1 /*
2  * intel_pstate.c: Native P state management for Intel processors
3  *
4  * (C) Copyright 2012 Intel Corporation
5  * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; version 2
10  * of the License.
11  */
12 
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 
15 #include <linux/kernel.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/module.h>
18 #include <linux/ktime.h>
19 #include <linux/hrtimer.h>
20 #include <linux/tick.h>
21 #include <linux/slab.h>
22 #include <linux/sched/cpufreq.h>
23 #include <linux/list.h>
24 #include <linux/cpu.h>
25 #include <linux/cpufreq.h>
26 #include <linux/sysfs.h>
27 #include <linux/types.h>
28 #include <linux/fs.h>
29 #include <linux/debugfs.h>
30 #include <linux/acpi.h>
31 #include <linux/vmalloc.h>
32 #include <trace/events/power.h>
33 
34 #include <asm/div64.h>
35 #include <asm/msr.h>
36 #include <asm/cpu_device_id.h>
37 #include <asm/cpufeature.h>
38 #include <asm/intel-family.h>
39 
40 #define INTEL_CPUFREQ_TRANSITION_LATENCY	20000
41 
42 #ifdef CONFIG_ACPI
43 #include <acpi/processor.h>
44 #include <acpi/cppc_acpi.h>
45 #endif
46 
47 #define FRAC_BITS 8
48 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
49 #define fp_toint(X) ((X) >> FRAC_BITS)
50 
51 #define EXT_BITS 6
52 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
53 #define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
54 #define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
55 
56 static inline int32_t mul_fp(int32_t x, int32_t y)
57 {
58 	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
59 }
60 
61 static inline int32_t div_fp(s64 x, s64 y)
62 {
63 	return div64_s64((int64_t)x << FRAC_BITS, y);
64 }
65 
66 static inline int ceiling_fp(int32_t x)
67 {
68 	int mask, ret;
69 
70 	ret = fp_toint(x);
71 	mask = (1 << FRAC_BITS) - 1;
72 	if (x & mask)
73 		ret += 1;
74 	return ret;
75 }
76 
77 static inline u64 mul_ext_fp(u64 x, u64 y)
78 {
79 	return (x * y) >> EXT_FRAC_BITS;
80 }
81 
82 static inline u64 div_ext_fp(u64 x, u64 y)
83 {
84 	return div64_u64(x << EXT_FRAC_BITS, y);
85 }
86 
87 static inline int32_t percent_ext_fp(int percent)
88 {
89 	return div_ext_fp(percent, 100);
90 }
91 
92 /**
93  * struct sample -	Store performance sample
94  * @core_avg_perf:	Ratio of APERF/MPERF which is the actual average
95  *			performance during last sample period
96  * @busy_scaled:	Scaled busy value which is used to calculate next
97  *			P state. This can be different than core_avg_perf
98  *			to account for cpu idle period
99  * @aperf:		Difference of actual performance frequency clock count
100  *			read from APERF MSR between last and current sample
101  * @mperf:		Difference of maximum performance frequency clock count
102  *			read from MPERF MSR between last and current sample
103  * @tsc:		Difference of time stamp counter between last and
104  *			current sample
105  * @time:		Current time from scheduler
106  *
107  * This structure is used in the cpudata structure to store performance sample
108  * data for choosing next P State.
109  */
110 struct sample {
111 	int32_t core_avg_perf;
112 	int32_t busy_scaled;
113 	u64 aperf;
114 	u64 mperf;
115 	u64 tsc;
116 	u64 time;
117 };
118 
119 /**
120  * struct pstate_data - Store P state data
121  * @current_pstate:	Current requested P state
122  * @min_pstate:		Min P state possible for this platform
123  * @max_pstate:		Max P state possible for this platform
124  * @max_pstate_physical:This is physical Max P state for a processor
125  *			This can be higher than the max_pstate which can
126  *			be limited by platform thermal design power limits
127  * @scaling:		Scaling factor to  convert frequency to cpufreq
128  *			frequency units
129  * @turbo_pstate:	Max Turbo P state possible for this platform
130  * @max_freq:		@max_pstate frequency in cpufreq units
131  * @turbo_freq:		@turbo_pstate frequency in cpufreq units
132  *
133  * Stores the per cpu model P state limits and current P state.
134  */
135 struct pstate_data {
136 	int	current_pstate;
137 	int	min_pstate;
138 	int	max_pstate;
139 	int	max_pstate_physical;
140 	int	scaling;
141 	int	turbo_pstate;
142 	unsigned int max_freq;
143 	unsigned int turbo_freq;
144 };
145 
146 /**
147  * struct vid_data -	Stores voltage information data
148  * @min:		VID data for this platform corresponding to
149  *			the lowest P state
150  * @max:		VID data corresponding to the highest P State.
151  * @turbo:		VID data for turbo P state
152  * @ratio:		Ratio of (vid max - vid min) /
153  *			(max P state - Min P State)
154  *
155  * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
156  * This data is used in Atom platforms, where in addition to target P state,
157  * the voltage data needs to be specified to select next P State.
158  */
159 struct vid_data {
160 	int min;
161 	int max;
162 	int turbo;
163 	int32_t ratio;
164 };
165 
166 /**
167  * struct _pid -	Stores PID data
168  * @setpoint:		Target set point for busyness or performance
169  * @integral:		Storage for accumulated error values
170  * @p_gain:		PID proportional gain
171  * @i_gain:		PID integral gain
172  * @d_gain:		PID derivative gain
173  * @deadband:		PID deadband
174  * @last_err:		Last error storage for integral part of PID calculation
175  *
176  * Stores PID coefficients and last error for PID controller.
177  */
178 struct _pid {
179 	int setpoint;
180 	int32_t integral;
181 	int32_t p_gain;
182 	int32_t i_gain;
183 	int32_t d_gain;
184 	int deadband;
185 	int32_t last_err;
186 };
187 
188 /**
189  * struct perf_limits - Store user and policy limits
190  * @no_turbo:		User requested turbo state from intel_pstate sysfs
191  * @turbo_disabled:	Platform turbo status either from msr
192  *			MSR_IA32_MISC_ENABLE or when maximum available pstate
193  *			matches the maximum turbo pstate
194  * @max_perf_pct:	Effective maximum performance limit in percentage, this
195  *			is minimum of either limits enforced by cpufreq policy
196  *			or limits from user set limits via intel_pstate sysfs
197  * @min_perf_pct:	Effective minimum performance limit in percentage, this
198  *			is maximum of either limits enforced by cpufreq policy
199  *			or limits from user set limits via intel_pstate sysfs
200  * @max_perf:		This is a scaled value between 0 to 255 for max_perf_pct
201  *			This value is used to limit max pstate
202  * @min_perf:		This is a scaled value between 0 to 255 for min_perf_pct
203  *			This value is used to limit min pstate
204  * @max_policy_pct:	The maximum performance in percentage enforced by
205  *			cpufreq setpolicy interface
206  * @max_sysfs_pct:	The maximum performance in percentage enforced by
207  *			intel pstate sysfs interface, unused when per cpu
208  *			controls are enforced
209  * @min_policy_pct:	The minimum performance in percentage enforced by
210  *			cpufreq setpolicy interface
211  * @min_sysfs_pct:	The minimum performance in percentage enforced by
212  *			intel pstate sysfs interface, unused when per cpu
213  *			controls are enforced
214  *
215  * Storage for user and policy defined limits.
216  */
217 struct perf_limits {
218 	int no_turbo;
219 	int turbo_disabled;
220 	int max_perf_pct;
221 	int min_perf_pct;
222 	int32_t max_perf;
223 	int32_t min_perf;
224 	int max_policy_pct;
225 	int max_sysfs_pct;
226 	int min_policy_pct;
227 	int min_sysfs_pct;
228 };
229 
230 /**
231  * struct cpudata -	Per CPU instance data storage
232  * @cpu:		CPU number for this instance data
233  * @policy:		CPUFreq policy value
234  * @update_util:	CPUFreq utility callback information
235  * @update_util_set:	CPUFreq utility callback is set
236  * @iowait_boost:	iowait-related boost fraction
237  * @last_update:	Time of the last update.
238  * @pstate:		Stores P state limits for this CPU
239  * @vid:		Stores VID limits for this CPU
240  * @pid:		Stores PID parameters for this CPU
241  * @last_sample_time:	Last Sample time
242  * @prev_aperf:		Last APERF value read from APERF MSR
243  * @prev_mperf:		Last MPERF value read from MPERF MSR
244  * @prev_tsc:		Last timestamp counter (TSC) value
245  * @prev_cummulative_iowait: IO Wait time difference from last and
246  *			current sample
247  * @sample:		Storage for storing last Sample data
248  * @perf_limits:	Pointer to perf_limit unique to this CPU
249  *			Not all field in the structure are applicable
250  *			when per cpu controls are enforced
251  * @acpi_perf_data:	Stores ACPI perf information read from _PSS
252  * @valid_pss_table:	Set to true for valid ACPI _PSS entries found
253  * @epp_powersave:	Last saved HWP energy performance preference
254  *			(EPP) or energy performance bias (EPB),
255  *			when policy switched to performance
256  * @epp_policy:		Last saved policy used to set EPP/EPB
257  * @epp_default:	Power on default HWP energy performance
258  *			preference/bias
259  * @epp_saved:		Saved EPP/EPB during system suspend or CPU offline
260  *			operation
261  *
262  * This structure stores per CPU instance data for all CPUs.
263  */
264 struct cpudata {
265 	int cpu;
266 
267 	unsigned int policy;
268 	struct update_util_data update_util;
269 	bool   update_util_set;
270 
271 	struct pstate_data pstate;
272 	struct vid_data vid;
273 	struct _pid pid;
274 
275 	u64	last_update;
276 	u64	last_sample_time;
277 	u64	prev_aperf;
278 	u64	prev_mperf;
279 	u64	prev_tsc;
280 	u64	prev_cummulative_iowait;
281 	struct sample sample;
282 	struct perf_limits *perf_limits;
283 #ifdef CONFIG_ACPI
284 	struct acpi_processor_performance acpi_perf_data;
285 	bool valid_pss_table;
286 #endif
287 	unsigned int iowait_boost;
288 	s16 epp_powersave;
289 	s16 epp_policy;
290 	s16 epp_default;
291 	s16 epp_saved;
292 };
293 
294 static struct cpudata **all_cpu_data;
295 
296 /**
297  * struct pstate_adjust_policy - Stores static PID configuration data
298  * @sample_rate_ms:	PID calculation sample rate in ms
299  * @sample_rate_ns:	Sample rate calculation in ns
300  * @deadband:		PID deadband
301  * @setpoint:		PID Setpoint
302  * @p_gain_pct:		PID proportional gain
303  * @i_gain_pct:		PID integral gain
304  * @d_gain_pct:		PID derivative gain
305  *
306  * Stores per CPU model static PID configuration data.
307  */
308 struct pstate_adjust_policy {
309 	int sample_rate_ms;
310 	s64 sample_rate_ns;
311 	int deadband;
312 	int setpoint;
313 	int p_gain_pct;
314 	int d_gain_pct;
315 	int i_gain_pct;
316 };
317 
318 /**
319  * struct pstate_funcs - Per CPU model specific callbacks
320  * @get_max:		Callback to get maximum non turbo effective P state
321  * @get_max_physical:	Callback to get maximum non turbo physical P state
322  * @get_min:		Callback to get minimum P state
323  * @get_turbo:		Callback to get turbo P state
324  * @get_scaling:	Callback to get frequency scaling factor
325  * @get_val:		Callback to convert P state to actual MSR write value
326  * @get_vid:		Callback to get VID data for Atom platforms
327  * @get_target_pstate:	Callback to a function to calculate next P state to use
328  *
329  * Core and Atom CPU models have different way to get P State limits. This
330  * structure is used to store those callbacks.
331  */
332 struct pstate_funcs {
333 	int (*get_max)(void);
334 	int (*get_max_physical)(void);
335 	int (*get_min)(void);
336 	int (*get_turbo)(void);
337 	int (*get_scaling)(void);
338 	u64 (*get_val)(struct cpudata*, int pstate);
339 	void (*get_vid)(struct cpudata *);
340 	int32_t (*get_target_pstate)(struct cpudata *);
341 };
342 
343 /**
344  * struct cpu_defaults- Per CPU model default config data
345  * @pid_policy:	PID config data
346  * @funcs:		Callback function data
347  */
348 struct cpu_defaults {
349 	struct pstate_adjust_policy pid_policy;
350 	struct pstate_funcs funcs;
351 };
352 
353 static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu);
354 static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu);
355 
356 static struct pstate_adjust_policy pid_params __read_mostly;
357 static struct pstate_funcs pstate_funcs __read_mostly;
358 static int hwp_active __read_mostly;
359 static bool per_cpu_limits __read_mostly;
360 
361 static bool driver_registered __read_mostly;
362 
363 #ifdef CONFIG_ACPI
364 static bool acpi_ppc;
365 #endif
366 
367 static struct perf_limits global;
368 
369 static void intel_pstate_init_limits(struct perf_limits *limits)
370 {
371 	memset(limits, 0, sizeof(*limits));
372 	limits->max_perf_pct = 100;
373 	limits->max_perf = int_ext_tofp(1);
374 	limits->max_policy_pct = 100;
375 	limits->max_sysfs_pct = 100;
376 }
377 
378 static DEFINE_MUTEX(intel_pstate_driver_lock);
379 static DEFINE_MUTEX(intel_pstate_limits_lock);
380 
381 #ifdef CONFIG_ACPI
382 
383 static bool intel_pstate_get_ppc_enable_status(void)
384 {
385 	if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
386 	    acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
387 		return true;
388 
389 	return acpi_ppc;
390 }
391 
392 #ifdef CONFIG_ACPI_CPPC_LIB
393 
394 /* The work item is needed to avoid CPU hotplug locking issues */
395 static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
396 {
397 	sched_set_itmt_support();
398 }
399 
400 static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);
401 
402 static void intel_pstate_set_itmt_prio(int cpu)
403 {
404 	struct cppc_perf_caps cppc_perf;
405 	static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
406 	int ret;
407 
408 	ret = cppc_get_perf_caps(cpu, &cppc_perf);
409 	if (ret)
410 		return;
411 
412 	/*
413 	 * The priorities can be set regardless of whether or not
414 	 * sched_set_itmt_support(true) has been called and it is valid to
415 	 * update them at any time after it has been called.
416 	 */
417 	sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);
418 
419 	if (max_highest_perf <= min_highest_perf) {
420 		if (cppc_perf.highest_perf > max_highest_perf)
421 			max_highest_perf = cppc_perf.highest_perf;
422 
423 		if (cppc_perf.highest_perf < min_highest_perf)
424 			min_highest_perf = cppc_perf.highest_perf;
425 
426 		if (max_highest_perf > min_highest_perf) {
427 			/*
428 			 * This code can be run during CPU online under the
429 			 * CPU hotplug locks, so sched_set_itmt_support()
430 			 * cannot be called from here.  Queue up a work item
431 			 * to invoke it.
432 			 */
433 			schedule_work(&sched_itmt_work);
434 		}
435 	}
436 }
437 #else
438 static void intel_pstate_set_itmt_prio(int cpu)
439 {
440 }
441 #endif
442 
443 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
444 {
445 	struct cpudata *cpu;
446 	int ret;
447 	int i;
448 
449 	if (hwp_active) {
450 		intel_pstate_set_itmt_prio(policy->cpu);
451 		return;
452 	}
453 
454 	if (!intel_pstate_get_ppc_enable_status())
455 		return;
456 
457 	cpu = all_cpu_data[policy->cpu];
458 
459 	ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
460 						  policy->cpu);
461 	if (ret)
462 		return;
463 
464 	/*
465 	 * Check if the control value in _PSS is for PERF_CTL MSR, which should
466 	 * guarantee that the states returned by it map to the states in our
467 	 * list directly.
468 	 */
469 	if (cpu->acpi_perf_data.control_register.space_id !=
470 						ACPI_ADR_SPACE_FIXED_HARDWARE)
471 		goto err;
472 
473 	/*
474 	 * If there is only one entry _PSS, simply ignore _PSS and continue as
475 	 * usual without taking _PSS into account
476 	 */
477 	if (cpu->acpi_perf_data.state_count < 2)
478 		goto err;
479 
480 	pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
481 	for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
482 		pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
483 			 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
484 			 (u32) cpu->acpi_perf_data.states[i].core_frequency,
485 			 (u32) cpu->acpi_perf_data.states[i].power,
486 			 (u32) cpu->acpi_perf_data.states[i].control);
487 	}
488 
489 	/*
490 	 * The _PSS table doesn't contain whole turbo frequency range.
491 	 * This just contains +1 MHZ above the max non turbo frequency,
492 	 * with control value corresponding to max turbo ratio. But
493 	 * when cpufreq set policy is called, it will call with this
494 	 * max frequency, which will cause a reduced performance as
495 	 * this driver uses real max turbo frequency as the max
496 	 * frequency. So correct this frequency in _PSS table to
497 	 * correct max turbo frequency based on the turbo state.
498 	 * Also need to convert to MHz as _PSS freq is in MHz.
499 	 */
500 	if (!global.turbo_disabled)
501 		cpu->acpi_perf_data.states[0].core_frequency =
502 					policy->cpuinfo.max_freq / 1000;
503 	cpu->valid_pss_table = true;
504 	pr_debug("_PPC limits will be enforced\n");
505 
506 	return;
507 
508  err:
509 	cpu->valid_pss_table = false;
510 	acpi_processor_unregister_performance(policy->cpu);
511 }
512 
513 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
514 {
515 	struct cpudata *cpu;
516 
517 	cpu = all_cpu_data[policy->cpu];
518 	if (!cpu->valid_pss_table)
519 		return;
520 
521 	acpi_processor_unregister_performance(policy->cpu);
522 }
523 #else
524 static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
525 {
526 }
527 
528 static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
529 {
530 }
531 #endif
532 
533 static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
534 			     int deadband, int integral) {
535 	pid->setpoint = int_tofp(setpoint);
536 	pid->deadband  = int_tofp(deadband);
537 	pid->integral  = int_tofp(integral);
538 	pid->last_err  = int_tofp(setpoint) - int_tofp(busy);
539 }
540 
541 static inline void pid_p_gain_set(struct _pid *pid, int percent)
542 {
543 	pid->p_gain = div_fp(percent, 100);
544 }
545 
546 static inline void pid_i_gain_set(struct _pid *pid, int percent)
547 {
548 	pid->i_gain = div_fp(percent, 100);
549 }
550 
551 static inline void pid_d_gain_set(struct _pid *pid, int percent)
552 {
553 	pid->d_gain = div_fp(percent, 100);
554 }
555 
556 static signed int pid_calc(struct _pid *pid, int32_t busy)
557 {
558 	signed int result;
559 	int32_t pterm, dterm, fp_error;
560 	int32_t integral_limit;
561 
562 	fp_error = pid->setpoint - busy;
563 
564 	if (abs(fp_error) <= pid->deadband)
565 		return 0;
566 
567 	pterm = mul_fp(pid->p_gain, fp_error);
568 
569 	pid->integral += fp_error;
570 
571 	/*
572 	 * We limit the integral here so that it will never
573 	 * get higher than 30.  This prevents it from becoming
574 	 * too large an input over long periods of time and allows
575 	 * it to get factored out sooner.
576 	 *
577 	 * The value of 30 was chosen through experimentation.
578 	 */
579 	integral_limit = int_tofp(30);
580 	if (pid->integral > integral_limit)
581 		pid->integral = integral_limit;
582 	if (pid->integral < -integral_limit)
583 		pid->integral = -integral_limit;
584 
585 	dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
586 	pid->last_err = fp_error;
587 
588 	result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
589 	result = result + (1 << (FRAC_BITS-1));
590 	return (signed int)fp_toint(result);
591 }
592 
593 static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
594 {
595 	pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
596 	pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
597 	pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
598 
599 	pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
600 }
601 
602 static inline void intel_pstate_reset_all_pid(void)
603 {
604 	unsigned int cpu;
605 
606 	for_each_online_cpu(cpu) {
607 		if (all_cpu_data[cpu])
608 			intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
609 	}
610 }
611 
612 static inline void update_turbo_state(void)
613 {
614 	u64 misc_en;
615 	struct cpudata *cpu;
616 
617 	cpu = all_cpu_data[0];
618 	rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
619 	global.turbo_disabled =
620 		(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
621 		 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
622 }
623 
624 static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
625 {
626 	u64 epb;
627 	int ret;
628 
629 	if (!static_cpu_has(X86_FEATURE_EPB))
630 		return -ENXIO;
631 
632 	ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
633 	if (ret)
634 		return (s16)ret;
635 
636 	return (s16)(epb & 0x0f);
637 }
638 
639 static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
640 {
641 	s16 epp;
642 
643 	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
644 		/*
645 		 * When hwp_req_data is 0, means that caller didn't read
646 		 * MSR_HWP_REQUEST, so need to read and get EPP.
647 		 */
648 		if (!hwp_req_data) {
649 			epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
650 					    &hwp_req_data);
651 			if (epp)
652 				return epp;
653 		}
654 		epp = (hwp_req_data >> 24) & 0xff;
655 	} else {
656 		/* When there is no EPP present, HWP uses EPB settings */
657 		epp = intel_pstate_get_epb(cpu_data);
658 	}
659 
660 	return epp;
661 }
662 
663 static int intel_pstate_set_epb(int cpu, s16 pref)
664 {
665 	u64 epb;
666 	int ret;
667 
668 	if (!static_cpu_has(X86_FEATURE_EPB))
669 		return -ENXIO;
670 
671 	ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
672 	if (ret)
673 		return ret;
674 
675 	epb = (epb & ~0x0f) | pref;
676 	wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
677 
678 	return 0;
679 }
680 
681 /*
682  * EPP/EPB display strings corresponding to EPP index in the
683  * energy_perf_strings[]
684  *	index		String
685  *-------------------------------------
686  *	0		default
687  *	1		performance
688  *	2		balance_performance
689  *	3		balance_power
690  *	4		power
691  */
692 static const char * const energy_perf_strings[] = {
693 	"default",
694 	"performance",
695 	"balance_performance",
696 	"balance_power",
697 	"power",
698 	NULL
699 };
700 
701 static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data)
702 {
703 	s16 epp;
704 	int index = -EINVAL;
705 
706 	epp = intel_pstate_get_epp(cpu_data, 0);
707 	if (epp < 0)
708 		return epp;
709 
710 	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
711 		/*
712 		 * Range:
713 		 *	0x00-0x3F	:	Performance
714 		 *	0x40-0x7F	:	Balance performance
715 		 *	0x80-0xBF	:	Balance power
716 		 *	0xC0-0xFF	:	Power
717 		 * The EPP is a 8 bit value, but our ranges restrict the
718 		 * value which can be set. Here only using top two bits
719 		 * effectively.
720 		 */
721 		index = (epp >> 6) + 1;
722 	} else if (static_cpu_has(X86_FEATURE_EPB)) {
723 		/*
724 		 * Range:
725 		 *	0x00-0x03	:	Performance
726 		 *	0x04-0x07	:	Balance performance
727 		 *	0x08-0x0B	:	Balance power
728 		 *	0x0C-0x0F	:	Power
729 		 * The EPB is a 4 bit value, but our ranges restrict the
730 		 * value which can be set. Here only using top two bits
731 		 * effectively.
732 		 */
733 		index = (epp >> 2) + 1;
734 	}
735 
736 	return index;
737 }
738 
739 static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
740 					      int pref_index)
741 {
742 	int epp = -EINVAL;
743 	int ret;
744 
745 	if (!pref_index)
746 		epp = cpu_data->epp_default;
747 
748 	mutex_lock(&intel_pstate_limits_lock);
749 
750 	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
751 		u64 value;
752 
753 		ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, &value);
754 		if (ret)
755 			goto return_pref;
756 
757 		value &= ~GENMASK_ULL(31, 24);
758 
759 		/*
760 		 * If epp is not default, convert from index into
761 		 * energy_perf_strings to epp value, by shifting 6
762 		 * bits left to use only top two bits in epp.
763 		 * The resultant epp need to shifted by 24 bits to
764 		 * epp position in MSR_HWP_REQUEST.
765 		 */
766 		if (epp == -EINVAL)
767 			epp = (pref_index - 1) << 6;
768 
769 		value |= (u64)epp << 24;
770 		ret = wrmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, value);
771 	} else {
772 		if (epp == -EINVAL)
773 			epp = (pref_index - 1) << 2;
774 		ret = intel_pstate_set_epb(cpu_data->cpu, epp);
775 	}
776 return_pref:
777 	mutex_unlock(&intel_pstate_limits_lock);
778 
779 	return ret;
780 }
781 
782 static ssize_t show_energy_performance_available_preferences(
783 				struct cpufreq_policy *policy, char *buf)
784 {
785 	int i = 0;
786 	int ret = 0;
787 
788 	while (energy_perf_strings[i] != NULL)
789 		ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);
790 
791 	ret += sprintf(&buf[ret], "\n");
792 
793 	return ret;
794 }
795 
796 cpufreq_freq_attr_ro(energy_performance_available_preferences);
797 
798 static ssize_t store_energy_performance_preference(
799 		struct cpufreq_policy *policy, const char *buf, size_t count)
800 {
801 	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
802 	char str_preference[21];
803 	int ret, i = 0;
804 
805 	ret = sscanf(buf, "%20s", str_preference);
806 	if (ret != 1)
807 		return -EINVAL;
808 
809 	while (energy_perf_strings[i] != NULL) {
810 		if (!strcmp(str_preference, energy_perf_strings[i])) {
811 			intel_pstate_set_energy_pref_index(cpu_data, i);
812 			return count;
813 		}
814 		++i;
815 	}
816 
817 	return -EINVAL;
818 }
819 
820 static ssize_t show_energy_performance_preference(
821 				struct cpufreq_policy *policy, char *buf)
822 {
823 	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
824 	int preference;
825 
826 	preference = intel_pstate_get_energy_pref_index(cpu_data);
827 	if (preference < 0)
828 		return preference;
829 
830 	return  sprintf(buf, "%s\n", energy_perf_strings[preference]);
831 }
832 
833 cpufreq_freq_attr_rw(energy_performance_preference);
834 
835 static struct freq_attr *hwp_cpufreq_attrs[] = {
836 	&energy_performance_preference,
837 	&energy_performance_available_preferences,
838 	NULL,
839 };
840 
841 static void intel_pstate_hwp_set(struct cpufreq_policy *policy)
842 {
843 	int min, hw_min, max, hw_max, cpu;
844 	struct perf_limits *perf_limits = &global;
845 	u64 value, cap;
846 
847 	for_each_cpu(cpu, policy->cpus) {
848 		struct cpudata *cpu_data = all_cpu_data[cpu];
849 		s16 epp;
850 
851 		if (per_cpu_limits)
852 			perf_limits = all_cpu_data[cpu]->perf_limits;
853 
854 		rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
855 		hw_min = HWP_LOWEST_PERF(cap);
856 		if (global.no_turbo)
857 			hw_max = HWP_GUARANTEED_PERF(cap);
858 		else
859 			hw_max = HWP_HIGHEST_PERF(cap);
860 
861 		max = fp_ext_toint(hw_max * perf_limits->max_perf);
862 		if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
863 			min = max;
864 		else
865 			min = fp_ext_toint(hw_max * perf_limits->min_perf);
866 
867 		rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
868 
869 		value &= ~HWP_MIN_PERF(~0L);
870 		value |= HWP_MIN_PERF(min);
871 
872 		value &= ~HWP_MAX_PERF(~0L);
873 		value |= HWP_MAX_PERF(max);
874 
875 		if (cpu_data->epp_policy == cpu_data->policy)
876 			goto skip_epp;
877 
878 		cpu_data->epp_policy = cpu_data->policy;
879 
880 		if (cpu_data->epp_saved >= 0) {
881 			epp = cpu_data->epp_saved;
882 			cpu_data->epp_saved = -EINVAL;
883 			goto update_epp;
884 		}
885 
886 		if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
887 			epp = intel_pstate_get_epp(cpu_data, value);
888 			cpu_data->epp_powersave = epp;
889 			/* If EPP read was failed, then don't try to write */
890 			if (epp < 0)
891 				goto skip_epp;
892 
893 
894 			epp = 0;
895 		} else {
896 			/* skip setting EPP, when saved value is invalid */
897 			if (cpu_data->epp_powersave < 0)
898 				goto skip_epp;
899 
900 			/*
901 			 * No need to restore EPP when it is not zero. This
902 			 * means:
903 			 *  - Policy is not changed
904 			 *  - user has manually changed
905 			 *  - Error reading EPB
906 			 */
907 			epp = intel_pstate_get_epp(cpu_data, value);
908 			if (epp)
909 				goto skip_epp;
910 
911 			epp = cpu_data->epp_powersave;
912 		}
913 update_epp:
914 		if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
915 			value &= ~GENMASK_ULL(31, 24);
916 			value |= (u64)epp << 24;
917 		} else {
918 			intel_pstate_set_epb(cpu, epp);
919 		}
920 skip_epp:
921 		wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
922 	}
923 }
924 
925 static int intel_pstate_hwp_save_state(struct cpufreq_policy *policy)
926 {
927 	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
928 
929 	if (!hwp_active)
930 		return 0;
931 
932 	cpu_data->epp_saved = intel_pstate_get_epp(cpu_data, 0);
933 
934 	return 0;
935 }
936 
937 static int intel_pstate_resume(struct cpufreq_policy *policy)
938 {
939 	if (!hwp_active)
940 		return 0;
941 
942 	mutex_lock(&intel_pstate_limits_lock);
943 
944 	all_cpu_data[policy->cpu]->epp_policy = 0;
945 	intel_pstate_hwp_set(policy);
946 
947 	mutex_unlock(&intel_pstate_limits_lock);
948 
949 	return 0;
950 }
951 
952 static void intel_pstate_update_policies(void)
953 {
954 	int cpu;
955 
956 	for_each_possible_cpu(cpu)
957 		cpufreq_update_policy(cpu);
958 }
959 
960 /************************** debugfs begin ************************/
961 static int pid_param_set(void *data, u64 val)
962 {
963 	*(u32 *)data = val;
964 	pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
965 	intel_pstate_reset_all_pid();
966 	return 0;
967 }
968 
969 static int pid_param_get(void *data, u64 *val)
970 {
971 	*val = *(u32 *)data;
972 	return 0;
973 }
974 DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
975 
976 static struct dentry *debugfs_parent;
977 
978 struct pid_param {
979 	char *name;
980 	void *value;
981 	struct dentry *dentry;
982 };
983 
984 static struct pid_param pid_files[] = {
985 	{"sample_rate_ms", &pid_params.sample_rate_ms, },
986 	{"d_gain_pct", &pid_params.d_gain_pct, },
987 	{"i_gain_pct", &pid_params.i_gain_pct, },
988 	{"deadband", &pid_params.deadband, },
989 	{"setpoint", &pid_params.setpoint, },
990 	{"p_gain_pct", &pid_params.p_gain_pct, },
991 	{NULL, NULL, }
992 };
993 
994 static void intel_pstate_debug_expose_params(void)
995 {
996 	int i;
997 
998 	debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
999 	if (IS_ERR_OR_NULL(debugfs_parent))
1000 		return;
1001 
1002 	for (i = 0; pid_files[i].name; i++) {
1003 		struct dentry *dentry;
1004 
1005 		dentry = debugfs_create_file(pid_files[i].name, 0660,
1006 					     debugfs_parent, pid_files[i].value,
1007 					     &fops_pid_param);
1008 		if (!IS_ERR(dentry))
1009 			pid_files[i].dentry = dentry;
1010 	}
1011 }
1012 
1013 static void intel_pstate_debug_hide_params(void)
1014 {
1015 	int i;
1016 
1017 	if (IS_ERR_OR_NULL(debugfs_parent))
1018 		return;
1019 
1020 	for (i = 0; pid_files[i].name; i++) {
1021 		debugfs_remove(pid_files[i].dentry);
1022 		pid_files[i].dentry = NULL;
1023 	}
1024 
1025 	debugfs_remove(debugfs_parent);
1026 	debugfs_parent = NULL;
1027 }
1028 
1029 /************************** debugfs end ************************/
1030 
1031 /************************** sysfs begin ************************/
1032 #define show_one(file_name, object)					\
1033 	static ssize_t show_##file_name					\
1034 	(struct kobject *kobj, struct attribute *attr, char *buf)	\
1035 	{								\
1036 		return sprintf(buf, "%u\n", global.object);		\
1037 	}
1038 
1039 static ssize_t intel_pstate_show_status(char *buf);
1040 static int intel_pstate_update_status(const char *buf, size_t size);
1041 
1042 static ssize_t show_status(struct kobject *kobj,
1043 			   struct attribute *attr, char *buf)
1044 {
1045 	ssize_t ret;
1046 
1047 	mutex_lock(&intel_pstate_driver_lock);
1048 	ret = intel_pstate_show_status(buf);
1049 	mutex_unlock(&intel_pstate_driver_lock);
1050 
1051 	return ret;
1052 }
1053 
1054 static ssize_t store_status(struct kobject *a, struct attribute *b,
1055 			    const char *buf, size_t count)
1056 {
1057 	char *p = memchr(buf, '\n', count);
1058 	int ret;
1059 
1060 	mutex_lock(&intel_pstate_driver_lock);
1061 	ret = intel_pstate_update_status(buf, p ? p - buf : count);
1062 	mutex_unlock(&intel_pstate_driver_lock);
1063 
1064 	return ret < 0 ? ret : count;
1065 }
1066 
1067 static ssize_t show_turbo_pct(struct kobject *kobj,
1068 				struct attribute *attr, char *buf)
1069 {
1070 	struct cpudata *cpu;
1071 	int total, no_turbo, turbo_pct;
1072 	uint32_t turbo_fp;
1073 
1074 	mutex_lock(&intel_pstate_driver_lock);
1075 
1076 	if (!driver_registered) {
1077 		mutex_unlock(&intel_pstate_driver_lock);
1078 		return -EAGAIN;
1079 	}
1080 
1081 	cpu = all_cpu_data[0];
1082 
1083 	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1084 	no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
1085 	turbo_fp = div_fp(no_turbo, total);
1086 	turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
1087 
1088 	mutex_unlock(&intel_pstate_driver_lock);
1089 
1090 	return sprintf(buf, "%u\n", turbo_pct);
1091 }
1092 
1093 static ssize_t show_num_pstates(struct kobject *kobj,
1094 				struct attribute *attr, char *buf)
1095 {
1096 	struct cpudata *cpu;
1097 	int total;
1098 
1099 	mutex_lock(&intel_pstate_driver_lock);
1100 
1101 	if (!driver_registered) {
1102 		mutex_unlock(&intel_pstate_driver_lock);
1103 		return -EAGAIN;
1104 	}
1105 
1106 	cpu = all_cpu_data[0];
1107 	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1108 
1109 	mutex_unlock(&intel_pstate_driver_lock);
1110 
1111 	return sprintf(buf, "%u\n", total);
1112 }
1113 
1114 static ssize_t show_no_turbo(struct kobject *kobj,
1115 			     struct attribute *attr, char *buf)
1116 {
1117 	ssize_t ret;
1118 
1119 	mutex_lock(&intel_pstate_driver_lock);
1120 
1121 	if (!driver_registered) {
1122 		mutex_unlock(&intel_pstate_driver_lock);
1123 		return -EAGAIN;
1124 	}
1125 
1126 	update_turbo_state();
1127 	if (global.turbo_disabled)
1128 		ret = sprintf(buf, "%u\n", global.turbo_disabled);
1129 	else
1130 		ret = sprintf(buf, "%u\n", global.no_turbo);
1131 
1132 	mutex_unlock(&intel_pstate_driver_lock);
1133 
1134 	return ret;
1135 }
1136 
1137 static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
1138 			      const char *buf, size_t count)
1139 {
1140 	unsigned int input;
1141 	int ret;
1142 
1143 	ret = sscanf(buf, "%u", &input);
1144 	if (ret != 1)
1145 		return -EINVAL;
1146 
1147 	mutex_lock(&intel_pstate_driver_lock);
1148 
1149 	if (!driver_registered) {
1150 		mutex_unlock(&intel_pstate_driver_lock);
1151 		return -EAGAIN;
1152 	}
1153 
1154 	mutex_lock(&intel_pstate_limits_lock);
1155 
1156 	update_turbo_state();
1157 	if (global.turbo_disabled) {
1158 		pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
1159 		mutex_unlock(&intel_pstate_limits_lock);
1160 		mutex_unlock(&intel_pstate_driver_lock);
1161 		return -EPERM;
1162 	}
1163 
1164 	global.no_turbo = clamp_t(int, input, 0, 1);
1165 
1166 	mutex_unlock(&intel_pstate_limits_lock);
1167 
1168 	intel_pstate_update_policies();
1169 
1170 	mutex_unlock(&intel_pstate_driver_lock);
1171 
1172 	return count;
1173 }
1174 
1175 static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
1176 				  const char *buf, size_t count)
1177 {
1178 	unsigned int input;
1179 	int ret;
1180 
1181 	ret = sscanf(buf, "%u", &input);
1182 	if (ret != 1)
1183 		return -EINVAL;
1184 
1185 	mutex_lock(&intel_pstate_driver_lock);
1186 
1187 	if (!driver_registered) {
1188 		mutex_unlock(&intel_pstate_driver_lock);
1189 		return -EAGAIN;
1190 	}
1191 
1192 	mutex_lock(&intel_pstate_limits_lock);
1193 
1194 	global.max_sysfs_pct = clamp_t(int, input, 0 , 100);
1195 	global.max_perf_pct = min(global.max_policy_pct, global.max_sysfs_pct);
1196 	global.max_perf_pct = max(global.min_policy_pct, global.max_perf_pct);
1197 	global.max_perf_pct = max(global.min_perf_pct, global.max_perf_pct);
1198 	global.max_perf = percent_ext_fp(global.max_perf_pct);
1199 
1200 	mutex_unlock(&intel_pstate_limits_lock);
1201 
1202 	intel_pstate_update_policies();
1203 
1204 	mutex_unlock(&intel_pstate_driver_lock);
1205 
1206 	return count;
1207 }
1208 
1209 static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
1210 				  const char *buf, size_t count)
1211 {
1212 	unsigned int input;
1213 	int ret;
1214 
1215 	ret = sscanf(buf, "%u", &input);
1216 	if (ret != 1)
1217 		return -EINVAL;
1218 
1219 	mutex_lock(&intel_pstate_driver_lock);
1220 
1221 	if (!driver_registered) {
1222 		mutex_unlock(&intel_pstate_driver_lock);
1223 		return -EAGAIN;
1224 	}
1225 
1226 	mutex_lock(&intel_pstate_limits_lock);
1227 
1228 	global.min_sysfs_pct = clamp_t(int, input, 0 , 100);
1229 	global.min_perf_pct = max(global.min_policy_pct, global.min_sysfs_pct);
1230 	global.min_perf_pct = min(global.max_policy_pct, global.min_perf_pct);
1231 	global.min_perf_pct = min(global.max_perf_pct, global.min_perf_pct);
1232 	global.min_perf = percent_ext_fp(global.min_perf_pct);
1233 
1234 	mutex_unlock(&intel_pstate_limits_lock);
1235 
1236 	intel_pstate_update_policies();
1237 
1238 	mutex_unlock(&intel_pstate_driver_lock);
1239 
1240 	return count;
1241 }
1242 
1243 show_one(max_perf_pct, max_perf_pct);
1244 show_one(min_perf_pct, min_perf_pct);
1245 
1246 define_one_global_rw(status);
1247 define_one_global_rw(no_turbo);
1248 define_one_global_rw(max_perf_pct);
1249 define_one_global_rw(min_perf_pct);
1250 define_one_global_ro(turbo_pct);
1251 define_one_global_ro(num_pstates);
1252 
1253 static struct attribute *intel_pstate_attributes[] = {
1254 	&status.attr,
1255 	&no_turbo.attr,
1256 	&turbo_pct.attr,
1257 	&num_pstates.attr,
1258 	NULL
1259 };
1260 
1261 static struct attribute_group intel_pstate_attr_group = {
1262 	.attrs = intel_pstate_attributes,
1263 };
1264 
1265 static void __init intel_pstate_sysfs_expose_params(void)
1266 {
1267 	struct kobject *intel_pstate_kobject;
1268 	int rc;
1269 
1270 	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
1271 						&cpu_subsys.dev_root->kobj);
1272 	if (WARN_ON(!intel_pstate_kobject))
1273 		return;
1274 
1275 	rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1276 	if (WARN_ON(rc))
1277 		return;
1278 
1279 	/*
1280 	 * If per cpu limits are enforced there are no global limits, so
1281 	 * return without creating max/min_perf_pct attributes
1282 	 */
1283 	if (per_cpu_limits)
1284 		return;
1285 
1286 	rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
1287 	WARN_ON(rc);
1288 
1289 	rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
1290 	WARN_ON(rc);
1291 
1292 }
1293 /************************** sysfs end ************************/
1294 
1295 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
1296 {
1297 	/* First disable HWP notification interrupt as we don't process them */
1298 	if (static_cpu_has(X86_FEATURE_HWP_NOTIFY))
1299 		wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1300 
1301 	wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1302 	cpudata->epp_policy = 0;
1303 	if (cpudata->epp_default == -EINVAL)
1304 		cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
1305 }
1306 
1307 #define MSR_IA32_POWER_CTL_BIT_EE	19
1308 
1309 /* Disable energy efficiency optimization */
1310 static void intel_pstate_disable_ee(int cpu)
1311 {
1312 	u64 power_ctl;
1313 	int ret;
1314 
1315 	ret = rdmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, &power_ctl);
1316 	if (ret)
1317 		return;
1318 
1319 	if (!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE))) {
1320 		pr_info("Disabling energy efficiency optimization\n");
1321 		power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
1322 		wrmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, power_ctl);
1323 	}
1324 }
1325 
1326 static int atom_get_min_pstate(void)
1327 {
1328 	u64 value;
1329 
1330 	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1331 	return (value >> 8) & 0x7F;
1332 }
1333 
1334 static int atom_get_max_pstate(void)
1335 {
1336 	u64 value;
1337 
1338 	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1339 	return (value >> 16) & 0x7F;
1340 }
1341 
1342 static int atom_get_turbo_pstate(void)
1343 {
1344 	u64 value;
1345 
1346 	rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
1347 	return value & 0x7F;
1348 }
1349 
1350 static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1351 {
1352 	u64 val;
1353 	int32_t vid_fp;
1354 	u32 vid;
1355 
1356 	val = (u64)pstate << 8;
1357 	if (global.no_turbo && !global.turbo_disabled)
1358 		val |= (u64)1 << 32;
1359 
1360 	vid_fp = cpudata->vid.min + mul_fp(
1361 		int_tofp(pstate - cpudata->pstate.min_pstate),
1362 		cpudata->vid.ratio);
1363 
1364 	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1365 	vid = ceiling_fp(vid_fp);
1366 
1367 	if (pstate > cpudata->pstate.max_pstate)
1368 		vid = cpudata->vid.turbo;
1369 
1370 	return val | vid;
1371 }
1372 
1373 static int silvermont_get_scaling(void)
1374 {
1375 	u64 value;
1376 	int i;
1377 	/* Defined in Table 35-6 from SDM (Sept 2015) */
1378 	static int silvermont_freq_table[] = {
1379 		83300, 100000, 133300, 116700, 80000};
1380 
1381 	rdmsrl(MSR_FSB_FREQ, value);
1382 	i = value & 0x7;
1383 	WARN_ON(i > 4);
1384 
1385 	return silvermont_freq_table[i];
1386 }
1387 
1388 static int airmont_get_scaling(void)
1389 {
1390 	u64 value;
1391 	int i;
1392 	/* Defined in Table 35-10 from SDM (Sept 2015) */
1393 	static int airmont_freq_table[] = {
1394 		83300, 100000, 133300, 116700, 80000,
1395 		93300, 90000, 88900, 87500};
1396 
1397 	rdmsrl(MSR_FSB_FREQ, value);
1398 	i = value & 0xF;
1399 	WARN_ON(i > 8);
1400 
1401 	return airmont_freq_table[i];
1402 }
1403 
1404 static void atom_get_vid(struct cpudata *cpudata)
1405 {
1406 	u64 value;
1407 
1408 	rdmsrl(MSR_ATOM_CORE_VIDS, value);
1409 	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
1410 	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1411 	cpudata->vid.ratio = div_fp(
1412 		cpudata->vid.max - cpudata->vid.min,
1413 		int_tofp(cpudata->pstate.max_pstate -
1414 			cpudata->pstate.min_pstate));
1415 
1416 	rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1417 	cpudata->vid.turbo = value & 0x7f;
1418 }
1419 
1420 static int core_get_min_pstate(void)
1421 {
1422 	u64 value;
1423 
1424 	rdmsrl(MSR_PLATFORM_INFO, value);
1425 	return (value >> 40) & 0xFF;
1426 }
1427 
1428 static int core_get_max_pstate_physical(void)
1429 {
1430 	u64 value;
1431 
1432 	rdmsrl(MSR_PLATFORM_INFO, value);
1433 	return (value >> 8) & 0xFF;
1434 }
1435 
1436 static int core_get_tdp_ratio(u64 plat_info)
1437 {
1438 	/* Check how many TDP levels present */
1439 	if (plat_info & 0x600000000) {
1440 		u64 tdp_ctrl;
1441 		u64 tdp_ratio;
1442 		int tdp_msr;
1443 		int err;
1444 
1445 		/* Get the TDP level (0, 1, 2) to get ratios */
1446 		err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
1447 		if (err)
1448 			return err;
1449 
1450 		/* TDP MSR are continuous starting at 0x648 */
1451 		tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
1452 		err = rdmsrl_safe(tdp_msr, &tdp_ratio);
1453 		if (err)
1454 			return err;
1455 
1456 		/* For level 1 and 2, bits[23:16] contain the ratio */
1457 		if (tdp_ctrl & 0x03)
1458 			tdp_ratio >>= 16;
1459 
1460 		tdp_ratio &= 0xff; /* ratios are only 8 bits long */
1461 		pr_debug("tdp_ratio %x\n", (int)tdp_ratio);
1462 
1463 		return (int)tdp_ratio;
1464 	}
1465 
1466 	return -ENXIO;
1467 }
1468 
1469 static int core_get_max_pstate(void)
1470 {
1471 	u64 tar;
1472 	u64 plat_info;
1473 	int max_pstate;
1474 	int tdp_ratio;
1475 	int err;
1476 
1477 	rdmsrl(MSR_PLATFORM_INFO, plat_info);
1478 	max_pstate = (plat_info >> 8) & 0xFF;
1479 
1480 	tdp_ratio = core_get_tdp_ratio(plat_info);
1481 	if (tdp_ratio <= 0)
1482 		return max_pstate;
1483 
1484 	if (hwp_active) {
1485 		/* Turbo activation ratio is not used on HWP platforms */
1486 		return tdp_ratio;
1487 	}
1488 
1489 	err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
1490 	if (!err) {
1491 		int tar_levels;
1492 
1493 		/* Do some sanity checking for safety */
1494 		tar_levels = tar & 0xff;
1495 		if (tdp_ratio - 1 == tar_levels) {
1496 			max_pstate = tar_levels;
1497 			pr_debug("max_pstate=TAC %x\n", max_pstate);
1498 		}
1499 	}
1500 
1501 	return max_pstate;
1502 }
1503 
1504 static int core_get_turbo_pstate(void)
1505 {
1506 	u64 value;
1507 	int nont, ret;
1508 
1509 	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1510 	nont = core_get_max_pstate();
1511 	ret = (value) & 255;
1512 	if (ret <= nont)
1513 		ret = nont;
1514 	return ret;
1515 }
1516 
1517 static inline int core_get_scaling(void)
1518 {
1519 	return 100000;
1520 }
1521 
1522 static u64 core_get_val(struct cpudata *cpudata, int pstate)
1523 {
1524 	u64 val;
1525 
1526 	val = (u64)pstate << 8;
1527 	if (global.no_turbo && !global.turbo_disabled)
1528 		val |= (u64)1 << 32;
1529 
1530 	return val;
1531 }
1532 
1533 static int knl_get_turbo_pstate(void)
1534 {
1535 	u64 value;
1536 	int nont, ret;
1537 
1538 	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1539 	nont = core_get_max_pstate();
1540 	ret = (((value) >> 8) & 0xFF);
1541 	if (ret <= nont)
1542 		ret = nont;
1543 	return ret;
1544 }
1545 
1546 static struct cpu_defaults core_params = {
1547 	.pid_policy = {
1548 		.sample_rate_ms = 10,
1549 		.deadband = 0,
1550 		.setpoint = 97,
1551 		.p_gain_pct = 20,
1552 		.d_gain_pct = 0,
1553 		.i_gain_pct = 0,
1554 	},
1555 	.funcs = {
1556 		.get_max = core_get_max_pstate,
1557 		.get_max_physical = core_get_max_pstate_physical,
1558 		.get_min = core_get_min_pstate,
1559 		.get_turbo = core_get_turbo_pstate,
1560 		.get_scaling = core_get_scaling,
1561 		.get_val = core_get_val,
1562 		.get_target_pstate = get_target_pstate_use_performance,
1563 	},
1564 };
1565 
1566 static const struct cpu_defaults silvermont_params = {
1567 	.pid_policy = {
1568 		.sample_rate_ms = 10,
1569 		.deadband = 0,
1570 		.setpoint = 60,
1571 		.p_gain_pct = 14,
1572 		.d_gain_pct = 0,
1573 		.i_gain_pct = 4,
1574 	},
1575 	.funcs = {
1576 		.get_max = atom_get_max_pstate,
1577 		.get_max_physical = atom_get_max_pstate,
1578 		.get_min = atom_get_min_pstate,
1579 		.get_turbo = atom_get_turbo_pstate,
1580 		.get_val = atom_get_val,
1581 		.get_scaling = silvermont_get_scaling,
1582 		.get_vid = atom_get_vid,
1583 		.get_target_pstate = get_target_pstate_use_cpu_load,
1584 	},
1585 };
1586 
1587 static const struct cpu_defaults airmont_params = {
1588 	.pid_policy = {
1589 		.sample_rate_ms = 10,
1590 		.deadband = 0,
1591 		.setpoint = 60,
1592 		.p_gain_pct = 14,
1593 		.d_gain_pct = 0,
1594 		.i_gain_pct = 4,
1595 	},
1596 	.funcs = {
1597 		.get_max = atom_get_max_pstate,
1598 		.get_max_physical = atom_get_max_pstate,
1599 		.get_min = atom_get_min_pstate,
1600 		.get_turbo = atom_get_turbo_pstate,
1601 		.get_val = atom_get_val,
1602 		.get_scaling = airmont_get_scaling,
1603 		.get_vid = atom_get_vid,
1604 		.get_target_pstate = get_target_pstate_use_cpu_load,
1605 	},
1606 };
1607 
1608 static const struct cpu_defaults knl_params = {
1609 	.pid_policy = {
1610 		.sample_rate_ms = 10,
1611 		.deadband = 0,
1612 		.setpoint = 97,
1613 		.p_gain_pct = 20,
1614 		.d_gain_pct = 0,
1615 		.i_gain_pct = 0,
1616 	},
1617 	.funcs = {
1618 		.get_max = core_get_max_pstate,
1619 		.get_max_physical = core_get_max_pstate_physical,
1620 		.get_min = core_get_min_pstate,
1621 		.get_turbo = knl_get_turbo_pstate,
1622 		.get_scaling = core_get_scaling,
1623 		.get_val = core_get_val,
1624 		.get_target_pstate = get_target_pstate_use_performance,
1625 	},
1626 };
1627 
1628 static const struct cpu_defaults bxt_params = {
1629 	.pid_policy = {
1630 		.sample_rate_ms = 10,
1631 		.deadband = 0,
1632 		.setpoint = 60,
1633 		.p_gain_pct = 14,
1634 		.d_gain_pct = 0,
1635 		.i_gain_pct = 4,
1636 	},
1637 	.funcs = {
1638 		.get_max = core_get_max_pstate,
1639 		.get_max_physical = core_get_max_pstate_physical,
1640 		.get_min = core_get_min_pstate,
1641 		.get_turbo = core_get_turbo_pstate,
1642 		.get_scaling = core_get_scaling,
1643 		.get_val = core_get_val,
1644 		.get_target_pstate = get_target_pstate_use_cpu_load,
1645 	},
1646 };
1647 
1648 static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
1649 {
1650 	int max_perf = cpu->pstate.turbo_pstate;
1651 	int max_perf_adj;
1652 	int min_perf;
1653 	struct perf_limits *perf_limits = &global;
1654 
1655 	if (global.no_turbo || global.turbo_disabled)
1656 		max_perf = cpu->pstate.max_pstate;
1657 
1658 	if (per_cpu_limits)
1659 		perf_limits = cpu->perf_limits;
1660 
1661 	/*
1662 	 * performance can be limited by user through sysfs, by cpufreq
1663 	 * policy, or by cpu specific default values determined through
1664 	 * experimentation.
1665 	 */
1666 	max_perf_adj = fp_ext_toint(max_perf * perf_limits->max_perf);
1667 	*max = clamp_t(int, max_perf_adj,
1668 			cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
1669 
1670 	min_perf = fp_ext_toint(max_perf * perf_limits->min_perf);
1671 	*min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
1672 }
1673 
1674 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1675 {
1676 	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1677 	cpu->pstate.current_pstate = pstate;
1678 	/*
1679 	 * Generally, there is no guarantee that this code will always run on
1680 	 * the CPU being updated, so force the register update to run on the
1681 	 * right CPU.
1682 	 */
1683 	wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1684 		      pstate_funcs.get_val(cpu, pstate));
1685 }
1686 
1687 static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1688 {
1689 	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
1690 }
1691 
1692 static void intel_pstate_max_within_limits(struct cpudata *cpu)
1693 {
1694 	int min_pstate, max_pstate;
1695 
1696 	update_turbo_state();
1697 	intel_pstate_get_min_max(cpu, &min_pstate, &max_pstate);
1698 	intel_pstate_set_pstate(cpu, max_pstate);
1699 }
1700 
1701 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1702 {
1703 	cpu->pstate.min_pstate = pstate_funcs.get_min();
1704 	cpu->pstate.max_pstate = pstate_funcs.get_max();
1705 	cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1706 	cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1707 	cpu->pstate.scaling = pstate_funcs.get_scaling();
1708 	cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
1709 	cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1710 
1711 	if (pstate_funcs.get_vid)
1712 		pstate_funcs.get_vid(cpu);
1713 
1714 	intel_pstate_set_min_pstate(cpu);
1715 }
1716 
1717 static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1718 {
1719 	struct sample *sample = &cpu->sample;
1720 
1721 	sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1722 }
1723 
1724 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1725 {
1726 	u64 aperf, mperf;
1727 	unsigned long flags;
1728 	u64 tsc;
1729 
1730 	local_irq_save(flags);
1731 	rdmsrl(MSR_IA32_APERF, aperf);
1732 	rdmsrl(MSR_IA32_MPERF, mperf);
1733 	tsc = rdtsc();
1734 	if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1735 		local_irq_restore(flags);
1736 		return false;
1737 	}
1738 	local_irq_restore(flags);
1739 
1740 	cpu->last_sample_time = cpu->sample.time;
1741 	cpu->sample.time = time;
1742 	cpu->sample.aperf = aperf;
1743 	cpu->sample.mperf = mperf;
1744 	cpu->sample.tsc =  tsc;
1745 	cpu->sample.aperf -= cpu->prev_aperf;
1746 	cpu->sample.mperf -= cpu->prev_mperf;
1747 	cpu->sample.tsc -= cpu->prev_tsc;
1748 
1749 	cpu->prev_aperf = aperf;
1750 	cpu->prev_mperf = mperf;
1751 	cpu->prev_tsc = tsc;
1752 	/*
1753 	 * First time this function is invoked in a given cycle, all of the
1754 	 * previous sample data fields are equal to zero or stale and they must
1755 	 * be populated with meaningful numbers for things to work, so assume
1756 	 * that sample.time will always be reset before setting the utilization
1757 	 * update hook and make the caller skip the sample then.
1758 	 */
1759 	return !!cpu->last_sample_time;
1760 }
1761 
1762 static inline int32_t get_avg_frequency(struct cpudata *cpu)
1763 {
1764 	return mul_ext_fp(cpu->sample.core_avg_perf,
1765 			  cpu->pstate.max_pstate_physical * cpu->pstate.scaling);
1766 }
1767 
1768 static inline int32_t get_avg_pstate(struct cpudata *cpu)
1769 {
1770 	return mul_ext_fp(cpu->pstate.max_pstate_physical,
1771 			  cpu->sample.core_avg_perf);
1772 }
1773 
1774 static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
1775 {
1776 	struct sample *sample = &cpu->sample;
1777 	int32_t busy_frac, boost;
1778 	int target, avg_pstate;
1779 
1780 	busy_frac = div_fp(sample->mperf, sample->tsc);
1781 
1782 	boost = cpu->iowait_boost;
1783 	cpu->iowait_boost >>= 1;
1784 
1785 	if (busy_frac < boost)
1786 		busy_frac = boost;
1787 
1788 	sample->busy_scaled = busy_frac * 100;
1789 
1790 	target = global.no_turbo || global.turbo_disabled ?
1791 			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1792 	target += target >> 2;
1793 	target = mul_fp(target, busy_frac);
1794 	if (target < cpu->pstate.min_pstate)
1795 		target = cpu->pstate.min_pstate;
1796 
1797 	/*
1798 	 * If the average P-state during the previous cycle was higher than the
1799 	 * current target, add 50% of the difference to the target to reduce
1800 	 * possible performance oscillations and offset possible performance
1801 	 * loss related to moving the workload from one CPU to another within
1802 	 * a package/module.
1803 	 */
1804 	avg_pstate = get_avg_pstate(cpu);
1805 	if (avg_pstate > target)
1806 		target += (avg_pstate - target) >> 1;
1807 
1808 	return target;
1809 }
1810 
1811 static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
1812 {
1813 	int32_t perf_scaled, max_pstate, current_pstate, sample_ratio;
1814 	u64 duration_ns;
1815 
1816 	/*
1817 	 * perf_scaled is the ratio of the average P-state during the last
1818 	 * sampling period to the P-state requested last time (in percent).
1819 	 *
1820 	 * That measures the system's response to the previous P-state
1821 	 * selection.
1822 	 */
1823 	max_pstate = cpu->pstate.max_pstate_physical;
1824 	current_pstate = cpu->pstate.current_pstate;
1825 	perf_scaled = mul_ext_fp(cpu->sample.core_avg_perf,
1826 			       div_fp(100 * max_pstate, current_pstate));
1827 
1828 	/*
1829 	 * Since our utilization update callback will not run unless we are
1830 	 * in C0, check if the actual elapsed time is significantly greater (3x)
1831 	 * than our sample interval.  If it is, then we were idle for a long
1832 	 * enough period of time to adjust our performance metric.
1833 	 */
1834 	duration_ns = cpu->sample.time - cpu->last_sample_time;
1835 	if ((s64)duration_ns > pid_params.sample_rate_ns * 3) {
1836 		sample_ratio = div_fp(pid_params.sample_rate_ns, duration_ns);
1837 		perf_scaled = mul_fp(perf_scaled, sample_ratio);
1838 	} else {
1839 		sample_ratio = div_fp(100 * cpu->sample.mperf, cpu->sample.tsc);
1840 		if (sample_ratio < int_tofp(1))
1841 			perf_scaled = 0;
1842 	}
1843 
1844 	cpu->sample.busy_scaled = perf_scaled;
1845 	return cpu->pstate.current_pstate - pid_calc(&cpu->pid, perf_scaled);
1846 }
1847 
1848 static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
1849 {
1850 	int max_perf, min_perf;
1851 
1852 	intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
1853 	pstate = clamp_t(int, pstate, min_perf, max_perf);
1854 	return pstate;
1855 }
1856 
1857 static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1858 {
1859 	if (pstate == cpu->pstate.current_pstate)
1860 		return;
1861 
1862 	cpu->pstate.current_pstate = pstate;
1863 	wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1864 }
1865 
1866 static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
1867 {
1868 	int from, target_pstate;
1869 	struct sample *sample;
1870 
1871 	from = cpu->pstate.current_pstate;
1872 
1873 	target_pstate = cpu->policy == CPUFREQ_POLICY_PERFORMANCE ?
1874 		cpu->pstate.turbo_pstate : pstate_funcs.get_target_pstate(cpu);
1875 
1876 	update_turbo_state();
1877 
1878 	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
1879 	trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
1880 	intel_pstate_update_pstate(cpu, target_pstate);
1881 
1882 	sample = &cpu->sample;
1883 	trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1884 		fp_toint(sample->busy_scaled),
1885 		from,
1886 		cpu->pstate.current_pstate,
1887 		sample->mperf,
1888 		sample->aperf,
1889 		sample->tsc,
1890 		get_avg_frequency(cpu),
1891 		fp_toint(cpu->iowait_boost * 100));
1892 }
1893 
1894 static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1895 				     unsigned int flags)
1896 {
1897 	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1898 	u64 delta_ns;
1899 
1900 	if (pstate_funcs.get_target_pstate == get_target_pstate_use_cpu_load) {
1901 		if (flags & SCHED_CPUFREQ_IOWAIT) {
1902 			cpu->iowait_boost = int_tofp(1);
1903 		} else if (cpu->iowait_boost) {
1904 			/* Clear iowait_boost if the CPU may have been idle. */
1905 			delta_ns = time - cpu->last_update;
1906 			if (delta_ns > TICK_NSEC)
1907 				cpu->iowait_boost = 0;
1908 		}
1909 		cpu->last_update = time;
1910 	}
1911 
1912 	delta_ns = time - cpu->sample.time;
1913 	if ((s64)delta_ns >= pid_params.sample_rate_ns) {
1914 		bool sample_taken = intel_pstate_sample(cpu, time);
1915 
1916 		if (sample_taken) {
1917 			intel_pstate_calc_avg_perf(cpu);
1918 			if (!hwp_active)
1919 				intel_pstate_adjust_busy_pstate(cpu);
1920 		}
1921 	}
1922 }
1923 
1924 #define ICPU(model, policy) \
1925 	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1926 			(unsigned long)&policy }
1927 
1928 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1929 	ICPU(INTEL_FAM6_SANDYBRIDGE, 		core_params),
1930 	ICPU(INTEL_FAM6_SANDYBRIDGE_X,		core_params),
1931 	ICPU(INTEL_FAM6_ATOM_SILVERMONT1,	silvermont_params),
1932 	ICPU(INTEL_FAM6_IVYBRIDGE,		core_params),
1933 	ICPU(INTEL_FAM6_HASWELL_CORE,		core_params),
1934 	ICPU(INTEL_FAM6_BROADWELL_CORE,		core_params),
1935 	ICPU(INTEL_FAM6_IVYBRIDGE_X,		core_params),
1936 	ICPU(INTEL_FAM6_HASWELL_X,		core_params),
1937 	ICPU(INTEL_FAM6_HASWELL_ULT,		core_params),
1938 	ICPU(INTEL_FAM6_HASWELL_GT3E,		core_params),
1939 	ICPU(INTEL_FAM6_BROADWELL_GT3E,		core_params),
1940 	ICPU(INTEL_FAM6_ATOM_AIRMONT,		airmont_params),
1941 	ICPU(INTEL_FAM6_SKYLAKE_MOBILE,		core_params),
1942 	ICPU(INTEL_FAM6_BROADWELL_X,		core_params),
1943 	ICPU(INTEL_FAM6_SKYLAKE_DESKTOP,	core_params),
1944 	ICPU(INTEL_FAM6_BROADWELL_XEON_D,	core_params),
1945 	ICPU(INTEL_FAM6_XEON_PHI_KNL,		knl_params),
1946 	ICPU(INTEL_FAM6_XEON_PHI_KNM,		knl_params),
1947 	ICPU(INTEL_FAM6_ATOM_GOLDMONT,		bxt_params),
1948 	{}
1949 };
1950 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1951 
1952 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
1953 	ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_params),
1954 	ICPU(INTEL_FAM6_BROADWELL_X, core_params),
1955 	ICPU(INTEL_FAM6_SKYLAKE_X, core_params),
1956 	{}
1957 };
1958 
1959 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
1960 	ICPU(INTEL_FAM6_KABYLAKE_DESKTOP, core_params),
1961 	{}
1962 };
1963 
1964 static int intel_pstate_init_cpu(unsigned int cpunum)
1965 {
1966 	struct cpudata *cpu;
1967 
1968 	cpu = all_cpu_data[cpunum];
1969 
1970 	if (!cpu) {
1971 		unsigned int size = sizeof(struct cpudata);
1972 
1973 		if (per_cpu_limits)
1974 			size += sizeof(struct perf_limits);
1975 
1976 		cpu = kzalloc(size, GFP_KERNEL);
1977 		if (!cpu)
1978 			return -ENOMEM;
1979 
1980 		all_cpu_data[cpunum] = cpu;
1981 		if (per_cpu_limits)
1982 			cpu->perf_limits = (struct perf_limits *)(cpu + 1);
1983 
1984 		cpu->epp_default = -EINVAL;
1985 		cpu->epp_powersave = -EINVAL;
1986 		cpu->epp_saved = -EINVAL;
1987 	}
1988 
1989 	cpu = all_cpu_data[cpunum];
1990 
1991 	cpu->cpu = cpunum;
1992 
1993 	if (hwp_active) {
1994 		const struct x86_cpu_id *id;
1995 
1996 		id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
1997 		if (id)
1998 			intel_pstate_disable_ee(cpunum);
1999 
2000 		intel_pstate_hwp_enable(cpu);
2001 		pid_params.sample_rate_ms = 50;
2002 		pid_params.sample_rate_ns = 50 * NSEC_PER_MSEC;
2003 	}
2004 
2005 	intel_pstate_get_cpu_pstates(cpu);
2006 
2007 	intel_pstate_busy_pid_reset(cpu);
2008 
2009 	pr_debug("controlling: cpu %d\n", cpunum);
2010 
2011 	return 0;
2012 }
2013 
2014 static unsigned int intel_pstate_get(unsigned int cpu_num)
2015 {
2016 	struct cpudata *cpu = all_cpu_data[cpu_num];
2017 
2018 	return cpu ? get_avg_frequency(cpu) : 0;
2019 }
2020 
2021 static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
2022 {
2023 	struct cpudata *cpu = all_cpu_data[cpu_num];
2024 
2025 	if (cpu->update_util_set)
2026 		return;
2027 
2028 	/* Prevent intel_pstate_update_util() from using stale data. */
2029 	cpu->sample.time = 0;
2030 	cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
2031 				     intel_pstate_update_util);
2032 	cpu->update_util_set = true;
2033 }
2034 
2035 static void intel_pstate_clear_update_util_hook(unsigned int cpu)
2036 {
2037 	struct cpudata *cpu_data = all_cpu_data[cpu];
2038 
2039 	if (!cpu_data->update_util_set)
2040 		return;
2041 
2042 	cpufreq_remove_update_util_hook(cpu);
2043 	cpu_data->update_util_set = false;
2044 	synchronize_sched();
2045 }
2046 
2047 static void intel_pstate_update_perf_limits(struct cpufreq_policy *policy,
2048 					    struct perf_limits *limits)
2049 {
2050 	int32_t max_policy_perf, min_policy_perf;
2051 
2052 	max_policy_perf = div_ext_fp(policy->max, policy->cpuinfo.max_freq);
2053 	max_policy_perf = clamp_t(int32_t, max_policy_perf, 0, int_ext_tofp(1));
2054 	if (policy->max == policy->min) {
2055 		min_policy_perf = max_policy_perf;
2056 	} else {
2057 		min_policy_perf = div_ext_fp(policy->min,
2058 					     policy->cpuinfo.max_freq);
2059 		min_policy_perf = clamp_t(int32_t, min_policy_perf,
2060 					  0, max_policy_perf);
2061 	}
2062 
2063 	/* Normalize user input to [min_perf, max_perf] */
2064 	limits->min_perf = max(min_policy_perf,
2065 			       percent_ext_fp(limits->min_sysfs_pct));
2066 	limits->min_perf = min(limits->min_perf, max_policy_perf);
2067 	limits->max_perf = min(max_policy_perf,
2068 			       percent_ext_fp(limits->max_sysfs_pct));
2069 	limits->max_perf = max(min_policy_perf, limits->max_perf);
2070 
2071 	/* Make sure min_perf <= max_perf */
2072 	limits->min_perf = min(limits->min_perf, limits->max_perf);
2073 
2074 	limits->max_perf = round_up(limits->max_perf, EXT_FRAC_BITS);
2075 	limits->min_perf = round_up(limits->min_perf, EXT_FRAC_BITS);
2076 	limits->max_perf_pct = fp_ext_toint(limits->max_perf * 100);
2077 	limits->min_perf_pct = fp_ext_toint(limits->min_perf * 100);
2078 
2079 	pr_debug("cpu:%d max_perf_pct:%d min_perf_pct:%d\n", policy->cpu,
2080 		 limits->max_perf_pct, limits->min_perf_pct);
2081 }
2082 
2083 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
2084 {
2085 	struct cpudata *cpu;
2086 	struct perf_limits *perf_limits = &global;
2087 
2088 	if (!policy->cpuinfo.max_freq)
2089 		return -ENODEV;
2090 
2091 	pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
2092 		 policy->cpuinfo.max_freq, policy->max);
2093 
2094 	cpu = all_cpu_data[policy->cpu];
2095 	cpu->policy = policy->policy;
2096 
2097 	if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
2098 	    policy->max < policy->cpuinfo.max_freq &&
2099 	    policy->max > cpu->pstate.max_pstate * cpu->pstate.scaling) {
2100 		pr_debug("policy->max > max non turbo frequency\n");
2101 		policy->max = policy->cpuinfo.max_freq;
2102 	}
2103 
2104 	if (per_cpu_limits)
2105 		perf_limits = cpu->perf_limits;
2106 
2107 	mutex_lock(&intel_pstate_limits_lock);
2108 
2109 	intel_pstate_update_perf_limits(policy, perf_limits);
2110 
2111 	if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
2112 		/*
2113 		 * NOHZ_FULL CPUs need this as the governor callback may not
2114 		 * be invoked on them.
2115 		 */
2116 		intel_pstate_clear_update_util_hook(policy->cpu);
2117 		intel_pstate_max_within_limits(cpu);
2118 	}
2119 
2120 	intel_pstate_set_update_util_hook(policy->cpu);
2121 
2122 	if (hwp_active)
2123 		intel_pstate_hwp_set(policy);
2124 
2125 	mutex_unlock(&intel_pstate_limits_lock);
2126 
2127 	return 0;
2128 }
2129 
2130 static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
2131 {
2132 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2133 
2134 	update_turbo_state();
2135 	policy->cpuinfo.max_freq = global.turbo_disabled || global.no_turbo ?
2136 					cpu->pstate.max_freq :
2137 					cpu->pstate.turbo_freq;
2138 
2139 	cpufreq_verify_within_cpu_limits(policy);
2140 
2141 	if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
2142 	    policy->policy != CPUFREQ_POLICY_PERFORMANCE)
2143 		return -EINVAL;
2144 
2145 	/* When per-CPU limits are used, sysfs limits are not used */
2146 	if (!per_cpu_limits) {
2147 		unsigned int max_freq, min_freq;
2148 
2149 		max_freq = policy->cpuinfo.max_freq *
2150 					global.max_sysfs_pct / 100;
2151 		min_freq = policy->cpuinfo.max_freq *
2152 					global.min_sysfs_pct / 100;
2153 		cpufreq_verify_within_limits(policy, min_freq, max_freq);
2154 	}
2155 
2156 	return 0;
2157 }
2158 
2159 static void intel_cpufreq_stop_cpu(struct cpufreq_policy *policy)
2160 {
2161 	intel_pstate_set_min_pstate(all_cpu_data[policy->cpu]);
2162 }
2163 
2164 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
2165 {
2166 	pr_debug("CPU %d exiting\n", policy->cpu);
2167 
2168 	intel_pstate_clear_update_util_hook(policy->cpu);
2169 	if (hwp_active)
2170 		intel_pstate_hwp_save_state(policy);
2171 	else
2172 		intel_cpufreq_stop_cpu(policy);
2173 }
2174 
2175 static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
2176 {
2177 	intel_pstate_exit_perf_limits(policy);
2178 
2179 	policy->fast_switch_possible = false;
2180 
2181 	return 0;
2182 }
2183 
2184 static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2185 {
2186 	struct cpudata *cpu;
2187 	int rc;
2188 
2189 	rc = intel_pstate_init_cpu(policy->cpu);
2190 	if (rc)
2191 		return rc;
2192 
2193 	cpu = all_cpu_data[policy->cpu];
2194 
2195 	if (per_cpu_limits)
2196 		intel_pstate_init_limits(cpu->perf_limits);
2197 
2198 	policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
2199 	policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
2200 
2201 	/* cpuinfo and default policy values */
2202 	policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
2203 	update_turbo_state();
2204 	policy->cpuinfo.max_freq = global.turbo_disabled ?
2205 			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2206 	policy->cpuinfo.max_freq *= cpu->pstate.scaling;
2207 
2208 	intel_pstate_init_acpi_perf_limits(policy);
2209 	cpumask_set_cpu(policy->cpu, policy->cpus);
2210 
2211 	policy->fast_switch_possible = true;
2212 
2213 	return 0;
2214 }
2215 
2216 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2217 {
2218 	int ret = __intel_pstate_cpu_init(policy);
2219 
2220 	if (ret)
2221 		return ret;
2222 
2223 	policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
2224 	if (IS_ENABLED(CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE))
2225 		policy->policy = CPUFREQ_POLICY_PERFORMANCE;
2226 	else
2227 		policy->policy = CPUFREQ_POLICY_POWERSAVE;
2228 
2229 	return 0;
2230 }
2231 
2232 static struct cpufreq_driver intel_pstate = {
2233 	.flags		= CPUFREQ_CONST_LOOPS,
2234 	.verify		= intel_pstate_verify_policy,
2235 	.setpolicy	= intel_pstate_set_policy,
2236 	.suspend	= intel_pstate_hwp_save_state,
2237 	.resume		= intel_pstate_resume,
2238 	.get		= intel_pstate_get,
2239 	.init		= intel_pstate_cpu_init,
2240 	.exit		= intel_pstate_cpu_exit,
2241 	.stop_cpu	= intel_pstate_stop_cpu,
2242 	.name		= "intel_pstate",
2243 };
2244 
2245 static int intel_cpufreq_verify_policy(struct cpufreq_policy *policy)
2246 {
2247 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2248 
2249 	update_turbo_state();
2250 	policy->cpuinfo.max_freq = global.no_turbo || global.turbo_disabled ?
2251 			cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2252 
2253 	cpufreq_verify_within_cpu_limits(policy);
2254 
2255 	return 0;
2256 }
2257 
2258 static int intel_cpufreq_target(struct cpufreq_policy *policy,
2259 				unsigned int target_freq,
2260 				unsigned int relation)
2261 {
2262 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2263 	struct cpufreq_freqs freqs;
2264 	int target_pstate;
2265 
2266 	update_turbo_state();
2267 
2268 	freqs.old = policy->cur;
2269 	freqs.new = target_freq;
2270 
2271 	cpufreq_freq_transition_begin(policy, &freqs);
2272 	switch (relation) {
2273 	case CPUFREQ_RELATION_L:
2274 		target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
2275 		break;
2276 	case CPUFREQ_RELATION_H:
2277 		target_pstate = freqs.new / cpu->pstate.scaling;
2278 		break;
2279 	default:
2280 		target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
2281 		break;
2282 	}
2283 	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2284 	if (target_pstate != cpu->pstate.current_pstate) {
2285 		cpu->pstate.current_pstate = target_pstate;
2286 		wrmsrl_on_cpu(policy->cpu, MSR_IA32_PERF_CTL,
2287 			      pstate_funcs.get_val(cpu, target_pstate));
2288 	}
2289 	freqs.new = target_pstate * cpu->pstate.scaling;
2290 	cpufreq_freq_transition_end(policy, &freqs, false);
2291 
2292 	return 0;
2293 }
2294 
2295 static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
2296 					      unsigned int target_freq)
2297 {
2298 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2299 	int target_pstate;
2300 
2301 	update_turbo_state();
2302 
2303 	target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
2304 	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2305 	intel_pstate_update_pstate(cpu, target_pstate);
2306 	return target_pstate * cpu->pstate.scaling;
2307 }
2308 
2309 static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
2310 {
2311 	int ret = __intel_pstate_cpu_init(policy);
2312 
2313 	if (ret)
2314 		return ret;
2315 
2316 	policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
2317 	/* This reflects the intel_pstate_get_cpu_pstates() setting. */
2318 	policy->cur = policy->cpuinfo.min_freq;
2319 
2320 	return 0;
2321 }
2322 
2323 static struct cpufreq_driver intel_cpufreq = {
2324 	.flags		= CPUFREQ_CONST_LOOPS,
2325 	.verify		= intel_cpufreq_verify_policy,
2326 	.target		= intel_cpufreq_target,
2327 	.fast_switch	= intel_cpufreq_fast_switch,
2328 	.init		= intel_cpufreq_cpu_init,
2329 	.exit		= intel_pstate_cpu_exit,
2330 	.stop_cpu	= intel_cpufreq_stop_cpu,
2331 	.name		= "intel_cpufreq",
2332 };
2333 
2334 static struct cpufreq_driver *intel_pstate_driver = &intel_pstate;
2335 
2336 static void intel_pstate_driver_cleanup(void)
2337 {
2338 	unsigned int cpu;
2339 
2340 	get_online_cpus();
2341 	for_each_online_cpu(cpu) {
2342 		if (all_cpu_data[cpu]) {
2343 			if (intel_pstate_driver == &intel_pstate)
2344 				intel_pstate_clear_update_util_hook(cpu);
2345 
2346 			kfree(all_cpu_data[cpu]);
2347 			all_cpu_data[cpu] = NULL;
2348 		}
2349 	}
2350 	put_online_cpus();
2351 }
2352 
2353 static int intel_pstate_register_driver(void)
2354 {
2355 	int ret;
2356 
2357 	intel_pstate_init_limits(&global);
2358 
2359 	ret = cpufreq_register_driver(intel_pstate_driver);
2360 	if (ret) {
2361 		intel_pstate_driver_cleanup();
2362 		return ret;
2363 	}
2364 
2365 	mutex_lock(&intel_pstate_limits_lock);
2366 	driver_registered = true;
2367 	mutex_unlock(&intel_pstate_limits_lock);
2368 
2369 	if (intel_pstate_driver == &intel_pstate && !hwp_active &&
2370 	    pstate_funcs.get_target_pstate != get_target_pstate_use_cpu_load)
2371 		intel_pstate_debug_expose_params();
2372 
2373 	return 0;
2374 }
2375 
2376 static int intel_pstate_unregister_driver(void)
2377 {
2378 	if (hwp_active)
2379 		return -EBUSY;
2380 
2381 	if (intel_pstate_driver == &intel_pstate && !hwp_active &&
2382 	    pstate_funcs.get_target_pstate != get_target_pstate_use_cpu_load)
2383 		intel_pstate_debug_hide_params();
2384 
2385 	mutex_lock(&intel_pstate_limits_lock);
2386 	driver_registered = false;
2387 	mutex_unlock(&intel_pstate_limits_lock);
2388 
2389 	cpufreq_unregister_driver(intel_pstate_driver);
2390 	intel_pstate_driver_cleanup();
2391 
2392 	return 0;
2393 }
2394 
2395 static ssize_t intel_pstate_show_status(char *buf)
2396 {
2397 	if (!driver_registered)
2398 		return sprintf(buf, "off\n");
2399 
2400 	return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
2401 					"active" : "passive");
2402 }
2403 
2404 static int intel_pstate_update_status(const char *buf, size_t size)
2405 {
2406 	int ret;
2407 
2408 	if (size == 3 && !strncmp(buf, "off", size))
2409 		return driver_registered ?
2410 			intel_pstate_unregister_driver() : -EINVAL;
2411 
2412 	if (size == 6 && !strncmp(buf, "active", size)) {
2413 		if (driver_registered) {
2414 			if (intel_pstate_driver == &intel_pstate)
2415 				return 0;
2416 
2417 			ret = intel_pstate_unregister_driver();
2418 			if (ret)
2419 				return ret;
2420 		}
2421 
2422 		intel_pstate_driver = &intel_pstate;
2423 		return intel_pstate_register_driver();
2424 	}
2425 
2426 	if (size == 7 && !strncmp(buf, "passive", size)) {
2427 		if (driver_registered) {
2428 			if (intel_pstate_driver != &intel_pstate)
2429 				return 0;
2430 
2431 			ret = intel_pstate_unregister_driver();
2432 			if (ret)
2433 				return ret;
2434 		}
2435 
2436 		intel_pstate_driver = &intel_cpufreq;
2437 		return intel_pstate_register_driver();
2438 	}
2439 
2440 	return -EINVAL;
2441 }
2442 
2443 static int no_load __initdata;
2444 static int no_hwp __initdata;
2445 static int hwp_only __initdata;
2446 static unsigned int force_load __initdata;
2447 
2448 static int __init intel_pstate_msrs_not_valid(void)
2449 {
2450 	if (!pstate_funcs.get_max() ||
2451 	    !pstate_funcs.get_min() ||
2452 	    !pstate_funcs.get_turbo())
2453 		return -ENODEV;
2454 
2455 	return 0;
2456 }
2457 
2458 static void __init copy_pid_params(struct pstate_adjust_policy *policy)
2459 {
2460 	pid_params.sample_rate_ms = policy->sample_rate_ms;
2461 	pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
2462 	pid_params.p_gain_pct = policy->p_gain_pct;
2463 	pid_params.i_gain_pct = policy->i_gain_pct;
2464 	pid_params.d_gain_pct = policy->d_gain_pct;
2465 	pid_params.deadband = policy->deadband;
2466 	pid_params.setpoint = policy->setpoint;
2467 }
2468 
2469 #ifdef CONFIG_ACPI
2470 static void intel_pstate_use_acpi_profile(void)
2471 {
2472 	if (acpi_gbl_FADT.preferred_profile == PM_MOBILE)
2473 		pstate_funcs.get_target_pstate =
2474 				get_target_pstate_use_cpu_load;
2475 }
2476 #else
2477 static void intel_pstate_use_acpi_profile(void)
2478 {
2479 }
2480 #endif
2481 
2482 static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
2483 {
2484 	pstate_funcs.get_max   = funcs->get_max;
2485 	pstate_funcs.get_max_physical = funcs->get_max_physical;
2486 	pstate_funcs.get_min   = funcs->get_min;
2487 	pstate_funcs.get_turbo = funcs->get_turbo;
2488 	pstate_funcs.get_scaling = funcs->get_scaling;
2489 	pstate_funcs.get_val   = funcs->get_val;
2490 	pstate_funcs.get_vid   = funcs->get_vid;
2491 	pstate_funcs.get_target_pstate = funcs->get_target_pstate;
2492 
2493 	intel_pstate_use_acpi_profile();
2494 }
2495 
2496 #ifdef CONFIG_ACPI
2497 
2498 static bool __init intel_pstate_no_acpi_pss(void)
2499 {
2500 	int i;
2501 
2502 	for_each_possible_cpu(i) {
2503 		acpi_status status;
2504 		union acpi_object *pss;
2505 		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
2506 		struct acpi_processor *pr = per_cpu(processors, i);
2507 
2508 		if (!pr)
2509 			continue;
2510 
2511 		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
2512 		if (ACPI_FAILURE(status))
2513 			continue;
2514 
2515 		pss = buffer.pointer;
2516 		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
2517 			kfree(pss);
2518 			return false;
2519 		}
2520 
2521 		kfree(pss);
2522 	}
2523 
2524 	return true;
2525 }
2526 
2527 static bool __init intel_pstate_has_acpi_ppc(void)
2528 {
2529 	int i;
2530 
2531 	for_each_possible_cpu(i) {
2532 		struct acpi_processor *pr = per_cpu(processors, i);
2533 
2534 		if (!pr)
2535 			continue;
2536 		if (acpi_has_method(pr->handle, "_PPC"))
2537 			return true;
2538 	}
2539 	return false;
2540 }
2541 
2542 enum {
2543 	PSS,
2544 	PPC,
2545 };
2546 
2547 struct hw_vendor_info {
2548 	u16  valid;
2549 	char oem_id[ACPI_OEM_ID_SIZE];
2550 	char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
2551 	int  oem_pwr_table;
2552 };
2553 
2554 /* Hardware vendor-specific info that has its own power management modes */
2555 static struct hw_vendor_info vendor_info[] __initdata = {
2556 	{1, "HP    ", "ProLiant", PSS},
2557 	{1, "ORACLE", "X4-2    ", PPC},
2558 	{1, "ORACLE", "X4-2L   ", PPC},
2559 	{1, "ORACLE", "X4-2B   ", PPC},
2560 	{1, "ORACLE", "X3-2    ", PPC},
2561 	{1, "ORACLE", "X3-2L   ", PPC},
2562 	{1, "ORACLE", "X3-2B   ", PPC},
2563 	{1, "ORACLE", "X4470M2 ", PPC},
2564 	{1, "ORACLE", "X4270M3 ", PPC},
2565 	{1, "ORACLE", "X4270M2 ", PPC},
2566 	{1, "ORACLE", "X4170M2 ", PPC},
2567 	{1, "ORACLE", "X4170 M3", PPC},
2568 	{1, "ORACLE", "X4275 M3", PPC},
2569 	{1, "ORACLE", "X6-2    ", PPC},
2570 	{1, "ORACLE", "Sudbury ", PPC},
2571 	{0, "", ""},
2572 };
2573 
2574 static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
2575 {
2576 	struct acpi_table_header hdr;
2577 	struct hw_vendor_info *v_info;
2578 	const struct x86_cpu_id *id;
2579 	u64 misc_pwr;
2580 
2581 	id = x86_match_cpu(intel_pstate_cpu_oob_ids);
2582 	if (id) {
2583 		rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
2584 		if ( misc_pwr & (1 << 8))
2585 			return true;
2586 	}
2587 
2588 	if (acpi_disabled ||
2589 	    ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
2590 		return false;
2591 
2592 	for (v_info = vendor_info; v_info->valid; v_info++) {
2593 		if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
2594 			!strncmp(hdr.oem_table_id, v_info->oem_table_id,
2595 						ACPI_OEM_TABLE_ID_SIZE))
2596 			switch (v_info->oem_pwr_table) {
2597 			case PSS:
2598 				return intel_pstate_no_acpi_pss();
2599 			case PPC:
2600 				return intel_pstate_has_acpi_ppc() &&
2601 					(!force_load);
2602 			}
2603 	}
2604 
2605 	return false;
2606 }
2607 
2608 static void intel_pstate_request_control_from_smm(void)
2609 {
2610 	/*
2611 	 * It may be unsafe to request P-states control from SMM if _PPC support
2612 	 * has not been enabled.
2613 	 */
2614 	if (acpi_ppc)
2615 		acpi_processor_pstate_control();
2616 }
2617 #else /* CONFIG_ACPI not enabled */
2618 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
2619 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
2620 static inline void intel_pstate_request_control_from_smm(void) {}
2621 #endif /* CONFIG_ACPI */
2622 
2623 static const struct x86_cpu_id hwp_support_ids[] __initconst = {
2624 	{ X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
2625 	{}
2626 };
2627 
2628 static int __init intel_pstate_init(void)
2629 {
2630 	int rc;
2631 
2632 	if (no_load)
2633 		return -ENODEV;
2634 
2635 	if (x86_match_cpu(hwp_support_ids)) {
2636 		copy_cpu_funcs(&core_params.funcs);
2637 		if (no_hwp) {
2638 			pstate_funcs.get_target_pstate = get_target_pstate_use_cpu_load;
2639 		} else {
2640 			hwp_active++;
2641 			intel_pstate.attr = hwp_cpufreq_attrs;
2642 			goto hwp_cpu_matched;
2643 		}
2644 	} else {
2645 		const struct x86_cpu_id *id;
2646 		struct cpu_defaults *cpu_def;
2647 
2648 		id = x86_match_cpu(intel_pstate_cpu_ids);
2649 		if (!id)
2650 			return -ENODEV;
2651 
2652 		cpu_def = (struct cpu_defaults *)id->driver_data;
2653 
2654 		copy_pid_params(&cpu_def->pid_policy);
2655 		copy_cpu_funcs(&cpu_def->funcs);
2656 	}
2657 
2658 	if (intel_pstate_msrs_not_valid())
2659 		return -ENODEV;
2660 
2661 hwp_cpu_matched:
2662 	/*
2663 	 * The Intel pstate driver will be ignored if the platform
2664 	 * firmware has its own power management modes.
2665 	 */
2666 	if (intel_pstate_platform_pwr_mgmt_exists())
2667 		return -ENODEV;
2668 
2669 	if (!hwp_active && hwp_only)
2670 		return -ENOTSUPP;
2671 
2672 	pr_info("Intel P-state driver initializing\n");
2673 
2674 	all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
2675 	if (!all_cpu_data)
2676 		return -ENOMEM;
2677 
2678 	intel_pstate_request_control_from_smm();
2679 
2680 	intel_pstate_sysfs_expose_params();
2681 
2682 	mutex_lock(&intel_pstate_driver_lock);
2683 	rc = intel_pstate_register_driver();
2684 	mutex_unlock(&intel_pstate_driver_lock);
2685 	if (rc)
2686 		return rc;
2687 
2688 	if (hwp_active)
2689 		pr_info("HWP enabled\n");
2690 
2691 	return 0;
2692 }
2693 device_initcall(intel_pstate_init);
2694 
2695 static int __init intel_pstate_setup(char *str)
2696 {
2697 	if (!str)
2698 		return -EINVAL;
2699 
2700 	if (!strcmp(str, "disable")) {
2701 		no_load = 1;
2702 	} else if (!strcmp(str, "passive")) {
2703 		pr_info("Passive mode enabled\n");
2704 		intel_pstate_driver = &intel_cpufreq;
2705 		no_hwp = 1;
2706 	}
2707 	if (!strcmp(str, "no_hwp")) {
2708 		pr_info("HWP disabled\n");
2709 		no_hwp = 1;
2710 	}
2711 	if (!strcmp(str, "force"))
2712 		force_load = 1;
2713 	if (!strcmp(str, "hwp_only"))
2714 		hwp_only = 1;
2715 	if (!strcmp(str, "per_cpu_perf_limits"))
2716 		per_cpu_limits = true;
2717 
2718 #ifdef CONFIG_ACPI
2719 	if (!strcmp(str, "support_acpi_ppc"))
2720 		acpi_ppc = true;
2721 #endif
2722 
2723 	return 0;
2724 }
2725 early_param("intel_pstate", intel_pstate_setup);
2726 
2727 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
2728 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
2729 MODULE_LICENSE("GPL");
2730