xref: /openbmc/linux/drivers/cpufreq/mediatek-cpufreq.c (revision 19dc81b4017baffd6e919fd71cfc8dcbd5442e15)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2015 Linaro Ltd.
4  * Author: Pi-Cheng Chen <pi-cheng.chen@linaro.org>
5  */
6 
7 #include <linux/clk.h>
8 #include <linux/cpu.h>
9 #include <linux/cpufreq.h>
10 #include <linux/cpumask.h>
11 #include <linux/module.h>
12 #include <linux/of.h>
13 #include <linux/platform_device.h>
14 #include <linux/pm_opp.h>
15 #include <linux/regulator/consumer.h>
16 #include <linux/slab.h>
17 #include <linux/thermal.h>
18 
19 #define MIN_VOLT_SHIFT		(100000)
20 #define MAX_VOLT_SHIFT		(200000)
21 #define MAX_VOLT_LIMIT		(1150000)
22 #define VOLT_TOL		(10000)
23 
24 /*
25  * The struct mtk_cpu_dvfs_info holds necessary information for doing CPU DVFS
26  * on each CPU power/clock domain of Mediatek SoCs. Each CPU cluster in
27  * Mediatek SoCs has two voltage inputs, Vproc and Vsram. In some cases the two
28  * voltage inputs need to be controlled under a hardware limitation:
29  * 100mV < Vsram - Vproc < 200mV
30  *
31  * When scaling the clock frequency of a CPU clock domain, the clock source
32  * needs to be switched to another stable PLL clock temporarily until
33  * the original PLL becomes stable at target frequency.
34  */
35 struct mtk_cpu_dvfs_info {
36 	struct cpumask cpus;
37 	struct device *cpu_dev;
38 	struct regulator *proc_reg;
39 	struct regulator *sram_reg;
40 	struct clk *cpu_clk;
41 	struct clk *inter_clk;
42 	struct list_head list_head;
43 	int intermediate_voltage;
44 	bool need_voltage_tracking;
45 };
46 
47 static LIST_HEAD(dvfs_info_list);
48 
49 static struct mtk_cpu_dvfs_info *mtk_cpu_dvfs_info_lookup(int cpu)
50 {
51 	struct mtk_cpu_dvfs_info *info;
52 
53 	list_for_each_entry(info, &dvfs_info_list, list_head) {
54 		if (cpumask_test_cpu(cpu, &info->cpus))
55 			return info;
56 	}
57 
58 	return NULL;
59 }
60 
61 static int mtk_cpufreq_voltage_tracking(struct mtk_cpu_dvfs_info *info,
62 					int new_vproc)
63 {
64 	struct regulator *proc_reg = info->proc_reg;
65 	struct regulator *sram_reg = info->sram_reg;
66 	int old_vproc, old_vsram, new_vsram, vsram, vproc, ret;
67 
68 	old_vproc = regulator_get_voltage(proc_reg);
69 	if (old_vproc < 0) {
70 		pr_err("%s: invalid Vproc value: %d\n", __func__, old_vproc);
71 		return old_vproc;
72 	}
73 	/* Vsram should not exceed the maximum allowed voltage of SoC. */
74 	new_vsram = min(new_vproc + MIN_VOLT_SHIFT, MAX_VOLT_LIMIT);
75 
76 	if (old_vproc < new_vproc) {
77 		/*
78 		 * When scaling up voltages, Vsram and Vproc scale up step
79 		 * by step. At each step, set Vsram to (Vproc + 200mV) first,
80 		 * then set Vproc to (Vsram - 100mV).
81 		 * Keep doing it until Vsram and Vproc hit target voltages.
82 		 */
83 		do {
84 			old_vsram = regulator_get_voltage(sram_reg);
85 			if (old_vsram < 0) {
86 				pr_err("%s: invalid Vsram value: %d\n",
87 				       __func__, old_vsram);
88 				return old_vsram;
89 			}
90 			old_vproc = regulator_get_voltage(proc_reg);
91 			if (old_vproc < 0) {
92 				pr_err("%s: invalid Vproc value: %d\n",
93 				       __func__, old_vproc);
94 				return old_vproc;
95 			}
96 
97 			vsram = min(new_vsram, old_vproc + MAX_VOLT_SHIFT);
98 
99 			if (vsram + VOLT_TOL >= MAX_VOLT_LIMIT) {
100 				vsram = MAX_VOLT_LIMIT;
101 
102 				/*
103 				 * If the target Vsram hits the maximum voltage,
104 				 * try to set the exact voltage value first.
105 				 */
106 				ret = regulator_set_voltage(sram_reg, vsram,
107 							    vsram);
108 				if (ret)
109 					ret = regulator_set_voltage(sram_reg,
110 							vsram - VOLT_TOL,
111 							vsram);
112 
113 				vproc = new_vproc;
114 			} else {
115 				ret = regulator_set_voltage(sram_reg, vsram,
116 							    vsram + VOLT_TOL);
117 
118 				vproc = vsram - MIN_VOLT_SHIFT;
119 			}
120 			if (ret)
121 				return ret;
122 
123 			ret = regulator_set_voltage(proc_reg, vproc,
124 						    vproc + VOLT_TOL);
125 			if (ret) {
126 				regulator_set_voltage(sram_reg, old_vsram,
127 						      old_vsram);
128 				return ret;
129 			}
130 		} while (vproc < new_vproc || vsram < new_vsram);
131 	} else if (old_vproc > new_vproc) {
132 		/*
133 		 * When scaling down voltages, Vsram and Vproc scale down step
134 		 * by step. At each step, set Vproc to (Vsram - 200mV) first,
135 		 * then set Vproc to (Vproc + 100mV).
136 		 * Keep doing it until Vsram and Vproc hit target voltages.
137 		 */
138 		do {
139 			old_vproc = regulator_get_voltage(proc_reg);
140 			if (old_vproc < 0) {
141 				pr_err("%s: invalid Vproc value: %d\n",
142 				       __func__, old_vproc);
143 				return old_vproc;
144 			}
145 			old_vsram = regulator_get_voltage(sram_reg);
146 			if (old_vsram < 0) {
147 				pr_err("%s: invalid Vsram value: %d\n",
148 				       __func__, old_vsram);
149 				return old_vsram;
150 			}
151 
152 			vproc = max(new_vproc, old_vsram - MAX_VOLT_SHIFT);
153 			ret = regulator_set_voltage(proc_reg, vproc,
154 						    vproc + VOLT_TOL);
155 			if (ret)
156 				return ret;
157 
158 			if (vproc == new_vproc)
159 				vsram = new_vsram;
160 			else
161 				vsram = max(new_vsram, vproc + MIN_VOLT_SHIFT);
162 
163 			if (vsram + VOLT_TOL >= MAX_VOLT_LIMIT) {
164 				vsram = MAX_VOLT_LIMIT;
165 
166 				/*
167 				 * If the target Vsram hits the maximum voltage,
168 				 * try to set the exact voltage value first.
169 				 */
170 				ret = regulator_set_voltage(sram_reg, vsram,
171 							    vsram);
172 				if (ret)
173 					ret = regulator_set_voltage(sram_reg,
174 							vsram - VOLT_TOL,
175 							vsram);
176 			} else {
177 				ret = regulator_set_voltage(sram_reg, vsram,
178 							    vsram + VOLT_TOL);
179 			}
180 
181 			if (ret) {
182 				regulator_set_voltage(proc_reg, old_vproc,
183 						      old_vproc);
184 				return ret;
185 			}
186 		} while (vproc > new_vproc + VOLT_TOL ||
187 			 vsram > new_vsram + VOLT_TOL);
188 	}
189 
190 	return 0;
191 }
192 
193 static int mtk_cpufreq_set_voltage(struct mtk_cpu_dvfs_info *info, int vproc)
194 {
195 	if (info->need_voltage_tracking)
196 		return mtk_cpufreq_voltage_tracking(info, vproc);
197 	else
198 		return regulator_set_voltage(info->proc_reg, vproc,
199 					     vproc + VOLT_TOL);
200 }
201 
202 static int mtk_cpufreq_set_target(struct cpufreq_policy *policy,
203 				  unsigned int index)
204 {
205 	struct cpufreq_frequency_table *freq_table = policy->freq_table;
206 	struct clk *cpu_clk = policy->clk;
207 	struct clk *armpll = clk_get_parent(cpu_clk);
208 	struct mtk_cpu_dvfs_info *info = policy->driver_data;
209 	struct device *cpu_dev = info->cpu_dev;
210 	struct dev_pm_opp *opp;
211 	long freq_hz, old_freq_hz;
212 	int vproc, old_vproc, inter_vproc, target_vproc, ret;
213 
214 	inter_vproc = info->intermediate_voltage;
215 
216 	old_freq_hz = clk_get_rate(cpu_clk);
217 	old_vproc = regulator_get_voltage(info->proc_reg);
218 	if (old_vproc < 0) {
219 		pr_err("%s: invalid Vproc value: %d\n", __func__, old_vproc);
220 		return old_vproc;
221 	}
222 
223 	freq_hz = freq_table[index].frequency * 1000;
224 
225 	opp = dev_pm_opp_find_freq_ceil(cpu_dev, &freq_hz);
226 	if (IS_ERR(opp)) {
227 		pr_err("cpu%d: failed to find OPP for %ld\n",
228 		       policy->cpu, freq_hz);
229 		return PTR_ERR(opp);
230 	}
231 	vproc = dev_pm_opp_get_voltage(opp);
232 	dev_pm_opp_put(opp);
233 
234 	/*
235 	 * If the new voltage or the intermediate voltage is higher than the
236 	 * current voltage, scale up voltage first.
237 	 */
238 	target_vproc = (inter_vproc > vproc) ? inter_vproc : vproc;
239 	if (old_vproc < target_vproc) {
240 		ret = mtk_cpufreq_set_voltage(info, target_vproc);
241 		if (ret) {
242 			pr_err("cpu%d: failed to scale up voltage!\n",
243 			       policy->cpu);
244 			mtk_cpufreq_set_voltage(info, old_vproc);
245 			return ret;
246 		}
247 	}
248 
249 	/* Reparent the CPU clock to intermediate clock. */
250 	ret = clk_set_parent(cpu_clk, info->inter_clk);
251 	if (ret) {
252 		pr_err("cpu%d: failed to re-parent cpu clock!\n",
253 		       policy->cpu);
254 		mtk_cpufreq_set_voltage(info, old_vproc);
255 		WARN_ON(1);
256 		return ret;
257 	}
258 
259 	/* Set the original PLL to target rate. */
260 	ret = clk_set_rate(armpll, freq_hz);
261 	if (ret) {
262 		pr_err("cpu%d: failed to scale cpu clock rate!\n",
263 		       policy->cpu);
264 		clk_set_parent(cpu_clk, armpll);
265 		mtk_cpufreq_set_voltage(info, old_vproc);
266 		return ret;
267 	}
268 
269 	/* Set parent of CPU clock back to the original PLL. */
270 	ret = clk_set_parent(cpu_clk, armpll);
271 	if (ret) {
272 		pr_err("cpu%d: failed to re-parent cpu clock!\n",
273 		       policy->cpu);
274 		mtk_cpufreq_set_voltage(info, inter_vproc);
275 		WARN_ON(1);
276 		return ret;
277 	}
278 
279 	/*
280 	 * If the new voltage is lower than the intermediate voltage or the
281 	 * original voltage, scale down to the new voltage.
282 	 */
283 	if (vproc < inter_vproc || vproc < old_vproc) {
284 		ret = mtk_cpufreq_set_voltage(info, vproc);
285 		if (ret) {
286 			pr_err("cpu%d: failed to scale down voltage!\n",
287 			       policy->cpu);
288 			clk_set_parent(cpu_clk, info->inter_clk);
289 			clk_set_rate(armpll, old_freq_hz);
290 			clk_set_parent(cpu_clk, armpll);
291 			return ret;
292 		}
293 	}
294 
295 	return 0;
296 }
297 
298 #define DYNAMIC_POWER "dynamic-power-coefficient"
299 
300 static int mtk_cpu_dvfs_info_init(struct mtk_cpu_dvfs_info *info, int cpu)
301 {
302 	struct device *cpu_dev;
303 	struct regulator *proc_reg = ERR_PTR(-ENODEV);
304 	struct regulator *sram_reg = ERR_PTR(-ENODEV);
305 	struct clk *cpu_clk = ERR_PTR(-ENODEV);
306 	struct clk *inter_clk = ERR_PTR(-ENODEV);
307 	struct dev_pm_opp *opp;
308 	unsigned long rate;
309 	int ret;
310 
311 	cpu_dev = get_cpu_device(cpu);
312 	if (!cpu_dev) {
313 		pr_err("failed to get cpu%d device\n", cpu);
314 		return -ENODEV;
315 	}
316 
317 	cpu_clk = clk_get(cpu_dev, "cpu");
318 	if (IS_ERR(cpu_clk)) {
319 		if (PTR_ERR(cpu_clk) == -EPROBE_DEFER)
320 			pr_warn("cpu clk for cpu%d not ready, retry.\n", cpu);
321 		else
322 			pr_err("failed to get cpu clk for cpu%d\n", cpu);
323 
324 		ret = PTR_ERR(cpu_clk);
325 		return ret;
326 	}
327 
328 	inter_clk = clk_get(cpu_dev, "intermediate");
329 	if (IS_ERR(inter_clk)) {
330 		if (PTR_ERR(inter_clk) == -EPROBE_DEFER)
331 			pr_warn("intermediate clk for cpu%d not ready, retry.\n",
332 				cpu);
333 		else
334 			pr_err("failed to get intermediate clk for cpu%d\n",
335 			       cpu);
336 
337 		ret = PTR_ERR(inter_clk);
338 		goto out_free_resources;
339 	}
340 
341 	proc_reg = regulator_get_optional(cpu_dev, "proc");
342 	if (IS_ERR(proc_reg)) {
343 		if (PTR_ERR(proc_reg) == -EPROBE_DEFER)
344 			pr_warn("proc regulator for cpu%d not ready, retry.\n",
345 				cpu);
346 		else
347 			pr_err("failed to get proc regulator for cpu%d\n",
348 			       cpu);
349 
350 		ret = PTR_ERR(proc_reg);
351 		goto out_free_resources;
352 	}
353 
354 	/* Both presence and absence of sram regulator are valid cases. */
355 	sram_reg = regulator_get_exclusive(cpu_dev, "sram");
356 
357 	/* Get OPP-sharing information from "operating-points-v2" bindings */
358 	ret = dev_pm_opp_of_get_sharing_cpus(cpu_dev, &info->cpus);
359 	if (ret) {
360 		pr_err("failed to get OPP-sharing information for cpu%d\n",
361 		       cpu);
362 		goto out_free_resources;
363 	}
364 
365 	ret = dev_pm_opp_of_cpumask_add_table(&info->cpus);
366 	if (ret) {
367 		pr_warn("no OPP table for cpu%d\n", cpu);
368 		goto out_free_resources;
369 	}
370 
371 	/* Search a safe voltage for intermediate frequency. */
372 	rate = clk_get_rate(inter_clk);
373 	opp = dev_pm_opp_find_freq_ceil(cpu_dev, &rate);
374 	if (IS_ERR(opp)) {
375 		pr_err("failed to get intermediate opp for cpu%d\n", cpu);
376 		ret = PTR_ERR(opp);
377 		goto out_free_opp_table;
378 	}
379 	info->intermediate_voltage = dev_pm_opp_get_voltage(opp);
380 	dev_pm_opp_put(opp);
381 
382 	info->cpu_dev = cpu_dev;
383 	info->proc_reg = proc_reg;
384 	info->sram_reg = IS_ERR(sram_reg) ? NULL : sram_reg;
385 	info->cpu_clk = cpu_clk;
386 	info->inter_clk = inter_clk;
387 
388 	/*
389 	 * If SRAM regulator is present, software "voltage tracking" is needed
390 	 * for this CPU power domain.
391 	 */
392 	info->need_voltage_tracking = !IS_ERR(sram_reg);
393 
394 	return 0;
395 
396 out_free_opp_table:
397 	dev_pm_opp_of_cpumask_remove_table(&info->cpus);
398 
399 out_free_resources:
400 	if (!IS_ERR(proc_reg))
401 		regulator_put(proc_reg);
402 	if (!IS_ERR(sram_reg))
403 		regulator_put(sram_reg);
404 	if (!IS_ERR(cpu_clk))
405 		clk_put(cpu_clk);
406 	if (!IS_ERR(inter_clk))
407 		clk_put(inter_clk);
408 
409 	return ret;
410 }
411 
412 static void mtk_cpu_dvfs_info_release(struct mtk_cpu_dvfs_info *info)
413 {
414 	if (!IS_ERR(info->proc_reg))
415 		regulator_put(info->proc_reg);
416 	if (!IS_ERR(info->sram_reg))
417 		regulator_put(info->sram_reg);
418 	if (!IS_ERR(info->cpu_clk))
419 		clk_put(info->cpu_clk);
420 	if (!IS_ERR(info->inter_clk))
421 		clk_put(info->inter_clk);
422 
423 	dev_pm_opp_of_cpumask_remove_table(&info->cpus);
424 }
425 
426 static int mtk_cpufreq_init(struct cpufreq_policy *policy)
427 {
428 	struct mtk_cpu_dvfs_info *info;
429 	struct cpufreq_frequency_table *freq_table;
430 	int ret;
431 
432 	info = mtk_cpu_dvfs_info_lookup(policy->cpu);
433 	if (!info) {
434 		pr_err("dvfs info for cpu%d is not initialized.\n",
435 		       policy->cpu);
436 		return -EINVAL;
437 	}
438 
439 	ret = dev_pm_opp_init_cpufreq_table(info->cpu_dev, &freq_table);
440 	if (ret) {
441 		pr_err("failed to init cpufreq table for cpu%d: %d\n",
442 		       policy->cpu, ret);
443 		return ret;
444 	}
445 
446 	cpumask_copy(policy->cpus, &info->cpus);
447 	policy->freq_table = freq_table;
448 	policy->driver_data = info;
449 	policy->clk = info->cpu_clk;
450 
451 	return 0;
452 }
453 
454 static int mtk_cpufreq_exit(struct cpufreq_policy *policy)
455 {
456 	struct mtk_cpu_dvfs_info *info = policy->driver_data;
457 
458 	dev_pm_opp_free_cpufreq_table(info->cpu_dev, &policy->freq_table);
459 
460 	return 0;
461 }
462 
463 static struct cpufreq_driver mtk_cpufreq_driver = {
464 	.flags = CPUFREQ_NEED_INITIAL_FREQ_CHECK |
465 		 CPUFREQ_HAVE_GOVERNOR_PER_POLICY |
466 		 CPUFREQ_IS_COOLING_DEV,
467 	.verify = cpufreq_generic_frequency_table_verify,
468 	.target_index = mtk_cpufreq_set_target,
469 	.get = cpufreq_generic_get,
470 	.init = mtk_cpufreq_init,
471 	.exit = mtk_cpufreq_exit,
472 	.register_em = cpufreq_register_em_with_opp,
473 	.name = "mtk-cpufreq",
474 	.attr = cpufreq_generic_attr,
475 };
476 
477 static int mtk_cpufreq_probe(struct platform_device *pdev)
478 {
479 	struct mtk_cpu_dvfs_info *info, *tmp;
480 	int cpu, ret;
481 
482 	for_each_possible_cpu(cpu) {
483 		info = mtk_cpu_dvfs_info_lookup(cpu);
484 		if (info)
485 			continue;
486 
487 		info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL);
488 		if (!info) {
489 			ret = -ENOMEM;
490 			goto release_dvfs_info_list;
491 		}
492 
493 		ret = mtk_cpu_dvfs_info_init(info, cpu);
494 		if (ret) {
495 			dev_err(&pdev->dev,
496 				"failed to initialize dvfs info for cpu%d\n",
497 				cpu);
498 			goto release_dvfs_info_list;
499 		}
500 
501 		list_add(&info->list_head, &dvfs_info_list);
502 	}
503 
504 	ret = cpufreq_register_driver(&mtk_cpufreq_driver);
505 	if (ret) {
506 		dev_err(&pdev->dev, "failed to register mtk cpufreq driver\n");
507 		goto release_dvfs_info_list;
508 	}
509 
510 	return 0;
511 
512 release_dvfs_info_list:
513 	list_for_each_entry_safe(info, tmp, &dvfs_info_list, list_head) {
514 		mtk_cpu_dvfs_info_release(info);
515 		list_del(&info->list_head);
516 	}
517 
518 	return ret;
519 }
520 
521 static struct platform_driver mtk_cpufreq_platdrv = {
522 	.driver = {
523 		.name	= "mtk-cpufreq",
524 	},
525 	.probe		= mtk_cpufreq_probe,
526 };
527 
528 /* List of machines supported by this driver */
529 static const struct of_device_id mtk_cpufreq_machines[] __initconst = {
530 	{ .compatible = "mediatek,mt2701", },
531 	{ .compatible = "mediatek,mt2712", },
532 	{ .compatible = "mediatek,mt7622", },
533 	{ .compatible = "mediatek,mt7623", },
534 	{ .compatible = "mediatek,mt8167", },
535 	{ .compatible = "mediatek,mt817x", },
536 	{ .compatible = "mediatek,mt8173", },
537 	{ .compatible = "mediatek,mt8176", },
538 	{ .compatible = "mediatek,mt8183", },
539 	{ .compatible = "mediatek,mt8365", },
540 	{ .compatible = "mediatek,mt8516", },
541 
542 	{ }
543 };
544 MODULE_DEVICE_TABLE(of, mtk_cpufreq_machines);
545 
546 static int __init mtk_cpufreq_driver_init(void)
547 {
548 	struct device_node *np;
549 	const struct of_device_id *match;
550 	struct platform_device *pdev;
551 	int err;
552 
553 	np = of_find_node_by_path("/");
554 	if (!np)
555 		return -ENODEV;
556 
557 	match = of_match_node(mtk_cpufreq_machines, np);
558 	of_node_put(np);
559 	if (!match) {
560 		pr_debug("Machine is not compatible with mtk-cpufreq\n");
561 		return -ENODEV;
562 	}
563 
564 	err = platform_driver_register(&mtk_cpufreq_platdrv);
565 	if (err)
566 		return err;
567 
568 	/*
569 	 * Since there's no place to hold device registration code and no
570 	 * device tree based way to match cpufreq driver yet, both the driver
571 	 * and the device registration codes are put here to handle defer
572 	 * probing.
573 	 */
574 	pdev = platform_device_register_simple("mtk-cpufreq", -1, NULL, 0);
575 	if (IS_ERR(pdev)) {
576 		pr_err("failed to register mtk-cpufreq platform device\n");
577 		platform_driver_unregister(&mtk_cpufreq_platdrv);
578 		return PTR_ERR(pdev);
579 	}
580 
581 	return 0;
582 }
583 device_initcall(mtk_cpufreq_driver_init);
584 
585 MODULE_DESCRIPTION("MediaTek CPUFreq driver");
586 MODULE_AUTHOR("Pi-Cheng Chen <pi-cheng.chen@linaro.org>");
587 MODULE_LICENSE("GPL v2");
588