1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * (c) 2003-2012 Advanced Micro Devices, Inc. 4 * 5 * Maintainer: 6 * Andreas Herrmann <herrmann.der.user@googlemail.com> 7 * 8 * Based on the powernow-k7.c module written by Dave Jones. 9 * (C) 2003 Dave Jones on behalf of SuSE Labs 10 * (C) 2004 Dominik Brodowski <linux@brodo.de> 11 * (C) 2004 Pavel Machek <pavel@ucw.cz> 12 * Based upon datasheets & sample CPUs kindly provided by AMD. 13 * 14 * Valuable input gratefully received from Dave Jones, Pavel Machek, 15 * Dominik Brodowski, Jacob Shin, and others. 16 * Originally developed by Paul Devriendt. 17 * 18 * Processor information obtained from Chapter 9 (Power and Thermal 19 * Management) of the "BIOS and Kernel Developer's Guide (BKDG) for 20 * the AMD Athlon 64 and AMD Opteron Processors" and section "2.x 21 * Power Management" in BKDGs for newer AMD CPU families. 22 * 23 * Tables for specific CPUs can be inferred from AMD's processor 24 * power and thermal data sheets, (e.g. 30417.pdf, 30430.pdf, 43375.pdf) 25 */ 26 27 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 28 29 #include <linux/kernel.h> 30 #include <linux/smp.h> 31 #include <linux/module.h> 32 #include <linux/init.h> 33 #include <linux/cpufreq.h> 34 #include <linux/slab.h> 35 #include <linux/string.h> 36 #include <linux/cpumask.h> 37 #include <linux/io.h> 38 #include <linux/delay.h> 39 40 #include <asm/msr.h> 41 #include <asm/cpu_device_id.h> 42 43 #include <linux/acpi.h> 44 #include <linux/mutex.h> 45 #include <acpi/processor.h> 46 47 #define VERSION "version 2.20.00" 48 #include "powernow-k8.h" 49 50 /* serialize freq changes */ 51 static DEFINE_MUTEX(fidvid_mutex); 52 53 static DEFINE_PER_CPU(struct powernow_k8_data *, powernow_data); 54 55 static struct cpufreq_driver cpufreq_amd64_driver; 56 57 /* Return a frequency in MHz, given an input fid */ 58 static u32 find_freq_from_fid(u32 fid) 59 { 60 return 800 + (fid * 100); 61 } 62 63 /* Return a frequency in KHz, given an input fid */ 64 static u32 find_khz_freq_from_fid(u32 fid) 65 { 66 return 1000 * find_freq_from_fid(fid); 67 } 68 69 /* Return the vco fid for an input fid 70 * 71 * Each "low" fid has corresponding "high" fid, and you can get to "low" fids 72 * only from corresponding high fids. This returns "high" fid corresponding to 73 * "low" one. 74 */ 75 static u32 convert_fid_to_vco_fid(u32 fid) 76 { 77 if (fid < HI_FID_TABLE_BOTTOM) 78 return 8 + (2 * fid); 79 else 80 return fid; 81 } 82 83 /* 84 * Return 1 if the pending bit is set. Unless we just instructed the processor 85 * to transition to a new state, seeing this bit set is really bad news. 86 */ 87 static int pending_bit_stuck(void) 88 { 89 u32 lo, hi __always_unused; 90 91 rdmsr(MSR_FIDVID_STATUS, lo, hi); 92 return lo & MSR_S_LO_CHANGE_PENDING ? 1 : 0; 93 } 94 95 /* 96 * Update the global current fid / vid values from the status msr. 97 * Returns 1 on error. 98 */ 99 static int query_current_values_with_pending_wait(struct powernow_k8_data *data) 100 { 101 u32 lo, hi; 102 u32 i = 0; 103 104 do { 105 if (i++ > 10000) { 106 pr_debug("detected change pending stuck\n"); 107 return 1; 108 } 109 rdmsr(MSR_FIDVID_STATUS, lo, hi); 110 } while (lo & MSR_S_LO_CHANGE_PENDING); 111 112 data->currvid = hi & MSR_S_HI_CURRENT_VID; 113 data->currfid = lo & MSR_S_LO_CURRENT_FID; 114 115 return 0; 116 } 117 118 /* the isochronous relief time */ 119 static void count_off_irt(struct powernow_k8_data *data) 120 { 121 udelay((1 << data->irt) * 10); 122 } 123 124 /* the voltage stabilization time */ 125 static void count_off_vst(struct powernow_k8_data *data) 126 { 127 udelay(data->vstable * VST_UNITS_20US); 128 } 129 130 /* need to init the control msr to a safe value (for each cpu) */ 131 static void fidvid_msr_init(void) 132 { 133 u32 lo, hi; 134 u8 fid, vid; 135 136 rdmsr(MSR_FIDVID_STATUS, lo, hi); 137 vid = hi & MSR_S_HI_CURRENT_VID; 138 fid = lo & MSR_S_LO_CURRENT_FID; 139 lo = fid | (vid << MSR_C_LO_VID_SHIFT); 140 hi = MSR_C_HI_STP_GNT_BENIGN; 141 pr_debug("cpu%d, init lo 0x%x, hi 0x%x\n", smp_processor_id(), lo, hi); 142 wrmsr(MSR_FIDVID_CTL, lo, hi); 143 } 144 145 /* write the new fid value along with the other control fields to the msr */ 146 static int write_new_fid(struct powernow_k8_data *data, u32 fid) 147 { 148 u32 lo; 149 u32 savevid = data->currvid; 150 u32 i = 0; 151 152 if ((fid & INVALID_FID_MASK) || (data->currvid & INVALID_VID_MASK)) { 153 pr_err("internal error - overflow on fid write\n"); 154 return 1; 155 } 156 157 lo = fid; 158 lo |= (data->currvid << MSR_C_LO_VID_SHIFT); 159 lo |= MSR_C_LO_INIT_FID_VID; 160 161 pr_debug("writing fid 0x%x, lo 0x%x, hi 0x%x\n", 162 fid, lo, data->plllock * PLL_LOCK_CONVERSION); 163 164 do { 165 wrmsr(MSR_FIDVID_CTL, lo, data->plllock * PLL_LOCK_CONVERSION); 166 if (i++ > 100) { 167 pr_err("Hardware error - pending bit very stuck - no further pstate changes possible\n"); 168 return 1; 169 } 170 } while (query_current_values_with_pending_wait(data)); 171 172 count_off_irt(data); 173 174 if (savevid != data->currvid) { 175 pr_err("vid change on fid trans, old 0x%x, new 0x%x\n", 176 savevid, data->currvid); 177 return 1; 178 } 179 180 if (fid != data->currfid) { 181 pr_err("fid trans failed, fid 0x%x, curr 0x%x\n", fid, 182 data->currfid); 183 return 1; 184 } 185 186 return 0; 187 } 188 189 /* Write a new vid to the hardware */ 190 static int write_new_vid(struct powernow_k8_data *data, u32 vid) 191 { 192 u32 lo; 193 u32 savefid = data->currfid; 194 int i = 0; 195 196 if ((data->currfid & INVALID_FID_MASK) || (vid & INVALID_VID_MASK)) { 197 pr_err("internal error - overflow on vid write\n"); 198 return 1; 199 } 200 201 lo = data->currfid; 202 lo |= (vid << MSR_C_LO_VID_SHIFT); 203 lo |= MSR_C_LO_INIT_FID_VID; 204 205 pr_debug("writing vid 0x%x, lo 0x%x, hi 0x%x\n", 206 vid, lo, STOP_GRANT_5NS); 207 208 do { 209 wrmsr(MSR_FIDVID_CTL, lo, STOP_GRANT_5NS); 210 if (i++ > 100) { 211 pr_err("internal error - pending bit very stuck - no further pstate changes possible\n"); 212 return 1; 213 } 214 } while (query_current_values_with_pending_wait(data)); 215 216 if (savefid != data->currfid) { 217 pr_err("fid changed on vid trans, old 0x%x new 0x%x\n", 218 savefid, data->currfid); 219 return 1; 220 } 221 222 if (vid != data->currvid) { 223 pr_err("vid trans failed, vid 0x%x, curr 0x%x\n", 224 vid, data->currvid); 225 return 1; 226 } 227 228 return 0; 229 } 230 231 /* 232 * Reduce the vid by the max of step or reqvid. 233 * Decreasing vid codes represent increasing voltages: 234 * vid of 0 is 1.550V, vid of 0x1e is 0.800V, vid of VID_OFF is off. 235 */ 236 static int decrease_vid_code_by_step(struct powernow_k8_data *data, 237 u32 reqvid, u32 step) 238 { 239 if ((data->currvid - reqvid) > step) 240 reqvid = data->currvid - step; 241 242 if (write_new_vid(data, reqvid)) 243 return 1; 244 245 count_off_vst(data); 246 247 return 0; 248 } 249 250 /* Change Opteron/Athlon64 fid and vid, by the 3 phases. */ 251 static int transition_fid_vid(struct powernow_k8_data *data, 252 u32 reqfid, u32 reqvid) 253 { 254 if (core_voltage_pre_transition(data, reqvid, reqfid)) 255 return 1; 256 257 if (core_frequency_transition(data, reqfid)) 258 return 1; 259 260 if (core_voltage_post_transition(data, reqvid)) 261 return 1; 262 263 if (query_current_values_with_pending_wait(data)) 264 return 1; 265 266 if ((reqfid != data->currfid) || (reqvid != data->currvid)) { 267 pr_err("failed (cpu%d): req 0x%x 0x%x, curr 0x%x 0x%x\n", 268 smp_processor_id(), 269 reqfid, reqvid, data->currfid, data->currvid); 270 return 1; 271 } 272 273 pr_debug("transitioned (cpu%d): new fid 0x%x, vid 0x%x\n", 274 smp_processor_id(), data->currfid, data->currvid); 275 276 return 0; 277 } 278 279 /* Phase 1 - core voltage transition ... setup voltage */ 280 static int core_voltage_pre_transition(struct powernow_k8_data *data, 281 u32 reqvid, u32 reqfid) 282 { 283 u32 rvosteps = data->rvo; 284 u32 savefid = data->currfid; 285 u32 maxvid, lo __always_unused, rvomult = 1; 286 287 pr_debug("ph1 (cpu%d): start, currfid 0x%x, currvid 0x%x, reqvid 0x%x, rvo 0x%x\n", 288 smp_processor_id(), 289 data->currfid, data->currvid, reqvid, data->rvo); 290 291 if ((savefid < LO_FID_TABLE_TOP) && (reqfid < LO_FID_TABLE_TOP)) 292 rvomult = 2; 293 rvosteps *= rvomult; 294 rdmsr(MSR_FIDVID_STATUS, lo, maxvid); 295 maxvid = 0x1f & (maxvid >> 16); 296 pr_debug("ph1 maxvid=0x%x\n", maxvid); 297 if (reqvid < maxvid) /* lower numbers are higher voltages */ 298 reqvid = maxvid; 299 300 while (data->currvid > reqvid) { 301 pr_debug("ph1: curr 0x%x, req vid 0x%x\n", 302 data->currvid, reqvid); 303 if (decrease_vid_code_by_step(data, reqvid, data->vidmvs)) 304 return 1; 305 } 306 307 while ((rvosteps > 0) && 308 ((rvomult * data->rvo + data->currvid) > reqvid)) { 309 if (data->currvid == maxvid) { 310 rvosteps = 0; 311 } else { 312 pr_debug("ph1: changing vid for rvo, req 0x%x\n", 313 data->currvid - 1); 314 if (decrease_vid_code_by_step(data, data->currvid-1, 1)) 315 return 1; 316 rvosteps--; 317 } 318 } 319 320 if (query_current_values_with_pending_wait(data)) 321 return 1; 322 323 if (savefid != data->currfid) { 324 pr_err("ph1 err, currfid changed 0x%x\n", data->currfid); 325 return 1; 326 } 327 328 pr_debug("ph1 complete, currfid 0x%x, currvid 0x%x\n", 329 data->currfid, data->currvid); 330 331 return 0; 332 } 333 334 /* Phase 2 - core frequency transition */ 335 static int core_frequency_transition(struct powernow_k8_data *data, u32 reqfid) 336 { 337 u32 vcoreqfid, vcocurrfid, vcofiddiff; 338 u32 fid_interval, savevid = data->currvid; 339 340 if (data->currfid == reqfid) { 341 pr_err("ph2 null fid transition 0x%x\n", data->currfid); 342 return 0; 343 } 344 345 pr_debug("ph2 (cpu%d): starting, currfid 0x%x, currvid 0x%x, reqfid 0x%x\n", 346 smp_processor_id(), 347 data->currfid, data->currvid, reqfid); 348 349 vcoreqfid = convert_fid_to_vco_fid(reqfid); 350 vcocurrfid = convert_fid_to_vco_fid(data->currfid); 351 vcofiddiff = vcocurrfid > vcoreqfid ? vcocurrfid - vcoreqfid 352 : vcoreqfid - vcocurrfid; 353 354 if ((reqfid <= LO_FID_TABLE_TOP) && (data->currfid <= LO_FID_TABLE_TOP)) 355 vcofiddiff = 0; 356 357 while (vcofiddiff > 2) { 358 (data->currfid & 1) ? (fid_interval = 1) : (fid_interval = 2); 359 360 if (reqfid > data->currfid) { 361 if (data->currfid > LO_FID_TABLE_TOP) { 362 if (write_new_fid(data, 363 data->currfid + fid_interval)) 364 return 1; 365 } else { 366 if (write_new_fid 367 (data, 368 2 + convert_fid_to_vco_fid(data->currfid))) 369 return 1; 370 } 371 } else { 372 if (write_new_fid(data, data->currfid - fid_interval)) 373 return 1; 374 } 375 376 vcocurrfid = convert_fid_to_vco_fid(data->currfid); 377 vcofiddiff = vcocurrfid > vcoreqfid ? vcocurrfid - vcoreqfid 378 : vcoreqfid - vcocurrfid; 379 } 380 381 if (write_new_fid(data, reqfid)) 382 return 1; 383 384 if (query_current_values_with_pending_wait(data)) 385 return 1; 386 387 if (data->currfid != reqfid) { 388 pr_err("ph2: mismatch, failed fid transition, curr 0x%x, req 0x%x\n", 389 data->currfid, reqfid); 390 return 1; 391 } 392 393 if (savevid != data->currvid) { 394 pr_err("ph2: vid changed, save 0x%x, curr 0x%x\n", 395 savevid, data->currvid); 396 return 1; 397 } 398 399 pr_debug("ph2 complete, currfid 0x%x, currvid 0x%x\n", 400 data->currfid, data->currvid); 401 402 return 0; 403 } 404 405 /* Phase 3 - core voltage transition flow ... jump to the final vid. */ 406 static int core_voltage_post_transition(struct powernow_k8_data *data, 407 u32 reqvid) 408 { 409 u32 savefid = data->currfid; 410 u32 savereqvid = reqvid; 411 412 pr_debug("ph3 (cpu%d): starting, currfid 0x%x, currvid 0x%x\n", 413 smp_processor_id(), 414 data->currfid, data->currvid); 415 416 if (reqvid != data->currvid) { 417 if (write_new_vid(data, reqvid)) 418 return 1; 419 420 if (savefid != data->currfid) { 421 pr_err("ph3: bad fid change, save 0x%x, curr 0x%x\n", 422 savefid, data->currfid); 423 return 1; 424 } 425 426 if (data->currvid != reqvid) { 427 pr_err("ph3: failed vid transition\n, req 0x%x, curr 0x%x", 428 reqvid, data->currvid); 429 return 1; 430 } 431 } 432 433 if (query_current_values_with_pending_wait(data)) 434 return 1; 435 436 if (savereqvid != data->currvid) { 437 pr_debug("ph3 failed, currvid 0x%x\n", data->currvid); 438 return 1; 439 } 440 441 if (savefid != data->currfid) { 442 pr_debug("ph3 failed, currfid changed 0x%x\n", 443 data->currfid); 444 return 1; 445 } 446 447 pr_debug("ph3 complete, currfid 0x%x, currvid 0x%x\n", 448 data->currfid, data->currvid); 449 450 return 0; 451 } 452 453 static const struct x86_cpu_id powernow_k8_ids[] = { 454 /* IO based frequency switching */ 455 X86_MATCH_VENDOR_FAM(AMD, 0xf, NULL), 456 {} 457 }; 458 MODULE_DEVICE_TABLE(x86cpu, powernow_k8_ids); 459 460 static void check_supported_cpu(void *_rc) 461 { 462 u32 eax, ebx, ecx, edx; 463 int *rc = _rc; 464 465 *rc = -ENODEV; 466 467 eax = cpuid_eax(CPUID_PROCESSOR_SIGNATURE); 468 469 if ((eax & CPUID_XFAM) == CPUID_XFAM_K8) { 470 if (((eax & CPUID_USE_XFAM_XMOD) != CPUID_USE_XFAM_XMOD) || 471 ((eax & CPUID_XMOD) > CPUID_XMOD_REV_MASK)) { 472 pr_info("Processor cpuid %x not supported\n", eax); 473 return; 474 } 475 476 eax = cpuid_eax(CPUID_GET_MAX_CAPABILITIES); 477 if (eax < CPUID_FREQ_VOLT_CAPABILITIES) { 478 pr_info("No frequency change capabilities detected\n"); 479 return; 480 } 481 482 cpuid(CPUID_FREQ_VOLT_CAPABILITIES, &eax, &ebx, &ecx, &edx); 483 if ((edx & P_STATE_TRANSITION_CAPABLE) 484 != P_STATE_TRANSITION_CAPABLE) { 485 pr_info("Power state transitions not supported\n"); 486 return; 487 } 488 *rc = 0; 489 } 490 } 491 492 static int check_pst_table(struct powernow_k8_data *data, struct pst_s *pst, 493 u8 maxvid) 494 { 495 unsigned int j; 496 u8 lastfid = 0xff; 497 498 for (j = 0; j < data->numps; j++) { 499 if (pst[j].vid > LEAST_VID) { 500 pr_err(FW_BUG "vid %d invalid : 0x%x\n", j, 501 pst[j].vid); 502 return -EINVAL; 503 } 504 if (pst[j].vid < data->rvo) { 505 /* vid + rvo >= 0 */ 506 pr_err(FW_BUG "0 vid exceeded with pstate %d\n", j); 507 return -ENODEV; 508 } 509 if (pst[j].vid < maxvid + data->rvo) { 510 /* vid + rvo >= maxvid */ 511 pr_err(FW_BUG "maxvid exceeded with pstate %d\n", j); 512 return -ENODEV; 513 } 514 if (pst[j].fid > MAX_FID) { 515 pr_err(FW_BUG "maxfid exceeded with pstate %d\n", j); 516 return -ENODEV; 517 } 518 if (j && (pst[j].fid < HI_FID_TABLE_BOTTOM)) { 519 /* Only first fid is allowed to be in "low" range */ 520 pr_err(FW_BUG "two low fids - %d : 0x%x\n", j, 521 pst[j].fid); 522 return -EINVAL; 523 } 524 if (pst[j].fid < lastfid) 525 lastfid = pst[j].fid; 526 } 527 if (lastfid & 1) { 528 pr_err(FW_BUG "lastfid invalid\n"); 529 return -EINVAL; 530 } 531 if (lastfid > LO_FID_TABLE_TOP) 532 pr_info(FW_BUG "first fid not from lo freq table\n"); 533 534 return 0; 535 } 536 537 static void invalidate_entry(struct cpufreq_frequency_table *powernow_table, 538 unsigned int entry) 539 { 540 powernow_table[entry].frequency = CPUFREQ_ENTRY_INVALID; 541 } 542 543 static void print_basics(struct powernow_k8_data *data) 544 { 545 int j; 546 for (j = 0; j < data->numps; j++) { 547 if (data->powernow_table[j].frequency != 548 CPUFREQ_ENTRY_INVALID) { 549 pr_info("fid 0x%x (%d MHz), vid 0x%x\n", 550 data->powernow_table[j].driver_data & 0xff, 551 data->powernow_table[j].frequency/1000, 552 data->powernow_table[j].driver_data >> 8); 553 } 554 } 555 if (data->batps) 556 pr_info("Only %d pstates on battery\n", data->batps); 557 } 558 559 static int fill_powernow_table(struct powernow_k8_data *data, 560 struct pst_s *pst, u8 maxvid) 561 { 562 struct cpufreq_frequency_table *powernow_table; 563 unsigned int j; 564 565 if (data->batps) { 566 /* use ACPI support to get full speed on mains power */ 567 pr_warn("Only %d pstates usable (use ACPI driver for full range\n", 568 data->batps); 569 data->numps = data->batps; 570 } 571 572 for (j = 1; j < data->numps; j++) { 573 if (pst[j-1].fid >= pst[j].fid) { 574 pr_err("PST out of sequence\n"); 575 return -EINVAL; 576 } 577 } 578 579 if (data->numps < 2) { 580 pr_err("no p states to transition\n"); 581 return -ENODEV; 582 } 583 584 if (check_pst_table(data, pst, maxvid)) 585 return -EINVAL; 586 587 powernow_table = kzalloc((sizeof(*powernow_table) 588 * (data->numps + 1)), GFP_KERNEL); 589 if (!powernow_table) 590 return -ENOMEM; 591 592 for (j = 0; j < data->numps; j++) { 593 int freq; 594 powernow_table[j].driver_data = pst[j].fid; /* lower 8 bits */ 595 powernow_table[j].driver_data |= (pst[j].vid << 8); /* upper 8 bits */ 596 freq = find_khz_freq_from_fid(pst[j].fid); 597 powernow_table[j].frequency = freq; 598 } 599 powernow_table[data->numps].frequency = CPUFREQ_TABLE_END; 600 powernow_table[data->numps].driver_data = 0; 601 602 if (query_current_values_with_pending_wait(data)) { 603 kfree(powernow_table); 604 return -EIO; 605 } 606 607 pr_debug("cfid 0x%x, cvid 0x%x\n", data->currfid, data->currvid); 608 data->powernow_table = powernow_table; 609 if (cpumask_first(topology_core_cpumask(data->cpu)) == data->cpu) 610 print_basics(data); 611 612 for (j = 0; j < data->numps; j++) 613 if ((pst[j].fid == data->currfid) && 614 (pst[j].vid == data->currvid)) 615 return 0; 616 617 pr_debug("currfid/vid do not match PST, ignoring\n"); 618 return 0; 619 } 620 621 /* Find and validate the PSB/PST table in BIOS. */ 622 static int find_psb_table(struct powernow_k8_data *data) 623 { 624 struct psb_s *psb; 625 unsigned int i; 626 u32 mvs; 627 u8 maxvid; 628 u32 cpst = 0; 629 u32 thiscpuid; 630 631 for (i = 0xc0000; i < 0xffff0; i += 0x10) { 632 /* Scan BIOS looking for the signature. */ 633 /* It can not be at ffff0 - it is too big. */ 634 635 psb = phys_to_virt(i); 636 if (memcmp(psb, PSB_ID_STRING, PSB_ID_STRING_LEN) != 0) 637 continue; 638 639 pr_debug("found PSB header at 0x%p\n", psb); 640 641 pr_debug("table vers: 0x%x\n", psb->tableversion); 642 if (psb->tableversion != PSB_VERSION_1_4) { 643 pr_err(FW_BUG "PSB table is not v1.4\n"); 644 return -ENODEV; 645 } 646 647 pr_debug("flags: 0x%x\n", psb->flags1); 648 if (psb->flags1) { 649 pr_err(FW_BUG "unknown flags\n"); 650 return -ENODEV; 651 } 652 653 data->vstable = psb->vstable; 654 pr_debug("voltage stabilization time: %d(*20us)\n", 655 data->vstable); 656 657 pr_debug("flags2: 0x%x\n", psb->flags2); 658 data->rvo = psb->flags2 & 3; 659 data->irt = ((psb->flags2) >> 2) & 3; 660 mvs = ((psb->flags2) >> 4) & 3; 661 data->vidmvs = 1 << mvs; 662 data->batps = ((psb->flags2) >> 6) & 3; 663 664 pr_debug("ramp voltage offset: %d\n", data->rvo); 665 pr_debug("isochronous relief time: %d\n", data->irt); 666 pr_debug("maximum voltage step: %d - 0x%x\n", mvs, data->vidmvs); 667 668 pr_debug("numpst: 0x%x\n", psb->num_tables); 669 cpst = psb->num_tables; 670 if ((psb->cpuid == 0x00000fc0) || 671 (psb->cpuid == 0x00000fe0)) { 672 thiscpuid = cpuid_eax(CPUID_PROCESSOR_SIGNATURE); 673 if ((thiscpuid == 0x00000fc0) || 674 (thiscpuid == 0x00000fe0)) 675 cpst = 1; 676 } 677 if (cpst != 1) { 678 pr_err(FW_BUG "numpst must be 1\n"); 679 return -ENODEV; 680 } 681 682 data->plllock = psb->plllocktime; 683 pr_debug("plllocktime: 0x%x (units 1us)\n", psb->plllocktime); 684 pr_debug("maxfid: 0x%x\n", psb->maxfid); 685 pr_debug("maxvid: 0x%x\n", psb->maxvid); 686 maxvid = psb->maxvid; 687 688 data->numps = psb->numps; 689 pr_debug("numpstates: 0x%x\n", data->numps); 690 return fill_powernow_table(data, 691 (struct pst_s *)(psb+1), maxvid); 692 } 693 /* 694 * If you see this message, complain to BIOS manufacturer. If 695 * he tells you "we do not support Linux" or some similar 696 * nonsense, remember that Windows 2000 uses the same legacy 697 * mechanism that the old Linux PSB driver uses. Tell them it 698 * is broken with Windows 2000. 699 * 700 * The reference to the AMD documentation is chapter 9 in the 701 * BIOS and Kernel Developer's Guide, which is available on 702 * www.amd.com 703 */ 704 pr_err(FW_BUG "No PSB or ACPI _PSS objects\n"); 705 pr_err("Make sure that your BIOS is up to date and Cool'N'Quiet support is enabled in BIOS setup\n"); 706 return -ENODEV; 707 } 708 709 static void powernow_k8_acpi_pst_values(struct powernow_k8_data *data, 710 unsigned int index) 711 { 712 u64 control; 713 714 if (!data->acpi_data.state_count) 715 return; 716 717 control = data->acpi_data.states[index].control; 718 data->irt = (control >> IRT_SHIFT) & IRT_MASK; 719 data->rvo = (control >> RVO_SHIFT) & RVO_MASK; 720 data->exttype = (control >> EXT_TYPE_SHIFT) & EXT_TYPE_MASK; 721 data->plllock = (control >> PLL_L_SHIFT) & PLL_L_MASK; 722 data->vidmvs = 1 << ((control >> MVS_SHIFT) & MVS_MASK); 723 data->vstable = (control >> VST_SHIFT) & VST_MASK; 724 } 725 726 static int powernow_k8_cpu_init_acpi(struct powernow_k8_data *data) 727 { 728 struct cpufreq_frequency_table *powernow_table; 729 int ret_val = -ENODEV; 730 u64 control, status; 731 732 if (acpi_processor_register_performance(&data->acpi_data, data->cpu)) { 733 pr_debug("register performance failed: bad ACPI data\n"); 734 return -EIO; 735 } 736 737 /* verify the data contained in the ACPI structures */ 738 if (data->acpi_data.state_count <= 1) { 739 pr_debug("No ACPI P-States\n"); 740 goto err_out; 741 } 742 743 control = data->acpi_data.control_register.space_id; 744 status = data->acpi_data.status_register.space_id; 745 746 if ((control != ACPI_ADR_SPACE_FIXED_HARDWARE) || 747 (status != ACPI_ADR_SPACE_FIXED_HARDWARE)) { 748 pr_debug("Invalid control/status registers (%llx - %llx)\n", 749 control, status); 750 goto err_out; 751 } 752 753 /* fill in data->powernow_table */ 754 powernow_table = kzalloc((sizeof(*powernow_table) 755 * (data->acpi_data.state_count + 1)), GFP_KERNEL); 756 if (!powernow_table) 757 goto err_out; 758 759 /* fill in data */ 760 data->numps = data->acpi_data.state_count; 761 powernow_k8_acpi_pst_values(data, 0); 762 763 ret_val = fill_powernow_table_fidvid(data, powernow_table); 764 if (ret_val) 765 goto err_out_mem; 766 767 powernow_table[data->acpi_data.state_count].frequency = 768 CPUFREQ_TABLE_END; 769 data->powernow_table = powernow_table; 770 771 if (cpumask_first(topology_core_cpumask(data->cpu)) == data->cpu) 772 print_basics(data); 773 774 /* notify BIOS that we exist */ 775 acpi_processor_notify_smm(THIS_MODULE); 776 777 if (!zalloc_cpumask_var(&data->acpi_data.shared_cpu_map, GFP_KERNEL)) { 778 pr_err("unable to alloc powernow_k8_data cpumask\n"); 779 ret_val = -ENOMEM; 780 goto err_out_mem; 781 } 782 783 return 0; 784 785 err_out_mem: 786 kfree(powernow_table); 787 788 err_out: 789 acpi_processor_unregister_performance(data->cpu); 790 791 /* data->acpi_data.state_count informs us at ->exit() 792 * whether ACPI was used */ 793 data->acpi_data.state_count = 0; 794 795 return ret_val; 796 } 797 798 static int fill_powernow_table_fidvid(struct powernow_k8_data *data, 799 struct cpufreq_frequency_table *powernow_table) 800 { 801 int i; 802 803 for (i = 0; i < data->acpi_data.state_count; i++) { 804 u32 fid; 805 u32 vid; 806 u32 freq, index; 807 u64 status, control; 808 809 if (data->exttype) { 810 status = data->acpi_data.states[i].status; 811 fid = status & EXT_FID_MASK; 812 vid = (status >> VID_SHIFT) & EXT_VID_MASK; 813 } else { 814 control = data->acpi_data.states[i].control; 815 fid = control & FID_MASK; 816 vid = (control >> VID_SHIFT) & VID_MASK; 817 } 818 819 pr_debug(" %d : fid 0x%x, vid 0x%x\n", i, fid, vid); 820 821 index = fid | (vid<<8); 822 powernow_table[i].driver_data = index; 823 824 freq = find_khz_freq_from_fid(fid); 825 powernow_table[i].frequency = freq; 826 827 /* verify frequency is OK */ 828 if ((freq > (MAX_FREQ * 1000)) || (freq < (MIN_FREQ * 1000))) { 829 pr_debug("invalid freq %u kHz, ignoring\n", freq); 830 invalidate_entry(powernow_table, i); 831 continue; 832 } 833 834 /* verify voltage is OK - 835 * BIOSs are using "off" to indicate invalid */ 836 if (vid == VID_OFF) { 837 pr_debug("invalid vid %u, ignoring\n", vid); 838 invalidate_entry(powernow_table, i); 839 continue; 840 } 841 842 if (freq != (data->acpi_data.states[i].core_frequency * 1000)) { 843 pr_info("invalid freq entries %u kHz vs. %u kHz\n", 844 freq, (unsigned int) 845 (data->acpi_data.states[i].core_frequency 846 * 1000)); 847 invalidate_entry(powernow_table, i); 848 continue; 849 } 850 } 851 return 0; 852 } 853 854 static void powernow_k8_cpu_exit_acpi(struct powernow_k8_data *data) 855 { 856 if (data->acpi_data.state_count) 857 acpi_processor_unregister_performance(data->cpu); 858 free_cpumask_var(data->acpi_data.shared_cpu_map); 859 } 860 861 static int get_transition_latency(struct powernow_k8_data *data) 862 { 863 int max_latency = 0; 864 int i; 865 for (i = 0; i < data->acpi_data.state_count; i++) { 866 int cur_latency = data->acpi_data.states[i].transition_latency 867 + data->acpi_data.states[i].bus_master_latency; 868 if (cur_latency > max_latency) 869 max_latency = cur_latency; 870 } 871 if (max_latency == 0) { 872 pr_err(FW_WARN "Invalid zero transition latency\n"); 873 max_latency = 1; 874 } 875 /* value in usecs, needs to be in nanoseconds */ 876 return 1000 * max_latency; 877 } 878 879 /* Take a frequency, and issue the fid/vid transition command */ 880 static int transition_frequency_fidvid(struct powernow_k8_data *data, 881 unsigned int index, 882 struct cpufreq_policy *policy) 883 { 884 u32 fid = 0; 885 u32 vid = 0; 886 int res; 887 struct cpufreq_freqs freqs; 888 889 pr_debug("cpu %d transition to index %u\n", smp_processor_id(), index); 890 891 /* fid/vid correctness check for k8 */ 892 /* fid are the lower 8 bits of the index we stored into 893 * the cpufreq frequency table in find_psb_table, vid 894 * are the upper 8 bits. 895 */ 896 fid = data->powernow_table[index].driver_data & 0xFF; 897 vid = (data->powernow_table[index].driver_data & 0xFF00) >> 8; 898 899 pr_debug("table matched fid 0x%x, giving vid 0x%x\n", fid, vid); 900 901 if (query_current_values_with_pending_wait(data)) 902 return 1; 903 904 if ((data->currvid == vid) && (data->currfid == fid)) { 905 pr_debug("target matches current values (fid 0x%x, vid 0x%x)\n", 906 fid, vid); 907 return 0; 908 } 909 910 pr_debug("cpu %d, changing to fid 0x%x, vid 0x%x\n", 911 smp_processor_id(), fid, vid); 912 freqs.old = find_khz_freq_from_fid(data->currfid); 913 freqs.new = find_khz_freq_from_fid(fid); 914 915 cpufreq_freq_transition_begin(policy, &freqs); 916 res = transition_fid_vid(data, fid, vid); 917 cpufreq_freq_transition_end(policy, &freqs, res); 918 919 return res; 920 } 921 922 struct powernowk8_target_arg { 923 struct cpufreq_policy *pol; 924 unsigned newstate; 925 }; 926 927 static long powernowk8_target_fn(void *arg) 928 { 929 struct powernowk8_target_arg *pta = arg; 930 struct cpufreq_policy *pol = pta->pol; 931 unsigned newstate = pta->newstate; 932 struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu); 933 u32 checkfid; 934 u32 checkvid; 935 int ret; 936 937 if (!data) 938 return -EINVAL; 939 940 checkfid = data->currfid; 941 checkvid = data->currvid; 942 943 if (pending_bit_stuck()) { 944 pr_err("failing targ, change pending bit set\n"); 945 return -EIO; 946 } 947 948 pr_debug("targ: cpu %d, %d kHz, min %d, max %d\n", 949 pol->cpu, data->powernow_table[newstate].frequency, pol->min, 950 pol->max); 951 952 if (query_current_values_with_pending_wait(data)) 953 return -EIO; 954 955 pr_debug("targ: curr fid 0x%x, vid 0x%x\n", 956 data->currfid, data->currvid); 957 958 if ((checkvid != data->currvid) || 959 (checkfid != data->currfid)) { 960 pr_info("error - out of sync, fix 0x%x 0x%x, vid 0x%x 0x%x\n", 961 checkfid, data->currfid, 962 checkvid, data->currvid); 963 } 964 965 mutex_lock(&fidvid_mutex); 966 967 powernow_k8_acpi_pst_values(data, newstate); 968 969 ret = transition_frequency_fidvid(data, newstate, pol); 970 971 if (ret) { 972 pr_err("transition frequency failed\n"); 973 mutex_unlock(&fidvid_mutex); 974 return 1; 975 } 976 mutex_unlock(&fidvid_mutex); 977 978 pol->cur = find_khz_freq_from_fid(data->currfid); 979 980 return 0; 981 } 982 983 /* Driver entry point to switch to the target frequency */ 984 static int powernowk8_target(struct cpufreq_policy *pol, unsigned index) 985 { 986 struct powernowk8_target_arg pta = { .pol = pol, .newstate = index }; 987 988 return work_on_cpu(pol->cpu, powernowk8_target_fn, &pta); 989 } 990 991 struct init_on_cpu { 992 struct powernow_k8_data *data; 993 int rc; 994 }; 995 996 static void powernowk8_cpu_init_on_cpu(void *_init_on_cpu) 997 { 998 struct init_on_cpu *init_on_cpu = _init_on_cpu; 999 1000 if (pending_bit_stuck()) { 1001 pr_err("failing init, change pending bit set\n"); 1002 init_on_cpu->rc = -ENODEV; 1003 return; 1004 } 1005 1006 if (query_current_values_with_pending_wait(init_on_cpu->data)) { 1007 init_on_cpu->rc = -ENODEV; 1008 return; 1009 } 1010 1011 fidvid_msr_init(); 1012 1013 init_on_cpu->rc = 0; 1014 } 1015 1016 #define MISSING_PSS_MSG \ 1017 FW_BUG "No compatible ACPI _PSS objects found.\n" \ 1018 FW_BUG "First, make sure Cool'N'Quiet is enabled in the BIOS.\n" \ 1019 FW_BUG "If that doesn't help, try upgrading your BIOS.\n" 1020 1021 /* per CPU init entry point to the driver */ 1022 static int powernowk8_cpu_init(struct cpufreq_policy *pol) 1023 { 1024 struct powernow_k8_data *data; 1025 struct init_on_cpu init_on_cpu; 1026 int rc, cpu; 1027 1028 smp_call_function_single(pol->cpu, check_supported_cpu, &rc, 1); 1029 if (rc) 1030 return -ENODEV; 1031 1032 data = kzalloc(sizeof(*data), GFP_KERNEL); 1033 if (!data) 1034 return -ENOMEM; 1035 1036 data->cpu = pol->cpu; 1037 1038 if (powernow_k8_cpu_init_acpi(data)) { 1039 /* 1040 * Use the PSB BIOS structure. This is only available on 1041 * an UP version, and is deprecated by AMD. 1042 */ 1043 if (num_online_cpus() != 1) { 1044 pr_err_once(MISSING_PSS_MSG); 1045 goto err_out; 1046 } 1047 if (pol->cpu != 0) { 1048 pr_err(FW_BUG "No ACPI _PSS objects for CPU other than CPU0. Complain to your BIOS vendor.\n"); 1049 goto err_out; 1050 } 1051 rc = find_psb_table(data); 1052 if (rc) 1053 goto err_out; 1054 1055 /* Take a crude guess here. 1056 * That guess was in microseconds, so multiply with 1000 */ 1057 pol->cpuinfo.transition_latency = ( 1058 ((data->rvo + 8) * data->vstable * VST_UNITS_20US) + 1059 ((1 << data->irt) * 30)) * 1000; 1060 } else /* ACPI _PSS objects available */ 1061 pol->cpuinfo.transition_latency = get_transition_latency(data); 1062 1063 /* only run on specific CPU from here on */ 1064 init_on_cpu.data = data; 1065 smp_call_function_single(data->cpu, powernowk8_cpu_init_on_cpu, 1066 &init_on_cpu, 1); 1067 rc = init_on_cpu.rc; 1068 if (rc != 0) 1069 goto err_out_exit_acpi; 1070 1071 cpumask_copy(pol->cpus, topology_core_cpumask(pol->cpu)); 1072 data->available_cores = pol->cpus; 1073 pol->freq_table = data->powernow_table; 1074 1075 pr_debug("cpu_init done, current fid 0x%x, vid 0x%x\n", 1076 data->currfid, data->currvid); 1077 1078 /* Point all the CPUs in this policy to the same data */ 1079 for_each_cpu(cpu, pol->cpus) 1080 per_cpu(powernow_data, cpu) = data; 1081 1082 return 0; 1083 1084 err_out_exit_acpi: 1085 powernow_k8_cpu_exit_acpi(data); 1086 1087 err_out: 1088 kfree(data); 1089 return -ENODEV; 1090 } 1091 1092 static int powernowk8_cpu_exit(struct cpufreq_policy *pol) 1093 { 1094 struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu); 1095 int cpu; 1096 1097 if (!data) 1098 return -EINVAL; 1099 1100 powernow_k8_cpu_exit_acpi(data); 1101 1102 kfree(data->powernow_table); 1103 kfree(data); 1104 for_each_cpu(cpu, pol->cpus) 1105 per_cpu(powernow_data, cpu) = NULL; 1106 1107 return 0; 1108 } 1109 1110 static void query_values_on_cpu(void *_err) 1111 { 1112 int *err = _err; 1113 struct powernow_k8_data *data = __this_cpu_read(powernow_data); 1114 1115 *err = query_current_values_with_pending_wait(data); 1116 } 1117 1118 static unsigned int powernowk8_get(unsigned int cpu) 1119 { 1120 struct powernow_k8_data *data = per_cpu(powernow_data, cpu); 1121 unsigned int khz = 0; 1122 int err; 1123 1124 if (!data) 1125 return 0; 1126 1127 smp_call_function_single(cpu, query_values_on_cpu, &err, true); 1128 if (err) 1129 goto out; 1130 1131 khz = find_khz_freq_from_fid(data->currfid); 1132 1133 1134 out: 1135 return khz; 1136 } 1137 1138 static struct cpufreq_driver cpufreq_amd64_driver = { 1139 .flags = CPUFREQ_ASYNC_NOTIFICATION, 1140 .verify = cpufreq_generic_frequency_table_verify, 1141 .target_index = powernowk8_target, 1142 .bios_limit = acpi_processor_get_bios_limit, 1143 .init = powernowk8_cpu_init, 1144 .exit = powernowk8_cpu_exit, 1145 .get = powernowk8_get, 1146 .name = "powernow-k8", 1147 .attr = cpufreq_generic_attr, 1148 }; 1149 1150 static void __request_acpi_cpufreq(void) 1151 { 1152 const char drv[] = "acpi-cpufreq"; 1153 const char *cur_drv; 1154 1155 cur_drv = cpufreq_get_current_driver(); 1156 if (!cur_drv) 1157 goto request; 1158 1159 if (strncmp(cur_drv, drv, min_t(size_t, strlen(cur_drv), strlen(drv)))) 1160 pr_warn("WTF driver: %s\n", cur_drv); 1161 1162 return; 1163 1164 request: 1165 pr_warn("This CPU is not supported anymore, using acpi-cpufreq instead.\n"); 1166 request_module(drv); 1167 } 1168 1169 /* driver entry point for init */ 1170 static int powernowk8_init(void) 1171 { 1172 unsigned int i, supported_cpus = 0; 1173 int ret; 1174 1175 if (!x86_match_cpu(powernow_k8_ids)) 1176 return -ENODEV; 1177 1178 if (boot_cpu_has(X86_FEATURE_HW_PSTATE)) { 1179 __request_acpi_cpufreq(); 1180 return -ENODEV; 1181 } 1182 1183 cpus_read_lock(); 1184 for_each_online_cpu(i) { 1185 smp_call_function_single(i, check_supported_cpu, &ret, 1); 1186 if (!ret) 1187 supported_cpus++; 1188 } 1189 1190 if (supported_cpus != num_online_cpus()) { 1191 cpus_read_unlock(); 1192 return -ENODEV; 1193 } 1194 cpus_read_unlock(); 1195 1196 ret = cpufreq_register_driver(&cpufreq_amd64_driver); 1197 if (ret) 1198 return ret; 1199 1200 pr_info("Found %d %s (%d cpu cores) (" VERSION ")\n", 1201 num_online_nodes(), boot_cpu_data.x86_model_id, supported_cpus); 1202 1203 return ret; 1204 } 1205 1206 /* driver entry point for term */ 1207 static void __exit powernowk8_exit(void) 1208 { 1209 pr_debug("exit\n"); 1210 1211 cpufreq_unregister_driver(&cpufreq_amd64_driver); 1212 } 1213 1214 MODULE_AUTHOR("Paul Devriendt <paul.devriendt@amd.com>"); 1215 MODULE_AUTHOR("Mark Langsdorf <mark.langsdorf@amd.com>"); 1216 MODULE_DESCRIPTION("AMD Athlon 64 and Opteron processor frequency driver."); 1217 MODULE_LICENSE("GPL"); 1218 1219 late_initcall(powernowk8_init); 1220 module_exit(powernowk8_exit); 1221