1 /*
2  * POWERNV cpufreq driver for the IBM POWER processors
3  *
4  * (C) Copyright IBM 2014
5  *
6  * Author: Vaidyanathan Srinivasan <svaidy at linux.vnet.ibm.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2, or (at your option)
11  * any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  */
19 
20 #define pr_fmt(fmt)	"powernv-cpufreq: " fmt
21 
22 #include <linux/kernel.h>
23 #include <linux/sysfs.h>
24 #include <linux/cpumask.h>
25 #include <linux/module.h>
26 #include <linux/cpufreq.h>
27 #include <linux/smp.h>
28 #include <linux/of.h>
29 #include <linux/reboot.h>
30 #include <linux/slab.h>
31 #include <linux/cpu.h>
32 #include <trace/events/power.h>
33 
34 #include <asm/cputhreads.h>
35 #include <asm/firmware.h>
36 #include <asm/reg.h>
37 #include <asm/smp.h> /* Required for cpu_sibling_mask() in UP configs */
38 #include <asm/opal.h>
39 #include <linux/timer.h>
40 
41 #define POWERNV_MAX_PSTATES	256
42 #define PMSR_PSAFE_ENABLE	(1UL << 30)
43 #define PMSR_SPR_EM_DISABLE	(1UL << 31)
44 #define PMSR_MAX(x)		((x >> 32) & 0xFF)
45 
46 #define MAX_RAMP_DOWN_TIME				5120
47 /*
48  * On an idle system we want the global pstate to ramp-down from max value to
49  * min over a span of ~5 secs. Also we want it to initially ramp-down slowly and
50  * then ramp-down rapidly later on.
51  *
52  * This gives a percentage rampdown for time elapsed in milliseconds.
53  * ramp_down_percentage = ((ms * ms) >> 18)
54  *			~= 3.8 * (sec * sec)
55  *
56  * At 0 ms	ramp_down_percent = 0
57  * At 5120 ms	ramp_down_percent = 100
58  */
59 #define ramp_down_percent(time)		((time * time) >> 18)
60 
61 /* Interval after which the timer is queued to bring down global pstate */
62 #define GPSTATE_TIMER_INTERVAL				2000
63 
64 /**
65  * struct global_pstate_info -	Per policy data structure to maintain history of
66  *				global pstates
67  * @highest_lpstate_idx:	The local pstate index from which we are
68  *				ramping down
69  * @elapsed_time:		Time in ms spent in ramping down from
70  *				highest_lpstate_idx
71  * @last_sampled_time:		Time from boot in ms when global pstates were
72  *				last set
73  * @last_lpstate_idx,		Last set value of local pstate and global
74  * last_gpstate_idx		pstate in terms of cpufreq table index
75  * @timer:			Is used for ramping down if cpu goes idle for
76  *				a long time with global pstate held high
77  * @gpstate_lock:		A spinlock to maintain synchronization between
78  *				routines called by the timer handler and
79  *				governer's target_index calls
80  */
81 struct global_pstate_info {
82 	int highest_lpstate_idx;
83 	unsigned int elapsed_time;
84 	unsigned int last_sampled_time;
85 	int last_lpstate_idx;
86 	int last_gpstate_idx;
87 	spinlock_t gpstate_lock;
88 	struct timer_list timer;
89 };
90 
91 static struct cpufreq_frequency_table powernv_freqs[POWERNV_MAX_PSTATES+1];
92 static bool rebooting, throttled, occ_reset;
93 
94 static const char * const throttle_reason[] = {
95 	"No throttling",
96 	"Power Cap",
97 	"Processor Over Temperature",
98 	"Power Supply Failure",
99 	"Over Current",
100 	"OCC Reset"
101 };
102 
103 enum throttle_reason_type {
104 	NO_THROTTLE = 0,
105 	POWERCAP,
106 	CPU_OVERTEMP,
107 	POWER_SUPPLY_FAILURE,
108 	OVERCURRENT,
109 	OCC_RESET_THROTTLE,
110 	OCC_MAX_REASON
111 };
112 
113 static struct chip {
114 	unsigned int id;
115 	bool throttled;
116 	bool restore;
117 	u8 throttle_reason;
118 	cpumask_t mask;
119 	struct work_struct throttle;
120 	int throttle_turbo;
121 	int throttle_sub_turbo;
122 	int reason[OCC_MAX_REASON];
123 } *chips;
124 
125 static int nr_chips;
126 static DEFINE_PER_CPU(struct chip *, chip_info);
127 
128 /*
129  * Note:
130  * The set of pstates consists of contiguous integers.
131  * powernv_pstate_info stores the index of the frequency table for
132  * max, min and nominal frequencies. It also stores number of
133  * available frequencies.
134  *
135  * powernv_pstate_info.nominal indicates the index to the highest
136  * non-turbo frequency.
137  */
138 static struct powernv_pstate_info {
139 	unsigned int min;
140 	unsigned int max;
141 	unsigned int nominal;
142 	unsigned int nr_pstates;
143 } powernv_pstate_info;
144 
145 /* Use following macros for conversions between pstate_id and index */
146 static inline int idx_to_pstate(unsigned int i)
147 {
148 	if (unlikely(i >= powernv_pstate_info.nr_pstates)) {
149 		pr_warn_once("index %u is out of bound\n", i);
150 		return powernv_freqs[powernv_pstate_info.nominal].driver_data;
151 	}
152 
153 	return powernv_freqs[i].driver_data;
154 }
155 
156 static inline unsigned int pstate_to_idx(int pstate)
157 {
158 	int min = powernv_freqs[powernv_pstate_info.min].driver_data;
159 	int max = powernv_freqs[powernv_pstate_info.max].driver_data;
160 
161 	if (min > 0) {
162 		if (unlikely((pstate < max) || (pstate > min))) {
163 			pr_warn_once("pstate %d is out of bound\n", pstate);
164 			return powernv_pstate_info.nominal;
165 		}
166 	} else {
167 		if (unlikely((pstate > max) || (pstate < min))) {
168 			pr_warn_once("pstate %d is out of bound\n", pstate);
169 			return powernv_pstate_info.nominal;
170 		}
171 	}
172 	/*
173 	 * abs() is deliberately used so that is works with
174 	 * both monotonically increasing and decreasing
175 	 * pstate values
176 	 */
177 	return abs(pstate - idx_to_pstate(powernv_pstate_info.max));
178 }
179 
180 static inline void reset_gpstates(struct cpufreq_policy *policy)
181 {
182 	struct global_pstate_info *gpstates = policy->driver_data;
183 
184 	gpstates->highest_lpstate_idx = 0;
185 	gpstates->elapsed_time = 0;
186 	gpstates->last_sampled_time = 0;
187 	gpstates->last_lpstate_idx = 0;
188 	gpstates->last_gpstate_idx = 0;
189 }
190 
191 /*
192  * Initialize the freq table based on data obtained
193  * from the firmware passed via device-tree
194  */
195 static int init_powernv_pstates(void)
196 {
197 	struct device_node *power_mgt;
198 	int i, nr_pstates = 0;
199 	const __be32 *pstate_ids, *pstate_freqs;
200 	u32 len_ids, len_freqs;
201 	u32 pstate_min, pstate_max, pstate_nominal;
202 
203 	power_mgt = of_find_node_by_path("/ibm,opal/power-mgt");
204 	if (!power_mgt) {
205 		pr_warn("power-mgt node not found\n");
206 		return -ENODEV;
207 	}
208 
209 	if (of_property_read_u32(power_mgt, "ibm,pstate-min", &pstate_min)) {
210 		pr_warn("ibm,pstate-min node not found\n");
211 		return -ENODEV;
212 	}
213 
214 	if (of_property_read_u32(power_mgt, "ibm,pstate-max", &pstate_max)) {
215 		pr_warn("ibm,pstate-max node not found\n");
216 		return -ENODEV;
217 	}
218 
219 	if (of_property_read_u32(power_mgt, "ibm,pstate-nominal",
220 				 &pstate_nominal)) {
221 		pr_warn("ibm,pstate-nominal not found\n");
222 		return -ENODEV;
223 	}
224 	pr_info("cpufreq pstate min %d nominal %d max %d\n", pstate_min,
225 		pstate_nominal, pstate_max);
226 
227 	pstate_ids = of_get_property(power_mgt, "ibm,pstate-ids", &len_ids);
228 	if (!pstate_ids) {
229 		pr_warn("ibm,pstate-ids not found\n");
230 		return -ENODEV;
231 	}
232 
233 	pstate_freqs = of_get_property(power_mgt, "ibm,pstate-frequencies-mhz",
234 				      &len_freqs);
235 	if (!pstate_freqs) {
236 		pr_warn("ibm,pstate-frequencies-mhz not found\n");
237 		return -ENODEV;
238 	}
239 
240 	if (len_ids != len_freqs) {
241 		pr_warn("Entries in ibm,pstate-ids and "
242 			"ibm,pstate-frequencies-mhz does not match\n");
243 	}
244 
245 	nr_pstates = min(len_ids, len_freqs) / sizeof(u32);
246 	if (!nr_pstates) {
247 		pr_warn("No PStates found\n");
248 		return -ENODEV;
249 	}
250 
251 	powernv_pstate_info.nr_pstates = nr_pstates;
252 	pr_debug("NR PStates %d\n", nr_pstates);
253 	for (i = 0; i < nr_pstates; i++) {
254 		u32 id = be32_to_cpu(pstate_ids[i]);
255 		u32 freq = be32_to_cpu(pstate_freqs[i]);
256 
257 		pr_debug("PState id %d freq %d MHz\n", id, freq);
258 		powernv_freqs[i].frequency = freq * 1000; /* kHz */
259 		powernv_freqs[i].driver_data = id;
260 
261 		if (id == pstate_max)
262 			powernv_pstate_info.max = i;
263 		else if (id == pstate_nominal)
264 			powernv_pstate_info.nominal = i;
265 		else if (id == pstate_min)
266 			powernv_pstate_info.min = i;
267 	}
268 
269 	/* End of list marker entry */
270 	powernv_freqs[i].frequency = CPUFREQ_TABLE_END;
271 	return 0;
272 }
273 
274 /* Returns the CPU frequency corresponding to the pstate_id. */
275 static unsigned int pstate_id_to_freq(int pstate_id)
276 {
277 	int i;
278 
279 	i = pstate_to_idx(pstate_id);
280 	if (i >= powernv_pstate_info.nr_pstates || i < 0) {
281 		pr_warn("PState id %d outside of PState table, "
282 			"reporting nominal id %d instead\n",
283 			pstate_id, idx_to_pstate(powernv_pstate_info.nominal));
284 		i = powernv_pstate_info.nominal;
285 	}
286 
287 	return powernv_freqs[i].frequency;
288 }
289 
290 /*
291  * cpuinfo_nominal_freq_show - Show the nominal CPU frequency as indicated by
292  * the firmware
293  */
294 static ssize_t cpuinfo_nominal_freq_show(struct cpufreq_policy *policy,
295 					char *buf)
296 {
297 	return sprintf(buf, "%u\n",
298 		powernv_freqs[powernv_pstate_info.nominal].frequency);
299 }
300 
301 struct freq_attr cpufreq_freq_attr_cpuinfo_nominal_freq =
302 	__ATTR_RO(cpuinfo_nominal_freq);
303 
304 static struct freq_attr *powernv_cpu_freq_attr[] = {
305 	&cpufreq_freq_attr_scaling_available_freqs,
306 	&cpufreq_freq_attr_cpuinfo_nominal_freq,
307 	NULL,
308 };
309 
310 #define throttle_attr(name, member)					\
311 static ssize_t name##_show(struct cpufreq_policy *policy, char *buf)	\
312 {									\
313 	struct chip *chip = per_cpu(chip_info, policy->cpu);		\
314 									\
315 	return sprintf(buf, "%u\n", chip->member);			\
316 }									\
317 									\
318 static struct freq_attr throttle_attr_##name = __ATTR_RO(name)		\
319 
320 throttle_attr(unthrottle, reason[NO_THROTTLE]);
321 throttle_attr(powercap, reason[POWERCAP]);
322 throttle_attr(overtemp, reason[CPU_OVERTEMP]);
323 throttle_attr(supply_fault, reason[POWER_SUPPLY_FAILURE]);
324 throttle_attr(overcurrent, reason[OVERCURRENT]);
325 throttle_attr(occ_reset, reason[OCC_RESET_THROTTLE]);
326 throttle_attr(turbo_stat, throttle_turbo);
327 throttle_attr(sub_turbo_stat, throttle_sub_turbo);
328 
329 static struct attribute *throttle_attrs[] = {
330 	&throttle_attr_unthrottle.attr,
331 	&throttle_attr_powercap.attr,
332 	&throttle_attr_overtemp.attr,
333 	&throttle_attr_supply_fault.attr,
334 	&throttle_attr_overcurrent.attr,
335 	&throttle_attr_occ_reset.attr,
336 	&throttle_attr_turbo_stat.attr,
337 	&throttle_attr_sub_turbo_stat.attr,
338 	NULL,
339 };
340 
341 static const struct attribute_group throttle_attr_grp = {
342 	.name	= "throttle_stats",
343 	.attrs	= throttle_attrs,
344 };
345 
346 /* Helper routines */
347 
348 /* Access helpers to power mgt SPR */
349 
350 static inline unsigned long get_pmspr(unsigned long sprn)
351 {
352 	switch (sprn) {
353 	case SPRN_PMCR:
354 		return mfspr(SPRN_PMCR);
355 
356 	case SPRN_PMICR:
357 		return mfspr(SPRN_PMICR);
358 
359 	case SPRN_PMSR:
360 		return mfspr(SPRN_PMSR);
361 	}
362 	BUG();
363 }
364 
365 static inline void set_pmspr(unsigned long sprn, unsigned long val)
366 {
367 	switch (sprn) {
368 	case SPRN_PMCR:
369 		mtspr(SPRN_PMCR, val);
370 		return;
371 
372 	case SPRN_PMICR:
373 		mtspr(SPRN_PMICR, val);
374 		return;
375 	}
376 	BUG();
377 }
378 
379 /*
380  * Use objects of this type to query/update
381  * pstates on a remote CPU via smp_call_function.
382  */
383 struct powernv_smp_call_data {
384 	unsigned int freq;
385 	int pstate_id;
386 	int gpstate_id;
387 };
388 
389 /*
390  * powernv_read_cpu_freq: Reads the current frequency on this CPU.
391  *
392  * Called via smp_call_function.
393  *
394  * Note: The caller of the smp_call_function should pass an argument of
395  * the type 'struct powernv_smp_call_data *' along with this function.
396  *
397  * The current frequency on this CPU will be returned via
398  * ((struct powernv_smp_call_data *)arg)->freq;
399  */
400 static void powernv_read_cpu_freq(void *arg)
401 {
402 	unsigned long pmspr_val;
403 	s8 local_pstate_id;
404 	struct powernv_smp_call_data *freq_data = arg;
405 
406 	pmspr_val = get_pmspr(SPRN_PMSR);
407 
408 	/*
409 	 * The local pstate id corresponds bits 48..55 in the PMSR.
410 	 * Note: Watch out for the sign!
411 	 */
412 	local_pstate_id = (pmspr_val >> 48) & 0xFF;
413 	freq_data->pstate_id = local_pstate_id;
414 	freq_data->freq = pstate_id_to_freq(freq_data->pstate_id);
415 
416 	pr_debug("cpu %d pmsr %016lX pstate_id %d frequency %d kHz\n",
417 		raw_smp_processor_id(), pmspr_val, freq_data->pstate_id,
418 		freq_data->freq);
419 }
420 
421 /*
422  * powernv_cpufreq_get: Returns the CPU frequency as reported by the
423  * firmware for CPU 'cpu'. This value is reported through the sysfs
424  * file cpuinfo_cur_freq.
425  */
426 static unsigned int powernv_cpufreq_get(unsigned int cpu)
427 {
428 	struct powernv_smp_call_data freq_data;
429 
430 	smp_call_function_any(cpu_sibling_mask(cpu), powernv_read_cpu_freq,
431 			&freq_data, 1);
432 
433 	return freq_data.freq;
434 }
435 
436 /*
437  * set_pstate: Sets the pstate on this CPU.
438  *
439  * This is called via an smp_call_function.
440  *
441  * The caller must ensure that freq_data is of the type
442  * (struct powernv_smp_call_data *) and the pstate_id which needs to be set
443  * on this CPU should be present in freq_data->pstate_id.
444  */
445 static void set_pstate(void *data)
446 {
447 	unsigned long val;
448 	struct powernv_smp_call_data *freq_data = data;
449 	unsigned long pstate_ul = freq_data->pstate_id;
450 	unsigned long gpstate_ul = freq_data->gpstate_id;
451 
452 	val = get_pmspr(SPRN_PMCR);
453 	val = val & 0x0000FFFFFFFFFFFFULL;
454 
455 	pstate_ul = pstate_ul & 0xFF;
456 	gpstate_ul = gpstate_ul & 0xFF;
457 
458 	/* Set both global(bits 56..63) and local(bits 48..55) PStates */
459 	val = val | (gpstate_ul << 56) | (pstate_ul << 48);
460 
461 	pr_debug("Setting cpu %d pmcr to %016lX\n",
462 			raw_smp_processor_id(), val);
463 	set_pmspr(SPRN_PMCR, val);
464 }
465 
466 /*
467  * get_nominal_index: Returns the index corresponding to the nominal
468  * pstate in the cpufreq table
469  */
470 static inline unsigned int get_nominal_index(void)
471 {
472 	return powernv_pstate_info.nominal;
473 }
474 
475 static void powernv_cpufreq_throttle_check(void *data)
476 {
477 	struct chip *chip;
478 	unsigned int cpu = smp_processor_id();
479 	unsigned long pmsr;
480 	int pmsr_pmax;
481 	unsigned int pmsr_pmax_idx;
482 
483 	pmsr = get_pmspr(SPRN_PMSR);
484 	chip = this_cpu_read(chip_info);
485 
486 	/* Check for Pmax Capping */
487 	pmsr_pmax = (s8)PMSR_MAX(pmsr);
488 	pmsr_pmax_idx = pstate_to_idx(pmsr_pmax);
489 	if (pmsr_pmax_idx != powernv_pstate_info.max) {
490 		if (chip->throttled)
491 			goto next;
492 		chip->throttled = true;
493 		if (pmsr_pmax_idx > powernv_pstate_info.nominal) {
494 			pr_warn_once("CPU %d on Chip %u has Pmax(%d) reduced below nominal frequency(%d)\n",
495 				     cpu, chip->id, pmsr_pmax,
496 				     idx_to_pstate(powernv_pstate_info.nominal));
497 			chip->throttle_sub_turbo++;
498 		} else {
499 			chip->throttle_turbo++;
500 		}
501 		trace_powernv_throttle(chip->id,
502 				      throttle_reason[chip->throttle_reason],
503 				      pmsr_pmax);
504 	} else if (chip->throttled) {
505 		chip->throttled = false;
506 		trace_powernv_throttle(chip->id,
507 				      throttle_reason[chip->throttle_reason],
508 				      pmsr_pmax);
509 	}
510 
511 	/* Check if Psafe_mode_active is set in PMSR. */
512 next:
513 	if (pmsr & PMSR_PSAFE_ENABLE) {
514 		throttled = true;
515 		pr_info("Pstate set to safe frequency\n");
516 	}
517 
518 	/* Check if SPR_EM_DISABLE is set in PMSR */
519 	if (pmsr & PMSR_SPR_EM_DISABLE) {
520 		throttled = true;
521 		pr_info("Frequency Control disabled from OS\n");
522 	}
523 
524 	if (throttled) {
525 		pr_info("PMSR = %16lx\n", pmsr);
526 		pr_warn("CPU Frequency could be throttled\n");
527 	}
528 }
529 
530 /**
531  * calc_global_pstate - Calculate global pstate
532  * @elapsed_time:		Elapsed time in milliseconds
533  * @local_pstate_idx:		New local pstate
534  * @highest_lpstate_idx:	pstate from which its ramping down
535  *
536  * Finds the appropriate global pstate based on the pstate from which its
537  * ramping down and the time elapsed in ramping down. It follows a quadratic
538  * equation which ensures that it reaches ramping down to pmin in 5sec.
539  */
540 static inline int calc_global_pstate(unsigned int elapsed_time,
541 				     int highest_lpstate_idx,
542 				     int local_pstate_idx)
543 {
544 	int index_diff;
545 
546 	/*
547 	 * Using ramp_down_percent we get the percentage of rampdown
548 	 * that we are expecting to be dropping. Difference between
549 	 * highest_lpstate_idx and powernv_pstate_info.min will give a absolute
550 	 * number of how many pstates we will drop eventually by the end of
551 	 * 5 seconds, then just scale it get the number pstates to be dropped.
552 	 */
553 	index_diff =  ((int)ramp_down_percent(elapsed_time) *
554 			(powernv_pstate_info.min - highest_lpstate_idx)) / 100;
555 
556 	/* Ensure that global pstate is >= to local pstate */
557 	if (highest_lpstate_idx + index_diff >= local_pstate_idx)
558 		return local_pstate_idx;
559 	else
560 		return highest_lpstate_idx + index_diff;
561 }
562 
563 static inline void  queue_gpstate_timer(struct global_pstate_info *gpstates)
564 {
565 	unsigned int timer_interval;
566 
567 	/*
568 	 * Setting up timer to fire after GPSTATE_TIMER_INTERVAL ms, But
569 	 * if it exceeds MAX_RAMP_DOWN_TIME ms for ramp down time.
570 	 * Set timer such that it fires exactly at MAX_RAMP_DOWN_TIME
571 	 * seconds of ramp down time.
572 	 */
573 	if ((gpstates->elapsed_time + GPSTATE_TIMER_INTERVAL)
574 	     > MAX_RAMP_DOWN_TIME)
575 		timer_interval = MAX_RAMP_DOWN_TIME - gpstates->elapsed_time;
576 	else
577 		timer_interval = GPSTATE_TIMER_INTERVAL;
578 
579 	mod_timer(&gpstates->timer, jiffies + msecs_to_jiffies(timer_interval));
580 }
581 
582 /**
583  * gpstate_timer_handler
584  *
585  * @data: pointer to cpufreq_policy on which timer was queued
586  *
587  * This handler brings down the global pstate closer to the local pstate
588  * according quadratic equation. Queues a new timer if it is still not equal
589  * to local pstate
590  */
591 void gpstate_timer_handler(unsigned long data)
592 {
593 	struct cpufreq_policy *policy = (struct cpufreq_policy *)data;
594 	struct global_pstate_info *gpstates = policy->driver_data;
595 	int gpstate_idx;
596 	unsigned int time_diff = jiffies_to_msecs(jiffies)
597 					- gpstates->last_sampled_time;
598 	struct powernv_smp_call_data freq_data;
599 
600 	if (!spin_trylock(&gpstates->gpstate_lock))
601 		return;
602 
603 	gpstates->last_sampled_time += time_diff;
604 	gpstates->elapsed_time += time_diff;
605 	freq_data.pstate_id = idx_to_pstate(gpstates->last_lpstate_idx);
606 
607 	if ((gpstates->last_gpstate_idx == gpstates->last_lpstate_idx) ||
608 	    (gpstates->elapsed_time > MAX_RAMP_DOWN_TIME)) {
609 		gpstate_idx = pstate_to_idx(freq_data.pstate_id);
610 		reset_gpstates(policy);
611 		gpstates->highest_lpstate_idx = gpstate_idx;
612 	} else {
613 		gpstate_idx = calc_global_pstate(gpstates->elapsed_time,
614 						 gpstates->highest_lpstate_idx,
615 						 gpstates->last_lpstate_idx);
616 	}
617 
618 	/*
619 	 * If local pstate is equal to global pstate, rampdown is over
620 	 * So timer is not required to be queued.
621 	 */
622 	if (gpstate_idx != gpstates->last_lpstate_idx)
623 		queue_gpstate_timer(gpstates);
624 
625 	freq_data.gpstate_id = idx_to_pstate(gpstate_idx);
626 	gpstates->last_gpstate_idx = pstate_to_idx(freq_data.gpstate_id);
627 	gpstates->last_lpstate_idx = pstate_to_idx(freq_data.pstate_id);
628 
629 	spin_unlock(&gpstates->gpstate_lock);
630 
631 	/* Timer may get migrated to a different cpu on cpu hot unplug */
632 	smp_call_function_any(policy->cpus, set_pstate, &freq_data, 1);
633 }
634 
635 /*
636  * powernv_cpufreq_target_index: Sets the frequency corresponding to
637  * the cpufreq table entry indexed by new_index on the cpus in the
638  * mask policy->cpus
639  */
640 static int powernv_cpufreq_target_index(struct cpufreq_policy *policy,
641 					unsigned int new_index)
642 {
643 	struct powernv_smp_call_data freq_data;
644 	unsigned int cur_msec, gpstate_idx;
645 	struct global_pstate_info *gpstates = policy->driver_data;
646 
647 	if (unlikely(rebooting) && new_index != get_nominal_index())
648 		return 0;
649 
650 	if (!throttled)
651 		powernv_cpufreq_throttle_check(NULL);
652 
653 	cur_msec = jiffies_to_msecs(get_jiffies_64());
654 
655 	spin_lock(&gpstates->gpstate_lock);
656 	freq_data.pstate_id = idx_to_pstate(new_index);
657 
658 	if (!gpstates->last_sampled_time) {
659 		gpstate_idx = new_index;
660 		gpstates->highest_lpstate_idx = new_index;
661 		goto gpstates_done;
662 	}
663 
664 	if (gpstates->last_gpstate_idx < new_index) {
665 		gpstates->elapsed_time += cur_msec -
666 						 gpstates->last_sampled_time;
667 
668 		/*
669 		 * If its has been ramping down for more than MAX_RAMP_DOWN_TIME
670 		 * we should be resetting all global pstate related data. Set it
671 		 * equal to local pstate to start fresh.
672 		 */
673 		if (gpstates->elapsed_time > MAX_RAMP_DOWN_TIME) {
674 			reset_gpstates(policy);
675 			gpstates->highest_lpstate_idx = new_index;
676 			gpstate_idx = new_index;
677 		} else {
678 		/* Elaspsed_time is less than 5 seconds, continue to rampdown */
679 			gpstate_idx = calc_global_pstate(gpstates->elapsed_time,
680 							 gpstates->highest_lpstate_idx,
681 							 new_index);
682 		}
683 	} else {
684 		reset_gpstates(policy);
685 		gpstates->highest_lpstate_idx = new_index;
686 		gpstate_idx = new_index;
687 	}
688 
689 	/*
690 	 * If local pstate is equal to global pstate, rampdown is over
691 	 * So timer is not required to be queued.
692 	 */
693 	if (gpstate_idx != new_index)
694 		queue_gpstate_timer(gpstates);
695 	else
696 		del_timer_sync(&gpstates->timer);
697 
698 gpstates_done:
699 	freq_data.gpstate_id = idx_to_pstate(gpstate_idx);
700 	gpstates->last_sampled_time = cur_msec;
701 	gpstates->last_gpstate_idx = gpstate_idx;
702 	gpstates->last_lpstate_idx = new_index;
703 
704 	spin_unlock(&gpstates->gpstate_lock);
705 
706 	/*
707 	 * Use smp_call_function to send IPI and execute the
708 	 * mtspr on target CPU.  We could do that without IPI
709 	 * if current CPU is within policy->cpus (core)
710 	 */
711 	smp_call_function_any(policy->cpus, set_pstate, &freq_data, 1);
712 	return 0;
713 }
714 
715 static int powernv_cpufreq_cpu_init(struct cpufreq_policy *policy)
716 {
717 	int base, i, ret;
718 	struct kernfs_node *kn;
719 	struct global_pstate_info *gpstates;
720 
721 	base = cpu_first_thread_sibling(policy->cpu);
722 
723 	for (i = 0; i < threads_per_core; i++)
724 		cpumask_set_cpu(base + i, policy->cpus);
725 
726 	kn = kernfs_find_and_get(policy->kobj.sd, throttle_attr_grp.name);
727 	if (!kn) {
728 		int ret;
729 
730 		ret = sysfs_create_group(&policy->kobj, &throttle_attr_grp);
731 		if (ret) {
732 			pr_info("Failed to create throttle stats directory for cpu %d\n",
733 				policy->cpu);
734 			return ret;
735 		}
736 	} else {
737 		kernfs_put(kn);
738 	}
739 
740 	gpstates =  kzalloc(sizeof(*gpstates), GFP_KERNEL);
741 	if (!gpstates)
742 		return -ENOMEM;
743 
744 	policy->driver_data = gpstates;
745 
746 	/* initialize timer */
747 	init_timer_pinned_deferrable(&gpstates->timer);
748 	gpstates->timer.data = (unsigned long)policy;
749 	gpstates->timer.function = gpstate_timer_handler;
750 	gpstates->timer.expires = jiffies +
751 				msecs_to_jiffies(GPSTATE_TIMER_INTERVAL);
752 	spin_lock_init(&gpstates->gpstate_lock);
753 	ret = cpufreq_table_validate_and_show(policy, powernv_freqs);
754 
755 	if (ret < 0)
756 		kfree(policy->driver_data);
757 
758 	return ret;
759 }
760 
761 static int powernv_cpufreq_cpu_exit(struct cpufreq_policy *policy)
762 {
763 	/* timer is deleted in cpufreq_cpu_stop() */
764 	kfree(policy->driver_data);
765 
766 	return 0;
767 }
768 
769 static int powernv_cpufreq_reboot_notifier(struct notifier_block *nb,
770 				unsigned long action, void *unused)
771 {
772 	int cpu;
773 	struct cpufreq_policy cpu_policy;
774 
775 	rebooting = true;
776 	for_each_online_cpu(cpu) {
777 		cpufreq_get_policy(&cpu_policy, cpu);
778 		powernv_cpufreq_target_index(&cpu_policy, get_nominal_index());
779 	}
780 
781 	return NOTIFY_DONE;
782 }
783 
784 static struct notifier_block powernv_cpufreq_reboot_nb = {
785 	.notifier_call = powernv_cpufreq_reboot_notifier,
786 };
787 
788 void powernv_cpufreq_work_fn(struct work_struct *work)
789 {
790 	struct chip *chip = container_of(work, struct chip, throttle);
791 	unsigned int cpu;
792 	cpumask_t mask;
793 
794 	get_online_cpus();
795 	cpumask_and(&mask, &chip->mask, cpu_online_mask);
796 	smp_call_function_any(&mask,
797 			      powernv_cpufreq_throttle_check, NULL, 0);
798 
799 	if (!chip->restore)
800 		goto out;
801 
802 	chip->restore = false;
803 	for_each_cpu(cpu, &mask) {
804 		int index;
805 		struct cpufreq_policy policy;
806 
807 		cpufreq_get_policy(&policy, cpu);
808 		index = cpufreq_table_find_index_c(&policy, policy.cur);
809 		powernv_cpufreq_target_index(&policy, index);
810 		cpumask_andnot(&mask, &mask, policy.cpus);
811 	}
812 out:
813 	put_online_cpus();
814 }
815 
816 static int powernv_cpufreq_occ_msg(struct notifier_block *nb,
817 				   unsigned long msg_type, void *_msg)
818 {
819 	struct opal_msg *msg = _msg;
820 	struct opal_occ_msg omsg;
821 	int i;
822 
823 	if (msg_type != OPAL_MSG_OCC)
824 		return 0;
825 
826 	omsg.type = be64_to_cpu(msg->params[0]);
827 
828 	switch (omsg.type) {
829 	case OCC_RESET:
830 		occ_reset = true;
831 		pr_info("OCC (On Chip Controller - enforces hard thermal/power limits) Resetting\n");
832 		/*
833 		 * powernv_cpufreq_throttle_check() is called in
834 		 * target() callback which can detect the throttle state
835 		 * for governors like ondemand.
836 		 * But static governors will not call target() often thus
837 		 * report throttling here.
838 		 */
839 		if (!throttled) {
840 			throttled = true;
841 			pr_warn("CPU frequency is throttled for duration\n");
842 		}
843 
844 		break;
845 	case OCC_LOAD:
846 		pr_info("OCC Loading, CPU frequency is throttled until OCC is started\n");
847 		break;
848 	case OCC_THROTTLE:
849 		omsg.chip = be64_to_cpu(msg->params[1]);
850 		omsg.throttle_status = be64_to_cpu(msg->params[2]);
851 
852 		if (occ_reset) {
853 			occ_reset = false;
854 			throttled = false;
855 			pr_info("OCC Active, CPU frequency is no longer throttled\n");
856 
857 			for (i = 0; i < nr_chips; i++) {
858 				chips[i].restore = true;
859 				schedule_work(&chips[i].throttle);
860 			}
861 
862 			return 0;
863 		}
864 
865 		for (i = 0; i < nr_chips; i++)
866 			if (chips[i].id == omsg.chip)
867 				break;
868 
869 		if (omsg.throttle_status >= 0 &&
870 		    omsg.throttle_status <= OCC_MAX_THROTTLE_STATUS) {
871 			chips[i].throttle_reason = omsg.throttle_status;
872 			chips[i].reason[omsg.throttle_status]++;
873 		}
874 
875 		if (!omsg.throttle_status)
876 			chips[i].restore = true;
877 
878 		schedule_work(&chips[i].throttle);
879 	}
880 	return 0;
881 }
882 
883 static struct notifier_block powernv_cpufreq_opal_nb = {
884 	.notifier_call	= powernv_cpufreq_occ_msg,
885 	.next		= NULL,
886 	.priority	= 0,
887 };
888 
889 static void powernv_cpufreq_stop_cpu(struct cpufreq_policy *policy)
890 {
891 	struct powernv_smp_call_data freq_data;
892 	struct global_pstate_info *gpstates = policy->driver_data;
893 
894 	freq_data.pstate_id = idx_to_pstate(powernv_pstate_info.min);
895 	freq_data.gpstate_id = idx_to_pstate(powernv_pstate_info.min);
896 	smp_call_function_single(policy->cpu, set_pstate, &freq_data, 1);
897 	del_timer_sync(&gpstates->timer);
898 }
899 
900 static struct cpufreq_driver powernv_cpufreq_driver = {
901 	.name		= "powernv-cpufreq",
902 	.flags		= CPUFREQ_CONST_LOOPS,
903 	.init		= powernv_cpufreq_cpu_init,
904 	.exit		= powernv_cpufreq_cpu_exit,
905 	.verify		= cpufreq_generic_frequency_table_verify,
906 	.target_index	= powernv_cpufreq_target_index,
907 	.get		= powernv_cpufreq_get,
908 	.stop_cpu	= powernv_cpufreq_stop_cpu,
909 	.attr		= powernv_cpu_freq_attr,
910 };
911 
912 static int init_chip_info(void)
913 {
914 	unsigned int chip[256];
915 	unsigned int cpu, i;
916 	unsigned int prev_chip_id = UINT_MAX;
917 
918 	for_each_possible_cpu(cpu) {
919 		unsigned int id = cpu_to_chip_id(cpu);
920 
921 		if (prev_chip_id != id) {
922 			prev_chip_id = id;
923 			chip[nr_chips++] = id;
924 		}
925 	}
926 
927 	chips = kcalloc(nr_chips, sizeof(struct chip), GFP_KERNEL);
928 	if (!chips)
929 		return -ENOMEM;
930 
931 	for (i = 0; i < nr_chips; i++) {
932 		chips[i].id = chip[i];
933 		cpumask_copy(&chips[i].mask, cpumask_of_node(chip[i]));
934 		INIT_WORK(&chips[i].throttle, powernv_cpufreq_work_fn);
935 		for_each_cpu(cpu, &chips[i].mask)
936 			per_cpu(chip_info, cpu) =  &chips[i];
937 	}
938 
939 	return 0;
940 }
941 
942 static inline void clean_chip_info(void)
943 {
944 	kfree(chips);
945 }
946 
947 static inline void unregister_all_notifiers(void)
948 {
949 	opal_message_notifier_unregister(OPAL_MSG_OCC,
950 					 &powernv_cpufreq_opal_nb);
951 	unregister_reboot_notifier(&powernv_cpufreq_reboot_nb);
952 }
953 
954 static int __init powernv_cpufreq_init(void)
955 {
956 	int rc = 0;
957 
958 	/* Don't probe on pseries (guest) platforms */
959 	if (!firmware_has_feature(FW_FEATURE_OPAL))
960 		return -ENODEV;
961 
962 	/* Discover pstates from device tree and init */
963 	rc = init_powernv_pstates();
964 	if (rc)
965 		goto out;
966 
967 	/* Populate chip info */
968 	rc = init_chip_info();
969 	if (rc)
970 		goto out;
971 
972 	register_reboot_notifier(&powernv_cpufreq_reboot_nb);
973 	opal_message_notifier_register(OPAL_MSG_OCC, &powernv_cpufreq_opal_nb);
974 
975 	rc = cpufreq_register_driver(&powernv_cpufreq_driver);
976 	if (!rc)
977 		return 0;
978 
979 	pr_info("Failed to register the cpufreq driver (%d)\n", rc);
980 	unregister_all_notifiers();
981 	clean_chip_info();
982 out:
983 	pr_info("Platform driver disabled. System does not support PState control\n");
984 	return rc;
985 }
986 module_init(powernv_cpufreq_init);
987 
988 static void __exit powernv_cpufreq_exit(void)
989 {
990 	cpufreq_unregister_driver(&powernv_cpufreq_driver);
991 	unregister_all_notifiers();
992 	clean_chip_info();
993 }
994 module_exit(powernv_cpufreq_exit);
995 
996 MODULE_LICENSE("GPL");
997 MODULE_AUTHOR("Vaidyanathan Srinivasan <svaidy at linux.vnet.ibm.com>");
998