1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * intel_pstate.c: Native P state management for Intel processors
4  *
5  * (C) Copyright 2012 Intel Corporation
6  * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
7  */
8 
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 
11 #include <linux/kernel.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/module.h>
14 #include <linux/ktime.h>
15 #include <linux/hrtimer.h>
16 #include <linux/tick.h>
17 #include <linux/slab.h>
18 #include <linux/sched/cpufreq.h>
19 #include <linux/list.h>
20 #include <linux/cpu.h>
21 #include <linux/cpufreq.h>
22 #include <linux/sysfs.h>
23 #include <linux/types.h>
24 #include <linux/fs.h>
25 #include <linux/acpi.h>
26 #include <linux/vmalloc.h>
27 #include <linux/pm_qos.h>
28 #include <trace/events/power.h>
29 
30 #include <asm/div64.h>
31 #include <asm/msr.h>
32 #include <asm/cpu_device_id.h>
33 #include <asm/cpufeature.h>
34 #include <asm/intel-family.h>
35 
36 #define INTEL_PSTATE_SAMPLING_INTERVAL	(10 * NSEC_PER_MSEC)
37 
38 #define INTEL_CPUFREQ_TRANSITION_LATENCY	20000
39 #define INTEL_CPUFREQ_TRANSITION_DELAY		500
40 
41 #ifdef CONFIG_ACPI
42 #include <acpi/processor.h>
43 #include <acpi/cppc_acpi.h>
44 #endif
45 
46 #define FRAC_BITS 8
47 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
48 #define fp_toint(X) ((X) >> FRAC_BITS)
49 
50 #define ONE_EIGHTH_FP ((int64_t)1 << (FRAC_BITS - 3))
51 
52 #define EXT_BITS 6
53 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
54 #define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
55 #define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
56 
57 static inline int32_t mul_fp(int32_t x, int32_t y)
58 {
59 	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
60 }
61 
62 static inline int32_t div_fp(s64 x, s64 y)
63 {
64 	return div64_s64((int64_t)x << FRAC_BITS, y);
65 }
66 
67 static inline int ceiling_fp(int32_t x)
68 {
69 	int mask, ret;
70 
71 	ret = fp_toint(x);
72 	mask = (1 << FRAC_BITS) - 1;
73 	if (x & mask)
74 		ret += 1;
75 	return ret;
76 }
77 
78 static inline int32_t percent_fp(int percent)
79 {
80 	return div_fp(percent, 100);
81 }
82 
83 static inline u64 mul_ext_fp(u64 x, u64 y)
84 {
85 	return (x * y) >> EXT_FRAC_BITS;
86 }
87 
88 static inline u64 div_ext_fp(u64 x, u64 y)
89 {
90 	return div64_u64(x << EXT_FRAC_BITS, y);
91 }
92 
93 static inline int32_t percent_ext_fp(int percent)
94 {
95 	return div_ext_fp(percent, 100);
96 }
97 
98 /**
99  * struct sample -	Store performance sample
100  * @core_avg_perf:	Ratio of APERF/MPERF which is the actual average
101  *			performance during last sample period
102  * @busy_scaled:	Scaled busy value which is used to calculate next
103  *			P state. This can be different than core_avg_perf
104  *			to account for cpu idle period
105  * @aperf:		Difference of actual performance frequency clock count
106  *			read from APERF MSR between last and current sample
107  * @mperf:		Difference of maximum performance frequency clock count
108  *			read from MPERF MSR between last and current sample
109  * @tsc:		Difference of time stamp counter between last and
110  *			current sample
111  * @time:		Current time from scheduler
112  *
113  * This structure is used in the cpudata structure to store performance sample
114  * data for choosing next P State.
115  */
116 struct sample {
117 	int32_t core_avg_perf;
118 	int32_t busy_scaled;
119 	u64 aperf;
120 	u64 mperf;
121 	u64 tsc;
122 	u64 time;
123 };
124 
125 /**
126  * struct pstate_data - Store P state data
127  * @current_pstate:	Current requested P state
128  * @min_pstate:		Min P state possible for this platform
129  * @max_pstate:		Max P state possible for this platform
130  * @max_pstate_physical:This is physical Max P state for a processor
131  *			This can be higher than the max_pstate which can
132  *			be limited by platform thermal design power limits
133  * @scaling:		Scaling factor to  convert frequency to cpufreq
134  *			frequency units
135  * @turbo_pstate:	Max Turbo P state possible for this platform
136  * @max_freq:		@max_pstate frequency in cpufreq units
137  * @turbo_freq:		@turbo_pstate frequency in cpufreq units
138  *
139  * Stores the per cpu model P state limits and current P state.
140  */
141 struct pstate_data {
142 	int	current_pstate;
143 	int	min_pstate;
144 	int	max_pstate;
145 	int	max_pstate_physical;
146 	int	scaling;
147 	int	turbo_pstate;
148 	unsigned int max_freq;
149 	unsigned int turbo_freq;
150 };
151 
152 /**
153  * struct vid_data -	Stores voltage information data
154  * @min:		VID data for this platform corresponding to
155  *			the lowest P state
156  * @max:		VID data corresponding to the highest P State.
157  * @turbo:		VID data for turbo P state
158  * @ratio:		Ratio of (vid max - vid min) /
159  *			(max P state - Min P State)
160  *
161  * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
162  * This data is used in Atom platforms, where in addition to target P state,
163  * the voltage data needs to be specified to select next P State.
164  */
165 struct vid_data {
166 	int min;
167 	int max;
168 	int turbo;
169 	int32_t ratio;
170 };
171 
172 /**
173  * struct global_params - Global parameters, mostly tunable via sysfs.
174  * @no_turbo:		Whether or not to use turbo P-states.
175  * @turbo_disabled:	Whether or not turbo P-states are available at all,
176  *			based on the MSR_IA32_MISC_ENABLE value and whether or
177  *			not the maximum reported turbo P-state is different from
178  *			the maximum reported non-turbo one.
179  * @turbo_disabled_mf:	The @turbo_disabled value reflected by cpuinfo.max_freq.
180  * @min_perf_pct:	Minimum capacity limit in percent of the maximum turbo
181  *			P-state capacity.
182  * @max_perf_pct:	Maximum capacity limit in percent of the maximum turbo
183  *			P-state capacity.
184  */
185 struct global_params {
186 	bool no_turbo;
187 	bool turbo_disabled;
188 	bool turbo_disabled_mf;
189 	int max_perf_pct;
190 	int min_perf_pct;
191 };
192 
193 /**
194  * struct cpudata -	Per CPU instance data storage
195  * @cpu:		CPU number for this instance data
196  * @policy:		CPUFreq policy value
197  * @update_util:	CPUFreq utility callback information
198  * @update_util_set:	CPUFreq utility callback is set
199  * @iowait_boost:	iowait-related boost fraction
200  * @last_update:	Time of the last update.
201  * @pstate:		Stores P state limits for this CPU
202  * @vid:		Stores VID limits for this CPU
203  * @last_sample_time:	Last Sample time
204  * @aperf_mperf_shift:	Number of clock cycles after aperf, merf is incremented
205  *			This shift is a multiplier to mperf delta to
206  *			calculate CPU busy.
207  * @prev_aperf:		Last APERF value read from APERF MSR
208  * @prev_mperf:		Last MPERF value read from MPERF MSR
209  * @prev_tsc:		Last timestamp counter (TSC) value
210  * @prev_cummulative_iowait: IO Wait time difference from last and
211  *			current sample
212  * @sample:		Storage for storing last Sample data
213  * @min_perf_ratio:	Minimum capacity in terms of PERF or HWP ratios
214  * @max_perf_ratio:	Maximum capacity in terms of PERF or HWP ratios
215  * @acpi_perf_data:	Stores ACPI perf information read from _PSS
216  * @valid_pss_table:	Set to true for valid ACPI _PSS entries found
217  * @epp_powersave:	Last saved HWP energy performance preference
218  *			(EPP) or energy performance bias (EPB),
219  *			when policy switched to performance
220  * @epp_policy:		Last saved policy used to set EPP/EPB
221  * @epp_default:	Power on default HWP energy performance
222  *			preference/bias
223  * @epp_saved:		Saved EPP/EPB during system suspend or CPU offline
224  *			operation
225  * @hwp_req_cached:	Cached value of the last HWP Request MSR
226  * @hwp_cap_cached:	Cached value of the last HWP Capabilities MSR
227  * @last_io_update:	Last time when IO wake flag was set
228  * @sched_flags:	Store scheduler flags for possible cross CPU update
229  * @hwp_boost_min:	Last HWP boosted min performance
230  *
231  * This structure stores per CPU instance data for all CPUs.
232  */
233 struct cpudata {
234 	int cpu;
235 
236 	unsigned int policy;
237 	struct update_util_data update_util;
238 	bool   update_util_set;
239 
240 	struct pstate_data pstate;
241 	struct vid_data vid;
242 
243 	u64	last_update;
244 	u64	last_sample_time;
245 	u64	aperf_mperf_shift;
246 	u64	prev_aperf;
247 	u64	prev_mperf;
248 	u64	prev_tsc;
249 	u64	prev_cummulative_iowait;
250 	struct sample sample;
251 	int32_t	min_perf_ratio;
252 	int32_t	max_perf_ratio;
253 #ifdef CONFIG_ACPI
254 	struct acpi_processor_performance acpi_perf_data;
255 	bool valid_pss_table;
256 #endif
257 	unsigned int iowait_boost;
258 	s16 epp_powersave;
259 	s16 epp_policy;
260 	s16 epp_default;
261 	s16 epp_saved;
262 	u64 hwp_req_cached;
263 	u64 hwp_cap_cached;
264 	u64 last_io_update;
265 	unsigned int sched_flags;
266 	u32 hwp_boost_min;
267 };
268 
269 static struct cpudata **all_cpu_data;
270 
271 /**
272  * struct pstate_funcs - Per CPU model specific callbacks
273  * @get_max:		Callback to get maximum non turbo effective P state
274  * @get_max_physical:	Callback to get maximum non turbo physical P state
275  * @get_min:		Callback to get minimum P state
276  * @get_turbo:		Callback to get turbo P state
277  * @get_scaling:	Callback to get frequency scaling factor
278  * @get_val:		Callback to convert P state to actual MSR write value
279  * @get_vid:		Callback to get VID data for Atom platforms
280  *
281  * Core and Atom CPU models have different way to get P State limits. This
282  * structure is used to store those callbacks.
283  */
284 struct pstate_funcs {
285 	int (*get_max)(void);
286 	int (*get_max_physical)(void);
287 	int (*get_min)(void);
288 	int (*get_turbo)(void);
289 	int (*get_scaling)(void);
290 	int (*get_aperf_mperf_shift)(void);
291 	u64 (*get_val)(struct cpudata*, int pstate);
292 	void (*get_vid)(struct cpudata *);
293 };
294 
295 static struct pstate_funcs pstate_funcs __read_mostly;
296 
297 static int hwp_active __read_mostly;
298 static int hwp_mode_bdw __read_mostly;
299 static bool per_cpu_limits __read_mostly;
300 static bool hwp_boost __read_mostly;
301 
302 static struct cpufreq_driver *intel_pstate_driver __read_mostly;
303 
304 #ifdef CONFIG_ACPI
305 static bool acpi_ppc;
306 #endif
307 
308 static struct global_params global;
309 
310 static DEFINE_MUTEX(intel_pstate_driver_lock);
311 static DEFINE_MUTEX(intel_pstate_limits_lock);
312 
313 #ifdef CONFIG_ACPI
314 
315 static bool intel_pstate_acpi_pm_profile_server(void)
316 {
317 	if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
318 	    acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
319 		return true;
320 
321 	return false;
322 }
323 
324 static bool intel_pstate_get_ppc_enable_status(void)
325 {
326 	if (intel_pstate_acpi_pm_profile_server())
327 		return true;
328 
329 	return acpi_ppc;
330 }
331 
332 #ifdef CONFIG_ACPI_CPPC_LIB
333 
334 /* The work item is needed to avoid CPU hotplug locking issues */
335 static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
336 {
337 	sched_set_itmt_support();
338 }
339 
340 static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);
341 
342 static void intel_pstate_set_itmt_prio(int cpu)
343 {
344 	struct cppc_perf_caps cppc_perf;
345 	static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
346 	int ret;
347 
348 	ret = cppc_get_perf_caps(cpu, &cppc_perf);
349 	if (ret)
350 		return;
351 
352 	/*
353 	 * The priorities can be set regardless of whether or not
354 	 * sched_set_itmt_support(true) has been called and it is valid to
355 	 * update them at any time after it has been called.
356 	 */
357 	sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);
358 
359 	if (max_highest_perf <= min_highest_perf) {
360 		if (cppc_perf.highest_perf > max_highest_perf)
361 			max_highest_perf = cppc_perf.highest_perf;
362 
363 		if (cppc_perf.highest_perf < min_highest_perf)
364 			min_highest_perf = cppc_perf.highest_perf;
365 
366 		if (max_highest_perf > min_highest_perf) {
367 			/*
368 			 * This code can be run during CPU online under the
369 			 * CPU hotplug locks, so sched_set_itmt_support()
370 			 * cannot be called from here.  Queue up a work item
371 			 * to invoke it.
372 			 */
373 			schedule_work(&sched_itmt_work);
374 		}
375 	}
376 }
377 
378 static int intel_pstate_get_cppc_guranteed(int cpu)
379 {
380 	struct cppc_perf_caps cppc_perf;
381 	int ret;
382 
383 	ret = cppc_get_perf_caps(cpu, &cppc_perf);
384 	if (ret)
385 		return ret;
386 
387 	if (cppc_perf.guaranteed_perf)
388 		return cppc_perf.guaranteed_perf;
389 
390 	return cppc_perf.nominal_perf;
391 }
392 
393 #else /* CONFIG_ACPI_CPPC_LIB */
394 static void intel_pstate_set_itmt_prio(int cpu)
395 {
396 }
397 #endif /* CONFIG_ACPI_CPPC_LIB */
398 
399 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
400 {
401 	struct cpudata *cpu;
402 	int ret;
403 	int i;
404 
405 	if (hwp_active) {
406 		intel_pstate_set_itmt_prio(policy->cpu);
407 		return;
408 	}
409 
410 	if (!intel_pstate_get_ppc_enable_status())
411 		return;
412 
413 	cpu = all_cpu_data[policy->cpu];
414 
415 	ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
416 						  policy->cpu);
417 	if (ret)
418 		return;
419 
420 	/*
421 	 * Check if the control value in _PSS is for PERF_CTL MSR, which should
422 	 * guarantee that the states returned by it map to the states in our
423 	 * list directly.
424 	 */
425 	if (cpu->acpi_perf_data.control_register.space_id !=
426 						ACPI_ADR_SPACE_FIXED_HARDWARE)
427 		goto err;
428 
429 	/*
430 	 * If there is only one entry _PSS, simply ignore _PSS and continue as
431 	 * usual without taking _PSS into account
432 	 */
433 	if (cpu->acpi_perf_data.state_count < 2)
434 		goto err;
435 
436 	pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
437 	for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
438 		pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
439 			 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
440 			 (u32) cpu->acpi_perf_data.states[i].core_frequency,
441 			 (u32) cpu->acpi_perf_data.states[i].power,
442 			 (u32) cpu->acpi_perf_data.states[i].control);
443 	}
444 
445 	/*
446 	 * The _PSS table doesn't contain whole turbo frequency range.
447 	 * This just contains +1 MHZ above the max non turbo frequency,
448 	 * with control value corresponding to max turbo ratio. But
449 	 * when cpufreq set policy is called, it will call with this
450 	 * max frequency, which will cause a reduced performance as
451 	 * this driver uses real max turbo frequency as the max
452 	 * frequency. So correct this frequency in _PSS table to
453 	 * correct max turbo frequency based on the turbo state.
454 	 * Also need to convert to MHz as _PSS freq is in MHz.
455 	 */
456 	if (!global.turbo_disabled)
457 		cpu->acpi_perf_data.states[0].core_frequency =
458 					policy->cpuinfo.max_freq / 1000;
459 	cpu->valid_pss_table = true;
460 	pr_debug("_PPC limits will be enforced\n");
461 
462 	return;
463 
464  err:
465 	cpu->valid_pss_table = false;
466 	acpi_processor_unregister_performance(policy->cpu);
467 }
468 
469 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
470 {
471 	struct cpudata *cpu;
472 
473 	cpu = all_cpu_data[policy->cpu];
474 	if (!cpu->valid_pss_table)
475 		return;
476 
477 	acpi_processor_unregister_performance(policy->cpu);
478 }
479 #else /* CONFIG_ACPI */
480 static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
481 {
482 }
483 
484 static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
485 {
486 }
487 
488 static inline bool intel_pstate_acpi_pm_profile_server(void)
489 {
490 	return false;
491 }
492 #endif /* CONFIG_ACPI */
493 
494 #ifndef CONFIG_ACPI_CPPC_LIB
495 static int intel_pstate_get_cppc_guranteed(int cpu)
496 {
497 	return -ENOTSUPP;
498 }
499 #endif /* CONFIG_ACPI_CPPC_LIB */
500 
501 static inline void update_turbo_state(void)
502 {
503 	u64 misc_en;
504 	struct cpudata *cpu;
505 
506 	cpu = all_cpu_data[0];
507 	rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
508 	global.turbo_disabled =
509 		(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
510 		 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
511 }
512 
513 static int min_perf_pct_min(void)
514 {
515 	struct cpudata *cpu = all_cpu_data[0];
516 	int turbo_pstate = cpu->pstate.turbo_pstate;
517 
518 	return turbo_pstate ?
519 		(cpu->pstate.min_pstate * 100 / turbo_pstate) : 0;
520 }
521 
522 static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
523 {
524 	u64 epb;
525 	int ret;
526 
527 	if (!boot_cpu_has(X86_FEATURE_EPB))
528 		return -ENXIO;
529 
530 	ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
531 	if (ret)
532 		return (s16)ret;
533 
534 	return (s16)(epb & 0x0f);
535 }
536 
537 static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
538 {
539 	s16 epp;
540 
541 	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
542 		/*
543 		 * When hwp_req_data is 0, means that caller didn't read
544 		 * MSR_HWP_REQUEST, so need to read and get EPP.
545 		 */
546 		if (!hwp_req_data) {
547 			epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
548 					    &hwp_req_data);
549 			if (epp)
550 				return epp;
551 		}
552 		epp = (hwp_req_data >> 24) & 0xff;
553 	} else {
554 		/* When there is no EPP present, HWP uses EPB settings */
555 		epp = intel_pstate_get_epb(cpu_data);
556 	}
557 
558 	return epp;
559 }
560 
561 static int intel_pstate_set_epb(int cpu, s16 pref)
562 {
563 	u64 epb;
564 	int ret;
565 
566 	if (!boot_cpu_has(X86_FEATURE_EPB))
567 		return -ENXIO;
568 
569 	ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
570 	if (ret)
571 		return ret;
572 
573 	epb = (epb & ~0x0f) | pref;
574 	wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
575 
576 	return 0;
577 }
578 
579 /*
580  * EPP/EPB display strings corresponding to EPP index in the
581  * energy_perf_strings[]
582  *	index		String
583  *-------------------------------------
584  *	0		default
585  *	1		performance
586  *	2		balance_performance
587  *	3		balance_power
588  *	4		power
589  */
590 static const char * const energy_perf_strings[] = {
591 	"default",
592 	"performance",
593 	"balance_performance",
594 	"balance_power",
595 	"power",
596 	NULL
597 };
598 static const unsigned int epp_values[] = {
599 	HWP_EPP_PERFORMANCE,
600 	HWP_EPP_BALANCE_PERFORMANCE,
601 	HWP_EPP_BALANCE_POWERSAVE,
602 	HWP_EPP_POWERSAVE
603 };
604 
605 static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data, int *raw_epp)
606 {
607 	s16 epp;
608 	int index = -EINVAL;
609 
610 	*raw_epp = 0;
611 	epp = intel_pstate_get_epp(cpu_data, 0);
612 	if (epp < 0)
613 		return epp;
614 
615 	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
616 		if (epp == HWP_EPP_PERFORMANCE)
617 			return 1;
618 		if (epp == HWP_EPP_BALANCE_PERFORMANCE)
619 			return 2;
620 		if (epp == HWP_EPP_BALANCE_POWERSAVE)
621 			return 3;
622 		if (epp == HWP_EPP_POWERSAVE)
623 			return 4;
624 		*raw_epp = epp;
625 		return 0;
626 	} else if (boot_cpu_has(X86_FEATURE_EPB)) {
627 		/*
628 		 * Range:
629 		 *	0x00-0x03	:	Performance
630 		 *	0x04-0x07	:	Balance performance
631 		 *	0x08-0x0B	:	Balance power
632 		 *	0x0C-0x0F	:	Power
633 		 * The EPB is a 4 bit value, but our ranges restrict the
634 		 * value which can be set. Here only using top two bits
635 		 * effectively.
636 		 */
637 		index = (epp >> 2) + 1;
638 	}
639 
640 	return index;
641 }
642 
643 static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
644 					      int pref_index, bool use_raw,
645 					      u32 raw_epp)
646 {
647 	int epp = -EINVAL;
648 	int ret;
649 
650 	if (!pref_index)
651 		epp = cpu_data->epp_default;
652 
653 	mutex_lock(&intel_pstate_limits_lock);
654 
655 	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
656 		u64 value;
657 
658 		ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, &value);
659 		if (ret)
660 			goto return_pref;
661 
662 		value &= ~GENMASK_ULL(31, 24);
663 
664 		if (use_raw) {
665 			if (raw_epp > 255) {
666 				ret = -EINVAL;
667 				goto return_pref;
668 			}
669 			value |= (u64)raw_epp << 24;
670 			ret = wrmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, value);
671 			goto return_pref;
672 		}
673 
674 		if (epp == -EINVAL)
675 			epp = epp_values[pref_index - 1];
676 
677 		value |= (u64)epp << 24;
678 		ret = wrmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, value);
679 	} else {
680 		if (epp == -EINVAL)
681 			epp = (pref_index - 1) << 2;
682 		ret = intel_pstate_set_epb(cpu_data->cpu, epp);
683 	}
684 return_pref:
685 	mutex_unlock(&intel_pstate_limits_lock);
686 
687 	return ret;
688 }
689 
690 static ssize_t show_energy_performance_available_preferences(
691 				struct cpufreq_policy *policy, char *buf)
692 {
693 	int i = 0;
694 	int ret = 0;
695 
696 	while (energy_perf_strings[i] != NULL)
697 		ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);
698 
699 	ret += sprintf(&buf[ret], "\n");
700 
701 	return ret;
702 }
703 
704 cpufreq_freq_attr_ro(energy_performance_available_preferences);
705 
706 static ssize_t store_energy_performance_preference(
707 		struct cpufreq_policy *policy, const char *buf, size_t count)
708 {
709 	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
710 	char str_preference[21];
711 	bool raw = false;
712 	u32 epp;
713 	int ret;
714 
715 	ret = sscanf(buf, "%20s", str_preference);
716 	if (ret != 1)
717 		return -EINVAL;
718 
719 	ret = match_string(energy_perf_strings, -1, str_preference);
720 	if (ret < 0) {
721 		if (!boot_cpu_has(X86_FEATURE_HWP_EPP))
722 			return ret;
723 
724 		ret = kstrtouint(buf, 10, &epp);
725 		if (ret)
726 			return ret;
727 
728 		raw = true;
729 	}
730 
731 	ret = intel_pstate_set_energy_pref_index(cpu_data, ret, raw, epp);
732 	if (ret)
733 		return ret;
734 
735 	return count;
736 }
737 
738 static ssize_t show_energy_performance_preference(
739 				struct cpufreq_policy *policy, char *buf)
740 {
741 	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
742 	int preference, raw_epp;
743 
744 	preference = intel_pstate_get_energy_pref_index(cpu_data, &raw_epp);
745 	if (preference < 0)
746 		return preference;
747 
748 	if (raw_epp)
749 		return  sprintf(buf, "%d\n", raw_epp);
750 	else
751 		return  sprintf(buf, "%s\n", energy_perf_strings[preference]);
752 }
753 
754 cpufreq_freq_attr_rw(energy_performance_preference);
755 
756 static ssize_t show_base_frequency(struct cpufreq_policy *policy, char *buf)
757 {
758 	struct cpudata *cpu;
759 	u64 cap;
760 	int ratio;
761 
762 	ratio = intel_pstate_get_cppc_guranteed(policy->cpu);
763 	if (ratio <= 0) {
764 		rdmsrl_on_cpu(policy->cpu, MSR_HWP_CAPABILITIES, &cap);
765 		ratio = HWP_GUARANTEED_PERF(cap);
766 	}
767 
768 	cpu = all_cpu_data[policy->cpu];
769 
770 	return sprintf(buf, "%d\n", ratio * cpu->pstate.scaling);
771 }
772 
773 cpufreq_freq_attr_ro(base_frequency);
774 
775 static struct freq_attr *hwp_cpufreq_attrs[] = {
776 	&energy_performance_preference,
777 	&energy_performance_available_preferences,
778 	&base_frequency,
779 	NULL,
780 };
781 
782 static void intel_pstate_get_hwp_max(unsigned int cpu, int *phy_max,
783 				     int *current_max)
784 {
785 	u64 cap;
786 
787 	rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
788 	WRITE_ONCE(all_cpu_data[cpu]->hwp_cap_cached, cap);
789 	if (global.no_turbo)
790 		*current_max = HWP_GUARANTEED_PERF(cap);
791 	else
792 		*current_max = HWP_HIGHEST_PERF(cap);
793 
794 	*phy_max = HWP_HIGHEST_PERF(cap);
795 }
796 
797 static void intel_pstate_hwp_set(unsigned int cpu)
798 {
799 	struct cpudata *cpu_data = all_cpu_data[cpu];
800 	int max, min;
801 	u64 value;
802 	s16 epp;
803 
804 	max = cpu_data->max_perf_ratio;
805 	min = cpu_data->min_perf_ratio;
806 
807 	if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
808 		min = max;
809 
810 	rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
811 
812 	value &= ~HWP_MIN_PERF(~0L);
813 	value |= HWP_MIN_PERF(min);
814 
815 	value &= ~HWP_MAX_PERF(~0L);
816 	value |= HWP_MAX_PERF(max);
817 
818 	if (cpu_data->epp_policy == cpu_data->policy)
819 		goto skip_epp;
820 
821 	cpu_data->epp_policy = cpu_data->policy;
822 
823 	if (cpu_data->epp_saved >= 0) {
824 		epp = cpu_data->epp_saved;
825 		cpu_data->epp_saved = -EINVAL;
826 		goto update_epp;
827 	}
828 
829 	if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
830 		epp = intel_pstate_get_epp(cpu_data, value);
831 		cpu_data->epp_powersave = epp;
832 		/* If EPP read was failed, then don't try to write */
833 		if (epp < 0)
834 			goto skip_epp;
835 
836 		epp = 0;
837 	} else {
838 		/* skip setting EPP, when saved value is invalid */
839 		if (cpu_data->epp_powersave < 0)
840 			goto skip_epp;
841 
842 		/*
843 		 * No need to restore EPP when it is not zero. This
844 		 * means:
845 		 *  - Policy is not changed
846 		 *  - user has manually changed
847 		 *  - Error reading EPB
848 		 */
849 		epp = intel_pstate_get_epp(cpu_data, value);
850 		if (epp)
851 			goto skip_epp;
852 
853 		epp = cpu_data->epp_powersave;
854 	}
855 update_epp:
856 	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
857 		value &= ~GENMASK_ULL(31, 24);
858 		value |= (u64)epp << 24;
859 	} else {
860 		intel_pstate_set_epb(cpu, epp);
861 	}
862 skip_epp:
863 	WRITE_ONCE(cpu_data->hwp_req_cached, value);
864 	wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
865 }
866 
867 static void intel_pstate_hwp_force_min_perf(int cpu)
868 {
869 	u64 value;
870 	int min_perf;
871 
872 	value = all_cpu_data[cpu]->hwp_req_cached;
873 	value &= ~GENMASK_ULL(31, 0);
874 	min_perf = HWP_LOWEST_PERF(all_cpu_data[cpu]->hwp_cap_cached);
875 
876 	/* Set hwp_max = hwp_min */
877 	value |= HWP_MAX_PERF(min_perf);
878 	value |= HWP_MIN_PERF(min_perf);
879 
880 	/* Set EPP to min */
881 	if (boot_cpu_has(X86_FEATURE_HWP_EPP))
882 		value |= HWP_ENERGY_PERF_PREFERENCE(HWP_EPP_POWERSAVE);
883 
884 	wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
885 }
886 
887 static int intel_pstate_hwp_save_state(struct cpufreq_policy *policy)
888 {
889 	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
890 
891 	if (!hwp_active)
892 		return 0;
893 
894 	cpu_data->epp_saved = intel_pstate_get_epp(cpu_data, 0);
895 
896 	return 0;
897 }
898 
899 #define POWER_CTL_EE_ENABLE	1
900 #define POWER_CTL_EE_DISABLE	2
901 
902 static int power_ctl_ee_state;
903 
904 static void set_power_ctl_ee_state(bool input)
905 {
906 	u64 power_ctl;
907 
908 	mutex_lock(&intel_pstate_driver_lock);
909 	rdmsrl(MSR_IA32_POWER_CTL, power_ctl);
910 	if (input) {
911 		power_ctl &= ~BIT(MSR_IA32_POWER_CTL_BIT_EE);
912 		power_ctl_ee_state = POWER_CTL_EE_ENABLE;
913 	} else {
914 		power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
915 		power_ctl_ee_state = POWER_CTL_EE_DISABLE;
916 	}
917 	wrmsrl(MSR_IA32_POWER_CTL, power_ctl);
918 	mutex_unlock(&intel_pstate_driver_lock);
919 }
920 
921 static void intel_pstate_hwp_enable(struct cpudata *cpudata);
922 
923 static int intel_pstate_resume(struct cpufreq_policy *policy)
924 {
925 
926 	/* Only restore if the system default is changed */
927 	if (power_ctl_ee_state == POWER_CTL_EE_ENABLE)
928 		set_power_ctl_ee_state(true);
929 	else if (power_ctl_ee_state == POWER_CTL_EE_DISABLE)
930 		set_power_ctl_ee_state(false);
931 
932 	if (!hwp_active)
933 		return 0;
934 
935 	mutex_lock(&intel_pstate_limits_lock);
936 
937 	if (policy->cpu == 0)
938 		intel_pstate_hwp_enable(all_cpu_data[policy->cpu]);
939 
940 	all_cpu_data[policy->cpu]->epp_policy = 0;
941 	intel_pstate_hwp_set(policy->cpu);
942 
943 	mutex_unlock(&intel_pstate_limits_lock);
944 
945 	return 0;
946 }
947 
948 static void intel_pstate_update_policies(void)
949 {
950 	int cpu;
951 
952 	for_each_possible_cpu(cpu)
953 		cpufreq_update_policy(cpu);
954 }
955 
956 static void intel_pstate_update_max_freq(unsigned int cpu)
957 {
958 	struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
959 	struct cpudata *cpudata;
960 
961 	if (!policy)
962 		return;
963 
964 	cpudata = all_cpu_data[cpu];
965 	policy->cpuinfo.max_freq = global.turbo_disabled_mf ?
966 			cpudata->pstate.max_freq : cpudata->pstate.turbo_freq;
967 
968 	refresh_frequency_limits(policy);
969 
970 	cpufreq_cpu_release(policy);
971 }
972 
973 static void intel_pstate_update_limits(unsigned int cpu)
974 {
975 	mutex_lock(&intel_pstate_driver_lock);
976 
977 	update_turbo_state();
978 	/*
979 	 * If turbo has been turned on or off globally, policy limits for
980 	 * all CPUs need to be updated to reflect that.
981 	 */
982 	if (global.turbo_disabled_mf != global.turbo_disabled) {
983 		global.turbo_disabled_mf = global.turbo_disabled;
984 		arch_set_max_freq_ratio(global.turbo_disabled);
985 		for_each_possible_cpu(cpu)
986 			intel_pstate_update_max_freq(cpu);
987 	} else {
988 		cpufreq_update_policy(cpu);
989 	}
990 
991 	mutex_unlock(&intel_pstate_driver_lock);
992 }
993 
994 /************************** sysfs begin ************************/
995 #define show_one(file_name, object)					\
996 	static ssize_t show_##file_name					\
997 	(struct kobject *kobj, struct kobj_attribute *attr, char *buf)	\
998 	{								\
999 		return sprintf(buf, "%u\n", global.object);		\
1000 	}
1001 
1002 static ssize_t intel_pstate_show_status(char *buf);
1003 static int intel_pstate_update_status(const char *buf, size_t size);
1004 
1005 static ssize_t show_status(struct kobject *kobj,
1006 			   struct kobj_attribute *attr, char *buf)
1007 {
1008 	ssize_t ret;
1009 
1010 	mutex_lock(&intel_pstate_driver_lock);
1011 	ret = intel_pstate_show_status(buf);
1012 	mutex_unlock(&intel_pstate_driver_lock);
1013 
1014 	return ret;
1015 }
1016 
1017 static ssize_t store_status(struct kobject *a, struct kobj_attribute *b,
1018 			    const char *buf, size_t count)
1019 {
1020 	char *p = memchr(buf, '\n', count);
1021 	int ret;
1022 
1023 	mutex_lock(&intel_pstate_driver_lock);
1024 	ret = intel_pstate_update_status(buf, p ? p - buf : count);
1025 	mutex_unlock(&intel_pstate_driver_lock);
1026 
1027 	return ret < 0 ? ret : count;
1028 }
1029 
1030 static ssize_t show_turbo_pct(struct kobject *kobj,
1031 				struct kobj_attribute *attr, char *buf)
1032 {
1033 	struct cpudata *cpu;
1034 	int total, no_turbo, turbo_pct;
1035 	uint32_t turbo_fp;
1036 
1037 	mutex_lock(&intel_pstate_driver_lock);
1038 
1039 	if (!intel_pstate_driver) {
1040 		mutex_unlock(&intel_pstate_driver_lock);
1041 		return -EAGAIN;
1042 	}
1043 
1044 	cpu = all_cpu_data[0];
1045 
1046 	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1047 	no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
1048 	turbo_fp = div_fp(no_turbo, total);
1049 	turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
1050 
1051 	mutex_unlock(&intel_pstate_driver_lock);
1052 
1053 	return sprintf(buf, "%u\n", turbo_pct);
1054 }
1055 
1056 static ssize_t show_num_pstates(struct kobject *kobj,
1057 				struct kobj_attribute *attr, char *buf)
1058 {
1059 	struct cpudata *cpu;
1060 	int total;
1061 
1062 	mutex_lock(&intel_pstate_driver_lock);
1063 
1064 	if (!intel_pstate_driver) {
1065 		mutex_unlock(&intel_pstate_driver_lock);
1066 		return -EAGAIN;
1067 	}
1068 
1069 	cpu = all_cpu_data[0];
1070 	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1071 
1072 	mutex_unlock(&intel_pstate_driver_lock);
1073 
1074 	return sprintf(buf, "%u\n", total);
1075 }
1076 
1077 static ssize_t show_no_turbo(struct kobject *kobj,
1078 			     struct kobj_attribute *attr, char *buf)
1079 {
1080 	ssize_t ret;
1081 
1082 	mutex_lock(&intel_pstate_driver_lock);
1083 
1084 	if (!intel_pstate_driver) {
1085 		mutex_unlock(&intel_pstate_driver_lock);
1086 		return -EAGAIN;
1087 	}
1088 
1089 	update_turbo_state();
1090 	if (global.turbo_disabled)
1091 		ret = sprintf(buf, "%u\n", global.turbo_disabled);
1092 	else
1093 		ret = sprintf(buf, "%u\n", global.no_turbo);
1094 
1095 	mutex_unlock(&intel_pstate_driver_lock);
1096 
1097 	return ret;
1098 }
1099 
1100 static ssize_t store_no_turbo(struct kobject *a, struct kobj_attribute *b,
1101 			      const char *buf, size_t count)
1102 {
1103 	unsigned int input;
1104 	int ret;
1105 
1106 	ret = sscanf(buf, "%u", &input);
1107 	if (ret != 1)
1108 		return -EINVAL;
1109 
1110 	mutex_lock(&intel_pstate_driver_lock);
1111 
1112 	if (!intel_pstate_driver) {
1113 		mutex_unlock(&intel_pstate_driver_lock);
1114 		return -EAGAIN;
1115 	}
1116 
1117 	mutex_lock(&intel_pstate_limits_lock);
1118 
1119 	update_turbo_state();
1120 	if (global.turbo_disabled) {
1121 		pr_notice_once("Turbo disabled by BIOS or unavailable on processor\n");
1122 		mutex_unlock(&intel_pstate_limits_lock);
1123 		mutex_unlock(&intel_pstate_driver_lock);
1124 		return -EPERM;
1125 	}
1126 
1127 	global.no_turbo = clamp_t(int, input, 0, 1);
1128 
1129 	if (global.no_turbo) {
1130 		struct cpudata *cpu = all_cpu_data[0];
1131 		int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;
1132 
1133 		/* Squash the global minimum into the permitted range. */
1134 		if (global.min_perf_pct > pct)
1135 			global.min_perf_pct = pct;
1136 	}
1137 
1138 	mutex_unlock(&intel_pstate_limits_lock);
1139 
1140 	intel_pstate_update_policies();
1141 
1142 	mutex_unlock(&intel_pstate_driver_lock);
1143 
1144 	return count;
1145 }
1146 
1147 static struct cpufreq_driver intel_pstate;
1148 
1149 static void update_qos_request(enum freq_qos_req_type type)
1150 {
1151 	int max_state, turbo_max, freq, i, perf_pct;
1152 	struct freq_qos_request *req;
1153 	struct cpufreq_policy *policy;
1154 
1155 	for_each_possible_cpu(i) {
1156 		struct cpudata *cpu = all_cpu_data[i];
1157 
1158 		policy = cpufreq_cpu_get(i);
1159 		if (!policy)
1160 			continue;
1161 
1162 		req = policy->driver_data;
1163 		cpufreq_cpu_put(policy);
1164 
1165 		if (!req)
1166 			continue;
1167 
1168 		if (hwp_active)
1169 			intel_pstate_get_hwp_max(i, &turbo_max, &max_state);
1170 		else
1171 			turbo_max = cpu->pstate.turbo_pstate;
1172 
1173 		if (type == FREQ_QOS_MIN) {
1174 			perf_pct = global.min_perf_pct;
1175 		} else {
1176 			req++;
1177 			perf_pct = global.max_perf_pct;
1178 		}
1179 
1180 		freq = DIV_ROUND_UP(turbo_max * perf_pct, 100);
1181 		freq *= cpu->pstate.scaling;
1182 
1183 		if (freq_qos_update_request(req, freq) < 0)
1184 			pr_warn("Failed to update freq constraint: CPU%d\n", i);
1185 	}
1186 }
1187 
1188 static ssize_t store_max_perf_pct(struct kobject *a, struct kobj_attribute *b,
1189 				  const char *buf, size_t count)
1190 {
1191 	unsigned int input;
1192 	int ret;
1193 
1194 	ret = sscanf(buf, "%u", &input);
1195 	if (ret != 1)
1196 		return -EINVAL;
1197 
1198 	mutex_lock(&intel_pstate_driver_lock);
1199 
1200 	if (!intel_pstate_driver) {
1201 		mutex_unlock(&intel_pstate_driver_lock);
1202 		return -EAGAIN;
1203 	}
1204 
1205 	mutex_lock(&intel_pstate_limits_lock);
1206 
1207 	global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
1208 
1209 	mutex_unlock(&intel_pstate_limits_lock);
1210 
1211 	if (intel_pstate_driver == &intel_pstate)
1212 		intel_pstate_update_policies();
1213 	else
1214 		update_qos_request(FREQ_QOS_MAX);
1215 
1216 	mutex_unlock(&intel_pstate_driver_lock);
1217 
1218 	return count;
1219 }
1220 
1221 static ssize_t store_min_perf_pct(struct kobject *a, struct kobj_attribute *b,
1222 				  const char *buf, size_t count)
1223 {
1224 	unsigned int input;
1225 	int ret;
1226 
1227 	ret = sscanf(buf, "%u", &input);
1228 	if (ret != 1)
1229 		return -EINVAL;
1230 
1231 	mutex_lock(&intel_pstate_driver_lock);
1232 
1233 	if (!intel_pstate_driver) {
1234 		mutex_unlock(&intel_pstate_driver_lock);
1235 		return -EAGAIN;
1236 	}
1237 
1238 	mutex_lock(&intel_pstate_limits_lock);
1239 
1240 	global.min_perf_pct = clamp_t(int, input,
1241 				      min_perf_pct_min(), global.max_perf_pct);
1242 
1243 	mutex_unlock(&intel_pstate_limits_lock);
1244 
1245 	if (intel_pstate_driver == &intel_pstate)
1246 		intel_pstate_update_policies();
1247 	else
1248 		update_qos_request(FREQ_QOS_MIN);
1249 
1250 	mutex_unlock(&intel_pstate_driver_lock);
1251 
1252 	return count;
1253 }
1254 
1255 static ssize_t show_hwp_dynamic_boost(struct kobject *kobj,
1256 				struct kobj_attribute *attr, char *buf)
1257 {
1258 	return sprintf(buf, "%u\n", hwp_boost);
1259 }
1260 
1261 static ssize_t store_hwp_dynamic_boost(struct kobject *a,
1262 				       struct kobj_attribute *b,
1263 				       const char *buf, size_t count)
1264 {
1265 	unsigned int input;
1266 	int ret;
1267 
1268 	ret = kstrtouint(buf, 10, &input);
1269 	if (ret)
1270 		return ret;
1271 
1272 	mutex_lock(&intel_pstate_driver_lock);
1273 	hwp_boost = !!input;
1274 	intel_pstate_update_policies();
1275 	mutex_unlock(&intel_pstate_driver_lock);
1276 
1277 	return count;
1278 }
1279 
1280 static ssize_t show_energy_efficiency(struct kobject *kobj, struct kobj_attribute *attr,
1281 				      char *buf)
1282 {
1283 	u64 power_ctl;
1284 	int enable;
1285 
1286 	rdmsrl(MSR_IA32_POWER_CTL, power_ctl);
1287 	enable = !!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE));
1288 	return sprintf(buf, "%d\n", !enable);
1289 }
1290 
1291 static ssize_t store_energy_efficiency(struct kobject *a, struct kobj_attribute *b,
1292 				       const char *buf, size_t count)
1293 {
1294 	bool input;
1295 	int ret;
1296 
1297 	ret = kstrtobool(buf, &input);
1298 	if (ret)
1299 		return ret;
1300 
1301 	set_power_ctl_ee_state(input);
1302 
1303 	return count;
1304 }
1305 
1306 show_one(max_perf_pct, max_perf_pct);
1307 show_one(min_perf_pct, min_perf_pct);
1308 
1309 define_one_global_rw(status);
1310 define_one_global_rw(no_turbo);
1311 define_one_global_rw(max_perf_pct);
1312 define_one_global_rw(min_perf_pct);
1313 define_one_global_ro(turbo_pct);
1314 define_one_global_ro(num_pstates);
1315 define_one_global_rw(hwp_dynamic_boost);
1316 define_one_global_rw(energy_efficiency);
1317 
1318 static struct attribute *intel_pstate_attributes[] = {
1319 	&status.attr,
1320 	&no_turbo.attr,
1321 	&turbo_pct.attr,
1322 	&num_pstates.attr,
1323 	NULL
1324 };
1325 
1326 static const struct attribute_group intel_pstate_attr_group = {
1327 	.attrs = intel_pstate_attributes,
1328 };
1329 
1330 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[];
1331 
1332 static void __init intel_pstate_sysfs_expose_params(void)
1333 {
1334 	struct kobject *intel_pstate_kobject;
1335 	int rc;
1336 
1337 	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
1338 						&cpu_subsys.dev_root->kobj);
1339 	if (WARN_ON(!intel_pstate_kobject))
1340 		return;
1341 
1342 	rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1343 	if (WARN_ON(rc))
1344 		return;
1345 
1346 	/*
1347 	 * If per cpu limits are enforced there are no global limits, so
1348 	 * return without creating max/min_perf_pct attributes
1349 	 */
1350 	if (per_cpu_limits)
1351 		return;
1352 
1353 	rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
1354 	WARN_ON(rc);
1355 
1356 	rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
1357 	WARN_ON(rc);
1358 
1359 	if (hwp_active) {
1360 		rc = sysfs_create_file(intel_pstate_kobject,
1361 				       &hwp_dynamic_boost.attr);
1362 		WARN_ON(rc);
1363 	}
1364 
1365 	if (x86_match_cpu(intel_pstate_cpu_ee_disable_ids)) {
1366 		rc = sysfs_create_file(intel_pstate_kobject, &energy_efficiency.attr);
1367 		WARN_ON(rc);
1368 	}
1369 }
1370 /************************** sysfs end ************************/
1371 
1372 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
1373 {
1374 	/* First disable HWP notification interrupt as we don't process them */
1375 	if (boot_cpu_has(X86_FEATURE_HWP_NOTIFY))
1376 		wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1377 
1378 	wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1379 	cpudata->epp_policy = 0;
1380 	if (cpudata->epp_default == -EINVAL)
1381 		cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
1382 }
1383 
1384 static int atom_get_min_pstate(void)
1385 {
1386 	u64 value;
1387 
1388 	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1389 	return (value >> 8) & 0x7F;
1390 }
1391 
1392 static int atom_get_max_pstate(void)
1393 {
1394 	u64 value;
1395 
1396 	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1397 	return (value >> 16) & 0x7F;
1398 }
1399 
1400 static int atom_get_turbo_pstate(void)
1401 {
1402 	u64 value;
1403 
1404 	rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
1405 	return value & 0x7F;
1406 }
1407 
1408 static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1409 {
1410 	u64 val;
1411 	int32_t vid_fp;
1412 	u32 vid;
1413 
1414 	val = (u64)pstate << 8;
1415 	if (global.no_turbo && !global.turbo_disabled)
1416 		val |= (u64)1 << 32;
1417 
1418 	vid_fp = cpudata->vid.min + mul_fp(
1419 		int_tofp(pstate - cpudata->pstate.min_pstate),
1420 		cpudata->vid.ratio);
1421 
1422 	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1423 	vid = ceiling_fp(vid_fp);
1424 
1425 	if (pstate > cpudata->pstate.max_pstate)
1426 		vid = cpudata->vid.turbo;
1427 
1428 	return val | vid;
1429 }
1430 
1431 static int silvermont_get_scaling(void)
1432 {
1433 	u64 value;
1434 	int i;
1435 	/* Defined in Table 35-6 from SDM (Sept 2015) */
1436 	static int silvermont_freq_table[] = {
1437 		83300, 100000, 133300, 116700, 80000};
1438 
1439 	rdmsrl(MSR_FSB_FREQ, value);
1440 	i = value & 0x7;
1441 	WARN_ON(i > 4);
1442 
1443 	return silvermont_freq_table[i];
1444 }
1445 
1446 static int airmont_get_scaling(void)
1447 {
1448 	u64 value;
1449 	int i;
1450 	/* Defined in Table 35-10 from SDM (Sept 2015) */
1451 	static int airmont_freq_table[] = {
1452 		83300, 100000, 133300, 116700, 80000,
1453 		93300, 90000, 88900, 87500};
1454 
1455 	rdmsrl(MSR_FSB_FREQ, value);
1456 	i = value & 0xF;
1457 	WARN_ON(i > 8);
1458 
1459 	return airmont_freq_table[i];
1460 }
1461 
1462 static void atom_get_vid(struct cpudata *cpudata)
1463 {
1464 	u64 value;
1465 
1466 	rdmsrl(MSR_ATOM_CORE_VIDS, value);
1467 	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
1468 	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1469 	cpudata->vid.ratio = div_fp(
1470 		cpudata->vid.max - cpudata->vid.min,
1471 		int_tofp(cpudata->pstate.max_pstate -
1472 			cpudata->pstate.min_pstate));
1473 
1474 	rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1475 	cpudata->vid.turbo = value & 0x7f;
1476 }
1477 
1478 static int core_get_min_pstate(void)
1479 {
1480 	u64 value;
1481 
1482 	rdmsrl(MSR_PLATFORM_INFO, value);
1483 	return (value >> 40) & 0xFF;
1484 }
1485 
1486 static int core_get_max_pstate_physical(void)
1487 {
1488 	u64 value;
1489 
1490 	rdmsrl(MSR_PLATFORM_INFO, value);
1491 	return (value >> 8) & 0xFF;
1492 }
1493 
1494 static int core_get_tdp_ratio(u64 plat_info)
1495 {
1496 	/* Check how many TDP levels present */
1497 	if (plat_info & 0x600000000) {
1498 		u64 tdp_ctrl;
1499 		u64 tdp_ratio;
1500 		int tdp_msr;
1501 		int err;
1502 
1503 		/* Get the TDP level (0, 1, 2) to get ratios */
1504 		err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
1505 		if (err)
1506 			return err;
1507 
1508 		/* TDP MSR are continuous starting at 0x648 */
1509 		tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
1510 		err = rdmsrl_safe(tdp_msr, &tdp_ratio);
1511 		if (err)
1512 			return err;
1513 
1514 		/* For level 1 and 2, bits[23:16] contain the ratio */
1515 		if (tdp_ctrl & 0x03)
1516 			tdp_ratio >>= 16;
1517 
1518 		tdp_ratio &= 0xff; /* ratios are only 8 bits long */
1519 		pr_debug("tdp_ratio %x\n", (int)tdp_ratio);
1520 
1521 		return (int)tdp_ratio;
1522 	}
1523 
1524 	return -ENXIO;
1525 }
1526 
1527 static int core_get_max_pstate(void)
1528 {
1529 	u64 tar;
1530 	u64 plat_info;
1531 	int max_pstate;
1532 	int tdp_ratio;
1533 	int err;
1534 
1535 	rdmsrl(MSR_PLATFORM_INFO, plat_info);
1536 	max_pstate = (plat_info >> 8) & 0xFF;
1537 
1538 	tdp_ratio = core_get_tdp_ratio(plat_info);
1539 	if (tdp_ratio <= 0)
1540 		return max_pstate;
1541 
1542 	if (hwp_active) {
1543 		/* Turbo activation ratio is not used on HWP platforms */
1544 		return tdp_ratio;
1545 	}
1546 
1547 	err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
1548 	if (!err) {
1549 		int tar_levels;
1550 
1551 		/* Do some sanity checking for safety */
1552 		tar_levels = tar & 0xff;
1553 		if (tdp_ratio - 1 == tar_levels) {
1554 			max_pstate = tar_levels;
1555 			pr_debug("max_pstate=TAC %x\n", max_pstate);
1556 		}
1557 	}
1558 
1559 	return max_pstate;
1560 }
1561 
1562 static int core_get_turbo_pstate(void)
1563 {
1564 	u64 value;
1565 	int nont, ret;
1566 
1567 	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1568 	nont = core_get_max_pstate();
1569 	ret = (value) & 255;
1570 	if (ret <= nont)
1571 		ret = nont;
1572 	return ret;
1573 }
1574 
1575 static inline int core_get_scaling(void)
1576 {
1577 	return 100000;
1578 }
1579 
1580 static u64 core_get_val(struct cpudata *cpudata, int pstate)
1581 {
1582 	u64 val;
1583 
1584 	val = (u64)pstate << 8;
1585 	if (global.no_turbo && !global.turbo_disabled)
1586 		val |= (u64)1 << 32;
1587 
1588 	return val;
1589 }
1590 
1591 static int knl_get_aperf_mperf_shift(void)
1592 {
1593 	return 10;
1594 }
1595 
1596 static int knl_get_turbo_pstate(void)
1597 {
1598 	u64 value;
1599 	int nont, ret;
1600 
1601 	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1602 	nont = core_get_max_pstate();
1603 	ret = (((value) >> 8) & 0xFF);
1604 	if (ret <= nont)
1605 		ret = nont;
1606 	return ret;
1607 }
1608 
1609 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1610 {
1611 	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1612 	cpu->pstate.current_pstate = pstate;
1613 	/*
1614 	 * Generally, there is no guarantee that this code will always run on
1615 	 * the CPU being updated, so force the register update to run on the
1616 	 * right CPU.
1617 	 */
1618 	wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1619 		      pstate_funcs.get_val(cpu, pstate));
1620 }
1621 
1622 static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1623 {
1624 	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
1625 }
1626 
1627 static void intel_pstate_max_within_limits(struct cpudata *cpu)
1628 {
1629 	int pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio);
1630 
1631 	update_turbo_state();
1632 	intel_pstate_set_pstate(cpu, pstate);
1633 }
1634 
1635 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1636 {
1637 	cpu->pstate.min_pstate = pstate_funcs.get_min();
1638 	cpu->pstate.max_pstate = pstate_funcs.get_max();
1639 	cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1640 	cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1641 	cpu->pstate.scaling = pstate_funcs.get_scaling();
1642 	cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
1643 
1644 	if (hwp_active && !hwp_mode_bdw) {
1645 		unsigned int phy_max, current_max;
1646 
1647 		intel_pstate_get_hwp_max(cpu->cpu, &phy_max, &current_max);
1648 		cpu->pstate.turbo_freq = phy_max * cpu->pstate.scaling;
1649 	} else {
1650 		cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1651 	}
1652 
1653 	if (pstate_funcs.get_aperf_mperf_shift)
1654 		cpu->aperf_mperf_shift = pstate_funcs.get_aperf_mperf_shift();
1655 
1656 	if (pstate_funcs.get_vid)
1657 		pstate_funcs.get_vid(cpu);
1658 
1659 	intel_pstate_set_min_pstate(cpu);
1660 }
1661 
1662 /*
1663  * Long hold time will keep high perf limits for long time,
1664  * which negatively impacts perf/watt for some workloads,
1665  * like specpower. 3ms is based on experiements on some
1666  * workoads.
1667  */
1668 static int hwp_boost_hold_time_ns = 3 * NSEC_PER_MSEC;
1669 
1670 static inline void intel_pstate_hwp_boost_up(struct cpudata *cpu)
1671 {
1672 	u64 hwp_req = READ_ONCE(cpu->hwp_req_cached);
1673 	u32 max_limit = (hwp_req & 0xff00) >> 8;
1674 	u32 min_limit = (hwp_req & 0xff);
1675 	u32 boost_level1;
1676 
1677 	/*
1678 	 * Cases to consider (User changes via sysfs or boot time):
1679 	 * If, P0 (Turbo max) = P1 (Guaranteed max) = min:
1680 	 *	No boost, return.
1681 	 * If, P0 (Turbo max) > P1 (Guaranteed max) = min:
1682 	 *     Should result in one level boost only for P0.
1683 	 * If, P0 (Turbo max) = P1 (Guaranteed max) > min:
1684 	 *     Should result in two level boost:
1685 	 *         (min + p1)/2 and P1.
1686 	 * If, P0 (Turbo max) > P1 (Guaranteed max) > min:
1687 	 *     Should result in three level boost:
1688 	 *        (min + p1)/2, P1 and P0.
1689 	 */
1690 
1691 	/* If max and min are equal or already at max, nothing to boost */
1692 	if (max_limit == min_limit || cpu->hwp_boost_min >= max_limit)
1693 		return;
1694 
1695 	if (!cpu->hwp_boost_min)
1696 		cpu->hwp_boost_min = min_limit;
1697 
1698 	/* level at half way mark between min and guranteed */
1699 	boost_level1 = (HWP_GUARANTEED_PERF(cpu->hwp_cap_cached) + min_limit) >> 1;
1700 
1701 	if (cpu->hwp_boost_min < boost_level1)
1702 		cpu->hwp_boost_min = boost_level1;
1703 	else if (cpu->hwp_boost_min < HWP_GUARANTEED_PERF(cpu->hwp_cap_cached))
1704 		cpu->hwp_boost_min = HWP_GUARANTEED_PERF(cpu->hwp_cap_cached);
1705 	else if (cpu->hwp_boost_min == HWP_GUARANTEED_PERF(cpu->hwp_cap_cached) &&
1706 		 max_limit != HWP_GUARANTEED_PERF(cpu->hwp_cap_cached))
1707 		cpu->hwp_boost_min = max_limit;
1708 	else
1709 		return;
1710 
1711 	hwp_req = (hwp_req & ~GENMASK_ULL(7, 0)) | cpu->hwp_boost_min;
1712 	wrmsrl(MSR_HWP_REQUEST, hwp_req);
1713 	cpu->last_update = cpu->sample.time;
1714 }
1715 
1716 static inline void intel_pstate_hwp_boost_down(struct cpudata *cpu)
1717 {
1718 	if (cpu->hwp_boost_min) {
1719 		bool expired;
1720 
1721 		/* Check if we are idle for hold time to boost down */
1722 		expired = time_after64(cpu->sample.time, cpu->last_update +
1723 				       hwp_boost_hold_time_ns);
1724 		if (expired) {
1725 			wrmsrl(MSR_HWP_REQUEST, cpu->hwp_req_cached);
1726 			cpu->hwp_boost_min = 0;
1727 		}
1728 	}
1729 	cpu->last_update = cpu->sample.time;
1730 }
1731 
1732 static inline void intel_pstate_update_util_hwp_local(struct cpudata *cpu,
1733 						      u64 time)
1734 {
1735 	cpu->sample.time = time;
1736 
1737 	if (cpu->sched_flags & SCHED_CPUFREQ_IOWAIT) {
1738 		bool do_io = false;
1739 
1740 		cpu->sched_flags = 0;
1741 		/*
1742 		 * Set iowait_boost flag and update time. Since IO WAIT flag
1743 		 * is set all the time, we can't just conclude that there is
1744 		 * some IO bound activity is scheduled on this CPU with just
1745 		 * one occurrence. If we receive at least two in two
1746 		 * consecutive ticks, then we treat as boost candidate.
1747 		 */
1748 		if (time_before64(time, cpu->last_io_update + 2 * TICK_NSEC))
1749 			do_io = true;
1750 
1751 		cpu->last_io_update = time;
1752 
1753 		if (do_io)
1754 			intel_pstate_hwp_boost_up(cpu);
1755 
1756 	} else {
1757 		intel_pstate_hwp_boost_down(cpu);
1758 	}
1759 }
1760 
1761 static inline void intel_pstate_update_util_hwp(struct update_util_data *data,
1762 						u64 time, unsigned int flags)
1763 {
1764 	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1765 
1766 	cpu->sched_flags |= flags;
1767 
1768 	if (smp_processor_id() == cpu->cpu)
1769 		intel_pstate_update_util_hwp_local(cpu, time);
1770 }
1771 
1772 static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1773 {
1774 	struct sample *sample = &cpu->sample;
1775 
1776 	sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1777 }
1778 
1779 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1780 {
1781 	u64 aperf, mperf;
1782 	unsigned long flags;
1783 	u64 tsc;
1784 
1785 	local_irq_save(flags);
1786 	rdmsrl(MSR_IA32_APERF, aperf);
1787 	rdmsrl(MSR_IA32_MPERF, mperf);
1788 	tsc = rdtsc();
1789 	if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1790 		local_irq_restore(flags);
1791 		return false;
1792 	}
1793 	local_irq_restore(flags);
1794 
1795 	cpu->last_sample_time = cpu->sample.time;
1796 	cpu->sample.time = time;
1797 	cpu->sample.aperf = aperf;
1798 	cpu->sample.mperf = mperf;
1799 	cpu->sample.tsc =  tsc;
1800 	cpu->sample.aperf -= cpu->prev_aperf;
1801 	cpu->sample.mperf -= cpu->prev_mperf;
1802 	cpu->sample.tsc -= cpu->prev_tsc;
1803 
1804 	cpu->prev_aperf = aperf;
1805 	cpu->prev_mperf = mperf;
1806 	cpu->prev_tsc = tsc;
1807 	/*
1808 	 * First time this function is invoked in a given cycle, all of the
1809 	 * previous sample data fields are equal to zero or stale and they must
1810 	 * be populated with meaningful numbers for things to work, so assume
1811 	 * that sample.time will always be reset before setting the utilization
1812 	 * update hook and make the caller skip the sample then.
1813 	 */
1814 	if (cpu->last_sample_time) {
1815 		intel_pstate_calc_avg_perf(cpu);
1816 		return true;
1817 	}
1818 	return false;
1819 }
1820 
1821 static inline int32_t get_avg_frequency(struct cpudata *cpu)
1822 {
1823 	return mul_ext_fp(cpu->sample.core_avg_perf, cpu_khz);
1824 }
1825 
1826 static inline int32_t get_avg_pstate(struct cpudata *cpu)
1827 {
1828 	return mul_ext_fp(cpu->pstate.max_pstate_physical,
1829 			  cpu->sample.core_avg_perf);
1830 }
1831 
1832 static inline int32_t get_target_pstate(struct cpudata *cpu)
1833 {
1834 	struct sample *sample = &cpu->sample;
1835 	int32_t busy_frac;
1836 	int target, avg_pstate;
1837 
1838 	busy_frac = div_fp(sample->mperf << cpu->aperf_mperf_shift,
1839 			   sample->tsc);
1840 
1841 	if (busy_frac < cpu->iowait_boost)
1842 		busy_frac = cpu->iowait_boost;
1843 
1844 	sample->busy_scaled = busy_frac * 100;
1845 
1846 	target = global.no_turbo || global.turbo_disabled ?
1847 			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1848 	target += target >> 2;
1849 	target = mul_fp(target, busy_frac);
1850 	if (target < cpu->pstate.min_pstate)
1851 		target = cpu->pstate.min_pstate;
1852 
1853 	/*
1854 	 * If the average P-state during the previous cycle was higher than the
1855 	 * current target, add 50% of the difference to the target to reduce
1856 	 * possible performance oscillations and offset possible performance
1857 	 * loss related to moving the workload from one CPU to another within
1858 	 * a package/module.
1859 	 */
1860 	avg_pstate = get_avg_pstate(cpu);
1861 	if (avg_pstate > target)
1862 		target += (avg_pstate - target) >> 1;
1863 
1864 	return target;
1865 }
1866 
1867 static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
1868 {
1869 	int min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio);
1870 	int max_pstate = max(min_pstate, cpu->max_perf_ratio);
1871 
1872 	return clamp_t(int, pstate, min_pstate, max_pstate);
1873 }
1874 
1875 static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1876 {
1877 	if (pstate == cpu->pstate.current_pstate)
1878 		return;
1879 
1880 	cpu->pstate.current_pstate = pstate;
1881 	wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1882 }
1883 
1884 static void intel_pstate_adjust_pstate(struct cpudata *cpu)
1885 {
1886 	int from = cpu->pstate.current_pstate;
1887 	struct sample *sample;
1888 	int target_pstate;
1889 
1890 	update_turbo_state();
1891 
1892 	target_pstate = get_target_pstate(cpu);
1893 	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
1894 	trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
1895 	intel_pstate_update_pstate(cpu, target_pstate);
1896 
1897 	sample = &cpu->sample;
1898 	trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1899 		fp_toint(sample->busy_scaled),
1900 		from,
1901 		cpu->pstate.current_pstate,
1902 		sample->mperf,
1903 		sample->aperf,
1904 		sample->tsc,
1905 		get_avg_frequency(cpu),
1906 		fp_toint(cpu->iowait_boost * 100));
1907 }
1908 
1909 static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1910 				     unsigned int flags)
1911 {
1912 	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1913 	u64 delta_ns;
1914 
1915 	/* Don't allow remote callbacks */
1916 	if (smp_processor_id() != cpu->cpu)
1917 		return;
1918 
1919 	delta_ns = time - cpu->last_update;
1920 	if (flags & SCHED_CPUFREQ_IOWAIT) {
1921 		/* Start over if the CPU may have been idle. */
1922 		if (delta_ns > TICK_NSEC) {
1923 			cpu->iowait_boost = ONE_EIGHTH_FP;
1924 		} else if (cpu->iowait_boost >= ONE_EIGHTH_FP) {
1925 			cpu->iowait_boost <<= 1;
1926 			if (cpu->iowait_boost > int_tofp(1))
1927 				cpu->iowait_boost = int_tofp(1);
1928 		} else {
1929 			cpu->iowait_boost = ONE_EIGHTH_FP;
1930 		}
1931 	} else if (cpu->iowait_boost) {
1932 		/* Clear iowait_boost if the CPU may have been idle. */
1933 		if (delta_ns > TICK_NSEC)
1934 			cpu->iowait_boost = 0;
1935 		else
1936 			cpu->iowait_boost >>= 1;
1937 	}
1938 	cpu->last_update = time;
1939 	delta_ns = time - cpu->sample.time;
1940 	if ((s64)delta_ns < INTEL_PSTATE_SAMPLING_INTERVAL)
1941 		return;
1942 
1943 	if (intel_pstate_sample(cpu, time))
1944 		intel_pstate_adjust_pstate(cpu);
1945 }
1946 
1947 static struct pstate_funcs core_funcs = {
1948 	.get_max = core_get_max_pstate,
1949 	.get_max_physical = core_get_max_pstate_physical,
1950 	.get_min = core_get_min_pstate,
1951 	.get_turbo = core_get_turbo_pstate,
1952 	.get_scaling = core_get_scaling,
1953 	.get_val = core_get_val,
1954 };
1955 
1956 static const struct pstate_funcs silvermont_funcs = {
1957 	.get_max = atom_get_max_pstate,
1958 	.get_max_physical = atom_get_max_pstate,
1959 	.get_min = atom_get_min_pstate,
1960 	.get_turbo = atom_get_turbo_pstate,
1961 	.get_val = atom_get_val,
1962 	.get_scaling = silvermont_get_scaling,
1963 	.get_vid = atom_get_vid,
1964 };
1965 
1966 static const struct pstate_funcs airmont_funcs = {
1967 	.get_max = atom_get_max_pstate,
1968 	.get_max_physical = atom_get_max_pstate,
1969 	.get_min = atom_get_min_pstate,
1970 	.get_turbo = atom_get_turbo_pstate,
1971 	.get_val = atom_get_val,
1972 	.get_scaling = airmont_get_scaling,
1973 	.get_vid = atom_get_vid,
1974 };
1975 
1976 static const struct pstate_funcs knl_funcs = {
1977 	.get_max = core_get_max_pstate,
1978 	.get_max_physical = core_get_max_pstate_physical,
1979 	.get_min = core_get_min_pstate,
1980 	.get_turbo = knl_get_turbo_pstate,
1981 	.get_aperf_mperf_shift = knl_get_aperf_mperf_shift,
1982 	.get_scaling = core_get_scaling,
1983 	.get_val = core_get_val,
1984 };
1985 
1986 #define X86_MATCH(model, policy)					 \
1987 	X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6, INTEL_FAM6_##model, \
1988 					   X86_FEATURE_APERFMPERF, &policy)
1989 
1990 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1991 	X86_MATCH(SANDYBRIDGE,		core_funcs),
1992 	X86_MATCH(SANDYBRIDGE_X,	core_funcs),
1993 	X86_MATCH(ATOM_SILVERMONT,	silvermont_funcs),
1994 	X86_MATCH(IVYBRIDGE,		core_funcs),
1995 	X86_MATCH(HASWELL,		core_funcs),
1996 	X86_MATCH(BROADWELL,		core_funcs),
1997 	X86_MATCH(IVYBRIDGE_X,		core_funcs),
1998 	X86_MATCH(HASWELL_X,		core_funcs),
1999 	X86_MATCH(HASWELL_L,		core_funcs),
2000 	X86_MATCH(HASWELL_G,		core_funcs),
2001 	X86_MATCH(BROADWELL_G,		core_funcs),
2002 	X86_MATCH(ATOM_AIRMONT,		airmont_funcs),
2003 	X86_MATCH(SKYLAKE_L,		core_funcs),
2004 	X86_MATCH(BROADWELL_X,		core_funcs),
2005 	X86_MATCH(SKYLAKE,		core_funcs),
2006 	X86_MATCH(BROADWELL_D,		core_funcs),
2007 	X86_MATCH(XEON_PHI_KNL,		knl_funcs),
2008 	X86_MATCH(XEON_PHI_KNM,		knl_funcs),
2009 	X86_MATCH(ATOM_GOLDMONT,	core_funcs),
2010 	X86_MATCH(ATOM_GOLDMONT_PLUS,	core_funcs),
2011 	X86_MATCH(SKYLAKE_X,		core_funcs),
2012 	{}
2013 };
2014 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
2015 
2016 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
2017 	X86_MATCH(BROADWELL_D,		core_funcs),
2018 	X86_MATCH(BROADWELL_X,		core_funcs),
2019 	X86_MATCH(SKYLAKE_X,		core_funcs),
2020 	{}
2021 };
2022 
2023 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
2024 	X86_MATCH(KABYLAKE,		core_funcs),
2025 	{}
2026 };
2027 
2028 static const struct x86_cpu_id intel_pstate_hwp_boost_ids[] = {
2029 	X86_MATCH(SKYLAKE_X,		core_funcs),
2030 	X86_MATCH(SKYLAKE,		core_funcs),
2031 	{}
2032 };
2033 
2034 static int intel_pstate_init_cpu(unsigned int cpunum)
2035 {
2036 	struct cpudata *cpu;
2037 
2038 	cpu = all_cpu_data[cpunum];
2039 
2040 	if (!cpu) {
2041 		cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
2042 		if (!cpu)
2043 			return -ENOMEM;
2044 
2045 		all_cpu_data[cpunum] = cpu;
2046 
2047 		cpu->epp_default = -EINVAL;
2048 		cpu->epp_powersave = -EINVAL;
2049 		cpu->epp_saved = -EINVAL;
2050 	}
2051 
2052 	cpu = all_cpu_data[cpunum];
2053 
2054 	cpu->cpu = cpunum;
2055 
2056 	if (hwp_active) {
2057 		const struct x86_cpu_id *id;
2058 
2059 		intel_pstate_hwp_enable(cpu);
2060 
2061 		id = x86_match_cpu(intel_pstate_hwp_boost_ids);
2062 		if (id && intel_pstate_acpi_pm_profile_server())
2063 			hwp_boost = true;
2064 	}
2065 
2066 	intel_pstate_get_cpu_pstates(cpu);
2067 
2068 	pr_debug("controlling: cpu %d\n", cpunum);
2069 
2070 	return 0;
2071 }
2072 
2073 static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
2074 {
2075 	struct cpudata *cpu = all_cpu_data[cpu_num];
2076 
2077 	if (hwp_active && !hwp_boost)
2078 		return;
2079 
2080 	if (cpu->update_util_set)
2081 		return;
2082 
2083 	/* Prevent intel_pstate_update_util() from using stale data. */
2084 	cpu->sample.time = 0;
2085 	cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
2086 				     (hwp_active ?
2087 				      intel_pstate_update_util_hwp :
2088 				      intel_pstate_update_util));
2089 	cpu->update_util_set = true;
2090 }
2091 
2092 static void intel_pstate_clear_update_util_hook(unsigned int cpu)
2093 {
2094 	struct cpudata *cpu_data = all_cpu_data[cpu];
2095 
2096 	if (!cpu_data->update_util_set)
2097 		return;
2098 
2099 	cpufreq_remove_update_util_hook(cpu);
2100 	cpu_data->update_util_set = false;
2101 	synchronize_rcu();
2102 }
2103 
2104 static int intel_pstate_get_max_freq(struct cpudata *cpu)
2105 {
2106 	return global.turbo_disabled || global.no_turbo ?
2107 			cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2108 }
2109 
2110 static void intel_pstate_update_perf_limits(struct cpudata *cpu,
2111 					    unsigned int policy_min,
2112 					    unsigned int policy_max)
2113 {
2114 	int max_freq = intel_pstate_get_max_freq(cpu);
2115 	int32_t max_policy_perf, min_policy_perf;
2116 	int max_state, turbo_max;
2117 
2118 	/*
2119 	 * HWP needs some special consideration, because on BDX the
2120 	 * HWP_REQUEST uses abstract value to represent performance
2121 	 * rather than pure ratios.
2122 	 */
2123 	if (hwp_active) {
2124 		intel_pstate_get_hwp_max(cpu->cpu, &turbo_max, &max_state);
2125 	} else {
2126 		max_state = global.no_turbo || global.turbo_disabled ?
2127 			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2128 		turbo_max = cpu->pstate.turbo_pstate;
2129 	}
2130 
2131 	max_policy_perf = max_state * policy_max / max_freq;
2132 	if (policy_max == policy_min) {
2133 		min_policy_perf = max_policy_perf;
2134 	} else {
2135 		min_policy_perf = max_state * policy_min / max_freq;
2136 		min_policy_perf = clamp_t(int32_t, min_policy_perf,
2137 					  0, max_policy_perf);
2138 	}
2139 
2140 	pr_debug("cpu:%d max_state %d min_policy_perf:%d max_policy_perf:%d\n",
2141 		 cpu->cpu, max_state, min_policy_perf, max_policy_perf);
2142 
2143 	/* Normalize user input to [min_perf, max_perf] */
2144 	if (per_cpu_limits) {
2145 		cpu->min_perf_ratio = min_policy_perf;
2146 		cpu->max_perf_ratio = max_policy_perf;
2147 	} else {
2148 		int32_t global_min, global_max;
2149 
2150 		/* Global limits are in percent of the maximum turbo P-state. */
2151 		global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
2152 		global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
2153 		global_min = clamp_t(int32_t, global_min, 0, global_max);
2154 
2155 		pr_debug("cpu:%d global_min:%d global_max:%d\n", cpu->cpu,
2156 			 global_min, global_max);
2157 
2158 		cpu->min_perf_ratio = max(min_policy_perf, global_min);
2159 		cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf);
2160 		cpu->max_perf_ratio = min(max_policy_perf, global_max);
2161 		cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio);
2162 
2163 		/* Make sure min_perf <= max_perf */
2164 		cpu->min_perf_ratio = min(cpu->min_perf_ratio,
2165 					  cpu->max_perf_ratio);
2166 
2167 	}
2168 	pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", cpu->cpu,
2169 		 cpu->max_perf_ratio,
2170 		 cpu->min_perf_ratio);
2171 }
2172 
2173 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
2174 {
2175 	struct cpudata *cpu;
2176 
2177 	if (!policy->cpuinfo.max_freq)
2178 		return -ENODEV;
2179 
2180 	pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
2181 		 policy->cpuinfo.max_freq, policy->max);
2182 
2183 	cpu = all_cpu_data[policy->cpu];
2184 	cpu->policy = policy->policy;
2185 
2186 	mutex_lock(&intel_pstate_limits_lock);
2187 
2188 	intel_pstate_update_perf_limits(cpu, policy->min, policy->max);
2189 
2190 	if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
2191 		/*
2192 		 * NOHZ_FULL CPUs need this as the governor callback may not
2193 		 * be invoked on them.
2194 		 */
2195 		intel_pstate_clear_update_util_hook(policy->cpu);
2196 		intel_pstate_max_within_limits(cpu);
2197 	} else {
2198 		intel_pstate_set_update_util_hook(policy->cpu);
2199 	}
2200 
2201 	if (hwp_active) {
2202 		/*
2203 		 * When hwp_boost was active before and dynamically it
2204 		 * was turned off, in that case we need to clear the
2205 		 * update util hook.
2206 		 */
2207 		if (!hwp_boost)
2208 			intel_pstate_clear_update_util_hook(policy->cpu);
2209 		intel_pstate_hwp_set(policy->cpu);
2210 	}
2211 
2212 	mutex_unlock(&intel_pstate_limits_lock);
2213 
2214 	return 0;
2215 }
2216 
2217 static void intel_pstate_adjust_policy_max(struct cpudata *cpu,
2218 					   struct cpufreq_policy_data *policy)
2219 {
2220 	if (!hwp_active &&
2221 	    cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
2222 	    policy->max < policy->cpuinfo.max_freq &&
2223 	    policy->max > cpu->pstate.max_freq) {
2224 		pr_debug("policy->max > max non turbo frequency\n");
2225 		policy->max = policy->cpuinfo.max_freq;
2226 	}
2227 }
2228 
2229 static void intel_pstate_verify_cpu_policy(struct cpudata *cpu,
2230 					   struct cpufreq_policy_data *policy)
2231 {
2232 	update_turbo_state();
2233 	cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
2234 				     intel_pstate_get_max_freq(cpu));
2235 
2236 	intel_pstate_adjust_policy_max(cpu, policy);
2237 }
2238 
2239 static int intel_pstate_verify_policy(struct cpufreq_policy_data *policy)
2240 {
2241 	intel_pstate_verify_cpu_policy(all_cpu_data[policy->cpu], policy);
2242 
2243 	return 0;
2244 }
2245 
2246 static void intel_cpufreq_stop_cpu(struct cpufreq_policy *policy)
2247 {
2248 	intel_pstate_set_min_pstate(all_cpu_data[policy->cpu]);
2249 }
2250 
2251 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
2252 {
2253 	pr_debug("CPU %d exiting\n", policy->cpu);
2254 
2255 	intel_pstate_clear_update_util_hook(policy->cpu);
2256 	if (hwp_active) {
2257 		intel_pstate_hwp_save_state(policy);
2258 		intel_pstate_hwp_force_min_perf(policy->cpu);
2259 	} else {
2260 		intel_cpufreq_stop_cpu(policy);
2261 	}
2262 }
2263 
2264 static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
2265 {
2266 	intel_pstate_exit_perf_limits(policy);
2267 
2268 	policy->fast_switch_possible = false;
2269 
2270 	return 0;
2271 }
2272 
2273 static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2274 {
2275 	struct cpudata *cpu;
2276 	int rc;
2277 
2278 	rc = intel_pstate_init_cpu(policy->cpu);
2279 	if (rc)
2280 		return rc;
2281 
2282 	cpu = all_cpu_data[policy->cpu];
2283 
2284 	cpu->max_perf_ratio = 0xFF;
2285 	cpu->min_perf_ratio = 0;
2286 
2287 	policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
2288 	policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
2289 
2290 	/* cpuinfo and default policy values */
2291 	policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
2292 	update_turbo_state();
2293 	global.turbo_disabled_mf = global.turbo_disabled;
2294 	policy->cpuinfo.max_freq = global.turbo_disabled ?
2295 			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2296 	policy->cpuinfo.max_freq *= cpu->pstate.scaling;
2297 
2298 	if (hwp_active) {
2299 		unsigned int max_freq;
2300 
2301 		max_freq = global.turbo_disabled ?
2302 			cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2303 		if (max_freq < policy->cpuinfo.max_freq)
2304 			policy->cpuinfo.max_freq = max_freq;
2305 	}
2306 
2307 	intel_pstate_init_acpi_perf_limits(policy);
2308 
2309 	policy->fast_switch_possible = true;
2310 
2311 	return 0;
2312 }
2313 
2314 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2315 {
2316 	int ret = __intel_pstate_cpu_init(policy);
2317 
2318 	if (ret)
2319 		return ret;
2320 
2321 	/*
2322 	 * Set the policy to powersave to provide a valid fallback value in case
2323 	 * the default cpufreq governor is neither powersave nor performance.
2324 	 */
2325 	policy->policy = CPUFREQ_POLICY_POWERSAVE;
2326 
2327 	return 0;
2328 }
2329 
2330 static struct cpufreq_driver intel_pstate = {
2331 	.flags		= CPUFREQ_CONST_LOOPS,
2332 	.verify		= intel_pstate_verify_policy,
2333 	.setpolicy	= intel_pstate_set_policy,
2334 	.suspend	= intel_pstate_hwp_save_state,
2335 	.resume		= intel_pstate_resume,
2336 	.init		= intel_pstate_cpu_init,
2337 	.exit		= intel_pstate_cpu_exit,
2338 	.stop_cpu	= intel_pstate_stop_cpu,
2339 	.update_limits	= intel_pstate_update_limits,
2340 	.name		= "intel_pstate",
2341 };
2342 
2343 static int intel_cpufreq_verify_policy(struct cpufreq_policy_data *policy)
2344 {
2345 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2346 
2347 	intel_pstate_verify_cpu_policy(cpu, policy);
2348 	intel_pstate_update_perf_limits(cpu, policy->min, policy->max);
2349 
2350 	return 0;
2351 }
2352 
2353 /* Use of trace in passive mode:
2354  *
2355  * In passive mode the trace core_busy field (also known as the
2356  * performance field, and lablelled as such on the graphs; also known as
2357  * core_avg_perf) is not needed and so is re-assigned to indicate if the
2358  * driver call was via the normal or fast switch path. Various graphs
2359  * output from the intel_pstate_tracer.py utility that include core_busy
2360  * (or performance or core_avg_perf) have a fixed y-axis from 0 to 100%,
2361  * so we use 10 to indicate the the normal path through the driver, and
2362  * 90 to indicate the fast switch path through the driver.
2363  * The scaled_busy field is not used, and is set to 0.
2364  */
2365 
2366 #define	INTEL_PSTATE_TRACE_TARGET 10
2367 #define	INTEL_PSTATE_TRACE_FAST_SWITCH 90
2368 
2369 static void intel_cpufreq_trace(struct cpudata *cpu, unsigned int trace_type, int old_pstate)
2370 {
2371 	struct sample *sample;
2372 
2373 	if (!trace_pstate_sample_enabled())
2374 		return;
2375 
2376 	if (!intel_pstate_sample(cpu, ktime_get()))
2377 		return;
2378 
2379 	sample = &cpu->sample;
2380 	trace_pstate_sample(trace_type,
2381 		0,
2382 		old_pstate,
2383 		cpu->pstate.current_pstate,
2384 		sample->mperf,
2385 		sample->aperf,
2386 		sample->tsc,
2387 		get_avg_frequency(cpu),
2388 		fp_toint(cpu->iowait_boost * 100));
2389 }
2390 
2391 static int intel_cpufreq_target(struct cpufreq_policy *policy,
2392 				unsigned int target_freq,
2393 				unsigned int relation)
2394 {
2395 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2396 	struct cpufreq_freqs freqs;
2397 	int target_pstate, old_pstate;
2398 
2399 	update_turbo_state();
2400 
2401 	freqs.old = policy->cur;
2402 	freqs.new = target_freq;
2403 
2404 	cpufreq_freq_transition_begin(policy, &freqs);
2405 	switch (relation) {
2406 	case CPUFREQ_RELATION_L:
2407 		target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
2408 		break;
2409 	case CPUFREQ_RELATION_H:
2410 		target_pstate = freqs.new / cpu->pstate.scaling;
2411 		break;
2412 	default:
2413 		target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
2414 		break;
2415 	}
2416 	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2417 	old_pstate = cpu->pstate.current_pstate;
2418 	if (target_pstate != cpu->pstate.current_pstate) {
2419 		cpu->pstate.current_pstate = target_pstate;
2420 		wrmsrl_on_cpu(policy->cpu, MSR_IA32_PERF_CTL,
2421 			      pstate_funcs.get_val(cpu, target_pstate));
2422 	}
2423 	freqs.new = target_pstate * cpu->pstate.scaling;
2424 	intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_TARGET, old_pstate);
2425 	cpufreq_freq_transition_end(policy, &freqs, false);
2426 
2427 	return 0;
2428 }
2429 
2430 static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
2431 					      unsigned int target_freq)
2432 {
2433 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2434 	int target_pstate, old_pstate;
2435 
2436 	update_turbo_state();
2437 
2438 	target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
2439 	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2440 	old_pstate = cpu->pstate.current_pstate;
2441 	intel_pstate_update_pstate(cpu, target_pstate);
2442 	intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_FAST_SWITCH, old_pstate);
2443 	return target_pstate * cpu->pstate.scaling;
2444 }
2445 
2446 static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
2447 {
2448 	int max_state, turbo_max, min_freq, max_freq, ret;
2449 	struct freq_qos_request *req;
2450 	struct cpudata *cpu;
2451 	struct device *dev;
2452 
2453 	dev = get_cpu_device(policy->cpu);
2454 	if (!dev)
2455 		return -ENODEV;
2456 
2457 	ret = __intel_pstate_cpu_init(policy);
2458 	if (ret)
2459 		return ret;
2460 
2461 	policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
2462 	policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY;
2463 	/* This reflects the intel_pstate_get_cpu_pstates() setting. */
2464 	policy->cur = policy->cpuinfo.min_freq;
2465 
2466 	req = kcalloc(2, sizeof(*req), GFP_KERNEL);
2467 	if (!req) {
2468 		ret = -ENOMEM;
2469 		goto pstate_exit;
2470 	}
2471 
2472 	cpu = all_cpu_data[policy->cpu];
2473 
2474 	if (hwp_active)
2475 		intel_pstate_get_hwp_max(policy->cpu, &turbo_max, &max_state);
2476 	else
2477 		turbo_max = cpu->pstate.turbo_pstate;
2478 
2479 	min_freq = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
2480 	min_freq *= cpu->pstate.scaling;
2481 	max_freq = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
2482 	max_freq *= cpu->pstate.scaling;
2483 
2484 	ret = freq_qos_add_request(&policy->constraints, req, FREQ_QOS_MIN,
2485 				   min_freq);
2486 	if (ret < 0) {
2487 		dev_err(dev, "Failed to add min-freq constraint (%d)\n", ret);
2488 		goto free_req;
2489 	}
2490 
2491 	ret = freq_qos_add_request(&policy->constraints, req + 1, FREQ_QOS_MAX,
2492 				   max_freq);
2493 	if (ret < 0) {
2494 		dev_err(dev, "Failed to add max-freq constraint (%d)\n", ret);
2495 		goto remove_min_req;
2496 	}
2497 
2498 	policy->driver_data = req;
2499 
2500 	return 0;
2501 
2502 remove_min_req:
2503 	freq_qos_remove_request(req);
2504 free_req:
2505 	kfree(req);
2506 pstate_exit:
2507 	intel_pstate_exit_perf_limits(policy);
2508 
2509 	return ret;
2510 }
2511 
2512 static int intel_cpufreq_cpu_exit(struct cpufreq_policy *policy)
2513 {
2514 	struct freq_qos_request *req;
2515 
2516 	req = policy->driver_data;
2517 
2518 	freq_qos_remove_request(req + 1);
2519 	freq_qos_remove_request(req);
2520 	kfree(req);
2521 
2522 	return intel_pstate_cpu_exit(policy);
2523 }
2524 
2525 static struct cpufreq_driver intel_cpufreq = {
2526 	.flags		= CPUFREQ_CONST_LOOPS,
2527 	.verify		= intel_cpufreq_verify_policy,
2528 	.target		= intel_cpufreq_target,
2529 	.fast_switch	= intel_cpufreq_fast_switch,
2530 	.init		= intel_cpufreq_cpu_init,
2531 	.exit		= intel_cpufreq_cpu_exit,
2532 	.stop_cpu	= intel_cpufreq_stop_cpu,
2533 	.update_limits	= intel_pstate_update_limits,
2534 	.name		= "intel_cpufreq",
2535 };
2536 
2537 static struct cpufreq_driver *default_driver = &intel_pstate;
2538 
2539 static void intel_pstate_driver_cleanup(void)
2540 {
2541 	unsigned int cpu;
2542 
2543 	get_online_cpus();
2544 	for_each_online_cpu(cpu) {
2545 		if (all_cpu_data[cpu]) {
2546 			if (intel_pstate_driver == &intel_pstate)
2547 				intel_pstate_clear_update_util_hook(cpu);
2548 
2549 			kfree(all_cpu_data[cpu]);
2550 			all_cpu_data[cpu] = NULL;
2551 		}
2552 	}
2553 	put_online_cpus();
2554 	intel_pstate_driver = NULL;
2555 }
2556 
2557 static int intel_pstate_register_driver(struct cpufreq_driver *driver)
2558 {
2559 	int ret;
2560 
2561 	memset(&global, 0, sizeof(global));
2562 	global.max_perf_pct = 100;
2563 
2564 	intel_pstate_driver = driver;
2565 	ret = cpufreq_register_driver(intel_pstate_driver);
2566 	if (ret) {
2567 		intel_pstate_driver_cleanup();
2568 		return ret;
2569 	}
2570 
2571 	global.min_perf_pct = min_perf_pct_min();
2572 
2573 	return 0;
2574 }
2575 
2576 static int intel_pstate_unregister_driver(void)
2577 {
2578 	if (hwp_active)
2579 		return -EBUSY;
2580 
2581 	cpufreq_unregister_driver(intel_pstate_driver);
2582 	intel_pstate_driver_cleanup();
2583 
2584 	return 0;
2585 }
2586 
2587 static ssize_t intel_pstate_show_status(char *buf)
2588 {
2589 	if (!intel_pstate_driver)
2590 		return sprintf(buf, "off\n");
2591 
2592 	return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
2593 					"active" : "passive");
2594 }
2595 
2596 static int intel_pstate_update_status(const char *buf, size_t size)
2597 {
2598 	int ret;
2599 
2600 	if (size == 3 && !strncmp(buf, "off", size))
2601 		return intel_pstate_driver ?
2602 			intel_pstate_unregister_driver() : -EINVAL;
2603 
2604 	if (size == 6 && !strncmp(buf, "active", size)) {
2605 		if (intel_pstate_driver) {
2606 			if (intel_pstate_driver == &intel_pstate)
2607 				return 0;
2608 
2609 			ret = intel_pstate_unregister_driver();
2610 			if (ret)
2611 				return ret;
2612 		}
2613 
2614 		return intel_pstate_register_driver(&intel_pstate);
2615 	}
2616 
2617 	if (size == 7 && !strncmp(buf, "passive", size)) {
2618 		if (intel_pstate_driver) {
2619 			if (intel_pstate_driver == &intel_cpufreq)
2620 				return 0;
2621 
2622 			ret = intel_pstate_unregister_driver();
2623 			if (ret)
2624 				return ret;
2625 		}
2626 
2627 		return intel_pstate_register_driver(&intel_cpufreq);
2628 	}
2629 
2630 	return -EINVAL;
2631 }
2632 
2633 static int no_load __initdata;
2634 static int no_hwp __initdata;
2635 static int hwp_only __initdata;
2636 static unsigned int force_load __initdata;
2637 
2638 static int __init intel_pstate_msrs_not_valid(void)
2639 {
2640 	if (!pstate_funcs.get_max() ||
2641 	    !pstate_funcs.get_min() ||
2642 	    !pstate_funcs.get_turbo())
2643 		return -ENODEV;
2644 
2645 	return 0;
2646 }
2647 
2648 static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
2649 {
2650 	pstate_funcs.get_max   = funcs->get_max;
2651 	pstate_funcs.get_max_physical = funcs->get_max_physical;
2652 	pstate_funcs.get_min   = funcs->get_min;
2653 	pstate_funcs.get_turbo = funcs->get_turbo;
2654 	pstate_funcs.get_scaling = funcs->get_scaling;
2655 	pstate_funcs.get_val   = funcs->get_val;
2656 	pstate_funcs.get_vid   = funcs->get_vid;
2657 	pstate_funcs.get_aperf_mperf_shift = funcs->get_aperf_mperf_shift;
2658 }
2659 
2660 #ifdef CONFIG_ACPI
2661 
2662 static bool __init intel_pstate_no_acpi_pss(void)
2663 {
2664 	int i;
2665 
2666 	for_each_possible_cpu(i) {
2667 		acpi_status status;
2668 		union acpi_object *pss;
2669 		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
2670 		struct acpi_processor *pr = per_cpu(processors, i);
2671 
2672 		if (!pr)
2673 			continue;
2674 
2675 		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
2676 		if (ACPI_FAILURE(status))
2677 			continue;
2678 
2679 		pss = buffer.pointer;
2680 		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
2681 			kfree(pss);
2682 			return false;
2683 		}
2684 
2685 		kfree(pss);
2686 	}
2687 
2688 	pr_debug("ACPI _PSS not found\n");
2689 	return true;
2690 }
2691 
2692 static bool __init intel_pstate_no_acpi_pcch(void)
2693 {
2694 	acpi_status status;
2695 	acpi_handle handle;
2696 
2697 	status = acpi_get_handle(NULL, "\\_SB", &handle);
2698 	if (ACPI_FAILURE(status))
2699 		goto not_found;
2700 
2701 	if (acpi_has_method(handle, "PCCH"))
2702 		return false;
2703 
2704 not_found:
2705 	pr_debug("ACPI PCCH not found\n");
2706 	return true;
2707 }
2708 
2709 static bool __init intel_pstate_has_acpi_ppc(void)
2710 {
2711 	int i;
2712 
2713 	for_each_possible_cpu(i) {
2714 		struct acpi_processor *pr = per_cpu(processors, i);
2715 
2716 		if (!pr)
2717 			continue;
2718 		if (acpi_has_method(pr->handle, "_PPC"))
2719 			return true;
2720 	}
2721 	pr_debug("ACPI _PPC not found\n");
2722 	return false;
2723 }
2724 
2725 enum {
2726 	PSS,
2727 	PPC,
2728 };
2729 
2730 /* Hardware vendor-specific info that has its own power management modes */
2731 static struct acpi_platform_list plat_info[] __initdata = {
2732 	{"HP    ", "ProLiant", 0, ACPI_SIG_FADT, all_versions, NULL, PSS},
2733 	{"ORACLE", "X4-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2734 	{"ORACLE", "X4-2L   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2735 	{"ORACLE", "X4-2B   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2736 	{"ORACLE", "X3-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2737 	{"ORACLE", "X3-2L   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2738 	{"ORACLE", "X3-2B   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2739 	{"ORACLE", "X4470M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2740 	{"ORACLE", "X4270M3 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2741 	{"ORACLE", "X4270M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2742 	{"ORACLE", "X4170M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2743 	{"ORACLE", "X4170 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2744 	{"ORACLE", "X4275 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2745 	{"ORACLE", "X6-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2746 	{"ORACLE", "Sudbury ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2747 	{ } /* End */
2748 };
2749 
2750 #define BITMASK_OOB	(BIT(8) | BIT(18))
2751 
2752 static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
2753 {
2754 	const struct x86_cpu_id *id;
2755 	u64 misc_pwr;
2756 	int idx;
2757 
2758 	id = x86_match_cpu(intel_pstate_cpu_oob_ids);
2759 	if (id) {
2760 		rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
2761 		if (misc_pwr & BITMASK_OOB) {
2762 			pr_debug("Bit 8 or 18 in the MISC_PWR_MGMT MSR set\n");
2763 			pr_debug("P states are controlled in Out of Band mode by the firmware/hardware\n");
2764 			return true;
2765 		}
2766 	}
2767 
2768 	idx = acpi_match_platform_list(plat_info);
2769 	if (idx < 0)
2770 		return false;
2771 
2772 	switch (plat_info[idx].data) {
2773 	case PSS:
2774 		if (!intel_pstate_no_acpi_pss())
2775 			return false;
2776 
2777 		return intel_pstate_no_acpi_pcch();
2778 	case PPC:
2779 		return intel_pstate_has_acpi_ppc() && !force_load;
2780 	}
2781 
2782 	return false;
2783 }
2784 
2785 static void intel_pstate_request_control_from_smm(void)
2786 {
2787 	/*
2788 	 * It may be unsafe to request P-states control from SMM if _PPC support
2789 	 * has not been enabled.
2790 	 */
2791 	if (acpi_ppc)
2792 		acpi_processor_pstate_control();
2793 }
2794 #else /* CONFIG_ACPI not enabled */
2795 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
2796 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
2797 static inline void intel_pstate_request_control_from_smm(void) {}
2798 #endif /* CONFIG_ACPI */
2799 
2800 #define INTEL_PSTATE_HWP_BROADWELL	0x01
2801 
2802 #define X86_MATCH_HWP(model, hwp_mode)					\
2803 	X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6, INTEL_FAM6_##model, \
2804 					   X86_FEATURE_HWP, hwp_mode)
2805 
2806 static const struct x86_cpu_id hwp_support_ids[] __initconst = {
2807 	X86_MATCH_HWP(BROADWELL_X,	INTEL_PSTATE_HWP_BROADWELL),
2808 	X86_MATCH_HWP(BROADWELL_D,	INTEL_PSTATE_HWP_BROADWELL),
2809 	X86_MATCH_HWP(ANY,		0),
2810 	{}
2811 };
2812 
2813 static int __init intel_pstate_init(void)
2814 {
2815 	const struct x86_cpu_id *id;
2816 	int rc;
2817 
2818 	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
2819 		return -ENODEV;
2820 
2821 	if (no_load)
2822 		return -ENODEV;
2823 
2824 	id = x86_match_cpu(hwp_support_ids);
2825 	if (id) {
2826 		copy_cpu_funcs(&core_funcs);
2827 		if (!no_hwp) {
2828 			hwp_active++;
2829 			hwp_mode_bdw = id->driver_data;
2830 			intel_pstate.attr = hwp_cpufreq_attrs;
2831 			goto hwp_cpu_matched;
2832 		}
2833 	} else {
2834 		id = x86_match_cpu(intel_pstate_cpu_ids);
2835 		if (!id) {
2836 			pr_info("CPU model not supported\n");
2837 			return -ENODEV;
2838 		}
2839 
2840 		copy_cpu_funcs((struct pstate_funcs *)id->driver_data);
2841 	}
2842 
2843 	if (intel_pstate_msrs_not_valid()) {
2844 		pr_info("Invalid MSRs\n");
2845 		return -ENODEV;
2846 	}
2847 	/* Without HWP start in the passive mode. */
2848 	default_driver = &intel_cpufreq;
2849 
2850 hwp_cpu_matched:
2851 	/*
2852 	 * The Intel pstate driver will be ignored if the platform
2853 	 * firmware has its own power management modes.
2854 	 */
2855 	if (intel_pstate_platform_pwr_mgmt_exists()) {
2856 		pr_info("P-states controlled by the platform\n");
2857 		return -ENODEV;
2858 	}
2859 
2860 	if (!hwp_active && hwp_only)
2861 		return -ENOTSUPP;
2862 
2863 	pr_info("Intel P-state driver initializing\n");
2864 
2865 	all_cpu_data = vzalloc(array_size(sizeof(void *), num_possible_cpus()));
2866 	if (!all_cpu_data)
2867 		return -ENOMEM;
2868 
2869 	intel_pstate_request_control_from_smm();
2870 
2871 	intel_pstate_sysfs_expose_params();
2872 
2873 	mutex_lock(&intel_pstate_driver_lock);
2874 	rc = intel_pstate_register_driver(default_driver);
2875 	mutex_unlock(&intel_pstate_driver_lock);
2876 	if (rc)
2877 		return rc;
2878 
2879 	if (hwp_active) {
2880 		const struct x86_cpu_id *id;
2881 
2882 		id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
2883 		if (id) {
2884 			set_power_ctl_ee_state(false);
2885 			pr_info("Disabling energy efficiency optimization\n");
2886 		}
2887 
2888 		pr_info("HWP enabled\n");
2889 	}
2890 
2891 	return 0;
2892 }
2893 device_initcall(intel_pstate_init);
2894 
2895 static int __init intel_pstate_setup(char *str)
2896 {
2897 	if (!str)
2898 		return -EINVAL;
2899 
2900 	if (!strcmp(str, "disable")) {
2901 		no_load = 1;
2902 	} else if (!strcmp(str, "passive")) {
2903 		default_driver = &intel_cpufreq;
2904 		no_hwp = 1;
2905 	}
2906 	if (!strcmp(str, "no_hwp")) {
2907 		pr_info("HWP disabled\n");
2908 		no_hwp = 1;
2909 	}
2910 	if (!strcmp(str, "force"))
2911 		force_load = 1;
2912 	if (!strcmp(str, "hwp_only"))
2913 		hwp_only = 1;
2914 	if (!strcmp(str, "per_cpu_perf_limits"))
2915 		per_cpu_limits = true;
2916 
2917 #ifdef CONFIG_ACPI
2918 	if (!strcmp(str, "support_acpi_ppc"))
2919 		acpi_ppc = true;
2920 #endif
2921 
2922 	return 0;
2923 }
2924 early_param("intel_pstate", intel_pstate_setup);
2925 
2926 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
2927 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
2928 MODULE_LICENSE("GPL");
2929