1 /*
2  * intel_pstate.c: Native P state management for Intel processors
3  *
4  * (C) Copyright 2012 Intel Corporation
5  * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; version 2
10  * of the License.
11  */
12 
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 
15 #include <linux/kernel.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/module.h>
18 #include <linux/ktime.h>
19 #include <linux/hrtimer.h>
20 #include <linux/tick.h>
21 #include <linux/slab.h>
22 #include <linux/sched/cpufreq.h>
23 #include <linux/list.h>
24 #include <linux/cpu.h>
25 #include <linux/cpufreq.h>
26 #include <linux/sysfs.h>
27 #include <linux/types.h>
28 #include <linux/fs.h>
29 #include <linux/acpi.h>
30 #include <linux/vmalloc.h>
31 #include <trace/events/power.h>
32 
33 #include <asm/div64.h>
34 #include <asm/msr.h>
35 #include <asm/cpu_device_id.h>
36 #include <asm/cpufeature.h>
37 #include <asm/intel-family.h>
38 
39 #define INTEL_PSTATE_SAMPLING_INTERVAL	(10 * NSEC_PER_MSEC)
40 
41 #define INTEL_CPUFREQ_TRANSITION_LATENCY	20000
42 #define INTEL_CPUFREQ_TRANSITION_DELAY		500
43 
44 #ifdef CONFIG_ACPI
45 #include <acpi/processor.h>
46 #include <acpi/cppc_acpi.h>
47 #endif
48 
49 #define FRAC_BITS 8
50 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
51 #define fp_toint(X) ((X) >> FRAC_BITS)
52 
53 #define EXT_BITS 6
54 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
55 #define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
56 #define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
57 
58 static inline int32_t mul_fp(int32_t x, int32_t y)
59 {
60 	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
61 }
62 
63 static inline int32_t div_fp(s64 x, s64 y)
64 {
65 	return div64_s64((int64_t)x << FRAC_BITS, y);
66 }
67 
68 static inline int ceiling_fp(int32_t x)
69 {
70 	int mask, ret;
71 
72 	ret = fp_toint(x);
73 	mask = (1 << FRAC_BITS) - 1;
74 	if (x & mask)
75 		ret += 1;
76 	return ret;
77 }
78 
79 static inline int32_t percent_fp(int percent)
80 {
81 	return div_fp(percent, 100);
82 }
83 
84 static inline u64 mul_ext_fp(u64 x, u64 y)
85 {
86 	return (x * y) >> EXT_FRAC_BITS;
87 }
88 
89 static inline u64 div_ext_fp(u64 x, u64 y)
90 {
91 	return div64_u64(x << EXT_FRAC_BITS, y);
92 }
93 
94 static inline int32_t percent_ext_fp(int percent)
95 {
96 	return div_ext_fp(percent, 100);
97 }
98 
99 /**
100  * struct sample -	Store performance sample
101  * @core_avg_perf:	Ratio of APERF/MPERF which is the actual average
102  *			performance during last sample period
103  * @busy_scaled:	Scaled busy value which is used to calculate next
104  *			P state. This can be different than core_avg_perf
105  *			to account for cpu idle period
106  * @aperf:		Difference of actual performance frequency clock count
107  *			read from APERF MSR between last and current sample
108  * @mperf:		Difference of maximum performance frequency clock count
109  *			read from MPERF MSR between last and current sample
110  * @tsc:		Difference of time stamp counter between last and
111  *			current sample
112  * @time:		Current time from scheduler
113  *
114  * This structure is used in the cpudata structure to store performance sample
115  * data for choosing next P State.
116  */
117 struct sample {
118 	int32_t core_avg_perf;
119 	int32_t busy_scaled;
120 	u64 aperf;
121 	u64 mperf;
122 	u64 tsc;
123 	u64 time;
124 };
125 
126 /**
127  * struct pstate_data - Store P state data
128  * @current_pstate:	Current requested P state
129  * @min_pstate:		Min P state possible for this platform
130  * @max_pstate:		Max P state possible for this platform
131  * @max_pstate_physical:This is physical Max P state for a processor
132  *			This can be higher than the max_pstate which can
133  *			be limited by platform thermal design power limits
134  * @scaling:		Scaling factor to  convert frequency to cpufreq
135  *			frequency units
136  * @turbo_pstate:	Max Turbo P state possible for this platform
137  * @max_freq:		@max_pstate frequency in cpufreq units
138  * @turbo_freq:		@turbo_pstate frequency in cpufreq units
139  *
140  * Stores the per cpu model P state limits and current P state.
141  */
142 struct pstate_data {
143 	int	current_pstate;
144 	int	min_pstate;
145 	int	max_pstate;
146 	int	max_pstate_physical;
147 	int	scaling;
148 	int	turbo_pstate;
149 	unsigned int max_freq;
150 	unsigned int turbo_freq;
151 };
152 
153 /**
154  * struct vid_data -	Stores voltage information data
155  * @min:		VID data for this platform corresponding to
156  *			the lowest P state
157  * @max:		VID data corresponding to the highest P State.
158  * @turbo:		VID data for turbo P state
159  * @ratio:		Ratio of (vid max - vid min) /
160  *			(max P state - Min P State)
161  *
162  * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
163  * This data is used in Atom platforms, where in addition to target P state,
164  * the voltage data needs to be specified to select next P State.
165  */
166 struct vid_data {
167 	int min;
168 	int max;
169 	int turbo;
170 	int32_t ratio;
171 };
172 
173 /**
174  * struct global_params - Global parameters, mostly tunable via sysfs.
175  * @no_turbo:		Whether or not to use turbo P-states.
176  * @turbo_disabled:	Whethet or not turbo P-states are available at all,
177  *			based on the MSR_IA32_MISC_ENABLE value and whether or
178  *			not the maximum reported turbo P-state is different from
179  *			the maximum reported non-turbo one.
180  * @min_perf_pct:	Minimum capacity limit in percent of the maximum turbo
181  *			P-state capacity.
182  * @max_perf_pct:	Maximum capacity limit in percent of the maximum turbo
183  *			P-state capacity.
184  */
185 struct global_params {
186 	bool no_turbo;
187 	bool turbo_disabled;
188 	int max_perf_pct;
189 	int min_perf_pct;
190 };
191 
192 /**
193  * struct cpudata -	Per CPU instance data storage
194  * @cpu:		CPU number for this instance data
195  * @policy:		CPUFreq policy value
196  * @update_util:	CPUFreq utility callback information
197  * @update_util_set:	CPUFreq utility callback is set
198  * @iowait_boost:	iowait-related boost fraction
199  * @last_update:	Time of the last update.
200  * @pstate:		Stores P state limits for this CPU
201  * @vid:		Stores VID limits for this CPU
202  * @last_sample_time:	Last Sample time
203  * @aperf_mperf_shift:	Number of clock cycles after aperf, merf is incremented
204  *			This shift is a multiplier to mperf delta to
205  *			calculate CPU busy.
206  * @prev_aperf:		Last APERF value read from APERF MSR
207  * @prev_mperf:		Last MPERF value read from MPERF MSR
208  * @prev_tsc:		Last timestamp counter (TSC) value
209  * @prev_cummulative_iowait: IO Wait time difference from last and
210  *			current sample
211  * @sample:		Storage for storing last Sample data
212  * @min_perf_ratio:	Minimum capacity in terms of PERF or HWP ratios
213  * @max_perf_ratio:	Maximum capacity in terms of PERF or HWP ratios
214  * @acpi_perf_data:	Stores ACPI perf information read from _PSS
215  * @valid_pss_table:	Set to true for valid ACPI _PSS entries found
216  * @epp_powersave:	Last saved HWP energy performance preference
217  *			(EPP) or energy performance bias (EPB),
218  *			when policy switched to performance
219  * @epp_policy:		Last saved policy used to set EPP/EPB
220  * @epp_default:	Power on default HWP energy performance
221  *			preference/bias
222  * @epp_saved:		Saved EPP/EPB during system suspend or CPU offline
223  *			operation
224  * @hwp_req_cached:	Cached value of the last HWP Request MSR
225  * @hwp_cap_cached:	Cached value of the last HWP Capabilities MSR
226  * @last_io_update:	Last time when IO wake flag was set
227  * @sched_flags:	Store scheduler flags for possible cross CPU update
228  * @hwp_boost_min:	Last HWP boosted min performance
229  *
230  * This structure stores per CPU instance data for all CPUs.
231  */
232 struct cpudata {
233 	int cpu;
234 
235 	unsigned int policy;
236 	struct update_util_data update_util;
237 	bool   update_util_set;
238 
239 	struct pstate_data pstate;
240 	struct vid_data vid;
241 
242 	u64	last_update;
243 	u64	last_sample_time;
244 	u64	aperf_mperf_shift;
245 	u64	prev_aperf;
246 	u64	prev_mperf;
247 	u64	prev_tsc;
248 	u64	prev_cummulative_iowait;
249 	struct sample sample;
250 	int32_t	min_perf_ratio;
251 	int32_t	max_perf_ratio;
252 #ifdef CONFIG_ACPI
253 	struct acpi_processor_performance acpi_perf_data;
254 	bool valid_pss_table;
255 #endif
256 	unsigned int iowait_boost;
257 	s16 epp_powersave;
258 	s16 epp_policy;
259 	s16 epp_default;
260 	s16 epp_saved;
261 	u64 hwp_req_cached;
262 	u64 hwp_cap_cached;
263 	u64 last_io_update;
264 	unsigned int sched_flags;
265 	u32 hwp_boost_min;
266 };
267 
268 static struct cpudata **all_cpu_data;
269 
270 /**
271  * struct pstate_funcs - Per CPU model specific callbacks
272  * @get_max:		Callback to get maximum non turbo effective P state
273  * @get_max_physical:	Callback to get maximum non turbo physical P state
274  * @get_min:		Callback to get minimum P state
275  * @get_turbo:		Callback to get turbo P state
276  * @get_scaling:	Callback to get frequency scaling factor
277  * @get_val:		Callback to convert P state to actual MSR write value
278  * @get_vid:		Callback to get VID data for Atom platforms
279  *
280  * Core and Atom CPU models have different way to get P State limits. This
281  * structure is used to store those callbacks.
282  */
283 struct pstate_funcs {
284 	int (*get_max)(void);
285 	int (*get_max_physical)(void);
286 	int (*get_min)(void);
287 	int (*get_turbo)(void);
288 	int (*get_scaling)(void);
289 	int (*get_aperf_mperf_shift)(void);
290 	u64 (*get_val)(struct cpudata*, int pstate);
291 	void (*get_vid)(struct cpudata *);
292 };
293 
294 static struct pstate_funcs pstate_funcs __read_mostly;
295 
296 static int hwp_active __read_mostly;
297 static int hwp_mode_bdw __read_mostly;
298 static bool per_cpu_limits __read_mostly;
299 static bool hwp_boost __read_mostly;
300 
301 static struct cpufreq_driver *intel_pstate_driver __read_mostly;
302 
303 #ifdef CONFIG_ACPI
304 static bool acpi_ppc;
305 #endif
306 
307 static struct global_params global;
308 
309 static DEFINE_MUTEX(intel_pstate_driver_lock);
310 static DEFINE_MUTEX(intel_pstate_limits_lock);
311 
312 #ifdef CONFIG_ACPI
313 
314 static bool intel_pstate_acpi_pm_profile_server(void)
315 {
316 	if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
317 	    acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
318 		return true;
319 
320 	return false;
321 }
322 
323 static bool intel_pstate_get_ppc_enable_status(void)
324 {
325 	if (intel_pstate_acpi_pm_profile_server())
326 		return true;
327 
328 	return acpi_ppc;
329 }
330 
331 #ifdef CONFIG_ACPI_CPPC_LIB
332 
333 /* The work item is needed to avoid CPU hotplug locking issues */
334 static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
335 {
336 	sched_set_itmt_support();
337 }
338 
339 static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);
340 
341 static void intel_pstate_set_itmt_prio(int cpu)
342 {
343 	struct cppc_perf_caps cppc_perf;
344 	static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
345 	int ret;
346 
347 	ret = cppc_get_perf_caps(cpu, &cppc_perf);
348 	if (ret)
349 		return;
350 
351 	/*
352 	 * The priorities can be set regardless of whether or not
353 	 * sched_set_itmt_support(true) has been called and it is valid to
354 	 * update them at any time after it has been called.
355 	 */
356 	sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);
357 
358 	if (max_highest_perf <= min_highest_perf) {
359 		if (cppc_perf.highest_perf > max_highest_perf)
360 			max_highest_perf = cppc_perf.highest_perf;
361 
362 		if (cppc_perf.highest_perf < min_highest_perf)
363 			min_highest_perf = cppc_perf.highest_perf;
364 
365 		if (max_highest_perf > min_highest_perf) {
366 			/*
367 			 * This code can be run during CPU online under the
368 			 * CPU hotplug locks, so sched_set_itmt_support()
369 			 * cannot be called from here.  Queue up a work item
370 			 * to invoke it.
371 			 */
372 			schedule_work(&sched_itmt_work);
373 		}
374 	}
375 }
376 #else
377 static void intel_pstate_set_itmt_prio(int cpu)
378 {
379 }
380 #endif
381 
382 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
383 {
384 	struct cpudata *cpu;
385 	int ret;
386 	int i;
387 
388 	if (hwp_active) {
389 		intel_pstate_set_itmt_prio(policy->cpu);
390 		return;
391 	}
392 
393 	if (!intel_pstate_get_ppc_enable_status())
394 		return;
395 
396 	cpu = all_cpu_data[policy->cpu];
397 
398 	ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
399 						  policy->cpu);
400 	if (ret)
401 		return;
402 
403 	/*
404 	 * Check if the control value in _PSS is for PERF_CTL MSR, which should
405 	 * guarantee that the states returned by it map to the states in our
406 	 * list directly.
407 	 */
408 	if (cpu->acpi_perf_data.control_register.space_id !=
409 						ACPI_ADR_SPACE_FIXED_HARDWARE)
410 		goto err;
411 
412 	/*
413 	 * If there is only one entry _PSS, simply ignore _PSS and continue as
414 	 * usual without taking _PSS into account
415 	 */
416 	if (cpu->acpi_perf_data.state_count < 2)
417 		goto err;
418 
419 	pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
420 	for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
421 		pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
422 			 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
423 			 (u32) cpu->acpi_perf_data.states[i].core_frequency,
424 			 (u32) cpu->acpi_perf_data.states[i].power,
425 			 (u32) cpu->acpi_perf_data.states[i].control);
426 	}
427 
428 	/*
429 	 * The _PSS table doesn't contain whole turbo frequency range.
430 	 * This just contains +1 MHZ above the max non turbo frequency,
431 	 * with control value corresponding to max turbo ratio. But
432 	 * when cpufreq set policy is called, it will call with this
433 	 * max frequency, which will cause a reduced performance as
434 	 * this driver uses real max turbo frequency as the max
435 	 * frequency. So correct this frequency in _PSS table to
436 	 * correct max turbo frequency based on the turbo state.
437 	 * Also need to convert to MHz as _PSS freq is in MHz.
438 	 */
439 	if (!global.turbo_disabled)
440 		cpu->acpi_perf_data.states[0].core_frequency =
441 					policy->cpuinfo.max_freq / 1000;
442 	cpu->valid_pss_table = true;
443 	pr_debug("_PPC limits will be enforced\n");
444 
445 	return;
446 
447  err:
448 	cpu->valid_pss_table = false;
449 	acpi_processor_unregister_performance(policy->cpu);
450 }
451 
452 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
453 {
454 	struct cpudata *cpu;
455 
456 	cpu = all_cpu_data[policy->cpu];
457 	if (!cpu->valid_pss_table)
458 		return;
459 
460 	acpi_processor_unregister_performance(policy->cpu);
461 }
462 #else
463 static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
464 {
465 }
466 
467 static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
468 {
469 }
470 
471 static inline bool intel_pstate_acpi_pm_profile_server(void)
472 {
473 	return false;
474 }
475 #endif
476 
477 static inline void update_turbo_state(void)
478 {
479 	u64 misc_en;
480 	struct cpudata *cpu;
481 
482 	cpu = all_cpu_data[0];
483 	rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
484 	global.turbo_disabled =
485 		(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
486 		 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
487 }
488 
489 static int min_perf_pct_min(void)
490 {
491 	struct cpudata *cpu = all_cpu_data[0];
492 	int turbo_pstate = cpu->pstate.turbo_pstate;
493 
494 	return turbo_pstate ?
495 		(cpu->pstate.min_pstate * 100 / turbo_pstate) : 0;
496 }
497 
498 static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
499 {
500 	u64 epb;
501 	int ret;
502 
503 	if (!static_cpu_has(X86_FEATURE_EPB))
504 		return -ENXIO;
505 
506 	ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
507 	if (ret)
508 		return (s16)ret;
509 
510 	return (s16)(epb & 0x0f);
511 }
512 
513 static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
514 {
515 	s16 epp;
516 
517 	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
518 		/*
519 		 * When hwp_req_data is 0, means that caller didn't read
520 		 * MSR_HWP_REQUEST, so need to read and get EPP.
521 		 */
522 		if (!hwp_req_data) {
523 			epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
524 					    &hwp_req_data);
525 			if (epp)
526 				return epp;
527 		}
528 		epp = (hwp_req_data >> 24) & 0xff;
529 	} else {
530 		/* When there is no EPP present, HWP uses EPB settings */
531 		epp = intel_pstate_get_epb(cpu_data);
532 	}
533 
534 	return epp;
535 }
536 
537 static int intel_pstate_set_epb(int cpu, s16 pref)
538 {
539 	u64 epb;
540 	int ret;
541 
542 	if (!static_cpu_has(X86_FEATURE_EPB))
543 		return -ENXIO;
544 
545 	ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
546 	if (ret)
547 		return ret;
548 
549 	epb = (epb & ~0x0f) | pref;
550 	wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
551 
552 	return 0;
553 }
554 
555 /*
556  * EPP/EPB display strings corresponding to EPP index in the
557  * energy_perf_strings[]
558  *	index		String
559  *-------------------------------------
560  *	0		default
561  *	1		performance
562  *	2		balance_performance
563  *	3		balance_power
564  *	4		power
565  */
566 static const char * const energy_perf_strings[] = {
567 	"default",
568 	"performance",
569 	"balance_performance",
570 	"balance_power",
571 	"power",
572 	NULL
573 };
574 static const unsigned int epp_values[] = {
575 	HWP_EPP_PERFORMANCE,
576 	HWP_EPP_BALANCE_PERFORMANCE,
577 	HWP_EPP_BALANCE_POWERSAVE,
578 	HWP_EPP_POWERSAVE
579 };
580 
581 static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data)
582 {
583 	s16 epp;
584 	int index = -EINVAL;
585 
586 	epp = intel_pstate_get_epp(cpu_data, 0);
587 	if (epp < 0)
588 		return epp;
589 
590 	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
591 		if (epp == HWP_EPP_PERFORMANCE)
592 			return 1;
593 		if (epp <= HWP_EPP_BALANCE_PERFORMANCE)
594 			return 2;
595 		if (epp <= HWP_EPP_BALANCE_POWERSAVE)
596 			return 3;
597 		else
598 			return 4;
599 	} else if (static_cpu_has(X86_FEATURE_EPB)) {
600 		/*
601 		 * Range:
602 		 *	0x00-0x03	:	Performance
603 		 *	0x04-0x07	:	Balance performance
604 		 *	0x08-0x0B	:	Balance power
605 		 *	0x0C-0x0F	:	Power
606 		 * The EPB is a 4 bit value, but our ranges restrict the
607 		 * value which can be set. Here only using top two bits
608 		 * effectively.
609 		 */
610 		index = (epp >> 2) + 1;
611 	}
612 
613 	return index;
614 }
615 
616 static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
617 					      int pref_index)
618 {
619 	int epp = -EINVAL;
620 	int ret;
621 
622 	if (!pref_index)
623 		epp = cpu_data->epp_default;
624 
625 	mutex_lock(&intel_pstate_limits_lock);
626 
627 	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
628 		u64 value;
629 
630 		ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, &value);
631 		if (ret)
632 			goto return_pref;
633 
634 		value &= ~GENMASK_ULL(31, 24);
635 
636 		if (epp == -EINVAL)
637 			epp = epp_values[pref_index - 1];
638 
639 		value |= (u64)epp << 24;
640 		ret = wrmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, value);
641 	} else {
642 		if (epp == -EINVAL)
643 			epp = (pref_index - 1) << 2;
644 		ret = intel_pstate_set_epb(cpu_data->cpu, epp);
645 	}
646 return_pref:
647 	mutex_unlock(&intel_pstate_limits_lock);
648 
649 	return ret;
650 }
651 
652 static ssize_t show_energy_performance_available_preferences(
653 				struct cpufreq_policy *policy, char *buf)
654 {
655 	int i = 0;
656 	int ret = 0;
657 
658 	while (energy_perf_strings[i] != NULL)
659 		ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);
660 
661 	ret += sprintf(&buf[ret], "\n");
662 
663 	return ret;
664 }
665 
666 cpufreq_freq_attr_ro(energy_performance_available_preferences);
667 
668 static ssize_t store_energy_performance_preference(
669 		struct cpufreq_policy *policy, const char *buf, size_t count)
670 {
671 	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
672 	char str_preference[21];
673 	int ret;
674 
675 	ret = sscanf(buf, "%20s", str_preference);
676 	if (ret != 1)
677 		return -EINVAL;
678 
679 	ret = match_string(energy_perf_strings, -1, str_preference);
680 	if (ret < 0)
681 		return ret;
682 
683 	intel_pstate_set_energy_pref_index(cpu_data, ret);
684 	return count;
685 }
686 
687 static ssize_t show_energy_performance_preference(
688 				struct cpufreq_policy *policy, char *buf)
689 {
690 	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
691 	int preference;
692 
693 	preference = intel_pstate_get_energy_pref_index(cpu_data);
694 	if (preference < 0)
695 		return preference;
696 
697 	return  sprintf(buf, "%s\n", energy_perf_strings[preference]);
698 }
699 
700 cpufreq_freq_attr_rw(energy_performance_preference);
701 
702 static struct freq_attr *hwp_cpufreq_attrs[] = {
703 	&energy_performance_preference,
704 	&energy_performance_available_preferences,
705 	NULL,
706 };
707 
708 static void intel_pstate_get_hwp_max(unsigned int cpu, int *phy_max,
709 				     int *current_max)
710 {
711 	u64 cap;
712 
713 	rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
714 	WRITE_ONCE(all_cpu_data[cpu]->hwp_cap_cached, cap);
715 	if (global.no_turbo)
716 		*current_max = HWP_GUARANTEED_PERF(cap);
717 	else
718 		*current_max = HWP_HIGHEST_PERF(cap);
719 
720 	*phy_max = HWP_HIGHEST_PERF(cap);
721 }
722 
723 static void intel_pstate_hwp_set(unsigned int cpu)
724 {
725 	struct cpudata *cpu_data = all_cpu_data[cpu];
726 	int max, min;
727 	u64 value;
728 	s16 epp;
729 
730 	max = cpu_data->max_perf_ratio;
731 	min = cpu_data->min_perf_ratio;
732 
733 	if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
734 		min = max;
735 
736 	rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
737 
738 	value &= ~HWP_MIN_PERF(~0L);
739 	value |= HWP_MIN_PERF(min);
740 
741 	value &= ~HWP_MAX_PERF(~0L);
742 	value |= HWP_MAX_PERF(max);
743 
744 	if (cpu_data->epp_policy == cpu_data->policy)
745 		goto skip_epp;
746 
747 	cpu_data->epp_policy = cpu_data->policy;
748 
749 	if (cpu_data->epp_saved >= 0) {
750 		epp = cpu_data->epp_saved;
751 		cpu_data->epp_saved = -EINVAL;
752 		goto update_epp;
753 	}
754 
755 	if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
756 		epp = intel_pstate_get_epp(cpu_data, value);
757 		cpu_data->epp_powersave = epp;
758 		/* If EPP read was failed, then don't try to write */
759 		if (epp < 0)
760 			goto skip_epp;
761 
762 		epp = 0;
763 	} else {
764 		/* skip setting EPP, when saved value is invalid */
765 		if (cpu_data->epp_powersave < 0)
766 			goto skip_epp;
767 
768 		/*
769 		 * No need to restore EPP when it is not zero. This
770 		 * means:
771 		 *  - Policy is not changed
772 		 *  - user has manually changed
773 		 *  - Error reading EPB
774 		 */
775 		epp = intel_pstate_get_epp(cpu_data, value);
776 		if (epp)
777 			goto skip_epp;
778 
779 		epp = cpu_data->epp_powersave;
780 	}
781 update_epp:
782 	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
783 		value &= ~GENMASK_ULL(31, 24);
784 		value |= (u64)epp << 24;
785 	} else {
786 		intel_pstate_set_epb(cpu, epp);
787 	}
788 skip_epp:
789 	WRITE_ONCE(cpu_data->hwp_req_cached, value);
790 	wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
791 }
792 
793 static int intel_pstate_hwp_save_state(struct cpufreq_policy *policy)
794 {
795 	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
796 
797 	if (!hwp_active)
798 		return 0;
799 
800 	cpu_data->epp_saved = intel_pstate_get_epp(cpu_data, 0);
801 
802 	return 0;
803 }
804 
805 static void intel_pstate_hwp_enable(struct cpudata *cpudata);
806 
807 static int intel_pstate_resume(struct cpufreq_policy *policy)
808 {
809 	if (!hwp_active)
810 		return 0;
811 
812 	mutex_lock(&intel_pstate_limits_lock);
813 
814 	if (policy->cpu == 0)
815 		intel_pstate_hwp_enable(all_cpu_data[policy->cpu]);
816 
817 	all_cpu_data[policy->cpu]->epp_policy = 0;
818 	intel_pstate_hwp_set(policy->cpu);
819 
820 	mutex_unlock(&intel_pstate_limits_lock);
821 
822 	return 0;
823 }
824 
825 static void intel_pstate_update_policies(void)
826 {
827 	int cpu;
828 
829 	for_each_possible_cpu(cpu)
830 		cpufreq_update_policy(cpu);
831 }
832 
833 /************************** sysfs begin ************************/
834 #define show_one(file_name, object)					\
835 	static ssize_t show_##file_name					\
836 	(struct kobject *kobj, struct attribute *attr, char *buf)	\
837 	{								\
838 		return sprintf(buf, "%u\n", global.object);		\
839 	}
840 
841 static ssize_t intel_pstate_show_status(char *buf);
842 static int intel_pstate_update_status(const char *buf, size_t size);
843 
844 static ssize_t show_status(struct kobject *kobj,
845 			   struct attribute *attr, char *buf)
846 {
847 	ssize_t ret;
848 
849 	mutex_lock(&intel_pstate_driver_lock);
850 	ret = intel_pstate_show_status(buf);
851 	mutex_unlock(&intel_pstate_driver_lock);
852 
853 	return ret;
854 }
855 
856 static ssize_t store_status(struct kobject *a, struct attribute *b,
857 			    const char *buf, size_t count)
858 {
859 	char *p = memchr(buf, '\n', count);
860 	int ret;
861 
862 	mutex_lock(&intel_pstate_driver_lock);
863 	ret = intel_pstate_update_status(buf, p ? p - buf : count);
864 	mutex_unlock(&intel_pstate_driver_lock);
865 
866 	return ret < 0 ? ret : count;
867 }
868 
869 static ssize_t show_turbo_pct(struct kobject *kobj,
870 				struct attribute *attr, char *buf)
871 {
872 	struct cpudata *cpu;
873 	int total, no_turbo, turbo_pct;
874 	uint32_t turbo_fp;
875 
876 	mutex_lock(&intel_pstate_driver_lock);
877 
878 	if (!intel_pstate_driver) {
879 		mutex_unlock(&intel_pstate_driver_lock);
880 		return -EAGAIN;
881 	}
882 
883 	cpu = all_cpu_data[0];
884 
885 	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
886 	no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
887 	turbo_fp = div_fp(no_turbo, total);
888 	turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
889 
890 	mutex_unlock(&intel_pstate_driver_lock);
891 
892 	return sprintf(buf, "%u\n", turbo_pct);
893 }
894 
895 static ssize_t show_num_pstates(struct kobject *kobj,
896 				struct attribute *attr, char *buf)
897 {
898 	struct cpudata *cpu;
899 	int total;
900 
901 	mutex_lock(&intel_pstate_driver_lock);
902 
903 	if (!intel_pstate_driver) {
904 		mutex_unlock(&intel_pstate_driver_lock);
905 		return -EAGAIN;
906 	}
907 
908 	cpu = all_cpu_data[0];
909 	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
910 
911 	mutex_unlock(&intel_pstate_driver_lock);
912 
913 	return sprintf(buf, "%u\n", total);
914 }
915 
916 static ssize_t show_no_turbo(struct kobject *kobj,
917 			     struct attribute *attr, char *buf)
918 {
919 	ssize_t ret;
920 
921 	mutex_lock(&intel_pstate_driver_lock);
922 
923 	if (!intel_pstate_driver) {
924 		mutex_unlock(&intel_pstate_driver_lock);
925 		return -EAGAIN;
926 	}
927 
928 	update_turbo_state();
929 	if (global.turbo_disabled)
930 		ret = sprintf(buf, "%u\n", global.turbo_disabled);
931 	else
932 		ret = sprintf(buf, "%u\n", global.no_turbo);
933 
934 	mutex_unlock(&intel_pstate_driver_lock);
935 
936 	return ret;
937 }
938 
939 static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
940 			      const char *buf, size_t count)
941 {
942 	unsigned int input;
943 	int ret;
944 
945 	ret = sscanf(buf, "%u", &input);
946 	if (ret != 1)
947 		return -EINVAL;
948 
949 	mutex_lock(&intel_pstate_driver_lock);
950 
951 	if (!intel_pstate_driver) {
952 		mutex_unlock(&intel_pstate_driver_lock);
953 		return -EAGAIN;
954 	}
955 
956 	mutex_lock(&intel_pstate_limits_lock);
957 
958 	update_turbo_state();
959 	if (global.turbo_disabled) {
960 		pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
961 		mutex_unlock(&intel_pstate_limits_lock);
962 		mutex_unlock(&intel_pstate_driver_lock);
963 		return -EPERM;
964 	}
965 
966 	global.no_turbo = clamp_t(int, input, 0, 1);
967 
968 	if (global.no_turbo) {
969 		struct cpudata *cpu = all_cpu_data[0];
970 		int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;
971 
972 		/* Squash the global minimum into the permitted range. */
973 		if (global.min_perf_pct > pct)
974 			global.min_perf_pct = pct;
975 	}
976 
977 	mutex_unlock(&intel_pstate_limits_lock);
978 
979 	intel_pstate_update_policies();
980 
981 	mutex_unlock(&intel_pstate_driver_lock);
982 
983 	return count;
984 }
985 
986 static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
987 				  const char *buf, size_t count)
988 {
989 	unsigned int input;
990 	int ret;
991 
992 	ret = sscanf(buf, "%u", &input);
993 	if (ret != 1)
994 		return -EINVAL;
995 
996 	mutex_lock(&intel_pstate_driver_lock);
997 
998 	if (!intel_pstate_driver) {
999 		mutex_unlock(&intel_pstate_driver_lock);
1000 		return -EAGAIN;
1001 	}
1002 
1003 	mutex_lock(&intel_pstate_limits_lock);
1004 
1005 	global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
1006 
1007 	mutex_unlock(&intel_pstate_limits_lock);
1008 
1009 	intel_pstate_update_policies();
1010 
1011 	mutex_unlock(&intel_pstate_driver_lock);
1012 
1013 	return count;
1014 }
1015 
1016 static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
1017 				  const char *buf, size_t count)
1018 {
1019 	unsigned int input;
1020 	int ret;
1021 
1022 	ret = sscanf(buf, "%u", &input);
1023 	if (ret != 1)
1024 		return -EINVAL;
1025 
1026 	mutex_lock(&intel_pstate_driver_lock);
1027 
1028 	if (!intel_pstate_driver) {
1029 		mutex_unlock(&intel_pstate_driver_lock);
1030 		return -EAGAIN;
1031 	}
1032 
1033 	mutex_lock(&intel_pstate_limits_lock);
1034 
1035 	global.min_perf_pct = clamp_t(int, input,
1036 				      min_perf_pct_min(), global.max_perf_pct);
1037 
1038 	mutex_unlock(&intel_pstate_limits_lock);
1039 
1040 	intel_pstate_update_policies();
1041 
1042 	mutex_unlock(&intel_pstate_driver_lock);
1043 
1044 	return count;
1045 }
1046 
1047 static ssize_t show_hwp_dynamic_boost(struct kobject *kobj,
1048 				struct attribute *attr, char *buf)
1049 {
1050 	return sprintf(buf, "%u\n", hwp_boost);
1051 }
1052 
1053 static ssize_t store_hwp_dynamic_boost(struct kobject *a, struct attribute *b,
1054 				       const char *buf, size_t count)
1055 {
1056 	unsigned int input;
1057 	int ret;
1058 
1059 	ret = kstrtouint(buf, 10, &input);
1060 	if (ret)
1061 		return ret;
1062 
1063 	mutex_lock(&intel_pstate_driver_lock);
1064 	hwp_boost = !!input;
1065 	intel_pstate_update_policies();
1066 	mutex_unlock(&intel_pstate_driver_lock);
1067 
1068 	return count;
1069 }
1070 
1071 show_one(max_perf_pct, max_perf_pct);
1072 show_one(min_perf_pct, min_perf_pct);
1073 
1074 define_one_global_rw(status);
1075 define_one_global_rw(no_turbo);
1076 define_one_global_rw(max_perf_pct);
1077 define_one_global_rw(min_perf_pct);
1078 define_one_global_ro(turbo_pct);
1079 define_one_global_ro(num_pstates);
1080 define_one_global_rw(hwp_dynamic_boost);
1081 
1082 static struct attribute *intel_pstate_attributes[] = {
1083 	&status.attr,
1084 	&no_turbo.attr,
1085 	&turbo_pct.attr,
1086 	&num_pstates.attr,
1087 	NULL
1088 };
1089 
1090 static const struct attribute_group intel_pstate_attr_group = {
1091 	.attrs = intel_pstate_attributes,
1092 };
1093 
1094 static void __init intel_pstate_sysfs_expose_params(void)
1095 {
1096 	struct kobject *intel_pstate_kobject;
1097 	int rc;
1098 
1099 	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
1100 						&cpu_subsys.dev_root->kobj);
1101 	if (WARN_ON(!intel_pstate_kobject))
1102 		return;
1103 
1104 	rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1105 	if (WARN_ON(rc))
1106 		return;
1107 
1108 	/*
1109 	 * If per cpu limits are enforced there are no global limits, so
1110 	 * return without creating max/min_perf_pct attributes
1111 	 */
1112 	if (per_cpu_limits)
1113 		return;
1114 
1115 	rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
1116 	WARN_ON(rc);
1117 
1118 	rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
1119 	WARN_ON(rc);
1120 
1121 	if (hwp_active) {
1122 		rc = sysfs_create_file(intel_pstate_kobject,
1123 				       &hwp_dynamic_boost.attr);
1124 		WARN_ON(rc);
1125 	}
1126 }
1127 /************************** sysfs end ************************/
1128 
1129 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
1130 {
1131 	/* First disable HWP notification interrupt as we don't process them */
1132 	if (static_cpu_has(X86_FEATURE_HWP_NOTIFY))
1133 		wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1134 
1135 	wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1136 	cpudata->epp_policy = 0;
1137 	if (cpudata->epp_default == -EINVAL)
1138 		cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
1139 }
1140 
1141 #define MSR_IA32_POWER_CTL_BIT_EE	19
1142 
1143 /* Disable energy efficiency optimization */
1144 static void intel_pstate_disable_ee(int cpu)
1145 {
1146 	u64 power_ctl;
1147 	int ret;
1148 
1149 	ret = rdmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, &power_ctl);
1150 	if (ret)
1151 		return;
1152 
1153 	if (!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE))) {
1154 		pr_info("Disabling energy efficiency optimization\n");
1155 		power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
1156 		wrmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, power_ctl);
1157 	}
1158 }
1159 
1160 static int atom_get_min_pstate(void)
1161 {
1162 	u64 value;
1163 
1164 	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1165 	return (value >> 8) & 0x7F;
1166 }
1167 
1168 static int atom_get_max_pstate(void)
1169 {
1170 	u64 value;
1171 
1172 	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1173 	return (value >> 16) & 0x7F;
1174 }
1175 
1176 static int atom_get_turbo_pstate(void)
1177 {
1178 	u64 value;
1179 
1180 	rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
1181 	return value & 0x7F;
1182 }
1183 
1184 static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1185 {
1186 	u64 val;
1187 	int32_t vid_fp;
1188 	u32 vid;
1189 
1190 	val = (u64)pstate << 8;
1191 	if (global.no_turbo && !global.turbo_disabled)
1192 		val |= (u64)1 << 32;
1193 
1194 	vid_fp = cpudata->vid.min + mul_fp(
1195 		int_tofp(pstate - cpudata->pstate.min_pstate),
1196 		cpudata->vid.ratio);
1197 
1198 	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1199 	vid = ceiling_fp(vid_fp);
1200 
1201 	if (pstate > cpudata->pstate.max_pstate)
1202 		vid = cpudata->vid.turbo;
1203 
1204 	return val | vid;
1205 }
1206 
1207 static int silvermont_get_scaling(void)
1208 {
1209 	u64 value;
1210 	int i;
1211 	/* Defined in Table 35-6 from SDM (Sept 2015) */
1212 	static int silvermont_freq_table[] = {
1213 		83300, 100000, 133300, 116700, 80000};
1214 
1215 	rdmsrl(MSR_FSB_FREQ, value);
1216 	i = value & 0x7;
1217 	WARN_ON(i > 4);
1218 
1219 	return silvermont_freq_table[i];
1220 }
1221 
1222 static int airmont_get_scaling(void)
1223 {
1224 	u64 value;
1225 	int i;
1226 	/* Defined in Table 35-10 from SDM (Sept 2015) */
1227 	static int airmont_freq_table[] = {
1228 		83300, 100000, 133300, 116700, 80000,
1229 		93300, 90000, 88900, 87500};
1230 
1231 	rdmsrl(MSR_FSB_FREQ, value);
1232 	i = value & 0xF;
1233 	WARN_ON(i > 8);
1234 
1235 	return airmont_freq_table[i];
1236 }
1237 
1238 static void atom_get_vid(struct cpudata *cpudata)
1239 {
1240 	u64 value;
1241 
1242 	rdmsrl(MSR_ATOM_CORE_VIDS, value);
1243 	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
1244 	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1245 	cpudata->vid.ratio = div_fp(
1246 		cpudata->vid.max - cpudata->vid.min,
1247 		int_tofp(cpudata->pstate.max_pstate -
1248 			cpudata->pstate.min_pstate));
1249 
1250 	rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1251 	cpudata->vid.turbo = value & 0x7f;
1252 }
1253 
1254 static int core_get_min_pstate(void)
1255 {
1256 	u64 value;
1257 
1258 	rdmsrl(MSR_PLATFORM_INFO, value);
1259 	return (value >> 40) & 0xFF;
1260 }
1261 
1262 static int core_get_max_pstate_physical(void)
1263 {
1264 	u64 value;
1265 
1266 	rdmsrl(MSR_PLATFORM_INFO, value);
1267 	return (value >> 8) & 0xFF;
1268 }
1269 
1270 static int core_get_tdp_ratio(u64 plat_info)
1271 {
1272 	/* Check how many TDP levels present */
1273 	if (plat_info & 0x600000000) {
1274 		u64 tdp_ctrl;
1275 		u64 tdp_ratio;
1276 		int tdp_msr;
1277 		int err;
1278 
1279 		/* Get the TDP level (0, 1, 2) to get ratios */
1280 		err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
1281 		if (err)
1282 			return err;
1283 
1284 		/* TDP MSR are continuous starting at 0x648 */
1285 		tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
1286 		err = rdmsrl_safe(tdp_msr, &tdp_ratio);
1287 		if (err)
1288 			return err;
1289 
1290 		/* For level 1 and 2, bits[23:16] contain the ratio */
1291 		if (tdp_ctrl & 0x03)
1292 			tdp_ratio >>= 16;
1293 
1294 		tdp_ratio &= 0xff; /* ratios are only 8 bits long */
1295 		pr_debug("tdp_ratio %x\n", (int)tdp_ratio);
1296 
1297 		return (int)tdp_ratio;
1298 	}
1299 
1300 	return -ENXIO;
1301 }
1302 
1303 static int core_get_max_pstate(void)
1304 {
1305 	u64 tar;
1306 	u64 plat_info;
1307 	int max_pstate;
1308 	int tdp_ratio;
1309 	int err;
1310 
1311 	rdmsrl(MSR_PLATFORM_INFO, plat_info);
1312 	max_pstate = (plat_info >> 8) & 0xFF;
1313 
1314 	tdp_ratio = core_get_tdp_ratio(plat_info);
1315 	if (tdp_ratio <= 0)
1316 		return max_pstate;
1317 
1318 	if (hwp_active) {
1319 		/* Turbo activation ratio is not used on HWP platforms */
1320 		return tdp_ratio;
1321 	}
1322 
1323 	err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
1324 	if (!err) {
1325 		int tar_levels;
1326 
1327 		/* Do some sanity checking for safety */
1328 		tar_levels = tar & 0xff;
1329 		if (tdp_ratio - 1 == tar_levels) {
1330 			max_pstate = tar_levels;
1331 			pr_debug("max_pstate=TAC %x\n", max_pstate);
1332 		}
1333 	}
1334 
1335 	return max_pstate;
1336 }
1337 
1338 static int core_get_turbo_pstate(void)
1339 {
1340 	u64 value;
1341 	int nont, ret;
1342 
1343 	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1344 	nont = core_get_max_pstate();
1345 	ret = (value) & 255;
1346 	if (ret <= nont)
1347 		ret = nont;
1348 	return ret;
1349 }
1350 
1351 static inline int core_get_scaling(void)
1352 {
1353 	return 100000;
1354 }
1355 
1356 static u64 core_get_val(struct cpudata *cpudata, int pstate)
1357 {
1358 	u64 val;
1359 
1360 	val = (u64)pstate << 8;
1361 	if (global.no_turbo && !global.turbo_disabled)
1362 		val |= (u64)1 << 32;
1363 
1364 	return val;
1365 }
1366 
1367 static int knl_get_aperf_mperf_shift(void)
1368 {
1369 	return 10;
1370 }
1371 
1372 static int knl_get_turbo_pstate(void)
1373 {
1374 	u64 value;
1375 	int nont, ret;
1376 
1377 	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1378 	nont = core_get_max_pstate();
1379 	ret = (((value) >> 8) & 0xFF);
1380 	if (ret <= nont)
1381 		ret = nont;
1382 	return ret;
1383 }
1384 
1385 static int intel_pstate_get_base_pstate(struct cpudata *cpu)
1386 {
1387 	return global.no_turbo || global.turbo_disabled ?
1388 			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1389 }
1390 
1391 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1392 {
1393 	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1394 	cpu->pstate.current_pstate = pstate;
1395 	/*
1396 	 * Generally, there is no guarantee that this code will always run on
1397 	 * the CPU being updated, so force the register update to run on the
1398 	 * right CPU.
1399 	 */
1400 	wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1401 		      pstate_funcs.get_val(cpu, pstate));
1402 }
1403 
1404 static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1405 {
1406 	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
1407 }
1408 
1409 static void intel_pstate_max_within_limits(struct cpudata *cpu)
1410 {
1411 	int pstate;
1412 
1413 	update_turbo_state();
1414 	pstate = intel_pstate_get_base_pstate(cpu);
1415 	pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio);
1416 	intel_pstate_set_pstate(cpu, pstate);
1417 }
1418 
1419 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1420 {
1421 	cpu->pstate.min_pstate = pstate_funcs.get_min();
1422 	cpu->pstate.max_pstate = pstate_funcs.get_max();
1423 	cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1424 	cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1425 	cpu->pstate.scaling = pstate_funcs.get_scaling();
1426 	cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
1427 
1428 	if (hwp_active && !hwp_mode_bdw) {
1429 		unsigned int phy_max, current_max;
1430 
1431 		intel_pstate_get_hwp_max(cpu->cpu, &phy_max, &current_max);
1432 		cpu->pstate.turbo_freq = phy_max * cpu->pstate.scaling;
1433 	} else {
1434 		cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1435 	}
1436 
1437 	if (pstate_funcs.get_aperf_mperf_shift)
1438 		cpu->aperf_mperf_shift = pstate_funcs.get_aperf_mperf_shift();
1439 
1440 	if (pstate_funcs.get_vid)
1441 		pstate_funcs.get_vid(cpu);
1442 
1443 	intel_pstate_set_min_pstate(cpu);
1444 }
1445 
1446 /*
1447  * Long hold time will keep high perf limits for long time,
1448  * which negatively impacts perf/watt for some workloads,
1449  * like specpower. 3ms is based on experiements on some
1450  * workoads.
1451  */
1452 static int hwp_boost_hold_time_ns = 3 * NSEC_PER_MSEC;
1453 
1454 static inline void intel_pstate_hwp_boost_up(struct cpudata *cpu)
1455 {
1456 	u64 hwp_req = READ_ONCE(cpu->hwp_req_cached);
1457 	u32 max_limit = (hwp_req & 0xff00) >> 8;
1458 	u32 min_limit = (hwp_req & 0xff);
1459 	u32 boost_level1;
1460 
1461 	/*
1462 	 * Cases to consider (User changes via sysfs or boot time):
1463 	 * If, P0 (Turbo max) = P1 (Guaranteed max) = min:
1464 	 *	No boost, return.
1465 	 * If, P0 (Turbo max) > P1 (Guaranteed max) = min:
1466 	 *     Should result in one level boost only for P0.
1467 	 * If, P0 (Turbo max) = P1 (Guaranteed max) > min:
1468 	 *     Should result in two level boost:
1469 	 *         (min + p1)/2 and P1.
1470 	 * If, P0 (Turbo max) > P1 (Guaranteed max) > min:
1471 	 *     Should result in three level boost:
1472 	 *        (min + p1)/2, P1 and P0.
1473 	 */
1474 
1475 	/* If max and min are equal or already at max, nothing to boost */
1476 	if (max_limit == min_limit || cpu->hwp_boost_min >= max_limit)
1477 		return;
1478 
1479 	if (!cpu->hwp_boost_min)
1480 		cpu->hwp_boost_min = min_limit;
1481 
1482 	/* level at half way mark between min and guranteed */
1483 	boost_level1 = (HWP_GUARANTEED_PERF(cpu->hwp_cap_cached) + min_limit) >> 1;
1484 
1485 	if (cpu->hwp_boost_min < boost_level1)
1486 		cpu->hwp_boost_min = boost_level1;
1487 	else if (cpu->hwp_boost_min < HWP_GUARANTEED_PERF(cpu->hwp_cap_cached))
1488 		cpu->hwp_boost_min = HWP_GUARANTEED_PERF(cpu->hwp_cap_cached);
1489 	else if (cpu->hwp_boost_min == HWP_GUARANTEED_PERF(cpu->hwp_cap_cached) &&
1490 		 max_limit != HWP_GUARANTEED_PERF(cpu->hwp_cap_cached))
1491 		cpu->hwp_boost_min = max_limit;
1492 	else
1493 		return;
1494 
1495 	hwp_req = (hwp_req & ~GENMASK_ULL(7, 0)) | cpu->hwp_boost_min;
1496 	wrmsrl(MSR_HWP_REQUEST, hwp_req);
1497 	cpu->last_update = cpu->sample.time;
1498 }
1499 
1500 static inline void intel_pstate_hwp_boost_down(struct cpudata *cpu)
1501 {
1502 	if (cpu->hwp_boost_min) {
1503 		bool expired;
1504 
1505 		/* Check if we are idle for hold time to boost down */
1506 		expired = time_after64(cpu->sample.time, cpu->last_update +
1507 				       hwp_boost_hold_time_ns);
1508 		if (expired) {
1509 			wrmsrl(MSR_HWP_REQUEST, cpu->hwp_req_cached);
1510 			cpu->hwp_boost_min = 0;
1511 		}
1512 	}
1513 	cpu->last_update = cpu->sample.time;
1514 }
1515 
1516 static inline void intel_pstate_update_util_hwp_local(struct cpudata *cpu,
1517 						      u64 time)
1518 {
1519 	cpu->sample.time = time;
1520 
1521 	if (cpu->sched_flags & SCHED_CPUFREQ_IOWAIT) {
1522 		bool do_io = false;
1523 
1524 		cpu->sched_flags = 0;
1525 		/*
1526 		 * Set iowait_boost flag and update time. Since IO WAIT flag
1527 		 * is set all the time, we can't just conclude that there is
1528 		 * some IO bound activity is scheduled on this CPU with just
1529 		 * one occurrence. If we receive at least two in two
1530 		 * consecutive ticks, then we treat as boost candidate.
1531 		 */
1532 		if (time_before64(time, cpu->last_io_update + 2 * TICK_NSEC))
1533 			do_io = true;
1534 
1535 		cpu->last_io_update = time;
1536 
1537 		if (do_io)
1538 			intel_pstate_hwp_boost_up(cpu);
1539 
1540 	} else {
1541 		intel_pstate_hwp_boost_down(cpu);
1542 	}
1543 }
1544 
1545 static inline void intel_pstate_update_util_hwp(struct update_util_data *data,
1546 						u64 time, unsigned int flags)
1547 {
1548 	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1549 
1550 	cpu->sched_flags |= flags;
1551 
1552 	if (smp_processor_id() == cpu->cpu)
1553 		intel_pstate_update_util_hwp_local(cpu, time);
1554 }
1555 
1556 static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1557 {
1558 	struct sample *sample = &cpu->sample;
1559 
1560 	sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1561 }
1562 
1563 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1564 {
1565 	u64 aperf, mperf;
1566 	unsigned long flags;
1567 	u64 tsc;
1568 
1569 	local_irq_save(flags);
1570 	rdmsrl(MSR_IA32_APERF, aperf);
1571 	rdmsrl(MSR_IA32_MPERF, mperf);
1572 	tsc = rdtsc();
1573 	if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1574 		local_irq_restore(flags);
1575 		return false;
1576 	}
1577 	local_irq_restore(flags);
1578 
1579 	cpu->last_sample_time = cpu->sample.time;
1580 	cpu->sample.time = time;
1581 	cpu->sample.aperf = aperf;
1582 	cpu->sample.mperf = mperf;
1583 	cpu->sample.tsc =  tsc;
1584 	cpu->sample.aperf -= cpu->prev_aperf;
1585 	cpu->sample.mperf -= cpu->prev_mperf;
1586 	cpu->sample.tsc -= cpu->prev_tsc;
1587 
1588 	cpu->prev_aperf = aperf;
1589 	cpu->prev_mperf = mperf;
1590 	cpu->prev_tsc = tsc;
1591 	/*
1592 	 * First time this function is invoked in a given cycle, all of the
1593 	 * previous sample data fields are equal to zero or stale and they must
1594 	 * be populated with meaningful numbers for things to work, so assume
1595 	 * that sample.time will always be reset before setting the utilization
1596 	 * update hook and make the caller skip the sample then.
1597 	 */
1598 	if (cpu->last_sample_time) {
1599 		intel_pstate_calc_avg_perf(cpu);
1600 		return true;
1601 	}
1602 	return false;
1603 }
1604 
1605 static inline int32_t get_avg_frequency(struct cpudata *cpu)
1606 {
1607 	return mul_ext_fp(cpu->sample.core_avg_perf, cpu_khz);
1608 }
1609 
1610 static inline int32_t get_avg_pstate(struct cpudata *cpu)
1611 {
1612 	return mul_ext_fp(cpu->pstate.max_pstate_physical,
1613 			  cpu->sample.core_avg_perf);
1614 }
1615 
1616 static inline int32_t get_target_pstate(struct cpudata *cpu)
1617 {
1618 	struct sample *sample = &cpu->sample;
1619 	int32_t busy_frac, boost;
1620 	int target, avg_pstate;
1621 
1622 	busy_frac = div_fp(sample->mperf << cpu->aperf_mperf_shift,
1623 			   sample->tsc);
1624 
1625 	boost = cpu->iowait_boost;
1626 	cpu->iowait_boost >>= 1;
1627 
1628 	if (busy_frac < boost)
1629 		busy_frac = boost;
1630 
1631 	sample->busy_scaled = busy_frac * 100;
1632 
1633 	target = global.no_turbo || global.turbo_disabled ?
1634 			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1635 	target += target >> 2;
1636 	target = mul_fp(target, busy_frac);
1637 	if (target < cpu->pstate.min_pstate)
1638 		target = cpu->pstate.min_pstate;
1639 
1640 	/*
1641 	 * If the average P-state during the previous cycle was higher than the
1642 	 * current target, add 50% of the difference to the target to reduce
1643 	 * possible performance oscillations and offset possible performance
1644 	 * loss related to moving the workload from one CPU to another within
1645 	 * a package/module.
1646 	 */
1647 	avg_pstate = get_avg_pstate(cpu);
1648 	if (avg_pstate > target)
1649 		target += (avg_pstate - target) >> 1;
1650 
1651 	return target;
1652 }
1653 
1654 static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
1655 {
1656 	int max_pstate = intel_pstate_get_base_pstate(cpu);
1657 	int min_pstate;
1658 
1659 	min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio);
1660 	max_pstate = max(min_pstate, cpu->max_perf_ratio);
1661 	return clamp_t(int, pstate, min_pstate, max_pstate);
1662 }
1663 
1664 static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1665 {
1666 	if (pstate == cpu->pstate.current_pstate)
1667 		return;
1668 
1669 	cpu->pstate.current_pstate = pstate;
1670 	wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1671 }
1672 
1673 static void intel_pstate_adjust_pstate(struct cpudata *cpu)
1674 {
1675 	int from = cpu->pstate.current_pstate;
1676 	struct sample *sample;
1677 	int target_pstate;
1678 
1679 	update_turbo_state();
1680 
1681 	target_pstate = get_target_pstate(cpu);
1682 	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
1683 	trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
1684 	intel_pstate_update_pstate(cpu, target_pstate);
1685 
1686 	sample = &cpu->sample;
1687 	trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1688 		fp_toint(sample->busy_scaled),
1689 		from,
1690 		cpu->pstate.current_pstate,
1691 		sample->mperf,
1692 		sample->aperf,
1693 		sample->tsc,
1694 		get_avg_frequency(cpu),
1695 		fp_toint(cpu->iowait_boost * 100));
1696 }
1697 
1698 static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1699 				     unsigned int flags)
1700 {
1701 	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1702 	u64 delta_ns;
1703 
1704 	/* Don't allow remote callbacks */
1705 	if (smp_processor_id() != cpu->cpu)
1706 		return;
1707 
1708 	if (flags & SCHED_CPUFREQ_IOWAIT) {
1709 		cpu->iowait_boost = int_tofp(1);
1710 		cpu->last_update = time;
1711 		/*
1712 		 * The last time the busy was 100% so P-state was max anyway
1713 		 * so avoid overhead of computation.
1714 		 */
1715 		if (fp_toint(cpu->sample.busy_scaled) == 100)
1716 			return;
1717 
1718 		goto set_pstate;
1719 	} else if (cpu->iowait_boost) {
1720 		/* Clear iowait_boost if the CPU may have been idle. */
1721 		delta_ns = time - cpu->last_update;
1722 		if (delta_ns > TICK_NSEC)
1723 			cpu->iowait_boost = 0;
1724 	}
1725 	cpu->last_update = time;
1726 	delta_ns = time - cpu->sample.time;
1727 	if ((s64)delta_ns < INTEL_PSTATE_SAMPLING_INTERVAL)
1728 		return;
1729 
1730 set_pstate:
1731 	if (intel_pstate_sample(cpu, time))
1732 		intel_pstate_adjust_pstate(cpu);
1733 }
1734 
1735 static struct pstate_funcs core_funcs = {
1736 	.get_max = core_get_max_pstate,
1737 	.get_max_physical = core_get_max_pstate_physical,
1738 	.get_min = core_get_min_pstate,
1739 	.get_turbo = core_get_turbo_pstate,
1740 	.get_scaling = core_get_scaling,
1741 	.get_val = core_get_val,
1742 };
1743 
1744 static const struct pstate_funcs silvermont_funcs = {
1745 	.get_max = atom_get_max_pstate,
1746 	.get_max_physical = atom_get_max_pstate,
1747 	.get_min = atom_get_min_pstate,
1748 	.get_turbo = atom_get_turbo_pstate,
1749 	.get_val = atom_get_val,
1750 	.get_scaling = silvermont_get_scaling,
1751 	.get_vid = atom_get_vid,
1752 };
1753 
1754 static const struct pstate_funcs airmont_funcs = {
1755 	.get_max = atom_get_max_pstate,
1756 	.get_max_physical = atom_get_max_pstate,
1757 	.get_min = atom_get_min_pstate,
1758 	.get_turbo = atom_get_turbo_pstate,
1759 	.get_val = atom_get_val,
1760 	.get_scaling = airmont_get_scaling,
1761 	.get_vid = atom_get_vid,
1762 };
1763 
1764 static const struct pstate_funcs knl_funcs = {
1765 	.get_max = core_get_max_pstate,
1766 	.get_max_physical = core_get_max_pstate_physical,
1767 	.get_min = core_get_min_pstate,
1768 	.get_turbo = knl_get_turbo_pstate,
1769 	.get_aperf_mperf_shift = knl_get_aperf_mperf_shift,
1770 	.get_scaling = core_get_scaling,
1771 	.get_val = core_get_val,
1772 };
1773 
1774 #define ICPU(model, policy) \
1775 	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1776 			(unsigned long)&policy }
1777 
1778 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1779 	ICPU(INTEL_FAM6_SANDYBRIDGE, 		core_funcs),
1780 	ICPU(INTEL_FAM6_SANDYBRIDGE_X,		core_funcs),
1781 	ICPU(INTEL_FAM6_ATOM_SILVERMONT1,	silvermont_funcs),
1782 	ICPU(INTEL_FAM6_IVYBRIDGE,		core_funcs),
1783 	ICPU(INTEL_FAM6_HASWELL_CORE,		core_funcs),
1784 	ICPU(INTEL_FAM6_BROADWELL_CORE,		core_funcs),
1785 	ICPU(INTEL_FAM6_IVYBRIDGE_X,		core_funcs),
1786 	ICPU(INTEL_FAM6_HASWELL_X,		core_funcs),
1787 	ICPU(INTEL_FAM6_HASWELL_ULT,		core_funcs),
1788 	ICPU(INTEL_FAM6_HASWELL_GT3E,		core_funcs),
1789 	ICPU(INTEL_FAM6_BROADWELL_GT3E,		core_funcs),
1790 	ICPU(INTEL_FAM6_ATOM_AIRMONT,		airmont_funcs),
1791 	ICPU(INTEL_FAM6_SKYLAKE_MOBILE,		core_funcs),
1792 	ICPU(INTEL_FAM6_BROADWELL_X,		core_funcs),
1793 	ICPU(INTEL_FAM6_SKYLAKE_DESKTOP,	core_funcs),
1794 	ICPU(INTEL_FAM6_BROADWELL_XEON_D,	core_funcs),
1795 	ICPU(INTEL_FAM6_XEON_PHI_KNL,		knl_funcs),
1796 	ICPU(INTEL_FAM6_XEON_PHI_KNM,		knl_funcs),
1797 	ICPU(INTEL_FAM6_ATOM_GOLDMONT,		core_funcs),
1798 	ICPU(INTEL_FAM6_ATOM_GEMINI_LAKE,       core_funcs),
1799 	ICPU(INTEL_FAM6_SKYLAKE_X,		core_funcs),
1800 	{}
1801 };
1802 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1803 
1804 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
1805 	ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_funcs),
1806 	ICPU(INTEL_FAM6_BROADWELL_X, core_funcs),
1807 	ICPU(INTEL_FAM6_SKYLAKE_X, core_funcs),
1808 	{}
1809 };
1810 
1811 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
1812 	ICPU(INTEL_FAM6_KABYLAKE_DESKTOP, core_funcs),
1813 	{}
1814 };
1815 
1816 static const struct x86_cpu_id intel_pstate_hwp_boost_ids[] = {
1817 	ICPU(INTEL_FAM6_SKYLAKE_X, core_funcs),
1818 	ICPU(INTEL_FAM6_SKYLAKE_DESKTOP, core_funcs),
1819 	{}
1820 };
1821 
1822 static int intel_pstate_init_cpu(unsigned int cpunum)
1823 {
1824 	struct cpudata *cpu;
1825 
1826 	cpu = all_cpu_data[cpunum];
1827 
1828 	if (!cpu) {
1829 		cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
1830 		if (!cpu)
1831 			return -ENOMEM;
1832 
1833 		all_cpu_data[cpunum] = cpu;
1834 
1835 		cpu->epp_default = -EINVAL;
1836 		cpu->epp_powersave = -EINVAL;
1837 		cpu->epp_saved = -EINVAL;
1838 	}
1839 
1840 	cpu = all_cpu_data[cpunum];
1841 
1842 	cpu->cpu = cpunum;
1843 
1844 	if (hwp_active) {
1845 		const struct x86_cpu_id *id;
1846 
1847 		id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
1848 		if (id)
1849 			intel_pstate_disable_ee(cpunum);
1850 
1851 		intel_pstate_hwp_enable(cpu);
1852 
1853 		id = x86_match_cpu(intel_pstate_hwp_boost_ids);
1854 		if (id && intel_pstate_acpi_pm_profile_server())
1855 			hwp_boost = true;
1856 	}
1857 
1858 	intel_pstate_get_cpu_pstates(cpu);
1859 
1860 	pr_debug("controlling: cpu %d\n", cpunum);
1861 
1862 	return 0;
1863 }
1864 
1865 static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
1866 {
1867 	struct cpudata *cpu = all_cpu_data[cpu_num];
1868 
1869 	if (hwp_active && !hwp_boost)
1870 		return;
1871 
1872 	if (cpu->update_util_set)
1873 		return;
1874 
1875 	/* Prevent intel_pstate_update_util() from using stale data. */
1876 	cpu->sample.time = 0;
1877 	cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
1878 				     (hwp_active ?
1879 				      intel_pstate_update_util_hwp :
1880 				      intel_pstate_update_util));
1881 	cpu->update_util_set = true;
1882 }
1883 
1884 static void intel_pstate_clear_update_util_hook(unsigned int cpu)
1885 {
1886 	struct cpudata *cpu_data = all_cpu_data[cpu];
1887 
1888 	if (!cpu_data->update_util_set)
1889 		return;
1890 
1891 	cpufreq_remove_update_util_hook(cpu);
1892 	cpu_data->update_util_set = false;
1893 	synchronize_sched();
1894 }
1895 
1896 static int intel_pstate_get_max_freq(struct cpudata *cpu)
1897 {
1898 	return global.turbo_disabled || global.no_turbo ?
1899 			cpu->pstate.max_freq : cpu->pstate.turbo_freq;
1900 }
1901 
1902 static void intel_pstate_update_perf_limits(struct cpufreq_policy *policy,
1903 					    struct cpudata *cpu)
1904 {
1905 	int max_freq = intel_pstate_get_max_freq(cpu);
1906 	int32_t max_policy_perf, min_policy_perf;
1907 	int max_state, turbo_max;
1908 
1909 	/*
1910 	 * HWP needs some special consideration, because on BDX the
1911 	 * HWP_REQUEST uses abstract value to represent performance
1912 	 * rather than pure ratios.
1913 	 */
1914 	if (hwp_active) {
1915 		intel_pstate_get_hwp_max(cpu->cpu, &turbo_max, &max_state);
1916 	} else {
1917 		max_state = intel_pstate_get_base_pstate(cpu);
1918 		turbo_max = cpu->pstate.turbo_pstate;
1919 	}
1920 
1921 	max_policy_perf = max_state * policy->max / max_freq;
1922 	if (policy->max == policy->min) {
1923 		min_policy_perf = max_policy_perf;
1924 	} else {
1925 		min_policy_perf = max_state * policy->min / max_freq;
1926 		min_policy_perf = clamp_t(int32_t, min_policy_perf,
1927 					  0, max_policy_perf);
1928 	}
1929 
1930 	pr_debug("cpu:%d max_state %d min_policy_perf:%d max_policy_perf:%d\n",
1931 		 policy->cpu, max_state,
1932 		 min_policy_perf, max_policy_perf);
1933 
1934 	/* Normalize user input to [min_perf, max_perf] */
1935 	if (per_cpu_limits) {
1936 		cpu->min_perf_ratio = min_policy_perf;
1937 		cpu->max_perf_ratio = max_policy_perf;
1938 	} else {
1939 		int32_t global_min, global_max;
1940 
1941 		/* Global limits are in percent of the maximum turbo P-state. */
1942 		global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
1943 		global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
1944 		global_min = clamp_t(int32_t, global_min, 0, global_max);
1945 
1946 		pr_debug("cpu:%d global_min:%d global_max:%d\n", policy->cpu,
1947 			 global_min, global_max);
1948 
1949 		cpu->min_perf_ratio = max(min_policy_perf, global_min);
1950 		cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf);
1951 		cpu->max_perf_ratio = min(max_policy_perf, global_max);
1952 		cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio);
1953 
1954 		/* Make sure min_perf <= max_perf */
1955 		cpu->min_perf_ratio = min(cpu->min_perf_ratio,
1956 					  cpu->max_perf_ratio);
1957 
1958 	}
1959 	pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", policy->cpu,
1960 		 cpu->max_perf_ratio,
1961 		 cpu->min_perf_ratio);
1962 }
1963 
1964 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
1965 {
1966 	struct cpudata *cpu;
1967 
1968 	if (!policy->cpuinfo.max_freq)
1969 		return -ENODEV;
1970 
1971 	pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
1972 		 policy->cpuinfo.max_freq, policy->max);
1973 
1974 	cpu = all_cpu_data[policy->cpu];
1975 	cpu->policy = policy->policy;
1976 
1977 	mutex_lock(&intel_pstate_limits_lock);
1978 
1979 	intel_pstate_update_perf_limits(policy, cpu);
1980 
1981 	if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
1982 		/*
1983 		 * NOHZ_FULL CPUs need this as the governor callback may not
1984 		 * be invoked on them.
1985 		 */
1986 		intel_pstate_clear_update_util_hook(policy->cpu);
1987 		intel_pstate_max_within_limits(cpu);
1988 	} else {
1989 		intel_pstate_set_update_util_hook(policy->cpu);
1990 	}
1991 
1992 	if (hwp_active) {
1993 		/*
1994 		 * When hwp_boost was active before and dynamically it
1995 		 * was turned off, in that case we need to clear the
1996 		 * update util hook.
1997 		 */
1998 		if (!hwp_boost)
1999 			intel_pstate_clear_update_util_hook(policy->cpu);
2000 		intel_pstate_hwp_set(policy->cpu);
2001 	}
2002 
2003 	mutex_unlock(&intel_pstate_limits_lock);
2004 
2005 	return 0;
2006 }
2007 
2008 static void intel_pstate_adjust_policy_max(struct cpufreq_policy *policy,
2009 					 struct cpudata *cpu)
2010 {
2011 	if (!hwp_active &&
2012 	    cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
2013 	    policy->max < policy->cpuinfo.max_freq &&
2014 	    policy->max > cpu->pstate.max_freq) {
2015 		pr_debug("policy->max > max non turbo frequency\n");
2016 		policy->max = policy->cpuinfo.max_freq;
2017 	}
2018 }
2019 
2020 static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
2021 {
2022 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2023 
2024 	update_turbo_state();
2025 	cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
2026 				     intel_pstate_get_max_freq(cpu));
2027 
2028 	if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
2029 	    policy->policy != CPUFREQ_POLICY_PERFORMANCE)
2030 		return -EINVAL;
2031 
2032 	intel_pstate_adjust_policy_max(policy, cpu);
2033 
2034 	return 0;
2035 }
2036 
2037 static void intel_cpufreq_stop_cpu(struct cpufreq_policy *policy)
2038 {
2039 	intel_pstate_set_min_pstate(all_cpu_data[policy->cpu]);
2040 }
2041 
2042 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
2043 {
2044 	pr_debug("CPU %d exiting\n", policy->cpu);
2045 
2046 	intel_pstate_clear_update_util_hook(policy->cpu);
2047 	if (hwp_active)
2048 		intel_pstate_hwp_save_state(policy);
2049 	else
2050 		intel_cpufreq_stop_cpu(policy);
2051 }
2052 
2053 static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
2054 {
2055 	intel_pstate_exit_perf_limits(policy);
2056 
2057 	policy->fast_switch_possible = false;
2058 
2059 	return 0;
2060 }
2061 
2062 static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2063 {
2064 	struct cpudata *cpu;
2065 	int rc;
2066 
2067 	rc = intel_pstate_init_cpu(policy->cpu);
2068 	if (rc)
2069 		return rc;
2070 
2071 	cpu = all_cpu_data[policy->cpu];
2072 
2073 	cpu->max_perf_ratio = 0xFF;
2074 	cpu->min_perf_ratio = 0;
2075 
2076 	policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
2077 	policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
2078 
2079 	/* cpuinfo and default policy values */
2080 	policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
2081 	update_turbo_state();
2082 	policy->cpuinfo.max_freq = global.turbo_disabled ?
2083 			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2084 	policy->cpuinfo.max_freq *= cpu->pstate.scaling;
2085 
2086 	if (hwp_active) {
2087 		unsigned int max_freq;
2088 
2089 		max_freq = global.turbo_disabled ?
2090 			cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2091 		if (max_freq < policy->cpuinfo.max_freq)
2092 			policy->cpuinfo.max_freq = max_freq;
2093 	}
2094 
2095 	intel_pstate_init_acpi_perf_limits(policy);
2096 
2097 	policy->fast_switch_possible = true;
2098 
2099 	return 0;
2100 }
2101 
2102 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2103 {
2104 	int ret = __intel_pstate_cpu_init(policy);
2105 
2106 	if (ret)
2107 		return ret;
2108 
2109 	if (IS_ENABLED(CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE))
2110 		policy->policy = CPUFREQ_POLICY_PERFORMANCE;
2111 	else
2112 		policy->policy = CPUFREQ_POLICY_POWERSAVE;
2113 
2114 	return 0;
2115 }
2116 
2117 static struct cpufreq_driver intel_pstate = {
2118 	.flags		= CPUFREQ_CONST_LOOPS,
2119 	.verify		= intel_pstate_verify_policy,
2120 	.setpolicy	= intel_pstate_set_policy,
2121 	.suspend	= intel_pstate_hwp_save_state,
2122 	.resume		= intel_pstate_resume,
2123 	.init		= intel_pstate_cpu_init,
2124 	.exit		= intel_pstate_cpu_exit,
2125 	.stop_cpu	= intel_pstate_stop_cpu,
2126 	.name		= "intel_pstate",
2127 };
2128 
2129 static int intel_cpufreq_verify_policy(struct cpufreq_policy *policy)
2130 {
2131 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2132 
2133 	update_turbo_state();
2134 	cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
2135 				     intel_pstate_get_max_freq(cpu));
2136 
2137 	intel_pstate_adjust_policy_max(policy, cpu);
2138 
2139 	intel_pstate_update_perf_limits(policy, cpu);
2140 
2141 	return 0;
2142 }
2143 
2144 /* Use of trace in passive mode:
2145  *
2146  * In passive mode the trace core_busy field (also known as the
2147  * performance field, and lablelled as such on the graphs; also known as
2148  * core_avg_perf) is not needed and so is re-assigned to indicate if the
2149  * driver call was via the normal or fast switch path. Various graphs
2150  * output from the intel_pstate_tracer.py utility that include core_busy
2151  * (or performance or core_avg_perf) have a fixed y-axis from 0 to 100%,
2152  * so we use 10 to indicate the the normal path through the driver, and
2153  * 90 to indicate the fast switch path through the driver.
2154  * The scaled_busy field is not used, and is set to 0.
2155  */
2156 
2157 #define	INTEL_PSTATE_TRACE_TARGET 10
2158 #define	INTEL_PSTATE_TRACE_FAST_SWITCH 90
2159 
2160 static void intel_cpufreq_trace(struct cpudata *cpu, unsigned int trace_type, int old_pstate)
2161 {
2162 	struct sample *sample;
2163 
2164 	if (!trace_pstate_sample_enabled())
2165 		return;
2166 
2167 	if (!intel_pstate_sample(cpu, ktime_get()))
2168 		return;
2169 
2170 	sample = &cpu->sample;
2171 	trace_pstate_sample(trace_type,
2172 		0,
2173 		old_pstate,
2174 		cpu->pstate.current_pstate,
2175 		sample->mperf,
2176 		sample->aperf,
2177 		sample->tsc,
2178 		get_avg_frequency(cpu),
2179 		fp_toint(cpu->iowait_boost * 100));
2180 }
2181 
2182 static int intel_cpufreq_target(struct cpufreq_policy *policy,
2183 				unsigned int target_freq,
2184 				unsigned int relation)
2185 {
2186 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2187 	struct cpufreq_freqs freqs;
2188 	int target_pstate, old_pstate;
2189 
2190 	update_turbo_state();
2191 
2192 	freqs.old = policy->cur;
2193 	freqs.new = target_freq;
2194 
2195 	cpufreq_freq_transition_begin(policy, &freqs);
2196 	switch (relation) {
2197 	case CPUFREQ_RELATION_L:
2198 		target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
2199 		break;
2200 	case CPUFREQ_RELATION_H:
2201 		target_pstate = freqs.new / cpu->pstate.scaling;
2202 		break;
2203 	default:
2204 		target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
2205 		break;
2206 	}
2207 	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2208 	old_pstate = cpu->pstate.current_pstate;
2209 	if (target_pstate != cpu->pstate.current_pstate) {
2210 		cpu->pstate.current_pstate = target_pstate;
2211 		wrmsrl_on_cpu(policy->cpu, MSR_IA32_PERF_CTL,
2212 			      pstate_funcs.get_val(cpu, target_pstate));
2213 	}
2214 	freqs.new = target_pstate * cpu->pstate.scaling;
2215 	intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_TARGET, old_pstate);
2216 	cpufreq_freq_transition_end(policy, &freqs, false);
2217 
2218 	return 0;
2219 }
2220 
2221 static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
2222 					      unsigned int target_freq)
2223 {
2224 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2225 	int target_pstate, old_pstate;
2226 
2227 	update_turbo_state();
2228 
2229 	target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
2230 	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2231 	old_pstate = cpu->pstate.current_pstate;
2232 	intel_pstate_update_pstate(cpu, target_pstate);
2233 	intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_FAST_SWITCH, old_pstate);
2234 	return target_pstate * cpu->pstate.scaling;
2235 }
2236 
2237 static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
2238 {
2239 	int ret = __intel_pstate_cpu_init(policy);
2240 
2241 	if (ret)
2242 		return ret;
2243 
2244 	policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
2245 	policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY;
2246 	/* This reflects the intel_pstate_get_cpu_pstates() setting. */
2247 	policy->cur = policy->cpuinfo.min_freq;
2248 
2249 	return 0;
2250 }
2251 
2252 static struct cpufreq_driver intel_cpufreq = {
2253 	.flags		= CPUFREQ_CONST_LOOPS,
2254 	.verify		= intel_cpufreq_verify_policy,
2255 	.target		= intel_cpufreq_target,
2256 	.fast_switch	= intel_cpufreq_fast_switch,
2257 	.init		= intel_cpufreq_cpu_init,
2258 	.exit		= intel_pstate_cpu_exit,
2259 	.stop_cpu	= intel_cpufreq_stop_cpu,
2260 	.name		= "intel_cpufreq",
2261 };
2262 
2263 static struct cpufreq_driver *default_driver = &intel_pstate;
2264 
2265 static void intel_pstate_driver_cleanup(void)
2266 {
2267 	unsigned int cpu;
2268 
2269 	get_online_cpus();
2270 	for_each_online_cpu(cpu) {
2271 		if (all_cpu_data[cpu]) {
2272 			if (intel_pstate_driver == &intel_pstate)
2273 				intel_pstate_clear_update_util_hook(cpu);
2274 
2275 			kfree(all_cpu_data[cpu]);
2276 			all_cpu_data[cpu] = NULL;
2277 		}
2278 	}
2279 	put_online_cpus();
2280 	intel_pstate_driver = NULL;
2281 }
2282 
2283 static int intel_pstate_register_driver(struct cpufreq_driver *driver)
2284 {
2285 	int ret;
2286 
2287 	memset(&global, 0, sizeof(global));
2288 	global.max_perf_pct = 100;
2289 
2290 	intel_pstate_driver = driver;
2291 	ret = cpufreq_register_driver(intel_pstate_driver);
2292 	if (ret) {
2293 		intel_pstate_driver_cleanup();
2294 		return ret;
2295 	}
2296 
2297 	global.min_perf_pct = min_perf_pct_min();
2298 
2299 	return 0;
2300 }
2301 
2302 static int intel_pstate_unregister_driver(void)
2303 {
2304 	if (hwp_active)
2305 		return -EBUSY;
2306 
2307 	cpufreq_unregister_driver(intel_pstate_driver);
2308 	intel_pstate_driver_cleanup();
2309 
2310 	return 0;
2311 }
2312 
2313 static ssize_t intel_pstate_show_status(char *buf)
2314 {
2315 	if (!intel_pstate_driver)
2316 		return sprintf(buf, "off\n");
2317 
2318 	return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
2319 					"active" : "passive");
2320 }
2321 
2322 static int intel_pstate_update_status(const char *buf, size_t size)
2323 {
2324 	int ret;
2325 
2326 	if (size == 3 && !strncmp(buf, "off", size))
2327 		return intel_pstate_driver ?
2328 			intel_pstate_unregister_driver() : -EINVAL;
2329 
2330 	if (size == 6 && !strncmp(buf, "active", size)) {
2331 		if (intel_pstate_driver) {
2332 			if (intel_pstate_driver == &intel_pstate)
2333 				return 0;
2334 
2335 			ret = intel_pstate_unregister_driver();
2336 			if (ret)
2337 				return ret;
2338 		}
2339 
2340 		return intel_pstate_register_driver(&intel_pstate);
2341 	}
2342 
2343 	if (size == 7 && !strncmp(buf, "passive", size)) {
2344 		if (intel_pstate_driver) {
2345 			if (intel_pstate_driver == &intel_cpufreq)
2346 				return 0;
2347 
2348 			ret = intel_pstate_unregister_driver();
2349 			if (ret)
2350 				return ret;
2351 		}
2352 
2353 		return intel_pstate_register_driver(&intel_cpufreq);
2354 	}
2355 
2356 	return -EINVAL;
2357 }
2358 
2359 static int no_load __initdata;
2360 static int no_hwp __initdata;
2361 static int hwp_only __initdata;
2362 static unsigned int force_load __initdata;
2363 
2364 static int __init intel_pstate_msrs_not_valid(void)
2365 {
2366 	if (!pstate_funcs.get_max() ||
2367 	    !pstate_funcs.get_min() ||
2368 	    !pstate_funcs.get_turbo())
2369 		return -ENODEV;
2370 
2371 	return 0;
2372 }
2373 
2374 static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
2375 {
2376 	pstate_funcs.get_max   = funcs->get_max;
2377 	pstate_funcs.get_max_physical = funcs->get_max_physical;
2378 	pstate_funcs.get_min   = funcs->get_min;
2379 	pstate_funcs.get_turbo = funcs->get_turbo;
2380 	pstate_funcs.get_scaling = funcs->get_scaling;
2381 	pstate_funcs.get_val   = funcs->get_val;
2382 	pstate_funcs.get_vid   = funcs->get_vid;
2383 	pstate_funcs.get_aperf_mperf_shift = funcs->get_aperf_mperf_shift;
2384 }
2385 
2386 #ifdef CONFIG_ACPI
2387 
2388 static bool __init intel_pstate_no_acpi_pss(void)
2389 {
2390 	int i;
2391 
2392 	for_each_possible_cpu(i) {
2393 		acpi_status status;
2394 		union acpi_object *pss;
2395 		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
2396 		struct acpi_processor *pr = per_cpu(processors, i);
2397 
2398 		if (!pr)
2399 			continue;
2400 
2401 		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
2402 		if (ACPI_FAILURE(status))
2403 			continue;
2404 
2405 		pss = buffer.pointer;
2406 		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
2407 			kfree(pss);
2408 			return false;
2409 		}
2410 
2411 		kfree(pss);
2412 	}
2413 
2414 	return true;
2415 }
2416 
2417 static bool __init intel_pstate_no_acpi_pcch(void)
2418 {
2419 	acpi_status status;
2420 	acpi_handle handle;
2421 
2422 	status = acpi_get_handle(NULL, "\\_SB", &handle);
2423 	if (ACPI_FAILURE(status))
2424 		return true;
2425 
2426 	return !acpi_has_method(handle, "PCCH");
2427 }
2428 
2429 static bool __init intel_pstate_has_acpi_ppc(void)
2430 {
2431 	int i;
2432 
2433 	for_each_possible_cpu(i) {
2434 		struct acpi_processor *pr = per_cpu(processors, i);
2435 
2436 		if (!pr)
2437 			continue;
2438 		if (acpi_has_method(pr->handle, "_PPC"))
2439 			return true;
2440 	}
2441 	return false;
2442 }
2443 
2444 enum {
2445 	PSS,
2446 	PPC,
2447 };
2448 
2449 /* Hardware vendor-specific info that has its own power management modes */
2450 static struct acpi_platform_list plat_info[] __initdata = {
2451 	{"HP    ", "ProLiant", 0, ACPI_SIG_FADT, all_versions, 0, PSS},
2452 	{"ORACLE", "X4-2    ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2453 	{"ORACLE", "X4-2L   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2454 	{"ORACLE", "X4-2B   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2455 	{"ORACLE", "X3-2    ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2456 	{"ORACLE", "X3-2L   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2457 	{"ORACLE", "X3-2B   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2458 	{"ORACLE", "X4470M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2459 	{"ORACLE", "X4270M3 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2460 	{"ORACLE", "X4270M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2461 	{"ORACLE", "X4170M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2462 	{"ORACLE", "X4170 M3", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2463 	{"ORACLE", "X4275 M3", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2464 	{"ORACLE", "X6-2    ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2465 	{"ORACLE", "Sudbury ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2466 	{ } /* End */
2467 };
2468 
2469 static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
2470 {
2471 	const struct x86_cpu_id *id;
2472 	u64 misc_pwr;
2473 	int idx;
2474 
2475 	id = x86_match_cpu(intel_pstate_cpu_oob_ids);
2476 	if (id) {
2477 		rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
2478 		if ( misc_pwr & (1 << 8))
2479 			return true;
2480 	}
2481 
2482 	idx = acpi_match_platform_list(plat_info);
2483 	if (idx < 0)
2484 		return false;
2485 
2486 	switch (plat_info[idx].data) {
2487 	case PSS:
2488 		if (!intel_pstate_no_acpi_pss())
2489 			return false;
2490 
2491 		return intel_pstate_no_acpi_pcch();
2492 	case PPC:
2493 		return intel_pstate_has_acpi_ppc() && !force_load;
2494 	}
2495 
2496 	return false;
2497 }
2498 
2499 static void intel_pstate_request_control_from_smm(void)
2500 {
2501 	/*
2502 	 * It may be unsafe to request P-states control from SMM if _PPC support
2503 	 * has not been enabled.
2504 	 */
2505 	if (acpi_ppc)
2506 		acpi_processor_pstate_control();
2507 }
2508 #else /* CONFIG_ACPI not enabled */
2509 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
2510 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
2511 static inline void intel_pstate_request_control_from_smm(void) {}
2512 #endif /* CONFIG_ACPI */
2513 
2514 #define INTEL_PSTATE_HWP_BROADWELL	0x01
2515 
2516 #define ICPU_HWP(model, hwp_mode) \
2517 	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_HWP, hwp_mode }
2518 
2519 static const struct x86_cpu_id hwp_support_ids[] __initconst = {
2520 	ICPU_HWP(INTEL_FAM6_BROADWELL_X, INTEL_PSTATE_HWP_BROADWELL),
2521 	ICPU_HWP(INTEL_FAM6_BROADWELL_XEON_D, INTEL_PSTATE_HWP_BROADWELL),
2522 	ICPU_HWP(X86_MODEL_ANY, 0),
2523 	{}
2524 };
2525 
2526 static int __init intel_pstate_init(void)
2527 {
2528 	const struct x86_cpu_id *id;
2529 	int rc;
2530 
2531 	if (no_load)
2532 		return -ENODEV;
2533 
2534 	id = x86_match_cpu(hwp_support_ids);
2535 	if (id) {
2536 		copy_cpu_funcs(&core_funcs);
2537 		if (!no_hwp) {
2538 			hwp_active++;
2539 			hwp_mode_bdw = id->driver_data;
2540 			intel_pstate.attr = hwp_cpufreq_attrs;
2541 			goto hwp_cpu_matched;
2542 		}
2543 	} else {
2544 		id = x86_match_cpu(intel_pstate_cpu_ids);
2545 		if (!id)
2546 			return -ENODEV;
2547 
2548 		copy_cpu_funcs((struct pstate_funcs *)id->driver_data);
2549 	}
2550 
2551 	if (intel_pstate_msrs_not_valid())
2552 		return -ENODEV;
2553 
2554 hwp_cpu_matched:
2555 	/*
2556 	 * The Intel pstate driver will be ignored if the platform
2557 	 * firmware has its own power management modes.
2558 	 */
2559 	if (intel_pstate_platform_pwr_mgmt_exists())
2560 		return -ENODEV;
2561 
2562 	if (!hwp_active && hwp_only)
2563 		return -ENOTSUPP;
2564 
2565 	pr_info("Intel P-state driver initializing\n");
2566 
2567 	all_cpu_data = vzalloc(array_size(sizeof(void *), num_possible_cpus()));
2568 	if (!all_cpu_data)
2569 		return -ENOMEM;
2570 
2571 	intel_pstate_request_control_from_smm();
2572 
2573 	intel_pstate_sysfs_expose_params();
2574 
2575 	mutex_lock(&intel_pstate_driver_lock);
2576 	rc = intel_pstate_register_driver(default_driver);
2577 	mutex_unlock(&intel_pstate_driver_lock);
2578 	if (rc)
2579 		return rc;
2580 
2581 	if (hwp_active)
2582 		pr_info("HWP enabled\n");
2583 
2584 	return 0;
2585 }
2586 device_initcall(intel_pstate_init);
2587 
2588 static int __init intel_pstate_setup(char *str)
2589 {
2590 	if (!str)
2591 		return -EINVAL;
2592 
2593 	if (!strcmp(str, "disable")) {
2594 		no_load = 1;
2595 	} else if (!strcmp(str, "passive")) {
2596 		pr_info("Passive mode enabled\n");
2597 		default_driver = &intel_cpufreq;
2598 		no_hwp = 1;
2599 	}
2600 	if (!strcmp(str, "no_hwp")) {
2601 		pr_info("HWP disabled\n");
2602 		no_hwp = 1;
2603 	}
2604 	if (!strcmp(str, "force"))
2605 		force_load = 1;
2606 	if (!strcmp(str, "hwp_only"))
2607 		hwp_only = 1;
2608 	if (!strcmp(str, "per_cpu_perf_limits"))
2609 		per_cpu_limits = true;
2610 
2611 #ifdef CONFIG_ACPI
2612 	if (!strcmp(str, "support_acpi_ppc"))
2613 		acpi_ppc = true;
2614 #endif
2615 
2616 	return 0;
2617 }
2618 early_param("intel_pstate", intel_pstate_setup);
2619 
2620 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
2621 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
2622 MODULE_LICENSE("GPL");
2623