1 /* 2 * intel_pstate.c: Native P state management for Intel processors 3 * 4 * (C) Copyright 2012 Intel Corporation 5 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com> 6 * 7 * This program is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU General Public License 9 * as published by the Free Software Foundation; version 2 10 * of the License. 11 */ 12 13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 14 15 #include <linux/kernel.h> 16 #include <linux/kernel_stat.h> 17 #include <linux/module.h> 18 #include <linux/ktime.h> 19 #include <linux/hrtimer.h> 20 #include <linux/tick.h> 21 #include <linux/slab.h> 22 #include <linux/sched/cpufreq.h> 23 #include <linux/list.h> 24 #include <linux/cpu.h> 25 #include <linux/cpufreq.h> 26 #include <linux/sysfs.h> 27 #include <linux/types.h> 28 #include <linux/fs.h> 29 #include <linux/debugfs.h> 30 #include <linux/acpi.h> 31 #include <linux/vmalloc.h> 32 #include <trace/events/power.h> 33 34 #include <asm/div64.h> 35 #include <asm/msr.h> 36 #include <asm/cpu_device_id.h> 37 #include <asm/cpufeature.h> 38 #include <asm/intel-family.h> 39 40 #define INTEL_PSTATE_SAMPLING_INTERVAL (10 * NSEC_PER_MSEC) 41 42 #define INTEL_CPUFREQ_TRANSITION_LATENCY 20000 43 #define INTEL_CPUFREQ_TRANSITION_DELAY 500 44 45 #ifdef CONFIG_ACPI 46 #include <acpi/processor.h> 47 #include <acpi/cppc_acpi.h> 48 #endif 49 50 #define FRAC_BITS 8 51 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS) 52 #define fp_toint(X) ((X) >> FRAC_BITS) 53 54 #define EXT_BITS 6 55 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS) 56 #define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS) 57 #define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS) 58 59 static inline int32_t mul_fp(int32_t x, int32_t y) 60 { 61 return ((int64_t)x * (int64_t)y) >> FRAC_BITS; 62 } 63 64 static inline int32_t div_fp(s64 x, s64 y) 65 { 66 return div64_s64((int64_t)x << FRAC_BITS, y); 67 } 68 69 static inline int ceiling_fp(int32_t x) 70 { 71 int mask, ret; 72 73 ret = fp_toint(x); 74 mask = (1 << FRAC_BITS) - 1; 75 if (x & mask) 76 ret += 1; 77 return ret; 78 } 79 80 static inline int32_t percent_fp(int percent) 81 { 82 return div_fp(percent, 100); 83 } 84 85 static inline u64 mul_ext_fp(u64 x, u64 y) 86 { 87 return (x * y) >> EXT_FRAC_BITS; 88 } 89 90 static inline u64 div_ext_fp(u64 x, u64 y) 91 { 92 return div64_u64(x << EXT_FRAC_BITS, y); 93 } 94 95 static inline int32_t percent_ext_fp(int percent) 96 { 97 return div_ext_fp(percent, 100); 98 } 99 100 /** 101 * struct sample - Store performance sample 102 * @core_avg_perf: Ratio of APERF/MPERF which is the actual average 103 * performance during last sample period 104 * @busy_scaled: Scaled busy value which is used to calculate next 105 * P state. This can be different than core_avg_perf 106 * to account for cpu idle period 107 * @aperf: Difference of actual performance frequency clock count 108 * read from APERF MSR between last and current sample 109 * @mperf: Difference of maximum performance frequency clock count 110 * read from MPERF MSR between last and current sample 111 * @tsc: Difference of time stamp counter between last and 112 * current sample 113 * @time: Current time from scheduler 114 * 115 * This structure is used in the cpudata structure to store performance sample 116 * data for choosing next P State. 117 */ 118 struct sample { 119 int32_t core_avg_perf; 120 int32_t busy_scaled; 121 u64 aperf; 122 u64 mperf; 123 u64 tsc; 124 u64 time; 125 }; 126 127 /** 128 * struct pstate_data - Store P state data 129 * @current_pstate: Current requested P state 130 * @min_pstate: Min P state possible for this platform 131 * @max_pstate: Max P state possible for this platform 132 * @max_pstate_physical:This is physical Max P state for a processor 133 * This can be higher than the max_pstate which can 134 * be limited by platform thermal design power limits 135 * @scaling: Scaling factor to convert frequency to cpufreq 136 * frequency units 137 * @turbo_pstate: Max Turbo P state possible for this platform 138 * @max_freq: @max_pstate frequency in cpufreq units 139 * @turbo_freq: @turbo_pstate frequency in cpufreq units 140 * 141 * Stores the per cpu model P state limits and current P state. 142 */ 143 struct pstate_data { 144 int current_pstate; 145 int min_pstate; 146 int max_pstate; 147 int max_pstate_physical; 148 int scaling; 149 int turbo_pstate; 150 unsigned int max_freq; 151 unsigned int turbo_freq; 152 }; 153 154 /** 155 * struct vid_data - Stores voltage information data 156 * @min: VID data for this platform corresponding to 157 * the lowest P state 158 * @max: VID data corresponding to the highest P State. 159 * @turbo: VID data for turbo P state 160 * @ratio: Ratio of (vid max - vid min) / 161 * (max P state - Min P State) 162 * 163 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling) 164 * This data is used in Atom platforms, where in addition to target P state, 165 * the voltage data needs to be specified to select next P State. 166 */ 167 struct vid_data { 168 int min; 169 int max; 170 int turbo; 171 int32_t ratio; 172 }; 173 174 /** 175 * struct global_params - Global parameters, mostly tunable via sysfs. 176 * @no_turbo: Whether or not to use turbo P-states. 177 * @turbo_disabled: Whethet or not turbo P-states are available at all, 178 * based on the MSR_IA32_MISC_ENABLE value and whether or 179 * not the maximum reported turbo P-state is different from 180 * the maximum reported non-turbo one. 181 * @min_perf_pct: Minimum capacity limit in percent of the maximum turbo 182 * P-state capacity. 183 * @max_perf_pct: Maximum capacity limit in percent of the maximum turbo 184 * P-state capacity. 185 */ 186 struct global_params { 187 bool no_turbo; 188 bool turbo_disabled; 189 int max_perf_pct; 190 int min_perf_pct; 191 }; 192 193 /** 194 * struct cpudata - Per CPU instance data storage 195 * @cpu: CPU number for this instance data 196 * @policy: CPUFreq policy value 197 * @update_util: CPUFreq utility callback information 198 * @update_util_set: CPUFreq utility callback is set 199 * @iowait_boost: iowait-related boost fraction 200 * @last_update: Time of the last update. 201 * @pstate: Stores P state limits for this CPU 202 * @vid: Stores VID limits for this CPU 203 * @last_sample_time: Last Sample time 204 * @aperf_mperf_shift: Number of clock cycles after aperf, merf is incremented 205 * This shift is a multiplier to mperf delta to 206 * calculate CPU busy. 207 * @prev_aperf: Last APERF value read from APERF MSR 208 * @prev_mperf: Last MPERF value read from MPERF MSR 209 * @prev_tsc: Last timestamp counter (TSC) value 210 * @prev_cummulative_iowait: IO Wait time difference from last and 211 * current sample 212 * @sample: Storage for storing last Sample data 213 * @min_perf_ratio: Minimum capacity in terms of PERF or HWP ratios 214 * @max_perf_ratio: Maximum capacity in terms of PERF or HWP ratios 215 * @acpi_perf_data: Stores ACPI perf information read from _PSS 216 * @valid_pss_table: Set to true for valid ACPI _PSS entries found 217 * @epp_powersave: Last saved HWP energy performance preference 218 * (EPP) or energy performance bias (EPB), 219 * when policy switched to performance 220 * @epp_policy: Last saved policy used to set EPP/EPB 221 * @epp_default: Power on default HWP energy performance 222 * preference/bias 223 * @epp_saved: Saved EPP/EPB during system suspend or CPU offline 224 * operation 225 * 226 * This structure stores per CPU instance data for all CPUs. 227 */ 228 struct cpudata { 229 int cpu; 230 231 unsigned int policy; 232 struct update_util_data update_util; 233 bool update_util_set; 234 235 struct pstate_data pstate; 236 struct vid_data vid; 237 238 u64 last_update; 239 u64 last_sample_time; 240 u64 aperf_mperf_shift; 241 u64 prev_aperf; 242 u64 prev_mperf; 243 u64 prev_tsc; 244 u64 prev_cummulative_iowait; 245 struct sample sample; 246 int32_t min_perf_ratio; 247 int32_t max_perf_ratio; 248 #ifdef CONFIG_ACPI 249 struct acpi_processor_performance acpi_perf_data; 250 bool valid_pss_table; 251 #endif 252 unsigned int iowait_boost; 253 s16 epp_powersave; 254 s16 epp_policy; 255 s16 epp_default; 256 s16 epp_saved; 257 }; 258 259 static struct cpudata **all_cpu_data; 260 261 /** 262 * struct pstate_funcs - Per CPU model specific callbacks 263 * @get_max: Callback to get maximum non turbo effective P state 264 * @get_max_physical: Callback to get maximum non turbo physical P state 265 * @get_min: Callback to get minimum P state 266 * @get_turbo: Callback to get turbo P state 267 * @get_scaling: Callback to get frequency scaling factor 268 * @get_val: Callback to convert P state to actual MSR write value 269 * @get_vid: Callback to get VID data for Atom platforms 270 * 271 * Core and Atom CPU models have different way to get P State limits. This 272 * structure is used to store those callbacks. 273 */ 274 struct pstate_funcs { 275 int (*get_max)(void); 276 int (*get_max_physical)(void); 277 int (*get_min)(void); 278 int (*get_turbo)(void); 279 int (*get_scaling)(void); 280 int (*get_aperf_mperf_shift)(void); 281 u64 (*get_val)(struct cpudata*, int pstate); 282 void (*get_vid)(struct cpudata *); 283 }; 284 285 static struct pstate_funcs pstate_funcs __read_mostly; 286 287 static int hwp_active __read_mostly; 288 static bool per_cpu_limits __read_mostly; 289 290 static struct cpufreq_driver *intel_pstate_driver __read_mostly; 291 292 #ifdef CONFIG_ACPI 293 static bool acpi_ppc; 294 #endif 295 296 static struct global_params global; 297 298 static DEFINE_MUTEX(intel_pstate_driver_lock); 299 static DEFINE_MUTEX(intel_pstate_limits_lock); 300 301 #ifdef CONFIG_ACPI 302 303 static bool intel_pstate_get_ppc_enable_status(void) 304 { 305 if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER || 306 acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER) 307 return true; 308 309 return acpi_ppc; 310 } 311 312 #ifdef CONFIG_ACPI_CPPC_LIB 313 314 /* The work item is needed to avoid CPU hotplug locking issues */ 315 static void intel_pstste_sched_itmt_work_fn(struct work_struct *work) 316 { 317 sched_set_itmt_support(); 318 } 319 320 static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn); 321 322 static void intel_pstate_set_itmt_prio(int cpu) 323 { 324 struct cppc_perf_caps cppc_perf; 325 static u32 max_highest_perf = 0, min_highest_perf = U32_MAX; 326 int ret; 327 328 ret = cppc_get_perf_caps(cpu, &cppc_perf); 329 if (ret) 330 return; 331 332 /* 333 * The priorities can be set regardless of whether or not 334 * sched_set_itmt_support(true) has been called and it is valid to 335 * update them at any time after it has been called. 336 */ 337 sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu); 338 339 if (max_highest_perf <= min_highest_perf) { 340 if (cppc_perf.highest_perf > max_highest_perf) 341 max_highest_perf = cppc_perf.highest_perf; 342 343 if (cppc_perf.highest_perf < min_highest_perf) 344 min_highest_perf = cppc_perf.highest_perf; 345 346 if (max_highest_perf > min_highest_perf) { 347 /* 348 * This code can be run during CPU online under the 349 * CPU hotplug locks, so sched_set_itmt_support() 350 * cannot be called from here. Queue up a work item 351 * to invoke it. 352 */ 353 schedule_work(&sched_itmt_work); 354 } 355 } 356 } 357 #else 358 static void intel_pstate_set_itmt_prio(int cpu) 359 { 360 } 361 #endif 362 363 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy) 364 { 365 struct cpudata *cpu; 366 int ret; 367 int i; 368 369 if (hwp_active) { 370 intel_pstate_set_itmt_prio(policy->cpu); 371 return; 372 } 373 374 if (!intel_pstate_get_ppc_enable_status()) 375 return; 376 377 cpu = all_cpu_data[policy->cpu]; 378 379 ret = acpi_processor_register_performance(&cpu->acpi_perf_data, 380 policy->cpu); 381 if (ret) 382 return; 383 384 /* 385 * Check if the control value in _PSS is for PERF_CTL MSR, which should 386 * guarantee that the states returned by it map to the states in our 387 * list directly. 388 */ 389 if (cpu->acpi_perf_data.control_register.space_id != 390 ACPI_ADR_SPACE_FIXED_HARDWARE) 391 goto err; 392 393 /* 394 * If there is only one entry _PSS, simply ignore _PSS and continue as 395 * usual without taking _PSS into account 396 */ 397 if (cpu->acpi_perf_data.state_count < 2) 398 goto err; 399 400 pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu); 401 for (i = 0; i < cpu->acpi_perf_data.state_count; i++) { 402 pr_debug(" %cP%d: %u MHz, %u mW, 0x%x\n", 403 (i == cpu->acpi_perf_data.state ? '*' : ' '), i, 404 (u32) cpu->acpi_perf_data.states[i].core_frequency, 405 (u32) cpu->acpi_perf_data.states[i].power, 406 (u32) cpu->acpi_perf_data.states[i].control); 407 } 408 409 /* 410 * The _PSS table doesn't contain whole turbo frequency range. 411 * This just contains +1 MHZ above the max non turbo frequency, 412 * with control value corresponding to max turbo ratio. But 413 * when cpufreq set policy is called, it will call with this 414 * max frequency, which will cause a reduced performance as 415 * this driver uses real max turbo frequency as the max 416 * frequency. So correct this frequency in _PSS table to 417 * correct max turbo frequency based on the turbo state. 418 * Also need to convert to MHz as _PSS freq is in MHz. 419 */ 420 if (!global.turbo_disabled) 421 cpu->acpi_perf_data.states[0].core_frequency = 422 policy->cpuinfo.max_freq / 1000; 423 cpu->valid_pss_table = true; 424 pr_debug("_PPC limits will be enforced\n"); 425 426 return; 427 428 err: 429 cpu->valid_pss_table = false; 430 acpi_processor_unregister_performance(policy->cpu); 431 } 432 433 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy) 434 { 435 struct cpudata *cpu; 436 437 cpu = all_cpu_data[policy->cpu]; 438 if (!cpu->valid_pss_table) 439 return; 440 441 acpi_processor_unregister_performance(policy->cpu); 442 } 443 #else 444 static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy) 445 { 446 } 447 448 static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy) 449 { 450 } 451 #endif 452 453 static inline void update_turbo_state(void) 454 { 455 u64 misc_en; 456 struct cpudata *cpu; 457 458 cpu = all_cpu_data[0]; 459 rdmsrl(MSR_IA32_MISC_ENABLE, misc_en); 460 global.turbo_disabled = 461 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE || 462 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate); 463 } 464 465 static int min_perf_pct_min(void) 466 { 467 struct cpudata *cpu = all_cpu_data[0]; 468 int turbo_pstate = cpu->pstate.turbo_pstate; 469 470 return turbo_pstate ? 471 (cpu->pstate.min_pstate * 100 / turbo_pstate) : 0; 472 } 473 474 static s16 intel_pstate_get_epb(struct cpudata *cpu_data) 475 { 476 u64 epb; 477 int ret; 478 479 if (!static_cpu_has(X86_FEATURE_EPB)) 480 return -ENXIO; 481 482 ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb); 483 if (ret) 484 return (s16)ret; 485 486 return (s16)(epb & 0x0f); 487 } 488 489 static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data) 490 { 491 s16 epp; 492 493 if (static_cpu_has(X86_FEATURE_HWP_EPP)) { 494 /* 495 * When hwp_req_data is 0, means that caller didn't read 496 * MSR_HWP_REQUEST, so need to read and get EPP. 497 */ 498 if (!hwp_req_data) { 499 epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, 500 &hwp_req_data); 501 if (epp) 502 return epp; 503 } 504 epp = (hwp_req_data >> 24) & 0xff; 505 } else { 506 /* When there is no EPP present, HWP uses EPB settings */ 507 epp = intel_pstate_get_epb(cpu_data); 508 } 509 510 return epp; 511 } 512 513 static int intel_pstate_set_epb(int cpu, s16 pref) 514 { 515 u64 epb; 516 int ret; 517 518 if (!static_cpu_has(X86_FEATURE_EPB)) 519 return -ENXIO; 520 521 ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb); 522 if (ret) 523 return ret; 524 525 epb = (epb & ~0x0f) | pref; 526 wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb); 527 528 return 0; 529 } 530 531 /* 532 * EPP/EPB display strings corresponding to EPP index in the 533 * energy_perf_strings[] 534 * index String 535 *------------------------------------- 536 * 0 default 537 * 1 performance 538 * 2 balance_performance 539 * 3 balance_power 540 * 4 power 541 */ 542 static const char * const energy_perf_strings[] = { 543 "default", 544 "performance", 545 "balance_performance", 546 "balance_power", 547 "power", 548 NULL 549 }; 550 static const unsigned int epp_values[] = { 551 HWP_EPP_PERFORMANCE, 552 HWP_EPP_BALANCE_PERFORMANCE, 553 HWP_EPP_BALANCE_POWERSAVE, 554 HWP_EPP_POWERSAVE 555 }; 556 557 static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data) 558 { 559 s16 epp; 560 int index = -EINVAL; 561 562 epp = intel_pstate_get_epp(cpu_data, 0); 563 if (epp < 0) 564 return epp; 565 566 if (static_cpu_has(X86_FEATURE_HWP_EPP)) { 567 if (epp == HWP_EPP_PERFORMANCE) 568 return 1; 569 if (epp <= HWP_EPP_BALANCE_PERFORMANCE) 570 return 2; 571 if (epp <= HWP_EPP_BALANCE_POWERSAVE) 572 return 3; 573 else 574 return 4; 575 } else if (static_cpu_has(X86_FEATURE_EPB)) { 576 /* 577 * Range: 578 * 0x00-0x03 : Performance 579 * 0x04-0x07 : Balance performance 580 * 0x08-0x0B : Balance power 581 * 0x0C-0x0F : Power 582 * The EPB is a 4 bit value, but our ranges restrict the 583 * value which can be set. Here only using top two bits 584 * effectively. 585 */ 586 index = (epp >> 2) + 1; 587 } 588 589 return index; 590 } 591 592 static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data, 593 int pref_index) 594 { 595 int epp = -EINVAL; 596 int ret; 597 598 if (!pref_index) 599 epp = cpu_data->epp_default; 600 601 mutex_lock(&intel_pstate_limits_lock); 602 603 if (static_cpu_has(X86_FEATURE_HWP_EPP)) { 604 u64 value; 605 606 ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, &value); 607 if (ret) 608 goto return_pref; 609 610 value &= ~GENMASK_ULL(31, 24); 611 612 if (epp == -EINVAL) 613 epp = epp_values[pref_index - 1]; 614 615 value |= (u64)epp << 24; 616 ret = wrmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, value); 617 } else { 618 if (epp == -EINVAL) 619 epp = (pref_index - 1) << 2; 620 ret = intel_pstate_set_epb(cpu_data->cpu, epp); 621 } 622 return_pref: 623 mutex_unlock(&intel_pstate_limits_lock); 624 625 return ret; 626 } 627 628 static ssize_t show_energy_performance_available_preferences( 629 struct cpufreq_policy *policy, char *buf) 630 { 631 int i = 0; 632 int ret = 0; 633 634 while (energy_perf_strings[i] != NULL) 635 ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]); 636 637 ret += sprintf(&buf[ret], "\n"); 638 639 return ret; 640 } 641 642 cpufreq_freq_attr_ro(energy_performance_available_preferences); 643 644 static ssize_t store_energy_performance_preference( 645 struct cpufreq_policy *policy, const char *buf, size_t count) 646 { 647 struct cpudata *cpu_data = all_cpu_data[policy->cpu]; 648 char str_preference[21]; 649 int ret, i = 0; 650 651 ret = sscanf(buf, "%20s", str_preference); 652 if (ret != 1) 653 return -EINVAL; 654 655 while (energy_perf_strings[i] != NULL) { 656 if (!strcmp(str_preference, energy_perf_strings[i])) { 657 intel_pstate_set_energy_pref_index(cpu_data, i); 658 return count; 659 } 660 ++i; 661 } 662 663 return -EINVAL; 664 } 665 666 static ssize_t show_energy_performance_preference( 667 struct cpufreq_policy *policy, char *buf) 668 { 669 struct cpudata *cpu_data = all_cpu_data[policy->cpu]; 670 int preference; 671 672 preference = intel_pstate_get_energy_pref_index(cpu_data); 673 if (preference < 0) 674 return preference; 675 676 return sprintf(buf, "%s\n", energy_perf_strings[preference]); 677 } 678 679 cpufreq_freq_attr_rw(energy_performance_preference); 680 681 static struct freq_attr *hwp_cpufreq_attrs[] = { 682 &energy_performance_preference, 683 &energy_performance_available_preferences, 684 NULL, 685 }; 686 687 static void intel_pstate_get_hwp_max(unsigned int cpu, int *phy_max, 688 int *current_max) 689 { 690 u64 cap; 691 692 rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap); 693 if (global.no_turbo) 694 *current_max = HWP_GUARANTEED_PERF(cap); 695 else 696 *current_max = HWP_HIGHEST_PERF(cap); 697 698 *phy_max = HWP_HIGHEST_PERF(cap); 699 } 700 701 static void intel_pstate_hwp_set(unsigned int cpu) 702 { 703 struct cpudata *cpu_data = all_cpu_data[cpu]; 704 int max, min; 705 u64 value; 706 s16 epp; 707 708 max = cpu_data->max_perf_ratio; 709 min = cpu_data->min_perf_ratio; 710 711 if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) 712 min = max; 713 714 rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value); 715 716 value &= ~HWP_MIN_PERF(~0L); 717 value |= HWP_MIN_PERF(min); 718 719 value &= ~HWP_MAX_PERF(~0L); 720 value |= HWP_MAX_PERF(max); 721 722 if (cpu_data->epp_policy == cpu_data->policy) 723 goto skip_epp; 724 725 cpu_data->epp_policy = cpu_data->policy; 726 727 if (cpu_data->epp_saved >= 0) { 728 epp = cpu_data->epp_saved; 729 cpu_data->epp_saved = -EINVAL; 730 goto update_epp; 731 } 732 733 if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) { 734 epp = intel_pstate_get_epp(cpu_data, value); 735 cpu_data->epp_powersave = epp; 736 /* If EPP read was failed, then don't try to write */ 737 if (epp < 0) 738 goto skip_epp; 739 740 epp = 0; 741 } else { 742 /* skip setting EPP, when saved value is invalid */ 743 if (cpu_data->epp_powersave < 0) 744 goto skip_epp; 745 746 /* 747 * No need to restore EPP when it is not zero. This 748 * means: 749 * - Policy is not changed 750 * - user has manually changed 751 * - Error reading EPB 752 */ 753 epp = intel_pstate_get_epp(cpu_data, value); 754 if (epp) 755 goto skip_epp; 756 757 epp = cpu_data->epp_powersave; 758 } 759 update_epp: 760 if (static_cpu_has(X86_FEATURE_HWP_EPP)) { 761 value &= ~GENMASK_ULL(31, 24); 762 value |= (u64)epp << 24; 763 } else { 764 intel_pstate_set_epb(cpu, epp); 765 } 766 skip_epp: 767 wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value); 768 } 769 770 static int intel_pstate_hwp_save_state(struct cpufreq_policy *policy) 771 { 772 struct cpudata *cpu_data = all_cpu_data[policy->cpu]; 773 774 if (!hwp_active) 775 return 0; 776 777 cpu_data->epp_saved = intel_pstate_get_epp(cpu_data, 0); 778 779 return 0; 780 } 781 782 static void intel_pstate_hwp_enable(struct cpudata *cpudata); 783 784 static int intel_pstate_resume(struct cpufreq_policy *policy) 785 { 786 if (!hwp_active) 787 return 0; 788 789 mutex_lock(&intel_pstate_limits_lock); 790 791 if (policy->cpu == 0) 792 intel_pstate_hwp_enable(all_cpu_data[policy->cpu]); 793 794 all_cpu_data[policy->cpu]->epp_policy = 0; 795 intel_pstate_hwp_set(policy->cpu); 796 797 mutex_unlock(&intel_pstate_limits_lock); 798 799 return 0; 800 } 801 802 static void intel_pstate_update_policies(void) 803 { 804 int cpu; 805 806 for_each_possible_cpu(cpu) 807 cpufreq_update_policy(cpu); 808 } 809 810 /************************** sysfs begin ************************/ 811 #define show_one(file_name, object) \ 812 static ssize_t show_##file_name \ 813 (struct kobject *kobj, struct attribute *attr, char *buf) \ 814 { \ 815 return sprintf(buf, "%u\n", global.object); \ 816 } 817 818 static ssize_t intel_pstate_show_status(char *buf); 819 static int intel_pstate_update_status(const char *buf, size_t size); 820 821 static ssize_t show_status(struct kobject *kobj, 822 struct attribute *attr, char *buf) 823 { 824 ssize_t ret; 825 826 mutex_lock(&intel_pstate_driver_lock); 827 ret = intel_pstate_show_status(buf); 828 mutex_unlock(&intel_pstate_driver_lock); 829 830 return ret; 831 } 832 833 static ssize_t store_status(struct kobject *a, struct attribute *b, 834 const char *buf, size_t count) 835 { 836 char *p = memchr(buf, '\n', count); 837 int ret; 838 839 mutex_lock(&intel_pstate_driver_lock); 840 ret = intel_pstate_update_status(buf, p ? p - buf : count); 841 mutex_unlock(&intel_pstate_driver_lock); 842 843 return ret < 0 ? ret : count; 844 } 845 846 static ssize_t show_turbo_pct(struct kobject *kobj, 847 struct attribute *attr, char *buf) 848 { 849 struct cpudata *cpu; 850 int total, no_turbo, turbo_pct; 851 uint32_t turbo_fp; 852 853 mutex_lock(&intel_pstate_driver_lock); 854 855 if (!intel_pstate_driver) { 856 mutex_unlock(&intel_pstate_driver_lock); 857 return -EAGAIN; 858 } 859 860 cpu = all_cpu_data[0]; 861 862 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1; 863 no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1; 864 turbo_fp = div_fp(no_turbo, total); 865 turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100))); 866 867 mutex_unlock(&intel_pstate_driver_lock); 868 869 return sprintf(buf, "%u\n", turbo_pct); 870 } 871 872 static ssize_t show_num_pstates(struct kobject *kobj, 873 struct attribute *attr, char *buf) 874 { 875 struct cpudata *cpu; 876 int total; 877 878 mutex_lock(&intel_pstate_driver_lock); 879 880 if (!intel_pstate_driver) { 881 mutex_unlock(&intel_pstate_driver_lock); 882 return -EAGAIN; 883 } 884 885 cpu = all_cpu_data[0]; 886 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1; 887 888 mutex_unlock(&intel_pstate_driver_lock); 889 890 return sprintf(buf, "%u\n", total); 891 } 892 893 static ssize_t show_no_turbo(struct kobject *kobj, 894 struct attribute *attr, char *buf) 895 { 896 ssize_t ret; 897 898 mutex_lock(&intel_pstate_driver_lock); 899 900 if (!intel_pstate_driver) { 901 mutex_unlock(&intel_pstate_driver_lock); 902 return -EAGAIN; 903 } 904 905 update_turbo_state(); 906 if (global.turbo_disabled) 907 ret = sprintf(buf, "%u\n", global.turbo_disabled); 908 else 909 ret = sprintf(buf, "%u\n", global.no_turbo); 910 911 mutex_unlock(&intel_pstate_driver_lock); 912 913 return ret; 914 } 915 916 static ssize_t store_no_turbo(struct kobject *a, struct attribute *b, 917 const char *buf, size_t count) 918 { 919 unsigned int input; 920 int ret; 921 922 ret = sscanf(buf, "%u", &input); 923 if (ret != 1) 924 return -EINVAL; 925 926 mutex_lock(&intel_pstate_driver_lock); 927 928 if (!intel_pstate_driver) { 929 mutex_unlock(&intel_pstate_driver_lock); 930 return -EAGAIN; 931 } 932 933 mutex_lock(&intel_pstate_limits_lock); 934 935 update_turbo_state(); 936 if (global.turbo_disabled) { 937 pr_warn("Turbo disabled by BIOS or unavailable on processor\n"); 938 mutex_unlock(&intel_pstate_limits_lock); 939 mutex_unlock(&intel_pstate_driver_lock); 940 return -EPERM; 941 } 942 943 global.no_turbo = clamp_t(int, input, 0, 1); 944 945 if (global.no_turbo) { 946 struct cpudata *cpu = all_cpu_data[0]; 947 int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate; 948 949 /* Squash the global minimum into the permitted range. */ 950 if (global.min_perf_pct > pct) 951 global.min_perf_pct = pct; 952 } 953 954 mutex_unlock(&intel_pstate_limits_lock); 955 956 intel_pstate_update_policies(); 957 958 mutex_unlock(&intel_pstate_driver_lock); 959 960 return count; 961 } 962 963 static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b, 964 const char *buf, size_t count) 965 { 966 unsigned int input; 967 int ret; 968 969 ret = sscanf(buf, "%u", &input); 970 if (ret != 1) 971 return -EINVAL; 972 973 mutex_lock(&intel_pstate_driver_lock); 974 975 if (!intel_pstate_driver) { 976 mutex_unlock(&intel_pstate_driver_lock); 977 return -EAGAIN; 978 } 979 980 mutex_lock(&intel_pstate_limits_lock); 981 982 global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100); 983 984 mutex_unlock(&intel_pstate_limits_lock); 985 986 intel_pstate_update_policies(); 987 988 mutex_unlock(&intel_pstate_driver_lock); 989 990 return count; 991 } 992 993 static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b, 994 const char *buf, size_t count) 995 { 996 unsigned int input; 997 int ret; 998 999 ret = sscanf(buf, "%u", &input); 1000 if (ret != 1) 1001 return -EINVAL; 1002 1003 mutex_lock(&intel_pstate_driver_lock); 1004 1005 if (!intel_pstate_driver) { 1006 mutex_unlock(&intel_pstate_driver_lock); 1007 return -EAGAIN; 1008 } 1009 1010 mutex_lock(&intel_pstate_limits_lock); 1011 1012 global.min_perf_pct = clamp_t(int, input, 1013 min_perf_pct_min(), global.max_perf_pct); 1014 1015 mutex_unlock(&intel_pstate_limits_lock); 1016 1017 intel_pstate_update_policies(); 1018 1019 mutex_unlock(&intel_pstate_driver_lock); 1020 1021 return count; 1022 } 1023 1024 show_one(max_perf_pct, max_perf_pct); 1025 show_one(min_perf_pct, min_perf_pct); 1026 1027 define_one_global_rw(status); 1028 define_one_global_rw(no_turbo); 1029 define_one_global_rw(max_perf_pct); 1030 define_one_global_rw(min_perf_pct); 1031 define_one_global_ro(turbo_pct); 1032 define_one_global_ro(num_pstates); 1033 1034 static struct attribute *intel_pstate_attributes[] = { 1035 &status.attr, 1036 &no_turbo.attr, 1037 &turbo_pct.attr, 1038 &num_pstates.attr, 1039 NULL 1040 }; 1041 1042 static const struct attribute_group intel_pstate_attr_group = { 1043 .attrs = intel_pstate_attributes, 1044 }; 1045 1046 static void __init intel_pstate_sysfs_expose_params(void) 1047 { 1048 struct kobject *intel_pstate_kobject; 1049 int rc; 1050 1051 intel_pstate_kobject = kobject_create_and_add("intel_pstate", 1052 &cpu_subsys.dev_root->kobj); 1053 if (WARN_ON(!intel_pstate_kobject)) 1054 return; 1055 1056 rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group); 1057 if (WARN_ON(rc)) 1058 return; 1059 1060 /* 1061 * If per cpu limits are enforced there are no global limits, so 1062 * return without creating max/min_perf_pct attributes 1063 */ 1064 if (per_cpu_limits) 1065 return; 1066 1067 rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr); 1068 WARN_ON(rc); 1069 1070 rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr); 1071 WARN_ON(rc); 1072 1073 } 1074 /************************** sysfs end ************************/ 1075 1076 static void intel_pstate_hwp_enable(struct cpudata *cpudata) 1077 { 1078 /* First disable HWP notification interrupt as we don't process them */ 1079 if (static_cpu_has(X86_FEATURE_HWP_NOTIFY)) 1080 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00); 1081 1082 wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1); 1083 cpudata->epp_policy = 0; 1084 if (cpudata->epp_default == -EINVAL) 1085 cpudata->epp_default = intel_pstate_get_epp(cpudata, 0); 1086 } 1087 1088 #define MSR_IA32_POWER_CTL_BIT_EE 19 1089 1090 /* Disable energy efficiency optimization */ 1091 static void intel_pstate_disable_ee(int cpu) 1092 { 1093 u64 power_ctl; 1094 int ret; 1095 1096 ret = rdmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, &power_ctl); 1097 if (ret) 1098 return; 1099 1100 if (!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE))) { 1101 pr_info("Disabling energy efficiency optimization\n"); 1102 power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE); 1103 wrmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, power_ctl); 1104 } 1105 } 1106 1107 static int atom_get_min_pstate(void) 1108 { 1109 u64 value; 1110 1111 rdmsrl(MSR_ATOM_CORE_RATIOS, value); 1112 return (value >> 8) & 0x7F; 1113 } 1114 1115 static int atom_get_max_pstate(void) 1116 { 1117 u64 value; 1118 1119 rdmsrl(MSR_ATOM_CORE_RATIOS, value); 1120 return (value >> 16) & 0x7F; 1121 } 1122 1123 static int atom_get_turbo_pstate(void) 1124 { 1125 u64 value; 1126 1127 rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value); 1128 return value & 0x7F; 1129 } 1130 1131 static u64 atom_get_val(struct cpudata *cpudata, int pstate) 1132 { 1133 u64 val; 1134 int32_t vid_fp; 1135 u32 vid; 1136 1137 val = (u64)pstate << 8; 1138 if (global.no_turbo && !global.turbo_disabled) 1139 val |= (u64)1 << 32; 1140 1141 vid_fp = cpudata->vid.min + mul_fp( 1142 int_tofp(pstate - cpudata->pstate.min_pstate), 1143 cpudata->vid.ratio); 1144 1145 vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max); 1146 vid = ceiling_fp(vid_fp); 1147 1148 if (pstate > cpudata->pstate.max_pstate) 1149 vid = cpudata->vid.turbo; 1150 1151 return val | vid; 1152 } 1153 1154 static int silvermont_get_scaling(void) 1155 { 1156 u64 value; 1157 int i; 1158 /* Defined in Table 35-6 from SDM (Sept 2015) */ 1159 static int silvermont_freq_table[] = { 1160 83300, 100000, 133300, 116700, 80000}; 1161 1162 rdmsrl(MSR_FSB_FREQ, value); 1163 i = value & 0x7; 1164 WARN_ON(i > 4); 1165 1166 return silvermont_freq_table[i]; 1167 } 1168 1169 static int airmont_get_scaling(void) 1170 { 1171 u64 value; 1172 int i; 1173 /* Defined in Table 35-10 from SDM (Sept 2015) */ 1174 static int airmont_freq_table[] = { 1175 83300, 100000, 133300, 116700, 80000, 1176 93300, 90000, 88900, 87500}; 1177 1178 rdmsrl(MSR_FSB_FREQ, value); 1179 i = value & 0xF; 1180 WARN_ON(i > 8); 1181 1182 return airmont_freq_table[i]; 1183 } 1184 1185 static void atom_get_vid(struct cpudata *cpudata) 1186 { 1187 u64 value; 1188 1189 rdmsrl(MSR_ATOM_CORE_VIDS, value); 1190 cpudata->vid.min = int_tofp((value >> 8) & 0x7f); 1191 cpudata->vid.max = int_tofp((value >> 16) & 0x7f); 1192 cpudata->vid.ratio = div_fp( 1193 cpudata->vid.max - cpudata->vid.min, 1194 int_tofp(cpudata->pstate.max_pstate - 1195 cpudata->pstate.min_pstate)); 1196 1197 rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value); 1198 cpudata->vid.turbo = value & 0x7f; 1199 } 1200 1201 static int core_get_min_pstate(void) 1202 { 1203 u64 value; 1204 1205 rdmsrl(MSR_PLATFORM_INFO, value); 1206 return (value >> 40) & 0xFF; 1207 } 1208 1209 static int core_get_max_pstate_physical(void) 1210 { 1211 u64 value; 1212 1213 rdmsrl(MSR_PLATFORM_INFO, value); 1214 return (value >> 8) & 0xFF; 1215 } 1216 1217 static int core_get_tdp_ratio(u64 plat_info) 1218 { 1219 /* Check how many TDP levels present */ 1220 if (plat_info & 0x600000000) { 1221 u64 tdp_ctrl; 1222 u64 tdp_ratio; 1223 int tdp_msr; 1224 int err; 1225 1226 /* Get the TDP level (0, 1, 2) to get ratios */ 1227 err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl); 1228 if (err) 1229 return err; 1230 1231 /* TDP MSR are continuous starting at 0x648 */ 1232 tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03); 1233 err = rdmsrl_safe(tdp_msr, &tdp_ratio); 1234 if (err) 1235 return err; 1236 1237 /* For level 1 and 2, bits[23:16] contain the ratio */ 1238 if (tdp_ctrl & 0x03) 1239 tdp_ratio >>= 16; 1240 1241 tdp_ratio &= 0xff; /* ratios are only 8 bits long */ 1242 pr_debug("tdp_ratio %x\n", (int)tdp_ratio); 1243 1244 return (int)tdp_ratio; 1245 } 1246 1247 return -ENXIO; 1248 } 1249 1250 static int core_get_max_pstate(void) 1251 { 1252 u64 tar; 1253 u64 plat_info; 1254 int max_pstate; 1255 int tdp_ratio; 1256 int err; 1257 1258 rdmsrl(MSR_PLATFORM_INFO, plat_info); 1259 max_pstate = (plat_info >> 8) & 0xFF; 1260 1261 tdp_ratio = core_get_tdp_ratio(plat_info); 1262 if (tdp_ratio <= 0) 1263 return max_pstate; 1264 1265 if (hwp_active) { 1266 /* Turbo activation ratio is not used on HWP platforms */ 1267 return tdp_ratio; 1268 } 1269 1270 err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar); 1271 if (!err) { 1272 int tar_levels; 1273 1274 /* Do some sanity checking for safety */ 1275 tar_levels = tar & 0xff; 1276 if (tdp_ratio - 1 == tar_levels) { 1277 max_pstate = tar_levels; 1278 pr_debug("max_pstate=TAC %x\n", max_pstate); 1279 } 1280 } 1281 1282 return max_pstate; 1283 } 1284 1285 static int core_get_turbo_pstate(void) 1286 { 1287 u64 value; 1288 int nont, ret; 1289 1290 rdmsrl(MSR_TURBO_RATIO_LIMIT, value); 1291 nont = core_get_max_pstate(); 1292 ret = (value) & 255; 1293 if (ret <= nont) 1294 ret = nont; 1295 return ret; 1296 } 1297 1298 static inline int core_get_scaling(void) 1299 { 1300 return 100000; 1301 } 1302 1303 static u64 core_get_val(struct cpudata *cpudata, int pstate) 1304 { 1305 u64 val; 1306 1307 val = (u64)pstate << 8; 1308 if (global.no_turbo && !global.turbo_disabled) 1309 val |= (u64)1 << 32; 1310 1311 return val; 1312 } 1313 1314 static int knl_get_aperf_mperf_shift(void) 1315 { 1316 return 10; 1317 } 1318 1319 static int knl_get_turbo_pstate(void) 1320 { 1321 u64 value; 1322 int nont, ret; 1323 1324 rdmsrl(MSR_TURBO_RATIO_LIMIT, value); 1325 nont = core_get_max_pstate(); 1326 ret = (((value) >> 8) & 0xFF); 1327 if (ret <= nont) 1328 ret = nont; 1329 return ret; 1330 } 1331 1332 static int intel_pstate_get_base_pstate(struct cpudata *cpu) 1333 { 1334 return global.no_turbo || global.turbo_disabled ? 1335 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate; 1336 } 1337 1338 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate) 1339 { 1340 trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu); 1341 cpu->pstate.current_pstate = pstate; 1342 /* 1343 * Generally, there is no guarantee that this code will always run on 1344 * the CPU being updated, so force the register update to run on the 1345 * right CPU. 1346 */ 1347 wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL, 1348 pstate_funcs.get_val(cpu, pstate)); 1349 } 1350 1351 static void intel_pstate_set_min_pstate(struct cpudata *cpu) 1352 { 1353 intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate); 1354 } 1355 1356 static void intel_pstate_max_within_limits(struct cpudata *cpu) 1357 { 1358 int pstate; 1359 1360 update_turbo_state(); 1361 pstate = intel_pstate_get_base_pstate(cpu); 1362 pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio); 1363 intel_pstate_set_pstate(cpu, pstate); 1364 } 1365 1366 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu) 1367 { 1368 cpu->pstate.min_pstate = pstate_funcs.get_min(); 1369 cpu->pstate.max_pstate = pstate_funcs.get_max(); 1370 cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical(); 1371 cpu->pstate.turbo_pstate = pstate_funcs.get_turbo(); 1372 cpu->pstate.scaling = pstate_funcs.get_scaling(); 1373 cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling; 1374 cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling; 1375 1376 if (pstate_funcs.get_aperf_mperf_shift) 1377 cpu->aperf_mperf_shift = pstate_funcs.get_aperf_mperf_shift(); 1378 1379 if (pstate_funcs.get_vid) 1380 pstate_funcs.get_vid(cpu); 1381 1382 intel_pstate_set_min_pstate(cpu); 1383 } 1384 1385 static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu) 1386 { 1387 struct sample *sample = &cpu->sample; 1388 1389 sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf); 1390 } 1391 1392 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time) 1393 { 1394 u64 aperf, mperf; 1395 unsigned long flags; 1396 u64 tsc; 1397 1398 local_irq_save(flags); 1399 rdmsrl(MSR_IA32_APERF, aperf); 1400 rdmsrl(MSR_IA32_MPERF, mperf); 1401 tsc = rdtsc(); 1402 if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) { 1403 local_irq_restore(flags); 1404 return false; 1405 } 1406 local_irq_restore(flags); 1407 1408 cpu->last_sample_time = cpu->sample.time; 1409 cpu->sample.time = time; 1410 cpu->sample.aperf = aperf; 1411 cpu->sample.mperf = mperf; 1412 cpu->sample.tsc = tsc; 1413 cpu->sample.aperf -= cpu->prev_aperf; 1414 cpu->sample.mperf -= cpu->prev_mperf; 1415 cpu->sample.tsc -= cpu->prev_tsc; 1416 1417 cpu->prev_aperf = aperf; 1418 cpu->prev_mperf = mperf; 1419 cpu->prev_tsc = tsc; 1420 /* 1421 * First time this function is invoked in a given cycle, all of the 1422 * previous sample data fields are equal to zero or stale and they must 1423 * be populated with meaningful numbers for things to work, so assume 1424 * that sample.time will always be reset before setting the utilization 1425 * update hook and make the caller skip the sample then. 1426 */ 1427 if (cpu->last_sample_time) { 1428 intel_pstate_calc_avg_perf(cpu); 1429 return true; 1430 } 1431 return false; 1432 } 1433 1434 static inline int32_t get_avg_frequency(struct cpudata *cpu) 1435 { 1436 return mul_ext_fp(cpu->sample.core_avg_perf, cpu_khz); 1437 } 1438 1439 static inline int32_t get_avg_pstate(struct cpudata *cpu) 1440 { 1441 return mul_ext_fp(cpu->pstate.max_pstate_physical, 1442 cpu->sample.core_avg_perf); 1443 } 1444 1445 static inline int32_t get_target_pstate(struct cpudata *cpu) 1446 { 1447 struct sample *sample = &cpu->sample; 1448 int32_t busy_frac, boost; 1449 int target, avg_pstate; 1450 1451 busy_frac = div_fp(sample->mperf << cpu->aperf_mperf_shift, 1452 sample->tsc); 1453 1454 boost = cpu->iowait_boost; 1455 cpu->iowait_boost >>= 1; 1456 1457 if (busy_frac < boost) 1458 busy_frac = boost; 1459 1460 sample->busy_scaled = busy_frac * 100; 1461 1462 target = global.no_turbo || global.turbo_disabled ? 1463 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate; 1464 target += target >> 2; 1465 target = mul_fp(target, busy_frac); 1466 if (target < cpu->pstate.min_pstate) 1467 target = cpu->pstate.min_pstate; 1468 1469 /* 1470 * If the average P-state during the previous cycle was higher than the 1471 * current target, add 50% of the difference to the target to reduce 1472 * possible performance oscillations and offset possible performance 1473 * loss related to moving the workload from one CPU to another within 1474 * a package/module. 1475 */ 1476 avg_pstate = get_avg_pstate(cpu); 1477 if (avg_pstate > target) 1478 target += (avg_pstate - target) >> 1; 1479 1480 return target; 1481 } 1482 1483 static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate) 1484 { 1485 int max_pstate = intel_pstate_get_base_pstate(cpu); 1486 int min_pstate; 1487 1488 min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio); 1489 max_pstate = max(min_pstate, cpu->max_perf_ratio); 1490 return clamp_t(int, pstate, min_pstate, max_pstate); 1491 } 1492 1493 static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate) 1494 { 1495 if (pstate == cpu->pstate.current_pstate) 1496 return; 1497 1498 cpu->pstate.current_pstate = pstate; 1499 wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate)); 1500 } 1501 1502 static void intel_pstate_adjust_pstate(struct cpudata *cpu) 1503 { 1504 int from = cpu->pstate.current_pstate; 1505 struct sample *sample; 1506 int target_pstate; 1507 1508 update_turbo_state(); 1509 1510 target_pstate = get_target_pstate(cpu); 1511 target_pstate = intel_pstate_prepare_request(cpu, target_pstate); 1512 trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu); 1513 intel_pstate_update_pstate(cpu, target_pstate); 1514 1515 sample = &cpu->sample; 1516 trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf), 1517 fp_toint(sample->busy_scaled), 1518 from, 1519 cpu->pstate.current_pstate, 1520 sample->mperf, 1521 sample->aperf, 1522 sample->tsc, 1523 get_avg_frequency(cpu), 1524 fp_toint(cpu->iowait_boost * 100)); 1525 } 1526 1527 static void intel_pstate_update_util(struct update_util_data *data, u64 time, 1528 unsigned int flags) 1529 { 1530 struct cpudata *cpu = container_of(data, struct cpudata, update_util); 1531 u64 delta_ns; 1532 1533 /* Don't allow remote callbacks */ 1534 if (smp_processor_id() != cpu->cpu) 1535 return; 1536 1537 if (flags & SCHED_CPUFREQ_IOWAIT) { 1538 cpu->iowait_boost = int_tofp(1); 1539 cpu->last_update = time; 1540 /* 1541 * The last time the busy was 100% so P-state was max anyway 1542 * so avoid overhead of computation. 1543 */ 1544 if (fp_toint(cpu->sample.busy_scaled) == 100) 1545 return; 1546 1547 goto set_pstate; 1548 } else if (cpu->iowait_boost) { 1549 /* Clear iowait_boost if the CPU may have been idle. */ 1550 delta_ns = time - cpu->last_update; 1551 if (delta_ns > TICK_NSEC) 1552 cpu->iowait_boost = 0; 1553 } 1554 cpu->last_update = time; 1555 delta_ns = time - cpu->sample.time; 1556 if ((s64)delta_ns < INTEL_PSTATE_SAMPLING_INTERVAL) 1557 return; 1558 1559 set_pstate: 1560 if (intel_pstate_sample(cpu, time)) 1561 intel_pstate_adjust_pstate(cpu); 1562 } 1563 1564 static struct pstate_funcs core_funcs = { 1565 .get_max = core_get_max_pstate, 1566 .get_max_physical = core_get_max_pstate_physical, 1567 .get_min = core_get_min_pstate, 1568 .get_turbo = core_get_turbo_pstate, 1569 .get_scaling = core_get_scaling, 1570 .get_val = core_get_val, 1571 }; 1572 1573 static const struct pstate_funcs silvermont_funcs = { 1574 .get_max = atom_get_max_pstate, 1575 .get_max_physical = atom_get_max_pstate, 1576 .get_min = atom_get_min_pstate, 1577 .get_turbo = atom_get_turbo_pstate, 1578 .get_val = atom_get_val, 1579 .get_scaling = silvermont_get_scaling, 1580 .get_vid = atom_get_vid, 1581 }; 1582 1583 static const struct pstate_funcs airmont_funcs = { 1584 .get_max = atom_get_max_pstate, 1585 .get_max_physical = atom_get_max_pstate, 1586 .get_min = atom_get_min_pstate, 1587 .get_turbo = atom_get_turbo_pstate, 1588 .get_val = atom_get_val, 1589 .get_scaling = airmont_get_scaling, 1590 .get_vid = atom_get_vid, 1591 }; 1592 1593 static const struct pstate_funcs knl_funcs = { 1594 .get_max = core_get_max_pstate, 1595 .get_max_physical = core_get_max_pstate_physical, 1596 .get_min = core_get_min_pstate, 1597 .get_turbo = knl_get_turbo_pstate, 1598 .get_aperf_mperf_shift = knl_get_aperf_mperf_shift, 1599 .get_scaling = core_get_scaling, 1600 .get_val = core_get_val, 1601 }; 1602 1603 #define ICPU(model, policy) \ 1604 { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\ 1605 (unsigned long)&policy } 1606 1607 static const struct x86_cpu_id intel_pstate_cpu_ids[] = { 1608 ICPU(INTEL_FAM6_SANDYBRIDGE, core_funcs), 1609 ICPU(INTEL_FAM6_SANDYBRIDGE_X, core_funcs), 1610 ICPU(INTEL_FAM6_ATOM_SILVERMONT1, silvermont_funcs), 1611 ICPU(INTEL_FAM6_IVYBRIDGE, core_funcs), 1612 ICPU(INTEL_FAM6_HASWELL_CORE, core_funcs), 1613 ICPU(INTEL_FAM6_BROADWELL_CORE, core_funcs), 1614 ICPU(INTEL_FAM6_IVYBRIDGE_X, core_funcs), 1615 ICPU(INTEL_FAM6_HASWELL_X, core_funcs), 1616 ICPU(INTEL_FAM6_HASWELL_ULT, core_funcs), 1617 ICPU(INTEL_FAM6_HASWELL_GT3E, core_funcs), 1618 ICPU(INTEL_FAM6_BROADWELL_GT3E, core_funcs), 1619 ICPU(INTEL_FAM6_ATOM_AIRMONT, airmont_funcs), 1620 ICPU(INTEL_FAM6_SKYLAKE_MOBILE, core_funcs), 1621 ICPU(INTEL_FAM6_BROADWELL_X, core_funcs), 1622 ICPU(INTEL_FAM6_SKYLAKE_DESKTOP, core_funcs), 1623 ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_funcs), 1624 ICPU(INTEL_FAM6_XEON_PHI_KNL, knl_funcs), 1625 ICPU(INTEL_FAM6_XEON_PHI_KNM, knl_funcs), 1626 ICPU(INTEL_FAM6_ATOM_GOLDMONT, core_funcs), 1627 ICPU(INTEL_FAM6_ATOM_GEMINI_LAKE, core_funcs), 1628 ICPU(INTEL_FAM6_SKYLAKE_X, core_funcs), 1629 {} 1630 }; 1631 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids); 1632 1633 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = { 1634 ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_funcs), 1635 ICPU(INTEL_FAM6_BROADWELL_X, core_funcs), 1636 ICPU(INTEL_FAM6_SKYLAKE_X, core_funcs), 1637 {} 1638 }; 1639 1640 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = { 1641 ICPU(INTEL_FAM6_KABYLAKE_DESKTOP, core_funcs), 1642 {} 1643 }; 1644 1645 static int intel_pstate_init_cpu(unsigned int cpunum) 1646 { 1647 struct cpudata *cpu; 1648 1649 cpu = all_cpu_data[cpunum]; 1650 1651 if (!cpu) { 1652 cpu = kzalloc(sizeof(*cpu), GFP_KERNEL); 1653 if (!cpu) 1654 return -ENOMEM; 1655 1656 all_cpu_data[cpunum] = cpu; 1657 1658 cpu->epp_default = -EINVAL; 1659 cpu->epp_powersave = -EINVAL; 1660 cpu->epp_saved = -EINVAL; 1661 } 1662 1663 cpu = all_cpu_data[cpunum]; 1664 1665 cpu->cpu = cpunum; 1666 1667 if (hwp_active) { 1668 const struct x86_cpu_id *id; 1669 1670 id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids); 1671 if (id) 1672 intel_pstate_disable_ee(cpunum); 1673 1674 intel_pstate_hwp_enable(cpu); 1675 } 1676 1677 intel_pstate_get_cpu_pstates(cpu); 1678 1679 pr_debug("controlling: cpu %d\n", cpunum); 1680 1681 return 0; 1682 } 1683 1684 static void intel_pstate_set_update_util_hook(unsigned int cpu_num) 1685 { 1686 struct cpudata *cpu = all_cpu_data[cpu_num]; 1687 1688 if (hwp_active) 1689 return; 1690 1691 if (cpu->update_util_set) 1692 return; 1693 1694 /* Prevent intel_pstate_update_util() from using stale data. */ 1695 cpu->sample.time = 0; 1696 cpufreq_add_update_util_hook(cpu_num, &cpu->update_util, 1697 intel_pstate_update_util); 1698 cpu->update_util_set = true; 1699 } 1700 1701 static void intel_pstate_clear_update_util_hook(unsigned int cpu) 1702 { 1703 struct cpudata *cpu_data = all_cpu_data[cpu]; 1704 1705 if (!cpu_data->update_util_set) 1706 return; 1707 1708 cpufreq_remove_update_util_hook(cpu); 1709 cpu_data->update_util_set = false; 1710 synchronize_sched(); 1711 } 1712 1713 static int intel_pstate_get_max_freq(struct cpudata *cpu) 1714 { 1715 return global.turbo_disabled || global.no_turbo ? 1716 cpu->pstate.max_freq : cpu->pstate.turbo_freq; 1717 } 1718 1719 static void intel_pstate_update_perf_limits(struct cpufreq_policy *policy, 1720 struct cpudata *cpu) 1721 { 1722 int max_freq = intel_pstate_get_max_freq(cpu); 1723 int32_t max_policy_perf, min_policy_perf; 1724 int max_state, turbo_max; 1725 1726 /* 1727 * HWP needs some special consideration, because on BDX the 1728 * HWP_REQUEST uses abstract value to represent performance 1729 * rather than pure ratios. 1730 */ 1731 if (hwp_active) { 1732 intel_pstate_get_hwp_max(cpu->cpu, &turbo_max, &max_state); 1733 } else { 1734 max_state = intel_pstate_get_base_pstate(cpu); 1735 turbo_max = cpu->pstate.turbo_pstate; 1736 } 1737 1738 max_policy_perf = max_state * policy->max / max_freq; 1739 if (policy->max == policy->min) { 1740 min_policy_perf = max_policy_perf; 1741 } else { 1742 min_policy_perf = max_state * policy->min / max_freq; 1743 min_policy_perf = clamp_t(int32_t, min_policy_perf, 1744 0, max_policy_perf); 1745 } 1746 1747 pr_debug("cpu:%d max_state %d min_policy_perf:%d max_policy_perf:%d\n", 1748 policy->cpu, max_state, 1749 min_policy_perf, max_policy_perf); 1750 1751 /* Normalize user input to [min_perf, max_perf] */ 1752 if (per_cpu_limits) { 1753 cpu->min_perf_ratio = min_policy_perf; 1754 cpu->max_perf_ratio = max_policy_perf; 1755 } else { 1756 int32_t global_min, global_max; 1757 1758 /* Global limits are in percent of the maximum turbo P-state. */ 1759 global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100); 1760 global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100); 1761 global_min = clamp_t(int32_t, global_min, 0, global_max); 1762 1763 pr_debug("cpu:%d global_min:%d global_max:%d\n", policy->cpu, 1764 global_min, global_max); 1765 1766 cpu->min_perf_ratio = max(min_policy_perf, global_min); 1767 cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf); 1768 cpu->max_perf_ratio = min(max_policy_perf, global_max); 1769 cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio); 1770 1771 /* Make sure min_perf <= max_perf */ 1772 cpu->min_perf_ratio = min(cpu->min_perf_ratio, 1773 cpu->max_perf_ratio); 1774 1775 } 1776 pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", policy->cpu, 1777 cpu->max_perf_ratio, 1778 cpu->min_perf_ratio); 1779 } 1780 1781 static int intel_pstate_set_policy(struct cpufreq_policy *policy) 1782 { 1783 struct cpudata *cpu; 1784 1785 if (!policy->cpuinfo.max_freq) 1786 return -ENODEV; 1787 1788 pr_debug("set_policy cpuinfo.max %u policy->max %u\n", 1789 policy->cpuinfo.max_freq, policy->max); 1790 1791 cpu = all_cpu_data[policy->cpu]; 1792 cpu->policy = policy->policy; 1793 1794 mutex_lock(&intel_pstate_limits_lock); 1795 1796 intel_pstate_update_perf_limits(policy, cpu); 1797 1798 if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) { 1799 /* 1800 * NOHZ_FULL CPUs need this as the governor callback may not 1801 * be invoked on them. 1802 */ 1803 intel_pstate_clear_update_util_hook(policy->cpu); 1804 intel_pstate_max_within_limits(cpu); 1805 } else { 1806 intel_pstate_set_update_util_hook(policy->cpu); 1807 } 1808 1809 if (hwp_active) 1810 intel_pstate_hwp_set(policy->cpu); 1811 1812 mutex_unlock(&intel_pstate_limits_lock); 1813 1814 return 0; 1815 } 1816 1817 static void intel_pstate_adjust_policy_max(struct cpufreq_policy *policy, 1818 struct cpudata *cpu) 1819 { 1820 if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate && 1821 policy->max < policy->cpuinfo.max_freq && 1822 policy->max > cpu->pstate.max_freq) { 1823 pr_debug("policy->max > max non turbo frequency\n"); 1824 policy->max = policy->cpuinfo.max_freq; 1825 } 1826 } 1827 1828 static int intel_pstate_verify_policy(struct cpufreq_policy *policy) 1829 { 1830 struct cpudata *cpu = all_cpu_data[policy->cpu]; 1831 1832 update_turbo_state(); 1833 cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq, 1834 intel_pstate_get_max_freq(cpu)); 1835 1836 if (policy->policy != CPUFREQ_POLICY_POWERSAVE && 1837 policy->policy != CPUFREQ_POLICY_PERFORMANCE) 1838 return -EINVAL; 1839 1840 intel_pstate_adjust_policy_max(policy, cpu); 1841 1842 return 0; 1843 } 1844 1845 static void intel_cpufreq_stop_cpu(struct cpufreq_policy *policy) 1846 { 1847 intel_pstate_set_min_pstate(all_cpu_data[policy->cpu]); 1848 } 1849 1850 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy) 1851 { 1852 pr_debug("CPU %d exiting\n", policy->cpu); 1853 1854 intel_pstate_clear_update_util_hook(policy->cpu); 1855 if (hwp_active) 1856 intel_pstate_hwp_save_state(policy); 1857 else 1858 intel_cpufreq_stop_cpu(policy); 1859 } 1860 1861 static int intel_pstate_cpu_exit(struct cpufreq_policy *policy) 1862 { 1863 intel_pstate_exit_perf_limits(policy); 1864 1865 policy->fast_switch_possible = false; 1866 1867 return 0; 1868 } 1869 1870 static int __intel_pstate_cpu_init(struct cpufreq_policy *policy) 1871 { 1872 struct cpudata *cpu; 1873 int rc; 1874 1875 rc = intel_pstate_init_cpu(policy->cpu); 1876 if (rc) 1877 return rc; 1878 1879 cpu = all_cpu_data[policy->cpu]; 1880 1881 cpu->max_perf_ratio = 0xFF; 1882 cpu->min_perf_ratio = 0; 1883 1884 policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling; 1885 policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling; 1886 1887 /* cpuinfo and default policy values */ 1888 policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling; 1889 update_turbo_state(); 1890 policy->cpuinfo.max_freq = global.turbo_disabled ? 1891 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate; 1892 policy->cpuinfo.max_freq *= cpu->pstate.scaling; 1893 1894 intel_pstate_init_acpi_perf_limits(policy); 1895 1896 policy->fast_switch_possible = true; 1897 1898 return 0; 1899 } 1900 1901 static int intel_pstate_cpu_init(struct cpufreq_policy *policy) 1902 { 1903 int ret = __intel_pstate_cpu_init(policy); 1904 1905 if (ret) 1906 return ret; 1907 1908 if (IS_ENABLED(CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE)) 1909 policy->policy = CPUFREQ_POLICY_PERFORMANCE; 1910 else 1911 policy->policy = CPUFREQ_POLICY_POWERSAVE; 1912 1913 return 0; 1914 } 1915 1916 static struct cpufreq_driver intel_pstate = { 1917 .flags = CPUFREQ_CONST_LOOPS, 1918 .verify = intel_pstate_verify_policy, 1919 .setpolicy = intel_pstate_set_policy, 1920 .suspend = intel_pstate_hwp_save_state, 1921 .resume = intel_pstate_resume, 1922 .init = intel_pstate_cpu_init, 1923 .exit = intel_pstate_cpu_exit, 1924 .stop_cpu = intel_pstate_stop_cpu, 1925 .name = "intel_pstate", 1926 }; 1927 1928 static int intel_cpufreq_verify_policy(struct cpufreq_policy *policy) 1929 { 1930 struct cpudata *cpu = all_cpu_data[policy->cpu]; 1931 1932 update_turbo_state(); 1933 cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq, 1934 intel_pstate_get_max_freq(cpu)); 1935 1936 intel_pstate_adjust_policy_max(policy, cpu); 1937 1938 intel_pstate_update_perf_limits(policy, cpu); 1939 1940 return 0; 1941 } 1942 1943 static int intel_cpufreq_target(struct cpufreq_policy *policy, 1944 unsigned int target_freq, 1945 unsigned int relation) 1946 { 1947 struct cpudata *cpu = all_cpu_data[policy->cpu]; 1948 struct cpufreq_freqs freqs; 1949 int target_pstate; 1950 1951 update_turbo_state(); 1952 1953 freqs.old = policy->cur; 1954 freqs.new = target_freq; 1955 1956 cpufreq_freq_transition_begin(policy, &freqs); 1957 switch (relation) { 1958 case CPUFREQ_RELATION_L: 1959 target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling); 1960 break; 1961 case CPUFREQ_RELATION_H: 1962 target_pstate = freqs.new / cpu->pstate.scaling; 1963 break; 1964 default: 1965 target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling); 1966 break; 1967 } 1968 target_pstate = intel_pstate_prepare_request(cpu, target_pstate); 1969 if (target_pstate != cpu->pstate.current_pstate) { 1970 cpu->pstate.current_pstate = target_pstate; 1971 wrmsrl_on_cpu(policy->cpu, MSR_IA32_PERF_CTL, 1972 pstate_funcs.get_val(cpu, target_pstate)); 1973 } 1974 freqs.new = target_pstate * cpu->pstate.scaling; 1975 cpufreq_freq_transition_end(policy, &freqs, false); 1976 1977 return 0; 1978 } 1979 1980 static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy, 1981 unsigned int target_freq) 1982 { 1983 struct cpudata *cpu = all_cpu_data[policy->cpu]; 1984 int target_pstate; 1985 1986 update_turbo_state(); 1987 1988 target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling); 1989 target_pstate = intel_pstate_prepare_request(cpu, target_pstate); 1990 intel_pstate_update_pstate(cpu, target_pstate); 1991 return target_pstate * cpu->pstate.scaling; 1992 } 1993 1994 static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy) 1995 { 1996 int ret = __intel_pstate_cpu_init(policy); 1997 1998 if (ret) 1999 return ret; 2000 2001 policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY; 2002 policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY; 2003 /* This reflects the intel_pstate_get_cpu_pstates() setting. */ 2004 policy->cur = policy->cpuinfo.min_freq; 2005 2006 return 0; 2007 } 2008 2009 static struct cpufreq_driver intel_cpufreq = { 2010 .flags = CPUFREQ_CONST_LOOPS, 2011 .verify = intel_cpufreq_verify_policy, 2012 .target = intel_cpufreq_target, 2013 .fast_switch = intel_cpufreq_fast_switch, 2014 .init = intel_cpufreq_cpu_init, 2015 .exit = intel_pstate_cpu_exit, 2016 .stop_cpu = intel_cpufreq_stop_cpu, 2017 .name = "intel_cpufreq", 2018 }; 2019 2020 static struct cpufreq_driver *default_driver = &intel_pstate; 2021 2022 static void intel_pstate_driver_cleanup(void) 2023 { 2024 unsigned int cpu; 2025 2026 get_online_cpus(); 2027 for_each_online_cpu(cpu) { 2028 if (all_cpu_data[cpu]) { 2029 if (intel_pstate_driver == &intel_pstate) 2030 intel_pstate_clear_update_util_hook(cpu); 2031 2032 kfree(all_cpu_data[cpu]); 2033 all_cpu_data[cpu] = NULL; 2034 } 2035 } 2036 put_online_cpus(); 2037 intel_pstate_driver = NULL; 2038 } 2039 2040 static int intel_pstate_register_driver(struct cpufreq_driver *driver) 2041 { 2042 int ret; 2043 2044 memset(&global, 0, sizeof(global)); 2045 global.max_perf_pct = 100; 2046 2047 intel_pstate_driver = driver; 2048 ret = cpufreq_register_driver(intel_pstate_driver); 2049 if (ret) { 2050 intel_pstate_driver_cleanup(); 2051 return ret; 2052 } 2053 2054 global.min_perf_pct = min_perf_pct_min(); 2055 2056 return 0; 2057 } 2058 2059 static int intel_pstate_unregister_driver(void) 2060 { 2061 if (hwp_active) 2062 return -EBUSY; 2063 2064 cpufreq_unregister_driver(intel_pstate_driver); 2065 intel_pstate_driver_cleanup(); 2066 2067 return 0; 2068 } 2069 2070 static ssize_t intel_pstate_show_status(char *buf) 2071 { 2072 if (!intel_pstate_driver) 2073 return sprintf(buf, "off\n"); 2074 2075 return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ? 2076 "active" : "passive"); 2077 } 2078 2079 static int intel_pstate_update_status(const char *buf, size_t size) 2080 { 2081 int ret; 2082 2083 if (size == 3 && !strncmp(buf, "off", size)) 2084 return intel_pstate_driver ? 2085 intel_pstate_unregister_driver() : -EINVAL; 2086 2087 if (size == 6 && !strncmp(buf, "active", size)) { 2088 if (intel_pstate_driver) { 2089 if (intel_pstate_driver == &intel_pstate) 2090 return 0; 2091 2092 ret = intel_pstate_unregister_driver(); 2093 if (ret) 2094 return ret; 2095 } 2096 2097 return intel_pstate_register_driver(&intel_pstate); 2098 } 2099 2100 if (size == 7 && !strncmp(buf, "passive", size)) { 2101 if (intel_pstate_driver) { 2102 if (intel_pstate_driver == &intel_cpufreq) 2103 return 0; 2104 2105 ret = intel_pstate_unregister_driver(); 2106 if (ret) 2107 return ret; 2108 } 2109 2110 return intel_pstate_register_driver(&intel_cpufreq); 2111 } 2112 2113 return -EINVAL; 2114 } 2115 2116 static int no_load __initdata; 2117 static int no_hwp __initdata; 2118 static int hwp_only __initdata; 2119 static unsigned int force_load __initdata; 2120 2121 static int __init intel_pstate_msrs_not_valid(void) 2122 { 2123 if (!pstate_funcs.get_max() || 2124 !pstate_funcs.get_min() || 2125 !pstate_funcs.get_turbo()) 2126 return -ENODEV; 2127 2128 return 0; 2129 } 2130 2131 static void __init copy_cpu_funcs(struct pstate_funcs *funcs) 2132 { 2133 pstate_funcs.get_max = funcs->get_max; 2134 pstate_funcs.get_max_physical = funcs->get_max_physical; 2135 pstate_funcs.get_min = funcs->get_min; 2136 pstate_funcs.get_turbo = funcs->get_turbo; 2137 pstate_funcs.get_scaling = funcs->get_scaling; 2138 pstate_funcs.get_val = funcs->get_val; 2139 pstate_funcs.get_vid = funcs->get_vid; 2140 pstate_funcs.get_aperf_mperf_shift = funcs->get_aperf_mperf_shift; 2141 } 2142 2143 #ifdef CONFIG_ACPI 2144 2145 static bool __init intel_pstate_no_acpi_pss(void) 2146 { 2147 int i; 2148 2149 for_each_possible_cpu(i) { 2150 acpi_status status; 2151 union acpi_object *pss; 2152 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL }; 2153 struct acpi_processor *pr = per_cpu(processors, i); 2154 2155 if (!pr) 2156 continue; 2157 2158 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer); 2159 if (ACPI_FAILURE(status)) 2160 continue; 2161 2162 pss = buffer.pointer; 2163 if (pss && pss->type == ACPI_TYPE_PACKAGE) { 2164 kfree(pss); 2165 return false; 2166 } 2167 2168 kfree(pss); 2169 } 2170 2171 return true; 2172 } 2173 2174 static bool __init intel_pstate_has_acpi_ppc(void) 2175 { 2176 int i; 2177 2178 for_each_possible_cpu(i) { 2179 struct acpi_processor *pr = per_cpu(processors, i); 2180 2181 if (!pr) 2182 continue; 2183 if (acpi_has_method(pr->handle, "_PPC")) 2184 return true; 2185 } 2186 return false; 2187 } 2188 2189 enum { 2190 PSS, 2191 PPC, 2192 }; 2193 2194 /* Hardware vendor-specific info that has its own power management modes */ 2195 static struct acpi_platform_list plat_info[] __initdata = { 2196 {"HP ", "ProLiant", 0, ACPI_SIG_FADT, all_versions, 0, PSS}, 2197 {"ORACLE", "X4-2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC}, 2198 {"ORACLE", "X4-2L ", 0, ACPI_SIG_FADT, all_versions, 0, PPC}, 2199 {"ORACLE", "X4-2B ", 0, ACPI_SIG_FADT, all_versions, 0, PPC}, 2200 {"ORACLE", "X3-2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC}, 2201 {"ORACLE", "X3-2L ", 0, ACPI_SIG_FADT, all_versions, 0, PPC}, 2202 {"ORACLE", "X3-2B ", 0, ACPI_SIG_FADT, all_versions, 0, PPC}, 2203 {"ORACLE", "X4470M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC}, 2204 {"ORACLE", "X4270M3 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC}, 2205 {"ORACLE", "X4270M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC}, 2206 {"ORACLE", "X4170M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC}, 2207 {"ORACLE", "X4170 M3", 0, ACPI_SIG_FADT, all_versions, 0, PPC}, 2208 {"ORACLE", "X4275 M3", 0, ACPI_SIG_FADT, all_versions, 0, PPC}, 2209 {"ORACLE", "X6-2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC}, 2210 {"ORACLE", "Sudbury ", 0, ACPI_SIG_FADT, all_versions, 0, PPC}, 2211 { } /* End */ 2212 }; 2213 2214 static bool __init intel_pstate_platform_pwr_mgmt_exists(void) 2215 { 2216 const struct x86_cpu_id *id; 2217 u64 misc_pwr; 2218 int idx; 2219 2220 id = x86_match_cpu(intel_pstate_cpu_oob_ids); 2221 if (id) { 2222 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr); 2223 if ( misc_pwr & (1 << 8)) 2224 return true; 2225 } 2226 2227 idx = acpi_match_platform_list(plat_info); 2228 if (idx < 0) 2229 return false; 2230 2231 switch (plat_info[idx].data) { 2232 case PSS: 2233 return intel_pstate_no_acpi_pss(); 2234 case PPC: 2235 return intel_pstate_has_acpi_ppc() && !force_load; 2236 } 2237 2238 return false; 2239 } 2240 2241 static void intel_pstate_request_control_from_smm(void) 2242 { 2243 /* 2244 * It may be unsafe to request P-states control from SMM if _PPC support 2245 * has not been enabled. 2246 */ 2247 if (acpi_ppc) 2248 acpi_processor_pstate_control(); 2249 } 2250 #else /* CONFIG_ACPI not enabled */ 2251 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; } 2252 static inline bool intel_pstate_has_acpi_ppc(void) { return false; } 2253 static inline void intel_pstate_request_control_from_smm(void) {} 2254 #endif /* CONFIG_ACPI */ 2255 2256 static const struct x86_cpu_id hwp_support_ids[] __initconst = { 2257 { X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP }, 2258 {} 2259 }; 2260 2261 static int __init intel_pstate_init(void) 2262 { 2263 int rc; 2264 2265 if (no_load) 2266 return -ENODEV; 2267 2268 if (x86_match_cpu(hwp_support_ids)) { 2269 copy_cpu_funcs(&core_funcs); 2270 if (!no_hwp) { 2271 hwp_active++; 2272 intel_pstate.attr = hwp_cpufreq_attrs; 2273 goto hwp_cpu_matched; 2274 } 2275 } else { 2276 const struct x86_cpu_id *id; 2277 2278 id = x86_match_cpu(intel_pstate_cpu_ids); 2279 if (!id) 2280 return -ENODEV; 2281 2282 copy_cpu_funcs((struct pstate_funcs *)id->driver_data); 2283 } 2284 2285 if (intel_pstate_msrs_not_valid()) 2286 return -ENODEV; 2287 2288 hwp_cpu_matched: 2289 /* 2290 * The Intel pstate driver will be ignored if the platform 2291 * firmware has its own power management modes. 2292 */ 2293 if (intel_pstate_platform_pwr_mgmt_exists()) 2294 return -ENODEV; 2295 2296 if (!hwp_active && hwp_only) 2297 return -ENOTSUPP; 2298 2299 pr_info("Intel P-state driver initializing\n"); 2300 2301 all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus()); 2302 if (!all_cpu_data) 2303 return -ENOMEM; 2304 2305 intel_pstate_request_control_from_smm(); 2306 2307 intel_pstate_sysfs_expose_params(); 2308 2309 mutex_lock(&intel_pstate_driver_lock); 2310 rc = intel_pstate_register_driver(default_driver); 2311 mutex_unlock(&intel_pstate_driver_lock); 2312 if (rc) 2313 return rc; 2314 2315 if (hwp_active) 2316 pr_info("HWP enabled\n"); 2317 2318 return 0; 2319 } 2320 device_initcall(intel_pstate_init); 2321 2322 static int __init intel_pstate_setup(char *str) 2323 { 2324 if (!str) 2325 return -EINVAL; 2326 2327 if (!strcmp(str, "disable")) { 2328 no_load = 1; 2329 } else if (!strcmp(str, "passive")) { 2330 pr_info("Passive mode enabled\n"); 2331 default_driver = &intel_cpufreq; 2332 no_hwp = 1; 2333 } 2334 if (!strcmp(str, "no_hwp")) { 2335 pr_info("HWP disabled\n"); 2336 no_hwp = 1; 2337 } 2338 if (!strcmp(str, "force")) 2339 force_load = 1; 2340 if (!strcmp(str, "hwp_only")) 2341 hwp_only = 1; 2342 if (!strcmp(str, "per_cpu_perf_limits")) 2343 per_cpu_limits = true; 2344 2345 #ifdef CONFIG_ACPI 2346 if (!strcmp(str, "support_acpi_ppc")) 2347 acpi_ppc = true; 2348 #endif 2349 2350 return 0; 2351 } 2352 early_param("intel_pstate", intel_pstate_setup); 2353 2354 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>"); 2355 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors"); 2356 MODULE_LICENSE("GPL"); 2357