1 /* 2 * (c) 2003-2012 Advanced Micro Devices, Inc. 3 * Your use of this code is subject to the terms and conditions of the 4 * GNU general public license version 2. See "COPYING" or 5 * http://www.gnu.org/licenses/gpl.html 6 * 7 * Maintainer: 8 * Andreas Herrmann <herrmann.der.user@googlemail.com> 9 * 10 * Based on the powernow-k7.c module written by Dave Jones. 11 * (C) 2003 Dave Jones on behalf of SuSE Labs 12 * (C) 2004 Dominik Brodowski <linux@brodo.de> 13 * (C) 2004 Pavel Machek <pavel@ucw.cz> 14 * Licensed under the terms of the GNU GPL License version 2. 15 * Based upon datasheets & sample CPUs kindly provided by AMD. 16 * 17 * Valuable input gratefully received from Dave Jones, Pavel Machek, 18 * Dominik Brodowski, Jacob Shin, and others. 19 * Originally developed by Paul Devriendt. 20 * 21 * Processor information obtained from Chapter 9 (Power and Thermal 22 * Management) of the "BIOS and Kernel Developer's Guide (BKDG) for 23 * the AMD Athlon 64 and AMD Opteron Processors" and section "2.x 24 * Power Management" in BKDGs for newer AMD CPU families. 25 * 26 * Tables for specific CPUs can be inferred from AMD's processor 27 * power and thermal data sheets, (e.g. 30417.pdf, 30430.pdf, 43375.pdf) 28 */ 29 30 #include <linux/kernel.h> 31 #include <linux/smp.h> 32 #include <linux/module.h> 33 #include <linux/init.h> 34 #include <linux/cpufreq.h> 35 #include <linux/slab.h> 36 #include <linux/string.h> 37 #include <linux/cpumask.h> 38 #include <linux/io.h> 39 #include <linux/delay.h> 40 41 #include <asm/msr.h> 42 #include <asm/cpu_device_id.h> 43 44 #include <linux/acpi.h> 45 #include <linux/mutex.h> 46 #include <acpi/processor.h> 47 48 #define PFX "powernow-k8: " 49 #define VERSION "version 2.20.00" 50 #include "powernow-k8.h" 51 52 /* serialize freq changes */ 53 static DEFINE_MUTEX(fidvid_mutex); 54 55 static DEFINE_PER_CPU(struct powernow_k8_data *, powernow_data); 56 57 static struct cpufreq_driver cpufreq_amd64_driver; 58 59 #ifndef CONFIG_SMP 60 static inline const struct cpumask *cpu_core_mask(int cpu) 61 { 62 return cpumask_of(0); 63 } 64 #endif 65 66 /* Return a frequency in MHz, given an input fid */ 67 static u32 find_freq_from_fid(u32 fid) 68 { 69 return 800 + (fid * 100); 70 } 71 72 /* Return a frequency in KHz, given an input fid */ 73 static u32 find_khz_freq_from_fid(u32 fid) 74 { 75 return 1000 * find_freq_from_fid(fid); 76 } 77 78 /* Return the vco fid for an input fid 79 * 80 * Each "low" fid has corresponding "high" fid, and you can get to "low" fids 81 * only from corresponding high fids. This returns "high" fid corresponding to 82 * "low" one. 83 */ 84 static u32 convert_fid_to_vco_fid(u32 fid) 85 { 86 if (fid < HI_FID_TABLE_BOTTOM) 87 return 8 + (2 * fid); 88 else 89 return fid; 90 } 91 92 /* 93 * Return 1 if the pending bit is set. Unless we just instructed the processor 94 * to transition to a new state, seeing this bit set is really bad news. 95 */ 96 static int pending_bit_stuck(void) 97 { 98 u32 lo, hi; 99 100 rdmsr(MSR_FIDVID_STATUS, lo, hi); 101 return lo & MSR_S_LO_CHANGE_PENDING ? 1 : 0; 102 } 103 104 /* 105 * Update the global current fid / vid values from the status msr. 106 * Returns 1 on error. 107 */ 108 static int query_current_values_with_pending_wait(struct powernow_k8_data *data) 109 { 110 u32 lo, hi; 111 u32 i = 0; 112 113 do { 114 if (i++ > 10000) { 115 pr_debug("detected change pending stuck\n"); 116 return 1; 117 } 118 rdmsr(MSR_FIDVID_STATUS, lo, hi); 119 } while (lo & MSR_S_LO_CHANGE_PENDING); 120 121 data->currvid = hi & MSR_S_HI_CURRENT_VID; 122 data->currfid = lo & MSR_S_LO_CURRENT_FID; 123 124 return 0; 125 } 126 127 /* the isochronous relief time */ 128 static void count_off_irt(struct powernow_k8_data *data) 129 { 130 udelay((1 << data->irt) * 10); 131 return; 132 } 133 134 /* the voltage stabilization time */ 135 static void count_off_vst(struct powernow_k8_data *data) 136 { 137 udelay(data->vstable * VST_UNITS_20US); 138 return; 139 } 140 141 /* need to init the control msr to a safe value (for each cpu) */ 142 static void fidvid_msr_init(void) 143 { 144 u32 lo, hi; 145 u8 fid, vid; 146 147 rdmsr(MSR_FIDVID_STATUS, lo, hi); 148 vid = hi & MSR_S_HI_CURRENT_VID; 149 fid = lo & MSR_S_LO_CURRENT_FID; 150 lo = fid | (vid << MSR_C_LO_VID_SHIFT); 151 hi = MSR_C_HI_STP_GNT_BENIGN; 152 pr_debug("cpu%d, init lo 0x%x, hi 0x%x\n", smp_processor_id(), lo, hi); 153 wrmsr(MSR_FIDVID_CTL, lo, hi); 154 } 155 156 /* write the new fid value along with the other control fields to the msr */ 157 static int write_new_fid(struct powernow_k8_data *data, u32 fid) 158 { 159 u32 lo; 160 u32 savevid = data->currvid; 161 u32 i = 0; 162 163 if ((fid & INVALID_FID_MASK) || (data->currvid & INVALID_VID_MASK)) { 164 printk(KERN_ERR PFX "internal error - overflow on fid write\n"); 165 return 1; 166 } 167 168 lo = fid; 169 lo |= (data->currvid << MSR_C_LO_VID_SHIFT); 170 lo |= MSR_C_LO_INIT_FID_VID; 171 172 pr_debug("writing fid 0x%x, lo 0x%x, hi 0x%x\n", 173 fid, lo, data->plllock * PLL_LOCK_CONVERSION); 174 175 do { 176 wrmsr(MSR_FIDVID_CTL, lo, data->plllock * PLL_LOCK_CONVERSION); 177 if (i++ > 100) { 178 printk(KERN_ERR PFX 179 "Hardware error - pending bit very stuck - " 180 "no further pstate changes possible\n"); 181 return 1; 182 } 183 } while (query_current_values_with_pending_wait(data)); 184 185 count_off_irt(data); 186 187 if (savevid != data->currvid) { 188 printk(KERN_ERR PFX 189 "vid change on fid trans, old 0x%x, new 0x%x\n", 190 savevid, data->currvid); 191 return 1; 192 } 193 194 if (fid != data->currfid) { 195 printk(KERN_ERR PFX 196 "fid trans failed, fid 0x%x, curr 0x%x\n", fid, 197 data->currfid); 198 return 1; 199 } 200 201 return 0; 202 } 203 204 /* Write a new vid to the hardware */ 205 static int write_new_vid(struct powernow_k8_data *data, u32 vid) 206 { 207 u32 lo; 208 u32 savefid = data->currfid; 209 int i = 0; 210 211 if ((data->currfid & INVALID_FID_MASK) || (vid & INVALID_VID_MASK)) { 212 printk(KERN_ERR PFX "internal error - overflow on vid write\n"); 213 return 1; 214 } 215 216 lo = data->currfid; 217 lo |= (vid << MSR_C_LO_VID_SHIFT); 218 lo |= MSR_C_LO_INIT_FID_VID; 219 220 pr_debug("writing vid 0x%x, lo 0x%x, hi 0x%x\n", 221 vid, lo, STOP_GRANT_5NS); 222 223 do { 224 wrmsr(MSR_FIDVID_CTL, lo, STOP_GRANT_5NS); 225 if (i++ > 100) { 226 printk(KERN_ERR PFX "internal error - pending bit " 227 "very stuck - no further pstate " 228 "changes possible\n"); 229 return 1; 230 } 231 } while (query_current_values_with_pending_wait(data)); 232 233 if (savefid != data->currfid) { 234 printk(KERN_ERR PFX "fid changed on vid trans, old " 235 "0x%x new 0x%x\n", 236 savefid, data->currfid); 237 return 1; 238 } 239 240 if (vid != data->currvid) { 241 printk(KERN_ERR PFX "vid trans failed, vid 0x%x, " 242 "curr 0x%x\n", 243 vid, data->currvid); 244 return 1; 245 } 246 247 return 0; 248 } 249 250 /* 251 * Reduce the vid by the max of step or reqvid. 252 * Decreasing vid codes represent increasing voltages: 253 * vid of 0 is 1.550V, vid of 0x1e is 0.800V, vid of VID_OFF is off. 254 */ 255 static int decrease_vid_code_by_step(struct powernow_k8_data *data, 256 u32 reqvid, u32 step) 257 { 258 if ((data->currvid - reqvid) > step) 259 reqvid = data->currvid - step; 260 261 if (write_new_vid(data, reqvid)) 262 return 1; 263 264 count_off_vst(data); 265 266 return 0; 267 } 268 269 /* Change Opteron/Athlon64 fid and vid, by the 3 phases. */ 270 static int transition_fid_vid(struct powernow_k8_data *data, 271 u32 reqfid, u32 reqvid) 272 { 273 if (core_voltage_pre_transition(data, reqvid, reqfid)) 274 return 1; 275 276 if (core_frequency_transition(data, reqfid)) 277 return 1; 278 279 if (core_voltage_post_transition(data, reqvid)) 280 return 1; 281 282 if (query_current_values_with_pending_wait(data)) 283 return 1; 284 285 if ((reqfid != data->currfid) || (reqvid != data->currvid)) { 286 printk(KERN_ERR PFX "failed (cpu%d): req 0x%x 0x%x, " 287 "curr 0x%x 0x%x\n", 288 smp_processor_id(), 289 reqfid, reqvid, data->currfid, data->currvid); 290 return 1; 291 } 292 293 pr_debug("transitioned (cpu%d): new fid 0x%x, vid 0x%x\n", 294 smp_processor_id(), data->currfid, data->currvid); 295 296 return 0; 297 } 298 299 /* Phase 1 - core voltage transition ... setup voltage */ 300 static int core_voltage_pre_transition(struct powernow_k8_data *data, 301 u32 reqvid, u32 reqfid) 302 { 303 u32 rvosteps = data->rvo; 304 u32 savefid = data->currfid; 305 u32 maxvid, lo, rvomult = 1; 306 307 pr_debug("ph1 (cpu%d): start, currfid 0x%x, currvid 0x%x, " 308 "reqvid 0x%x, rvo 0x%x\n", 309 smp_processor_id(), 310 data->currfid, data->currvid, reqvid, data->rvo); 311 312 if ((savefid < LO_FID_TABLE_TOP) && (reqfid < LO_FID_TABLE_TOP)) 313 rvomult = 2; 314 rvosteps *= rvomult; 315 rdmsr(MSR_FIDVID_STATUS, lo, maxvid); 316 maxvid = 0x1f & (maxvid >> 16); 317 pr_debug("ph1 maxvid=0x%x\n", maxvid); 318 if (reqvid < maxvid) /* lower numbers are higher voltages */ 319 reqvid = maxvid; 320 321 while (data->currvid > reqvid) { 322 pr_debug("ph1: curr 0x%x, req vid 0x%x\n", 323 data->currvid, reqvid); 324 if (decrease_vid_code_by_step(data, reqvid, data->vidmvs)) 325 return 1; 326 } 327 328 while ((rvosteps > 0) && 329 ((rvomult * data->rvo + data->currvid) > reqvid)) { 330 if (data->currvid == maxvid) { 331 rvosteps = 0; 332 } else { 333 pr_debug("ph1: changing vid for rvo, req 0x%x\n", 334 data->currvid - 1); 335 if (decrease_vid_code_by_step(data, data->currvid-1, 1)) 336 return 1; 337 rvosteps--; 338 } 339 } 340 341 if (query_current_values_with_pending_wait(data)) 342 return 1; 343 344 if (savefid != data->currfid) { 345 printk(KERN_ERR PFX "ph1 err, currfid changed 0x%x\n", 346 data->currfid); 347 return 1; 348 } 349 350 pr_debug("ph1 complete, currfid 0x%x, currvid 0x%x\n", 351 data->currfid, data->currvid); 352 353 return 0; 354 } 355 356 /* Phase 2 - core frequency transition */ 357 static int core_frequency_transition(struct powernow_k8_data *data, u32 reqfid) 358 { 359 u32 vcoreqfid, vcocurrfid, vcofiddiff; 360 u32 fid_interval, savevid = data->currvid; 361 362 if (data->currfid == reqfid) { 363 printk(KERN_ERR PFX "ph2 null fid transition 0x%x\n", 364 data->currfid); 365 return 0; 366 } 367 368 pr_debug("ph2 (cpu%d): starting, currfid 0x%x, currvid 0x%x, " 369 "reqfid 0x%x\n", 370 smp_processor_id(), 371 data->currfid, data->currvid, reqfid); 372 373 vcoreqfid = convert_fid_to_vco_fid(reqfid); 374 vcocurrfid = convert_fid_to_vco_fid(data->currfid); 375 vcofiddiff = vcocurrfid > vcoreqfid ? vcocurrfid - vcoreqfid 376 : vcoreqfid - vcocurrfid; 377 378 if ((reqfid <= LO_FID_TABLE_TOP) && (data->currfid <= LO_FID_TABLE_TOP)) 379 vcofiddiff = 0; 380 381 while (vcofiddiff > 2) { 382 (data->currfid & 1) ? (fid_interval = 1) : (fid_interval = 2); 383 384 if (reqfid > data->currfid) { 385 if (data->currfid > LO_FID_TABLE_TOP) { 386 if (write_new_fid(data, 387 data->currfid + fid_interval)) 388 return 1; 389 } else { 390 if (write_new_fid 391 (data, 392 2 + convert_fid_to_vco_fid(data->currfid))) 393 return 1; 394 } 395 } else { 396 if (write_new_fid(data, data->currfid - fid_interval)) 397 return 1; 398 } 399 400 vcocurrfid = convert_fid_to_vco_fid(data->currfid); 401 vcofiddiff = vcocurrfid > vcoreqfid ? vcocurrfid - vcoreqfid 402 : vcoreqfid - vcocurrfid; 403 } 404 405 if (write_new_fid(data, reqfid)) 406 return 1; 407 408 if (query_current_values_with_pending_wait(data)) 409 return 1; 410 411 if (data->currfid != reqfid) { 412 printk(KERN_ERR PFX 413 "ph2: mismatch, failed fid transition, " 414 "curr 0x%x, req 0x%x\n", 415 data->currfid, reqfid); 416 return 1; 417 } 418 419 if (savevid != data->currvid) { 420 printk(KERN_ERR PFX "ph2: vid changed, save 0x%x, curr 0x%x\n", 421 savevid, data->currvid); 422 return 1; 423 } 424 425 pr_debug("ph2 complete, currfid 0x%x, currvid 0x%x\n", 426 data->currfid, data->currvid); 427 428 return 0; 429 } 430 431 /* Phase 3 - core voltage transition flow ... jump to the final vid. */ 432 static int core_voltage_post_transition(struct powernow_k8_data *data, 433 u32 reqvid) 434 { 435 u32 savefid = data->currfid; 436 u32 savereqvid = reqvid; 437 438 pr_debug("ph3 (cpu%d): starting, currfid 0x%x, currvid 0x%x\n", 439 smp_processor_id(), 440 data->currfid, data->currvid); 441 442 if (reqvid != data->currvid) { 443 if (write_new_vid(data, reqvid)) 444 return 1; 445 446 if (savefid != data->currfid) { 447 printk(KERN_ERR PFX 448 "ph3: bad fid change, save 0x%x, curr 0x%x\n", 449 savefid, data->currfid); 450 return 1; 451 } 452 453 if (data->currvid != reqvid) { 454 printk(KERN_ERR PFX 455 "ph3: failed vid transition\n, " 456 "req 0x%x, curr 0x%x", 457 reqvid, data->currvid); 458 return 1; 459 } 460 } 461 462 if (query_current_values_with_pending_wait(data)) 463 return 1; 464 465 if (savereqvid != data->currvid) { 466 pr_debug("ph3 failed, currvid 0x%x\n", data->currvid); 467 return 1; 468 } 469 470 if (savefid != data->currfid) { 471 pr_debug("ph3 failed, currfid changed 0x%x\n", 472 data->currfid); 473 return 1; 474 } 475 476 pr_debug("ph3 complete, currfid 0x%x, currvid 0x%x\n", 477 data->currfid, data->currvid); 478 479 return 0; 480 } 481 482 static const struct x86_cpu_id powernow_k8_ids[] = { 483 /* IO based frequency switching */ 484 { X86_VENDOR_AMD, 0xf }, 485 {} 486 }; 487 MODULE_DEVICE_TABLE(x86cpu, powernow_k8_ids); 488 489 static void check_supported_cpu(void *_rc) 490 { 491 u32 eax, ebx, ecx, edx; 492 int *rc = _rc; 493 494 *rc = -ENODEV; 495 496 eax = cpuid_eax(CPUID_PROCESSOR_SIGNATURE); 497 498 if ((eax & CPUID_XFAM) == CPUID_XFAM_K8) { 499 if (((eax & CPUID_USE_XFAM_XMOD) != CPUID_USE_XFAM_XMOD) || 500 ((eax & CPUID_XMOD) > CPUID_XMOD_REV_MASK)) { 501 printk(KERN_INFO PFX 502 "Processor cpuid %x not supported\n", eax); 503 return; 504 } 505 506 eax = cpuid_eax(CPUID_GET_MAX_CAPABILITIES); 507 if (eax < CPUID_FREQ_VOLT_CAPABILITIES) { 508 printk(KERN_INFO PFX 509 "No frequency change capabilities detected\n"); 510 return; 511 } 512 513 cpuid(CPUID_FREQ_VOLT_CAPABILITIES, &eax, &ebx, &ecx, &edx); 514 if ((edx & P_STATE_TRANSITION_CAPABLE) 515 != P_STATE_TRANSITION_CAPABLE) { 516 printk(KERN_INFO PFX 517 "Power state transitions not supported\n"); 518 return; 519 } 520 *rc = 0; 521 } 522 } 523 524 static int check_pst_table(struct powernow_k8_data *data, struct pst_s *pst, 525 u8 maxvid) 526 { 527 unsigned int j; 528 u8 lastfid = 0xff; 529 530 for (j = 0; j < data->numps; j++) { 531 if (pst[j].vid > LEAST_VID) { 532 printk(KERN_ERR FW_BUG PFX "vid %d invalid : 0x%x\n", 533 j, pst[j].vid); 534 return -EINVAL; 535 } 536 if (pst[j].vid < data->rvo) { 537 /* vid + rvo >= 0 */ 538 printk(KERN_ERR FW_BUG PFX "0 vid exceeded with pstate" 539 " %d\n", j); 540 return -ENODEV; 541 } 542 if (pst[j].vid < maxvid + data->rvo) { 543 /* vid + rvo >= maxvid */ 544 printk(KERN_ERR FW_BUG PFX "maxvid exceeded with pstate" 545 " %d\n", j); 546 return -ENODEV; 547 } 548 if (pst[j].fid > MAX_FID) { 549 printk(KERN_ERR FW_BUG PFX "maxfid exceeded with pstate" 550 " %d\n", j); 551 return -ENODEV; 552 } 553 if (j && (pst[j].fid < HI_FID_TABLE_BOTTOM)) { 554 /* Only first fid is allowed to be in "low" range */ 555 printk(KERN_ERR FW_BUG PFX "two low fids - %d : " 556 "0x%x\n", j, pst[j].fid); 557 return -EINVAL; 558 } 559 if (pst[j].fid < lastfid) 560 lastfid = pst[j].fid; 561 } 562 if (lastfid & 1) { 563 printk(KERN_ERR FW_BUG PFX "lastfid invalid\n"); 564 return -EINVAL; 565 } 566 if (lastfid > LO_FID_TABLE_TOP) 567 printk(KERN_INFO FW_BUG PFX 568 "first fid not from lo freq table\n"); 569 570 return 0; 571 } 572 573 static void invalidate_entry(struct cpufreq_frequency_table *powernow_table, 574 unsigned int entry) 575 { 576 powernow_table[entry].frequency = CPUFREQ_ENTRY_INVALID; 577 } 578 579 static void print_basics(struct powernow_k8_data *data) 580 { 581 int j; 582 for (j = 0; j < data->numps; j++) { 583 if (data->powernow_table[j].frequency != 584 CPUFREQ_ENTRY_INVALID) { 585 printk(KERN_INFO PFX 586 "fid 0x%x (%d MHz), vid 0x%x\n", 587 data->powernow_table[j].driver_data & 0xff, 588 data->powernow_table[j].frequency/1000, 589 data->powernow_table[j].driver_data >> 8); 590 } 591 } 592 if (data->batps) 593 printk(KERN_INFO PFX "Only %d pstates on battery\n", 594 data->batps); 595 } 596 597 static int fill_powernow_table(struct powernow_k8_data *data, 598 struct pst_s *pst, u8 maxvid) 599 { 600 struct cpufreq_frequency_table *powernow_table; 601 unsigned int j; 602 603 if (data->batps) { 604 /* use ACPI support to get full speed on mains power */ 605 printk(KERN_WARNING PFX 606 "Only %d pstates usable (use ACPI driver for full " 607 "range\n", data->batps); 608 data->numps = data->batps; 609 } 610 611 for (j = 1; j < data->numps; j++) { 612 if (pst[j-1].fid >= pst[j].fid) { 613 printk(KERN_ERR PFX "PST out of sequence\n"); 614 return -EINVAL; 615 } 616 } 617 618 if (data->numps < 2) { 619 printk(KERN_ERR PFX "no p states to transition\n"); 620 return -ENODEV; 621 } 622 623 if (check_pst_table(data, pst, maxvid)) 624 return -EINVAL; 625 626 powernow_table = kmalloc((sizeof(*powernow_table) 627 * (data->numps + 1)), GFP_KERNEL); 628 if (!powernow_table) { 629 printk(KERN_ERR PFX "powernow_table memory alloc failure\n"); 630 return -ENOMEM; 631 } 632 633 for (j = 0; j < data->numps; j++) { 634 int freq; 635 powernow_table[j].driver_data = pst[j].fid; /* lower 8 bits */ 636 powernow_table[j].driver_data |= (pst[j].vid << 8); /* upper 8 bits */ 637 freq = find_khz_freq_from_fid(pst[j].fid); 638 powernow_table[j].frequency = freq; 639 } 640 powernow_table[data->numps].frequency = CPUFREQ_TABLE_END; 641 powernow_table[data->numps].driver_data = 0; 642 643 if (query_current_values_with_pending_wait(data)) { 644 kfree(powernow_table); 645 return -EIO; 646 } 647 648 pr_debug("cfid 0x%x, cvid 0x%x\n", data->currfid, data->currvid); 649 data->powernow_table = powernow_table; 650 if (cpumask_first(cpu_core_mask(data->cpu)) == data->cpu) 651 print_basics(data); 652 653 for (j = 0; j < data->numps; j++) 654 if ((pst[j].fid == data->currfid) && 655 (pst[j].vid == data->currvid)) 656 return 0; 657 658 pr_debug("currfid/vid do not match PST, ignoring\n"); 659 return 0; 660 } 661 662 /* Find and validate the PSB/PST table in BIOS. */ 663 static int find_psb_table(struct powernow_k8_data *data) 664 { 665 struct psb_s *psb; 666 unsigned int i; 667 u32 mvs; 668 u8 maxvid; 669 u32 cpst = 0; 670 u32 thiscpuid; 671 672 for (i = 0xc0000; i < 0xffff0; i += 0x10) { 673 /* Scan BIOS looking for the signature. */ 674 /* It can not be at ffff0 - it is too big. */ 675 676 psb = phys_to_virt(i); 677 if (memcmp(psb, PSB_ID_STRING, PSB_ID_STRING_LEN) != 0) 678 continue; 679 680 pr_debug("found PSB header at 0x%p\n", psb); 681 682 pr_debug("table vers: 0x%x\n", psb->tableversion); 683 if (psb->tableversion != PSB_VERSION_1_4) { 684 printk(KERN_ERR FW_BUG PFX "PSB table is not v1.4\n"); 685 return -ENODEV; 686 } 687 688 pr_debug("flags: 0x%x\n", psb->flags1); 689 if (psb->flags1) { 690 printk(KERN_ERR FW_BUG PFX "unknown flags\n"); 691 return -ENODEV; 692 } 693 694 data->vstable = psb->vstable; 695 pr_debug("voltage stabilization time: %d(*20us)\n", 696 data->vstable); 697 698 pr_debug("flags2: 0x%x\n", psb->flags2); 699 data->rvo = psb->flags2 & 3; 700 data->irt = ((psb->flags2) >> 2) & 3; 701 mvs = ((psb->flags2) >> 4) & 3; 702 data->vidmvs = 1 << mvs; 703 data->batps = ((psb->flags2) >> 6) & 3; 704 705 pr_debug("ramp voltage offset: %d\n", data->rvo); 706 pr_debug("isochronous relief time: %d\n", data->irt); 707 pr_debug("maximum voltage step: %d - 0x%x\n", mvs, data->vidmvs); 708 709 pr_debug("numpst: 0x%x\n", psb->num_tables); 710 cpst = psb->num_tables; 711 if ((psb->cpuid == 0x00000fc0) || 712 (psb->cpuid == 0x00000fe0)) { 713 thiscpuid = cpuid_eax(CPUID_PROCESSOR_SIGNATURE); 714 if ((thiscpuid == 0x00000fc0) || 715 (thiscpuid == 0x00000fe0)) 716 cpst = 1; 717 } 718 if (cpst != 1) { 719 printk(KERN_ERR FW_BUG PFX "numpst must be 1\n"); 720 return -ENODEV; 721 } 722 723 data->plllock = psb->plllocktime; 724 pr_debug("plllocktime: 0x%x (units 1us)\n", psb->plllocktime); 725 pr_debug("maxfid: 0x%x\n", psb->maxfid); 726 pr_debug("maxvid: 0x%x\n", psb->maxvid); 727 maxvid = psb->maxvid; 728 729 data->numps = psb->numps; 730 pr_debug("numpstates: 0x%x\n", data->numps); 731 return fill_powernow_table(data, 732 (struct pst_s *)(psb+1), maxvid); 733 } 734 /* 735 * If you see this message, complain to BIOS manufacturer. If 736 * he tells you "we do not support Linux" or some similar 737 * nonsense, remember that Windows 2000 uses the same legacy 738 * mechanism that the old Linux PSB driver uses. Tell them it 739 * is broken with Windows 2000. 740 * 741 * The reference to the AMD documentation is chapter 9 in the 742 * BIOS and Kernel Developer's Guide, which is available on 743 * www.amd.com 744 */ 745 printk(KERN_ERR FW_BUG PFX "No PSB or ACPI _PSS objects\n"); 746 printk(KERN_ERR PFX "Make sure that your BIOS is up to date" 747 " and Cool'N'Quiet support is enabled in BIOS setup\n"); 748 return -ENODEV; 749 } 750 751 static void powernow_k8_acpi_pst_values(struct powernow_k8_data *data, 752 unsigned int index) 753 { 754 u64 control; 755 756 if (!data->acpi_data.state_count) 757 return; 758 759 control = data->acpi_data.states[index].control; 760 data->irt = (control >> IRT_SHIFT) & IRT_MASK; 761 data->rvo = (control >> RVO_SHIFT) & RVO_MASK; 762 data->exttype = (control >> EXT_TYPE_SHIFT) & EXT_TYPE_MASK; 763 data->plllock = (control >> PLL_L_SHIFT) & PLL_L_MASK; 764 data->vidmvs = 1 << ((control >> MVS_SHIFT) & MVS_MASK); 765 data->vstable = (control >> VST_SHIFT) & VST_MASK; 766 } 767 768 static int powernow_k8_cpu_init_acpi(struct powernow_k8_data *data) 769 { 770 struct cpufreq_frequency_table *powernow_table; 771 int ret_val = -ENODEV; 772 u64 control, status; 773 774 if (acpi_processor_register_performance(&data->acpi_data, data->cpu)) { 775 pr_debug("register performance failed: bad ACPI data\n"); 776 return -EIO; 777 } 778 779 /* verify the data contained in the ACPI structures */ 780 if (data->acpi_data.state_count <= 1) { 781 pr_debug("No ACPI P-States\n"); 782 goto err_out; 783 } 784 785 control = data->acpi_data.control_register.space_id; 786 status = data->acpi_data.status_register.space_id; 787 788 if ((control != ACPI_ADR_SPACE_FIXED_HARDWARE) || 789 (status != ACPI_ADR_SPACE_FIXED_HARDWARE)) { 790 pr_debug("Invalid control/status registers (%llx - %llx)\n", 791 control, status); 792 goto err_out; 793 } 794 795 /* fill in data->powernow_table */ 796 powernow_table = kmalloc((sizeof(*powernow_table) 797 * (data->acpi_data.state_count + 1)), GFP_KERNEL); 798 if (!powernow_table) { 799 pr_debug("powernow_table memory alloc failure\n"); 800 goto err_out; 801 } 802 803 /* fill in data */ 804 data->numps = data->acpi_data.state_count; 805 powernow_k8_acpi_pst_values(data, 0); 806 807 ret_val = fill_powernow_table_fidvid(data, powernow_table); 808 if (ret_val) 809 goto err_out_mem; 810 811 powernow_table[data->acpi_data.state_count].frequency = 812 CPUFREQ_TABLE_END; 813 powernow_table[data->acpi_data.state_count].driver_data = 0; 814 data->powernow_table = powernow_table; 815 816 if (cpumask_first(cpu_core_mask(data->cpu)) == data->cpu) 817 print_basics(data); 818 819 /* notify BIOS that we exist */ 820 acpi_processor_notify_smm(THIS_MODULE); 821 822 if (!zalloc_cpumask_var(&data->acpi_data.shared_cpu_map, GFP_KERNEL)) { 823 printk(KERN_ERR PFX 824 "unable to alloc powernow_k8_data cpumask\n"); 825 ret_val = -ENOMEM; 826 goto err_out_mem; 827 } 828 829 return 0; 830 831 err_out_mem: 832 kfree(powernow_table); 833 834 err_out: 835 acpi_processor_unregister_performance(&data->acpi_data, data->cpu); 836 837 /* data->acpi_data.state_count informs us at ->exit() 838 * whether ACPI was used */ 839 data->acpi_data.state_count = 0; 840 841 return ret_val; 842 } 843 844 static int fill_powernow_table_fidvid(struct powernow_k8_data *data, 845 struct cpufreq_frequency_table *powernow_table) 846 { 847 int i; 848 849 for (i = 0; i < data->acpi_data.state_count; i++) { 850 u32 fid; 851 u32 vid; 852 u32 freq, index; 853 u64 status, control; 854 855 if (data->exttype) { 856 status = data->acpi_data.states[i].status; 857 fid = status & EXT_FID_MASK; 858 vid = (status >> VID_SHIFT) & EXT_VID_MASK; 859 } else { 860 control = data->acpi_data.states[i].control; 861 fid = control & FID_MASK; 862 vid = (control >> VID_SHIFT) & VID_MASK; 863 } 864 865 pr_debug(" %d : fid 0x%x, vid 0x%x\n", i, fid, vid); 866 867 index = fid | (vid<<8); 868 powernow_table[i].driver_data = index; 869 870 freq = find_khz_freq_from_fid(fid); 871 powernow_table[i].frequency = freq; 872 873 /* verify frequency is OK */ 874 if ((freq > (MAX_FREQ * 1000)) || (freq < (MIN_FREQ * 1000))) { 875 pr_debug("invalid freq %u kHz, ignoring\n", freq); 876 invalidate_entry(powernow_table, i); 877 continue; 878 } 879 880 /* verify voltage is OK - 881 * BIOSs are using "off" to indicate invalid */ 882 if (vid == VID_OFF) { 883 pr_debug("invalid vid %u, ignoring\n", vid); 884 invalidate_entry(powernow_table, i); 885 continue; 886 } 887 888 if (freq != (data->acpi_data.states[i].core_frequency * 1000)) { 889 printk(KERN_INFO PFX "invalid freq entries " 890 "%u kHz vs. %u kHz\n", freq, 891 (unsigned int) 892 (data->acpi_data.states[i].core_frequency 893 * 1000)); 894 invalidate_entry(powernow_table, i); 895 continue; 896 } 897 } 898 return 0; 899 } 900 901 static void powernow_k8_cpu_exit_acpi(struct powernow_k8_data *data) 902 { 903 if (data->acpi_data.state_count) 904 acpi_processor_unregister_performance(&data->acpi_data, 905 data->cpu); 906 free_cpumask_var(data->acpi_data.shared_cpu_map); 907 } 908 909 static int get_transition_latency(struct powernow_k8_data *data) 910 { 911 int max_latency = 0; 912 int i; 913 for (i = 0; i < data->acpi_data.state_count; i++) { 914 int cur_latency = data->acpi_data.states[i].transition_latency 915 + data->acpi_data.states[i].bus_master_latency; 916 if (cur_latency > max_latency) 917 max_latency = cur_latency; 918 } 919 if (max_latency == 0) { 920 pr_err(FW_WARN PFX "Invalid zero transition latency\n"); 921 max_latency = 1; 922 } 923 /* value in usecs, needs to be in nanoseconds */ 924 return 1000 * max_latency; 925 } 926 927 /* Take a frequency, and issue the fid/vid transition command */ 928 static int transition_frequency_fidvid(struct powernow_k8_data *data, 929 unsigned int index) 930 { 931 struct cpufreq_policy *policy; 932 u32 fid = 0; 933 u32 vid = 0; 934 int res; 935 struct cpufreq_freqs freqs; 936 937 pr_debug("cpu %d transition to index %u\n", smp_processor_id(), index); 938 939 /* fid/vid correctness check for k8 */ 940 /* fid are the lower 8 bits of the index we stored into 941 * the cpufreq frequency table in find_psb_table, vid 942 * are the upper 8 bits. 943 */ 944 fid = data->powernow_table[index].driver_data & 0xFF; 945 vid = (data->powernow_table[index].driver_data & 0xFF00) >> 8; 946 947 pr_debug("table matched fid 0x%x, giving vid 0x%x\n", fid, vid); 948 949 if (query_current_values_with_pending_wait(data)) 950 return 1; 951 952 if ((data->currvid == vid) && (data->currfid == fid)) { 953 pr_debug("target matches current values (fid 0x%x, vid 0x%x)\n", 954 fid, vid); 955 return 0; 956 } 957 958 pr_debug("cpu %d, changing to fid 0x%x, vid 0x%x\n", 959 smp_processor_id(), fid, vid); 960 freqs.old = find_khz_freq_from_fid(data->currfid); 961 freqs.new = find_khz_freq_from_fid(fid); 962 963 policy = cpufreq_cpu_get(smp_processor_id()); 964 cpufreq_cpu_put(policy); 965 966 cpufreq_notify_transition(policy, &freqs, CPUFREQ_PRECHANGE); 967 968 res = transition_fid_vid(data, fid, vid); 969 if (res) 970 freqs.new = freqs.old; 971 else 972 freqs.new = find_khz_freq_from_fid(data->currfid); 973 974 cpufreq_notify_transition(policy, &freqs, CPUFREQ_POSTCHANGE); 975 return res; 976 } 977 978 struct powernowk8_target_arg { 979 struct cpufreq_policy *pol; 980 unsigned targfreq; 981 unsigned relation; 982 }; 983 984 static long powernowk8_target_fn(void *arg) 985 { 986 struct powernowk8_target_arg *pta = arg; 987 struct cpufreq_policy *pol = pta->pol; 988 unsigned targfreq = pta->targfreq; 989 unsigned relation = pta->relation; 990 struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu); 991 u32 checkfid; 992 u32 checkvid; 993 unsigned int newstate; 994 int ret; 995 996 if (!data) 997 return -EINVAL; 998 999 checkfid = data->currfid; 1000 checkvid = data->currvid; 1001 1002 if (pending_bit_stuck()) { 1003 printk(KERN_ERR PFX "failing targ, change pending bit set\n"); 1004 return -EIO; 1005 } 1006 1007 pr_debug("targ: cpu %d, %d kHz, min %d, max %d, relation %d\n", 1008 pol->cpu, targfreq, pol->min, pol->max, relation); 1009 1010 if (query_current_values_with_pending_wait(data)) 1011 return -EIO; 1012 1013 pr_debug("targ: curr fid 0x%x, vid 0x%x\n", 1014 data->currfid, data->currvid); 1015 1016 if ((checkvid != data->currvid) || 1017 (checkfid != data->currfid)) { 1018 pr_info(PFX 1019 "error - out of sync, fix 0x%x 0x%x, vid 0x%x 0x%x\n", 1020 checkfid, data->currfid, 1021 checkvid, data->currvid); 1022 } 1023 1024 if (cpufreq_frequency_table_target(pol, data->powernow_table, 1025 targfreq, relation, &newstate)) 1026 return -EIO; 1027 1028 mutex_lock(&fidvid_mutex); 1029 1030 powernow_k8_acpi_pst_values(data, newstate); 1031 1032 ret = transition_frequency_fidvid(data, newstate); 1033 1034 if (ret) { 1035 printk(KERN_ERR PFX "transition frequency failed\n"); 1036 mutex_unlock(&fidvid_mutex); 1037 return 1; 1038 } 1039 mutex_unlock(&fidvid_mutex); 1040 1041 pol->cur = find_khz_freq_from_fid(data->currfid); 1042 1043 return 0; 1044 } 1045 1046 /* Driver entry point to switch to the target frequency */ 1047 static int powernowk8_target(struct cpufreq_policy *pol, 1048 unsigned targfreq, unsigned relation) 1049 { 1050 struct powernowk8_target_arg pta = { .pol = pol, .targfreq = targfreq, 1051 .relation = relation }; 1052 1053 return work_on_cpu(pol->cpu, powernowk8_target_fn, &pta); 1054 } 1055 1056 /* Driver entry point to verify the policy and range of frequencies */ 1057 static int powernowk8_verify(struct cpufreq_policy *pol) 1058 { 1059 struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu); 1060 1061 if (!data) 1062 return -EINVAL; 1063 1064 return cpufreq_frequency_table_verify(pol, data->powernow_table); 1065 } 1066 1067 struct init_on_cpu { 1068 struct powernow_k8_data *data; 1069 int rc; 1070 }; 1071 1072 static void powernowk8_cpu_init_on_cpu(void *_init_on_cpu) 1073 { 1074 struct init_on_cpu *init_on_cpu = _init_on_cpu; 1075 1076 if (pending_bit_stuck()) { 1077 printk(KERN_ERR PFX "failing init, change pending bit set\n"); 1078 init_on_cpu->rc = -ENODEV; 1079 return; 1080 } 1081 1082 if (query_current_values_with_pending_wait(init_on_cpu->data)) { 1083 init_on_cpu->rc = -ENODEV; 1084 return; 1085 } 1086 1087 fidvid_msr_init(); 1088 1089 init_on_cpu->rc = 0; 1090 } 1091 1092 static const char missing_pss_msg[] = 1093 KERN_ERR 1094 FW_BUG PFX "No compatible ACPI _PSS objects found.\n" 1095 FW_BUG PFX "First, make sure Cool'N'Quiet is enabled in the BIOS.\n" 1096 FW_BUG PFX "If that doesn't help, try upgrading your BIOS.\n"; 1097 1098 /* per CPU init entry point to the driver */ 1099 static int powernowk8_cpu_init(struct cpufreq_policy *pol) 1100 { 1101 struct powernow_k8_data *data; 1102 struct init_on_cpu init_on_cpu; 1103 int rc; 1104 1105 smp_call_function_single(pol->cpu, check_supported_cpu, &rc, 1); 1106 if (rc) 1107 return -ENODEV; 1108 1109 data = kzalloc(sizeof(*data), GFP_KERNEL); 1110 if (!data) { 1111 printk(KERN_ERR PFX "unable to alloc powernow_k8_data"); 1112 return -ENOMEM; 1113 } 1114 1115 data->cpu = pol->cpu; 1116 1117 if (powernow_k8_cpu_init_acpi(data)) { 1118 /* 1119 * Use the PSB BIOS structure. This is only available on 1120 * an UP version, and is deprecated by AMD. 1121 */ 1122 if (num_online_cpus() != 1) { 1123 printk_once(missing_pss_msg); 1124 goto err_out; 1125 } 1126 if (pol->cpu != 0) { 1127 printk(KERN_ERR FW_BUG PFX "No ACPI _PSS objects for " 1128 "CPU other than CPU0. Complain to your BIOS " 1129 "vendor.\n"); 1130 goto err_out; 1131 } 1132 rc = find_psb_table(data); 1133 if (rc) 1134 goto err_out; 1135 1136 /* Take a crude guess here. 1137 * That guess was in microseconds, so multiply with 1000 */ 1138 pol->cpuinfo.transition_latency = ( 1139 ((data->rvo + 8) * data->vstable * VST_UNITS_20US) + 1140 ((1 << data->irt) * 30)) * 1000; 1141 } else /* ACPI _PSS objects available */ 1142 pol->cpuinfo.transition_latency = get_transition_latency(data); 1143 1144 /* only run on specific CPU from here on */ 1145 init_on_cpu.data = data; 1146 smp_call_function_single(data->cpu, powernowk8_cpu_init_on_cpu, 1147 &init_on_cpu, 1); 1148 rc = init_on_cpu.rc; 1149 if (rc != 0) 1150 goto err_out_exit_acpi; 1151 1152 cpumask_copy(pol->cpus, cpu_core_mask(pol->cpu)); 1153 data->available_cores = pol->cpus; 1154 1155 pol->cur = find_khz_freq_from_fid(data->currfid); 1156 pr_debug("policy current frequency %d kHz\n", pol->cur); 1157 1158 /* min/max the cpu is capable of */ 1159 if (cpufreq_frequency_table_cpuinfo(pol, data->powernow_table)) { 1160 printk(KERN_ERR FW_BUG PFX "invalid powernow_table\n"); 1161 powernow_k8_cpu_exit_acpi(data); 1162 kfree(data->powernow_table); 1163 kfree(data); 1164 return -EINVAL; 1165 } 1166 1167 cpufreq_frequency_table_get_attr(data->powernow_table, pol->cpu); 1168 1169 pr_debug("cpu_init done, current fid 0x%x, vid 0x%x\n", 1170 data->currfid, data->currvid); 1171 1172 per_cpu(powernow_data, pol->cpu) = data; 1173 1174 return 0; 1175 1176 err_out_exit_acpi: 1177 powernow_k8_cpu_exit_acpi(data); 1178 1179 err_out: 1180 kfree(data); 1181 return -ENODEV; 1182 } 1183 1184 static int powernowk8_cpu_exit(struct cpufreq_policy *pol) 1185 { 1186 struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu); 1187 1188 if (!data) 1189 return -EINVAL; 1190 1191 powernow_k8_cpu_exit_acpi(data); 1192 1193 cpufreq_frequency_table_put_attr(pol->cpu); 1194 1195 kfree(data->powernow_table); 1196 kfree(data); 1197 per_cpu(powernow_data, pol->cpu) = NULL; 1198 1199 return 0; 1200 } 1201 1202 static void query_values_on_cpu(void *_err) 1203 { 1204 int *err = _err; 1205 struct powernow_k8_data *data = __this_cpu_read(powernow_data); 1206 1207 *err = query_current_values_with_pending_wait(data); 1208 } 1209 1210 static unsigned int powernowk8_get(unsigned int cpu) 1211 { 1212 struct powernow_k8_data *data = per_cpu(powernow_data, cpu); 1213 unsigned int khz = 0; 1214 int err; 1215 1216 if (!data) 1217 return 0; 1218 1219 smp_call_function_single(cpu, query_values_on_cpu, &err, true); 1220 if (err) 1221 goto out; 1222 1223 khz = find_khz_freq_from_fid(data->currfid); 1224 1225 1226 out: 1227 return khz; 1228 } 1229 1230 static struct freq_attr *powernow_k8_attr[] = { 1231 &cpufreq_freq_attr_scaling_available_freqs, 1232 NULL, 1233 }; 1234 1235 static struct cpufreq_driver cpufreq_amd64_driver = { 1236 .verify = powernowk8_verify, 1237 .target = powernowk8_target, 1238 .bios_limit = acpi_processor_get_bios_limit, 1239 .init = powernowk8_cpu_init, 1240 .exit = powernowk8_cpu_exit, 1241 .get = powernowk8_get, 1242 .name = "powernow-k8", 1243 .attr = powernow_k8_attr, 1244 }; 1245 1246 static void __request_acpi_cpufreq(void) 1247 { 1248 const char *cur_drv, *drv = "acpi-cpufreq"; 1249 1250 cur_drv = cpufreq_get_current_driver(); 1251 if (!cur_drv) 1252 goto request; 1253 1254 if (strncmp(cur_drv, drv, min_t(size_t, strlen(cur_drv), strlen(drv)))) 1255 pr_warn(PFX "WTF driver: %s\n", cur_drv); 1256 1257 return; 1258 1259 request: 1260 pr_warn(PFX "This CPU is not supported anymore, using acpi-cpufreq instead.\n"); 1261 request_module(drv); 1262 } 1263 1264 /* driver entry point for init */ 1265 static int powernowk8_init(void) 1266 { 1267 unsigned int i, supported_cpus = 0; 1268 int ret; 1269 1270 if (static_cpu_has(X86_FEATURE_HW_PSTATE)) { 1271 __request_acpi_cpufreq(); 1272 return -ENODEV; 1273 } 1274 1275 if (!x86_match_cpu(powernow_k8_ids)) 1276 return -ENODEV; 1277 1278 get_online_cpus(); 1279 for_each_online_cpu(i) { 1280 smp_call_function_single(i, check_supported_cpu, &ret, 1); 1281 if (!ret) 1282 supported_cpus++; 1283 } 1284 1285 if (supported_cpus != num_online_cpus()) { 1286 put_online_cpus(); 1287 return -ENODEV; 1288 } 1289 put_online_cpus(); 1290 1291 ret = cpufreq_register_driver(&cpufreq_amd64_driver); 1292 if (ret) 1293 return ret; 1294 1295 pr_info(PFX "Found %d %s (%d cpu cores) (" VERSION ")\n", 1296 num_online_nodes(), boot_cpu_data.x86_model_id, supported_cpus); 1297 1298 return ret; 1299 } 1300 1301 /* driver entry point for term */ 1302 static void __exit powernowk8_exit(void) 1303 { 1304 pr_debug("exit\n"); 1305 1306 cpufreq_unregister_driver(&cpufreq_amd64_driver); 1307 } 1308 1309 MODULE_AUTHOR("Paul Devriendt <paul.devriendt@amd.com> and " 1310 "Mark Langsdorf <mark.langsdorf@amd.com>"); 1311 MODULE_DESCRIPTION("AMD Athlon 64 and Opteron processor frequency driver."); 1312 MODULE_LICENSE("GPL"); 1313 1314 late_initcall(powernowk8_init); 1315 module_exit(powernowk8_exit); 1316