omsg.throttle_status]++;
854 		}
855 
856 		if (!omsg.throttle_status)
857 			chips[i].restore = true;
858 
859 		schedule_work(&chips[i].throttle);
860 	}
861 	return 0;
862 }
863 
864 static struct notifier_block powernv_cpufreq_opal_nb = {
865 	.notifier_call	= powernv_cpufreq_occ_msg,
866 	.next		= NULL,
867 	.priority	= 0,
868 };
869 
870 static void powernv_cpufreq_stop_cpu(struct cpufreq_policy *policy)
871 {
872 	struct powernv_smp_call_data freq_data;
873 	struct global_pstate_info *gpstates = policy->driver_data;
874 
875 	freq_data.pstate_id = idx_to_pstate(powernv_pstate_info.min);
876 	freq_data.gpstate_id = idx_to_pstate(powernv_pstate_info.min);
877 	smp_call_function_single(policy->cpu, set_pstate, &freq_data, 1);
878 	del_timer_sync(&gpstates->timer);
879 }
880 
881 static struct cpufreq_driver powernv_cpufreq_driver = {
882 	.name		= "powernv-cpufreq",
883 	.flags		= CPUFREQ_CONST_LOOPS,
884 	.init		= powernv_cpufreq_cpu_init,
885 	.exit		= powernv_cpufreq_cpu_exit,
886 	.verify		= cpufreq_generic_frequency_table_verify,
887 	.target_index	= powernv_cpufreq_target_index,
888 	.get		= powernv_cpufreq_get,
889 	.stop_cpu	= powernv_cpufreq_stop_cpu,
890 	.attr		= powernv_cpu_freq_attr,
891 };
892 
893 static int init_chip_info(void)
894 {
895 	unsigned int chip[256];
896 	unsigned int cpu, i;
897 	unsigned int prev_chip_id = UINT_MAX;
898 
899 	for_each_possible_cpu(cpu) {
900 		unsigned int id = cpu_to_chip_id(cpu);
901 
902 		if (prev_chip_id != id) {
903 			prev_chip_id = id;
904 			chip[nr_chips++] = id;
905 		}
906 	}
907 
908 	chips = kcalloc(nr_chips, sizeof(struct chip), GFP_KERNEL);
909 	if (!chips)
910 		return -ENOMEM;
911 
912 	for (i = 0; i < nr_chips; i++) {
913 		chips[i].id = chip[i];
914 		cpumask_copy(&chips[i].mask, cpumask_of_node(chip[i]));
915 		INIT_WORK(&chips[i].throttle, powernv_cpufreq_work_fn);
916 		for_each_cpu(cpu, &chips[i].mask)
917 			per_cpu(chip_info, cpu) =  &chips[i];
918 	}
919 
920 	return 0;
921 }
922 
923 static inline void clean_chip_info(void)
924 {
925 	kfree(chips);
926 }
927 
928 static inline void unregister_all_notifiers(void)
929 {
930 	opal_message_notifier_unregister(OPAL_MSG_OCC,
931 					 &powernv_cpufreq_opal_nb);
932 	unregister_reboot_notifier(&powernv_cpufreq_reboot_nb);
933 }
934 
935 static int __init powernv_cpufreq_init(void)
936 {
937 	int rc = 0;
938 
939 	/* Don't probe on pseries (guest) platforms */
940 	if (!firmware_has_feature(FW_FEATURE_OPAL))
941 		return -ENODEV;
942 
943 	/* Discover pstates from device tree and init */
944 	rc = init_powernv_pstates();
945 	if (rc)
946 		goto out;
947 
948 	/* Populate chip info */
949 	rc = init_chip_info();
950 	if (rc)
951 		goto out;
952 
953 	register_reboot_notifier(&powernv_cpufreq_reboot_nb);
954 	opal_message_notifier_register(OPAL_MSG_OCC, &powernv_cpufreq_opal_nb);
955 
956 	rc = cpufreq_register_driver(&powernv_cpufreq_driver);
957 	if (!rc)
958 		return 0;
959 
960 	pr_info("Failed to register the cpufreq driver (%d)\n", rc);
961 	unregister_all_notifiers();
962 	clean_chip_info();
963 out:
964 	pr_info("Platform driver disabled. System does not support PState control\n");
965 	return rc;
966 }
967 module_init(powernv_cpufreq_init);
968 
969 static void __exit powernv_cpufreq_exit(void)
970 {
971 	cpufreq_unregister_driver(&powernv_cpufreq_driver);
972 	unregister_all_notifiers();
973 	clean_chip_info();
974 }
975 module_exit(powernv_cpufreq_exit);
976 
977 MODULE_LICENSE("GPL");
978 MODULE_AUTHOR("Vaidyanathan Srinivasan <svaidy at linux.vnet.ibm.com>");
979