1 /*
2  * intel_pstate.c: Native P state management for Intel processors
3  *
4  * (C) Copyright 2012 Intel Corporation
5  * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; version 2
10  * of the License.
11  */
12 
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 
15 #include <linux/kernel.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/module.h>
18 #include <linux/ktime.h>
19 #include <linux/hrtimer.h>
20 #include <linux/tick.h>
21 #include <linux/slab.h>
22 #include <linux/sched/cpufreq.h>
23 #include <linux/list.h>
24 #include <linux/cpu.h>
25 #include <linux/cpufreq.h>
26 #include <linux/sysfs.h>
27 #include <linux/types.h>
28 #include <linux/fs.h>
29 #include <linux/debugfs.h>
30 #include <linux/acpi.h>
31 #include <linux/vmalloc.h>
32 #include <trace/events/power.h>
33 
34 #include <asm/div64.h>
35 #include <asm/msr.h>
36 #include <asm/cpu_device_id.h>
37 #include <asm/cpufeature.h>
38 #include <asm/intel-family.h>
39 
40 #define INTEL_PSTATE_DEFAULT_SAMPLING_INTERVAL	(10 * NSEC_PER_MSEC)
41 #define INTEL_PSTATE_HWP_SAMPLING_INTERVAL	(50 * NSEC_PER_MSEC)
42 
43 #define INTEL_CPUFREQ_TRANSITION_LATENCY	20000
44 
45 #ifdef CONFIG_ACPI
46 #include <acpi/processor.h>
47 #include <acpi/cppc_acpi.h>
48 #endif
49 
50 #define FRAC_BITS 8
51 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
52 #define fp_toint(X) ((X) >> FRAC_BITS)
53 
54 #define EXT_BITS 6
55 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
56 #define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
57 #define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
58 
59 static inline int32_t mul_fp(int32_t x, int32_t y)
60 {
61 	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
62 }
63 
64 static inline int32_t div_fp(s64 x, s64 y)
65 {
66 	return div64_s64((int64_t)x << FRAC_BITS, y);
67 }
68 
69 static inline int ceiling_fp(int32_t x)
70 {
71 	int mask, ret;
72 
73 	ret = fp_toint(x);
74 	mask = (1 << FRAC_BITS) - 1;
75 	if (x & mask)
76 		ret += 1;
77 	return ret;
78 }
79 
80 static inline int32_t percent_fp(int percent)
81 {
82 	return div_fp(percent, 100);
83 }
84 
85 static inline u64 mul_ext_fp(u64 x, u64 y)
86 {
87 	return (x * y) >> EXT_FRAC_BITS;
88 }
89 
90 static inline u64 div_ext_fp(u64 x, u64 y)
91 {
92 	return div64_u64(x << EXT_FRAC_BITS, y);
93 }
94 
95 static inline int32_t percent_ext_fp(int percent)
96 {
97 	return div_ext_fp(percent, 100);
98 }
99 
100 /**
101  * struct sample -	Store performance sample
102  * @core_avg_perf:	Ratio of APERF/MPERF which is the actual average
103  *			performance during last sample period
104  * @busy_scaled:	Scaled busy value which is used to calculate next
105  *			P state. This can be different than core_avg_perf
106  *			to account for cpu idle period
107  * @aperf:		Difference of actual performance frequency clock count
108  *			read from APERF MSR between last and current sample
109  * @mperf:		Difference of maximum performance frequency clock count
110  *			read from MPERF MSR between last and current sample
111  * @tsc:		Difference of time stamp counter between last and
112  *			current sample
113  * @time:		Current time from scheduler
114  *
115  * This structure is used in the cpudata structure to store performance sample
116  * data for choosing next P State.
117  */
118 struct sample {
119 	int32_t core_avg_perf;
120 	int32_t busy_scaled;
121 	u64 aperf;
122 	u64 mperf;
123 	u64 tsc;
124 	u64 time;
125 };
126 
127 /**
128  * struct pstate_data - Store P state data
129  * @current_pstate:	Current requested P state
130  * @min_pstate:		Min P state possible for this platform
131  * @max_pstate:		Max P state possible for this platform
132  * @max_pstate_physical:This is physical Max P state for a processor
133  *			This can be higher than the max_pstate which can
134  *			be limited by platform thermal design power limits
135  * @scaling:		Scaling factor to  convert frequency to cpufreq
136  *			frequency units
137  * @turbo_pstate:	Max Turbo P state possible for this platform
138  * @max_freq:		@max_pstate frequency in cpufreq units
139  * @turbo_freq:		@turbo_pstate frequency in cpufreq units
140  *
141  * Stores the per cpu model P state limits and current P state.
142  */
143 struct pstate_data {
144 	int	current_pstate;
145 	int	min_pstate;
146 	int	max_pstate;
147 	int	max_pstate_physical;
148 	int	scaling;
149 	int	turbo_pstate;
150 	unsigned int max_freq;
151 	unsigned int turbo_freq;
152 };
153 
154 /**
155  * struct vid_data -	Stores voltage information data
156  * @min:		VID data for this platform corresponding to
157  *			the lowest P state
158  * @max:		VID data corresponding to the highest P State.
159  * @turbo:		VID data for turbo P state
160  * @ratio:		Ratio of (vid max - vid min) /
161  *			(max P state - Min P State)
162  *
163  * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
164  * This data is used in Atom platforms, where in addition to target P state,
165  * the voltage data needs to be specified to select next P State.
166  */
167 struct vid_data {
168 	int min;
169 	int max;
170 	int turbo;
171 	int32_t ratio;
172 };
173 
174 /**
175  * struct _pid -	Stores PID data
176  * @setpoint:		Target set point for busyness or performance
177  * @integral:		Storage for accumulated error values
178  * @p_gain:		PID proportional gain
179  * @i_gain:		PID integral gain
180  * @d_gain:		PID derivative gain
181  * @deadband:		PID deadband
182  * @last_err:		Last error storage for integral part of PID calculation
183  *
184  * Stores PID coefficients and last error for PID controller.
185  */
186 struct _pid {
187 	int setpoint;
188 	int32_t integral;
189 	int32_t p_gain;
190 	int32_t i_gain;
191 	int32_t d_gain;
192 	int deadband;
193 	int32_t last_err;
194 };
195 
196 /**
197  * struct global_params - Global parameters, mostly tunable via sysfs.
198  * @no_turbo:		Whether or not to use turbo P-states.
199  * @turbo_disabled:	Whethet or not turbo P-states are available at all,
200  *			based on the MSR_IA32_MISC_ENABLE value and whether or
201  *			not the maximum reported turbo P-state is different from
202  *			the maximum reported non-turbo one.
203  * @min_perf_pct:	Minimum capacity limit in percent of the maximum turbo
204  *			P-state capacity.
205  * @max_perf_pct:	Maximum capacity limit in percent of the maximum turbo
206  *			P-state capacity.
207  */
208 struct global_params {
209 	bool no_turbo;
210 	bool turbo_disabled;
211 	int max_perf_pct;
212 	int min_perf_pct;
213 };
214 
215 /**
216  * struct cpudata -	Per CPU instance data storage
217  * @cpu:		CPU number for this instance data
218  * @policy:		CPUFreq policy value
219  * @update_util:	CPUFreq utility callback information
220  * @update_util_set:	CPUFreq utility callback is set
221  * @iowait_boost:	iowait-related boost fraction
222  * @last_update:	Time of the last update.
223  * @pstate:		Stores P state limits for this CPU
224  * @vid:		Stores VID limits for this CPU
225  * @pid:		Stores PID parameters for this CPU
226  * @last_sample_time:	Last Sample time
227  * @prev_aperf:		Last APERF value read from APERF MSR
228  * @prev_mperf:		Last MPERF value read from MPERF MSR
229  * @prev_tsc:		Last timestamp counter (TSC) value
230  * @prev_cummulative_iowait: IO Wait time difference from last and
231  *			current sample
232  * @sample:		Storage for storing last Sample data
233  * @min_perf:		Minimum capacity limit as a fraction of the maximum
234  *			turbo P-state capacity.
235  * @max_perf:		Maximum capacity limit as a fraction of the maximum
236  *			turbo P-state capacity.
237  * @acpi_perf_data:	Stores ACPI perf information read from _PSS
238  * @valid_pss_table:	Set to true for valid ACPI _PSS entries found
239  * @epp_powersave:	Last saved HWP energy performance preference
240  *			(EPP) or energy performance bias (EPB),
241  *			when policy switched to performance
242  * @epp_policy:		Last saved policy used to set EPP/EPB
243  * @epp_default:	Power on default HWP energy performance
244  *			preference/bias
245  * @epp_saved:		Saved EPP/EPB during system suspend or CPU offline
246  *			operation
247  *
248  * This structure stores per CPU instance data for all CPUs.
249  */
250 struct cpudata {
251 	int cpu;
252 
253 	unsigned int policy;
254 	struct update_util_data update_util;
255 	bool   update_util_set;
256 
257 	struct pstate_data pstate;
258 	struct vid_data vid;
259 	struct _pid pid;
260 
261 	u64	last_update;
262 	u64	last_sample_time;
263 	u64	prev_aperf;
264 	u64	prev_mperf;
265 	u64	prev_tsc;
266 	u64	prev_cummulative_iowait;
267 	struct sample sample;
268 	int32_t	min_perf;
269 	int32_t	max_perf;
270 #ifdef CONFIG_ACPI
271 	struct acpi_processor_performance acpi_perf_data;
272 	bool valid_pss_table;
273 #endif
274 	unsigned int iowait_boost;
275 	s16 epp_powersave;
276 	s16 epp_policy;
277 	s16 epp_default;
278 	s16 epp_saved;
279 };
280 
281 static struct cpudata **all_cpu_data;
282 
283 /**
284  * struct pstate_adjust_policy - Stores static PID configuration data
285  * @sample_rate_ms:	PID calculation sample rate in ms
286  * @sample_rate_ns:	Sample rate calculation in ns
287  * @deadband:		PID deadband
288  * @setpoint:		PID Setpoint
289  * @p_gain_pct:		PID proportional gain
290  * @i_gain_pct:		PID integral gain
291  * @d_gain_pct:		PID derivative gain
292  *
293  * Stores per CPU model static PID configuration data.
294  */
295 struct pstate_adjust_policy {
296 	int sample_rate_ms;
297 	s64 sample_rate_ns;
298 	int deadband;
299 	int setpoint;
300 	int p_gain_pct;
301 	int d_gain_pct;
302 	int i_gain_pct;
303 };
304 
305 /**
306  * struct pstate_funcs - Per CPU model specific callbacks
307  * @get_max:		Callback to get maximum non turbo effective P state
308  * @get_max_physical:	Callback to get maximum non turbo physical P state
309  * @get_min:		Callback to get minimum P state
310  * @get_turbo:		Callback to get turbo P state
311  * @get_scaling:	Callback to get frequency scaling factor
312  * @get_val:		Callback to convert P state to actual MSR write value
313  * @get_vid:		Callback to get VID data for Atom platforms
314  * @get_target_pstate:	Callback to a function to calculate next P state to use
315  *
316  * Core and Atom CPU models have different way to get P State limits. This
317  * structure is used to store those callbacks.
318  */
319 struct pstate_funcs {
320 	int (*get_max)(void);
321 	int (*get_max_physical)(void);
322 	int (*get_min)(void);
323 	int (*get_turbo)(void);
324 	int (*get_scaling)(void);
325 	u64 (*get_val)(struct cpudata*, int pstate);
326 	void (*get_vid)(struct cpudata *);
327 	int32_t (*get_target_pstate)(struct cpudata *);
328 };
329 
330 /**
331  * struct cpu_defaults- Per CPU model default config data
332  * @funcs:		Callback function data
333  */
334 struct cpu_defaults {
335 	struct pstate_funcs funcs;
336 };
337 
338 static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu);
339 static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu);
340 
341 static struct pstate_funcs pstate_funcs __read_mostly;
342 static struct pstate_adjust_policy pid_params __read_mostly = {
343 	.sample_rate_ms = 10,
344 	.sample_rate_ns = 10 * NSEC_PER_MSEC,
345 	.deadband = 0,
346 	.setpoint = 97,
347 	.p_gain_pct = 20,
348 	.d_gain_pct = 0,
349 	.i_gain_pct = 0,
350 };
351 
352 static int hwp_active __read_mostly;
353 static bool per_cpu_limits __read_mostly;
354 
355 static struct cpufreq_driver *intel_pstate_driver __read_mostly;
356 
357 #ifdef CONFIG_ACPI
358 static bool acpi_ppc;
359 #endif
360 
361 static struct global_params global;
362 
363 static DEFINE_MUTEX(intel_pstate_driver_lock);
364 static DEFINE_MUTEX(intel_pstate_limits_lock);
365 
366 #ifdef CONFIG_ACPI
367 
368 static bool intel_pstate_get_ppc_enable_status(void)
369 {
370 	if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
371 	    acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
372 		return true;
373 
374 	return acpi_ppc;
375 }
376 
377 #ifdef CONFIG_ACPI_CPPC_LIB
378 
379 /* The work item is needed to avoid CPU hotplug locking issues */
380 static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
381 {
382 	sched_set_itmt_support();
383 }
384 
385 static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);
386 
387 static void intel_pstate_set_itmt_prio(int cpu)
388 {
389 	struct cppc_perf_caps cppc_perf;
390 	static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
391 	int ret;
392 
393 	ret = cppc_get_perf_caps(cpu, &cppc_perf);
394 	if (ret)
395 		return;
396 
397 	/*
398 	 * The priorities can be set regardless of whether or not
399 	 * sched_set_itmt_support(true) has been called and it is valid to
400 	 * update them at any time after it has been called.
401 	 */
402 	sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);
403 
404 	if (max_highest_perf <= min_highest_perf) {
405 		if (cppc_perf.highest_perf > max_highest_perf)
406 			max_highest_perf = cppc_perf.highest_perf;
407 
408 		if (cppc_perf.highest_perf < min_highest_perf)
409 			min_highest_perf = cppc_perf.highest_perf;
410 
411 		if (max_highest_perf > min_highest_perf) {
412 			/*
413 			 * This code can be run during CPU online under the
414 			 * CPU hotplug locks, so sched_set_itmt_support()
415 			 * cannot be called from here.  Queue up a work item
416 			 * to invoke it.
417 			 */
418 			schedule_work(&sched_itmt_work);
419 		}
420 	}
421 }
422 #else
423 static void intel_pstate_set_itmt_prio(int cpu)
424 {
425 }
426 #endif
427 
428 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
429 {
430 	struct cpudata *cpu;
431 	int ret;
432 	int i;
433 
434 	if (hwp_active) {
435 		intel_pstate_set_itmt_prio(policy->cpu);
436 		return;
437 	}
438 
439 	if (!intel_pstate_get_ppc_enable_status())
440 		return;
441 
442 	cpu = all_cpu_data[policy->cpu];
443 
444 	ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
445 						  policy->cpu);
446 	if (ret)
447 		return;
448 
449 	/*
450 	 * Check if the control value in _PSS is for PERF_CTL MSR, which should
451 	 * guarantee that the states returned by it map to the states in our
452 	 * list directly.
453 	 */
454 	if (cpu->acpi_perf_data.control_register.space_id !=
455 						ACPI_ADR_SPACE_FIXED_HARDWARE)
456 		goto err;
457 
458 	/*
459 	 * If there is only one entry _PSS, simply ignore _PSS and continue as
460 	 * usual without taking _PSS into account
461 	 */
462 	if (cpu->acpi_perf_data.state_count < 2)
463 		goto err;
464 
465 	pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
466 	for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
467 		pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
468 			 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
469 			 (u32) cpu->acpi_perf_data.states[i].core_frequency,
470 			 (u32) cpu->acpi_perf_data.states[i].power,
471 			 (u32) cpu->acpi_perf_data.states[i].control);
472 	}
473 
474 	/*
475 	 * The _PSS table doesn't contain whole turbo frequency range.
476 	 * This just contains +1 MHZ above the max non turbo frequency,
477 	 * with control value corresponding to max turbo ratio. But
478 	 * when cpufreq set policy is called, it will call with this
479 	 * max frequency, which will cause a reduced performance as
480 	 * this driver uses real max turbo frequency as the max
481 	 * frequency. So correct this frequency in _PSS table to
482 	 * correct max turbo frequency based on the turbo state.
483 	 * Also need to convert to MHz as _PSS freq is in MHz.
484 	 */
485 	if (!global.turbo_disabled)
486 		cpu->acpi_perf_data.states[0].core_frequency =
487 					policy->cpuinfo.max_freq / 1000;
488 	cpu->valid_pss_table = true;
489 	pr_debug("_PPC limits will be enforced\n");
490 
491 	return;
492 
493  err:
494 	cpu->valid_pss_table = false;
495 	acpi_processor_unregister_performance(policy->cpu);
496 }
497 
498 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
499 {
500 	struct cpudata *cpu;
501 
502 	cpu = all_cpu_data[policy->cpu];
503 	if (!cpu->valid_pss_table)
504 		return;
505 
506 	acpi_processor_unregister_performance(policy->cpu);
507 }
508 #else
509 static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
510 {
511 }
512 
513 static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
514 {
515 }
516 #endif
517 
518 static signed int pid_calc(struct _pid *pid, int32_t busy)
519 {
520 	signed int result;
521 	int32_t pterm, dterm, fp_error;
522 	int32_t integral_limit;
523 
524 	fp_error = pid->setpoint - busy;
525 
526 	if (abs(fp_error) <= pid->deadband)
527 		return 0;
528 
529 	pterm = mul_fp(pid->p_gain, fp_error);
530 
531 	pid->integral += fp_error;
532 
533 	/*
534 	 * We limit the integral here so that it will never
535 	 * get higher than 30.  This prevents it from becoming
536 	 * too large an input over long periods of time and allows
537 	 * it to get factored out sooner.
538 	 *
539 	 * The value of 30 was chosen through experimentation.
540 	 */
541 	integral_limit = int_tofp(30);
542 	if (pid->integral > integral_limit)
543 		pid->integral = integral_limit;
544 	if (pid->integral < -integral_limit)
545 		pid->integral = -integral_limit;
546 
547 	dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
548 	pid->last_err = fp_error;
549 
550 	result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
551 	result = result + (1 << (FRAC_BITS-1));
552 	return (signed int)fp_toint(result);
553 }
554 
555 static inline void intel_pstate_pid_reset(struct cpudata *cpu)
556 {
557 	struct _pid *pid = &cpu->pid;
558 
559 	pid->p_gain = percent_fp(pid_params.p_gain_pct);
560 	pid->d_gain = percent_fp(pid_params.d_gain_pct);
561 	pid->i_gain = percent_fp(pid_params.i_gain_pct);
562 	pid->setpoint = int_tofp(pid_params.setpoint);
563 	pid->last_err  = pid->setpoint - int_tofp(100);
564 	pid->deadband  = int_tofp(pid_params.deadband);
565 	pid->integral  = 0;
566 }
567 
568 static inline void update_turbo_state(void)
569 {
570 	u64 misc_en;
571 	struct cpudata *cpu;
572 
573 	cpu = all_cpu_data[0];
574 	rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
575 	global.turbo_disabled =
576 		(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
577 		 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
578 }
579 
580 static int min_perf_pct_min(void)
581 {
582 	struct cpudata *cpu = all_cpu_data[0];
583 
584 	return DIV_ROUND_UP(cpu->pstate.min_pstate * 100,
585 			    cpu->pstate.turbo_pstate);
586 }
587 
588 static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
589 {
590 	u64 epb;
591 	int ret;
592 
593 	if (!static_cpu_has(X86_FEATURE_EPB))
594 		return -ENXIO;
595 
596 	ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
597 	if (ret)
598 		return (s16)ret;
599 
600 	return (s16)(epb & 0x0f);
601 }
602 
603 static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
604 {
605 	s16 epp;
606 
607 	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
608 		/*
609 		 * When hwp_req_data is 0, means that caller didn't read
610 		 * MSR_HWP_REQUEST, so need to read and get EPP.
611 		 */
612 		if (!hwp_req_data) {
613 			epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
614 					    &hwp_req_data);
615 			if (epp)
616 				return epp;
617 		}
618 		epp = (hwp_req_data >> 24) & 0xff;
619 	} else {
620 		/* When there is no EPP present, HWP uses EPB settings */
621 		epp = intel_pstate_get_epb(cpu_data);
622 	}
623 
624 	return epp;
625 }
626 
627 static int intel_pstate_set_epb(int cpu, s16 pref)
628 {
629 	u64 epb;
630 	int ret;
631 
632 	if (!static_cpu_has(X86_FEATURE_EPB))
633 		return -ENXIO;
634 
635 	ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
636 	if (ret)
637 		return ret;
638 
639 	epb = (epb & ~0x0f) | pref;
640 	wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
641 
642 	return 0;
643 }
644 
645 /*
646  * EPP/EPB display strings corresponding to EPP index in the
647  * energy_perf_strings[]
648  *	index		String
649  *-------------------------------------
650  *	0		default
651  *	1		performance
652  *	2		balance_performance
653  *	3		balance_power
654  *	4		power
655  */
656 static const char * const energy_perf_strings[] = {
657 	"default",
658 	"performance",
659 	"balance_performance",
660 	"balance_power",
661 	"power",
662 	NULL
663 };
664 
665 static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data)
666 {
667 	s16 epp;
668 	int index = -EINVAL;
669 
670 	epp = intel_pstate_get_epp(cpu_data, 0);
671 	if (epp < 0)
672 		return epp;
673 
674 	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
675 		/*
676 		 * Range:
677 		 *	0x00-0x3F	:	Performance
678 		 *	0x40-0x7F	:	Balance performance
679 		 *	0x80-0xBF	:	Balance power
680 		 *	0xC0-0xFF	:	Power
681 		 * The EPP is a 8 bit value, but our ranges restrict the
682 		 * value which can be set. Here only using top two bits
683 		 * effectively.
684 		 */
685 		index = (epp >> 6) + 1;
686 	} else if (static_cpu_has(X86_FEATURE_EPB)) {
687 		/*
688 		 * Range:
689 		 *	0x00-0x03	:	Performance
690 		 *	0x04-0x07	:	Balance performance
691 		 *	0x08-0x0B	:	Balance power
692 		 *	0x0C-0x0F	:	Power
693 		 * The EPB is a 4 bit value, but our ranges restrict the
694 		 * value which can be set. Here only using top two bits
695 		 * effectively.
696 		 */
697 		index = (epp >> 2) + 1;
698 	}
699 
700 	return index;
701 }
702 
703 static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
704 					      int pref_index)
705 {
706 	int epp = -EINVAL;
707 	int ret;
708 
709 	if (!pref_index)
710 		epp = cpu_data->epp_default;
711 
712 	mutex_lock(&intel_pstate_limits_lock);
713 
714 	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
715 		u64 value;
716 
717 		ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, &value);
718 		if (ret)
719 			goto return_pref;
720 
721 		value &= ~GENMASK_ULL(31, 24);
722 
723 		/*
724 		 * If epp is not default, convert from index into
725 		 * energy_perf_strings to epp value, by shifting 6
726 		 * bits left to use only top two bits in epp.
727 		 * The resultant epp need to shifted by 24 bits to
728 		 * epp position in MSR_HWP_REQUEST.
729 		 */
730 		if (epp == -EINVAL)
731 			epp = (pref_index - 1) << 6;
732 
733 		value |= (u64)epp << 24;
734 		ret = wrmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, value);
735 	} else {
736 		if (epp == -EINVAL)
737 			epp = (pref_index - 1) << 2;
738 		ret = intel_pstate_set_epb(cpu_data->cpu, epp);
739 	}
740 return_pref:
741 	mutex_unlock(&intel_pstate_limits_lock);
742 
743 	return ret;
744 }
745 
746 static ssize_t show_energy_performance_available_preferences(
747 				struct cpufreq_policy *policy, char *buf)
748 {
749 	int i = 0;
750 	int ret = 0;
751 
752 	while (energy_perf_strings[i] != NULL)
753 		ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);
754 
755 	ret += sprintf(&buf[ret], "\n");
756 
757 	return ret;
758 }
759 
760 cpufreq_freq_attr_ro(energy_performance_available_preferences);
761 
762 static ssize_t store_energy_performance_preference(
763 		struct cpufreq_policy *policy, const char *buf, size_t count)
764 {
765 	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
766 	char str_preference[21];
767 	int ret, i = 0;
768 
769 	ret = sscanf(buf, "%20s", str_preference);
770 	if (ret != 1)
771 		return -EINVAL;
772 
773 	while (energy_perf_strings[i] != NULL) {
774 		if (!strcmp(str_preference, energy_perf_strings[i])) {
775 			intel_pstate_set_energy_pref_index(cpu_data, i);
776 			return count;
777 		}
778 		++i;
779 	}
780 
781 	return -EINVAL;
782 }
783 
784 static ssize_t show_energy_performance_preference(
785 				struct cpufreq_policy *policy, char *buf)
786 {
787 	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
788 	int preference;
789 
790 	preference = intel_pstate_get_energy_pref_index(cpu_data);
791 	if (preference < 0)
792 		return preference;
793 
794 	return  sprintf(buf, "%s\n", energy_perf_strings[preference]);
795 }
796 
797 cpufreq_freq_attr_rw(energy_performance_preference);
798 
799 static struct freq_attr *hwp_cpufreq_attrs[] = {
800 	&energy_performance_preference,
801 	&energy_performance_available_preferences,
802 	NULL,
803 };
804 
805 static void intel_pstate_hwp_set(struct cpufreq_policy *policy)
806 {
807 	int min, hw_min, max, hw_max, cpu;
808 	u64 value, cap;
809 
810 	for_each_cpu(cpu, policy->cpus) {
811 		struct cpudata *cpu_data = all_cpu_data[cpu];
812 		s16 epp;
813 
814 		rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
815 		hw_min = HWP_LOWEST_PERF(cap);
816 		if (global.no_turbo)
817 			hw_max = HWP_GUARANTEED_PERF(cap);
818 		else
819 			hw_max = HWP_HIGHEST_PERF(cap);
820 
821 		max = fp_ext_toint(hw_max * cpu_data->max_perf);
822 		if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
823 			min = max;
824 		else
825 			min = fp_ext_toint(hw_max * cpu_data->min_perf);
826 
827 		rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
828 
829 		value &= ~HWP_MIN_PERF(~0L);
830 		value |= HWP_MIN_PERF(min);
831 
832 		value &= ~HWP_MAX_PERF(~0L);
833 		value |= HWP_MAX_PERF(max);
834 
835 		if (cpu_data->epp_policy == cpu_data->policy)
836 			goto skip_epp;
837 
838 		cpu_data->epp_policy = cpu_data->policy;
839 
840 		if (cpu_data->epp_saved >= 0) {
841 			epp = cpu_data->epp_saved;
842 			cpu_data->epp_saved = -EINVAL;
843 			goto update_epp;
844 		}
845 
846 		if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
847 			epp = intel_pstate_get_epp(cpu_data, value);
848 			cpu_data->epp_powersave = epp;
849 			/* If EPP read was failed, then don't try to write */
850 			if (epp < 0)
851 				goto skip_epp;
852 
853 
854 			epp = 0;
855 		} else {
856 			/* skip setting EPP, when saved value is invalid */
857 			if (cpu_data->epp_powersave < 0)
858 				goto skip_epp;
859 
860 			/*
861 			 * No need to restore EPP when it is not zero. This
862 			 * means:
863 			 *  - Policy is not changed
864 			 *  - user has manually changed
865 			 *  - Error reading EPB
866 			 */
867 			epp = intel_pstate_get_epp(cpu_data, value);
868 			if (epp)
869 				goto skip_epp;
870 
871 			epp = cpu_data->epp_powersave;
872 		}
873 update_epp:
874 		if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
875 			value &= ~GENMASK_ULL(31, 24);
876 			value |= (u64)epp << 24;
877 		} else {
878 			intel_pstate_set_epb(cpu, epp);
879 		}
880 skip_epp:
881 		wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
882 	}
883 }
884 
885 static int intel_pstate_hwp_save_state(struct cpufreq_policy *policy)
886 {
887 	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
888 
889 	if (!hwp_active)
890 		return 0;
891 
892 	cpu_data->epp_saved = intel_pstate_get_epp(cpu_data, 0);
893 
894 	return 0;
895 }
896 
897 static int intel_pstate_resume(struct cpufreq_policy *policy)
898 {
899 	if (!hwp_active)
900 		return 0;
901 
902 	mutex_lock(&intel_pstate_limits_lock);
903 
904 	all_cpu_data[policy->cpu]->epp_policy = 0;
905 	intel_pstate_hwp_set(policy);
906 
907 	mutex_unlock(&intel_pstate_limits_lock);
908 
909 	return 0;
910 }
911 
912 static void intel_pstate_update_policies(void)
913 {
914 	int cpu;
915 
916 	for_each_possible_cpu(cpu)
917 		cpufreq_update_policy(cpu);
918 }
919 
920 /************************** debugfs begin ************************/
921 static int pid_param_set(void *data, u64 val)
922 {
923 	unsigned int cpu;
924 
925 	*(u32 *)data = val;
926 	pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
927 	for_each_possible_cpu(cpu)
928 		if (all_cpu_data[cpu])
929 			intel_pstate_pid_reset(all_cpu_data[cpu]);
930 
931 	return 0;
932 }
933 
934 static int pid_param_get(void *data, u64 *val)
935 {
936 	*val = *(u32 *)data;
937 	return 0;
938 }
939 DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
940 
941 static struct dentry *debugfs_parent;
942 
943 struct pid_param {
944 	char *name;
945 	void *value;
946 	struct dentry *dentry;
947 };
948 
949 static struct pid_param pid_files[] = {
950 	{"sample_rate_ms", &pid_params.sample_rate_ms, },
951 	{"d_gain_pct", &pid_params.d_gain_pct, },
952 	{"i_gain_pct", &pid_params.i_gain_pct, },
953 	{"deadband", &pid_params.deadband, },
954 	{"setpoint", &pid_params.setpoint, },
955 	{"p_gain_pct", &pid_params.p_gain_pct, },
956 	{NULL, NULL, }
957 };
958 
959 static void intel_pstate_debug_expose_params(void)
960 {
961 	int i;
962 
963 	debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
964 	if (IS_ERR_OR_NULL(debugfs_parent))
965 		return;
966 
967 	for (i = 0; pid_files[i].name; i++) {
968 		struct dentry *dentry;
969 
970 		dentry = debugfs_create_file(pid_files[i].name, 0660,
971 					     debugfs_parent, pid_files[i].value,
972 					     &fops_pid_param);
973 		if (!IS_ERR(dentry))
974 			pid_files[i].dentry = dentry;
975 	}
976 }
977 
978 static void intel_pstate_debug_hide_params(void)
979 {
980 	int i;
981 
982 	if (IS_ERR_OR_NULL(debugfs_parent))
983 		return;
984 
985 	for (i = 0; pid_files[i].name; i++) {
986 		debugfs_remove(pid_files[i].dentry);
987 		pid_files[i].dentry = NULL;
988 	}
989 
990 	debugfs_remove(debugfs_parent);
991 	debugfs_parent = NULL;
992 }
993 
994 /************************** debugfs end ************************/
995 
996 /************************** sysfs begin ************************/
997 #define show_one(file_name, object)					\
998 	static ssize_t show_##file_name					\
999 	(struct kobject *kobj, struct attribute *attr, char *buf)	\
1000 	{								\
1001 		return sprintf(buf, "%u\n", global.object);		\
1002 	}
1003 
1004 static ssize_t intel_pstate_show_status(char *buf);
1005 static int intel_pstate_update_status(const char *buf, size_t size);
1006 
1007 static ssize_t show_status(struct kobject *kobj,
1008 			   struct attribute *attr, char *buf)
1009 {
1010 	ssize_t ret;
1011 
1012 	mutex_lock(&intel_pstate_driver_lock);
1013 	ret = intel_pstate_show_status(buf);
1014 	mutex_unlock(&intel_pstate_driver_lock);
1015 
1016 	return ret;
1017 }
1018 
1019 static ssize_t store_status(struct kobject *a, struct attribute *b,
1020 			    const char *buf, size_t count)
1021 {
1022 	char *p = memchr(buf, '\n', count);
1023 	int ret;
1024 
1025 	mutex_lock(&intel_pstate_driver_lock);
1026 	ret = intel_pstate_update_status(buf, p ? p - buf : count);
1027 	mutex_unlock(&intel_pstate_driver_lock);
1028 
1029 	return ret < 0 ? ret : count;
1030 }
1031 
1032 static ssize_t show_turbo_pct(struct kobject *kobj,
1033 				struct attribute *attr, char *buf)
1034 {
1035 	struct cpudata *cpu;
1036 	int total, no_turbo, turbo_pct;
1037 	uint32_t turbo_fp;
1038 
1039 	mutex_lock(&intel_pstate_driver_lock);
1040 
1041 	if (!intel_pstate_driver) {
1042 		mutex_unlock(&intel_pstate_driver_lock);
1043 		return -EAGAIN;
1044 	}
1045 
1046 	cpu = all_cpu_data[0];
1047 
1048 	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1049 	no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
1050 	turbo_fp = div_fp(no_turbo, total);
1051 	turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
1052 
1053 	mutex_unlock(&intel_pstate_driver_lock);
1054 
1055 	return sprintf(buf, "%u\n", turbo_pct);
1056 }
1057 
1058 static ssize_t show_num_pstates(struct kobject *kobj,
1059 				struct attribute *attr, char *buf)
1060 {
1061 	struct cpudata *cpu;
1062 	int total;
1063 
1064 	mutex_lock(&intel_pstate_driver_lock);
1065 
1066 	if (!intel_pstate_driver) {
1067 		mutex_unlock(&intel_pstate_driver_lock);
1068 		return -EAGAIN;
1069 	}
1070 
1071 	cpu = all_cpu_data[0];
1072 	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1073 
1074 	mutex_unlock(&intel_pstate_driver_lock);
1075 
1076 	return sprintf(buf, "%u\n", total);
1077 }
1078 
1079 static ssize_t show_no_turbo(struct kobject *kobj,
1080 			     struct attribute *attr, char *buf)
1081 {
1082 	ssize_t ret;
1083 
1084 	mutex_lock(&intel_pstate_driver_lock);
1085 
1086 	if (!intel_pstate_driver) {
1087 		mutex_unlock(&intel_pstate_driver_lock);
1088 		return -EAGAIN;
1089 	}
1090 
1091 	update_turbo_state();
1092 	if (global.turbo_disabled)
1093 		ret = sprintf(buf, "%u\n", global.turbo_disabled);
1094 	else
1095 		ret = sprintf(buf, "%u\n", global.no_turbo);
1096 
1097 	mutex_unlock(&intel_pstate_driver_lock);
1098 
1099 	return ret;
1100 }
1101 
1102 static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
1103 			      const char *buf, size_t count)
1104 {
1105 	unsigned int input;
1106 	int ret;
1107 
1108 	ret = sscanf(buf, "%u", &input);
1109 	if (ret != 1)
1110 		return -EINVAL;
1111 
1112 	mutex_lock(&intel_pstate_driver_lock);
1113 
1114 	if (!intel_pstate_driver) {
1115 		mutex_unlock(&intel_pstate_driver_lock);
1116 		return -EAGAIN;
1117 	}
1118 
1119 	mutex_lock(&intel_pstate_limits_lock);
1120 
1121 	update_turbo_state();
1122 	if (global.turbo_disabled) {
1123 		pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
1124 		mutex_unlock(&intel_pstate_limits_lock);
1125 		mutex_unlock(&intel_pstate_driver_lock);
1126 		return -EPERM;
1127 	}
1128 
1129 	global.no_turbo = clamp_t(int, input, 0, 1);
1130 
1131 	if (global.no_turbo) {
1132 		struct cpudata *cpu = all_cpu_data[0];
1133 		int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;
1134 
1135 		/* Squash the global minimum into the permitted range. */
1136 		if (global.min_perf_pct > pct)
1137 			global.min_perf_pct = pct;
1138 	}
1139 
1140 	mutex_unlock(&intel_pstate_limits_lock);
1141 
1142 	intel_pstate_update_policies();
1143 
1144 	mutex_unlock(&intel_pstate_driver_lock);
1145 
1146 	return count;
1147 }
1148 
1149 static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
1150 				  const char *buf, size_t count)
1151 {
1152 	unsigned int input;
1153 	int ret;
1154 
1155 	ret = sscanf(buf, "%u", &input);
1156 	if (ret != 1)
1157 		return -EINVAL;
1158 
1159 	mutex_lock(&intel_pstate_driver_lock);
1160 
1161 	if (!intel_pstate_driver) {
1162 		mutex_unlock(&intel_pstate_driver_lock);
1163 		return -EAGAIN;
1164 	}
1165 
1166 	mutex_lock(&intel_pstate_limits_lock);
1167 
1168 	global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
1169 
1170 	mutex_unlock(&intel_pstate_limits_lock);
1171 
1172 	intel_pstate_update_policies();
1173 
1174 	mutex_unlock(&intel_pstate_driver_lock);
1175 
1176 	return count;
1177 }
1178 
1179 static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
1180 				  const char *buf, size_t count)
1181 {
1182 	unsigned int input;
1183 	int ret;
1184 
1185 	ret = sscanf(buf, "%u", &input);
1186 	if (ret != 1)
1187 		return -EINVAL;
1188 
1189 	mutex_lock(&intel_pstate_driver_lock);
1190 
1191 	if (!intel_pstate_driver) {
1192 		mutex_unlock(&intel_pstate_driver_lock);
1193 		return -EAGAIN;
1194 	}
1195 
1196 	mutex_lock(&intel_pstate_limits_lock);
1197 
1198 	global.min_perf_pct = clamp_t(int, input,
1199 				      min_perf_pct_min(), global.max_perf_pct);
1200 
1201 	mutex_unlock(&intel_pstate_limits_lock);
1202 
1203 	intel_pstate_update_policies();
1204 
1205 	mutex_unlock(&intel_pstate_driver_lock);
1206 
1207 	return count;
1208 }
1209 
1210 show_one(max_perf_pct, max_perf_pct);
1211 show_one(min_perf_pct, min_perf_pct);
1212 
1213 define_one_global_rw(status);
1214 define_one_global_rw(no_turbo);
1215 define_one_global_rw(max_perf_pct);
1216 define_one_global_rw(min_perf_pct);
1217 define_one_global_ro(turbo_pct);
1218 define_one_global_ro(num_pstates);
1219 
1220 static struct attribute *intel_pstate_attributes[] = {
1221 	&status.attr,
1222 	&no_turbo.attr,
1223 	&turbo_pct.attr,
1224 	&num_pstates.attr,
1225 	NULL
1226 };
1227 
1228 static struct attribute_group intel_pstate_attr_group = {
1229 	.attrs = intel_pstate_attributes,
1230 };
1231 
1232 static void __init intel_pstate_sysfs_expose_params(void)
1233 {
1234 	struct kobject *intel_pstate_kobject;
1235 	int rc;
1236 
1237 	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
1238 						&cpu_subsys.dev_root->kobj);
1239 	if (WARN_ON(!intel_pstate_kobject))
1240 		return;
1241 
1242 	rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1243 	if (WARN_ON(rc))
1244 		return;
1245 
1246 	/*
1247 	 * If per cpu limits are enforced there are no global limits, so
1248 	 * return without creating max/min_perf_pct attributes
1249 	 */
1250 	if (per_cpu_limits)
1251 		return;
1252 
1253 	rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
1254 	WARN_ON(rc);
1255 
1256 	rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
1257 	WARN_ON(rc);
1258 
1259 }
1260 /************************** sysfs end ************************/
1261 
1262 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
1263 {
1264 	/* First disable HWP notification interrupt as we don't process them */
1265 	if (static_cpu_has(X86_FEATURE_HWP_NOTIFY))
1266 		wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1267 
1268 	wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1269 	cpudata->epp_policy = 0;
1270 	if (cpudata->epp_default == -EINVAL)
1271 		cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
1272 }
1273 
1274 #define MSR_IA32_POWER_CTL_BIT_EE	19
1275 
1276 /* Disable energy efficiency optimization */
1277 static void intel_pstate_disable_ee(int cpu)
1278 {
1279 	u64 power_ctl;
1280 	int ret;
1281 
1282 	ret = rdmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, &power_ctl);
1283 	if (ret)
1284 		return;
1285 
1286 	if (!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE))) {
1287 		pr_info("Disabling energy efficiency optimization\n");
1288 		power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
1289 		wrmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, power_ctl);
1290 	}
1291 }
1292 
1293 static int atom_get_min_pstate(void)
1294 {
1295 	u64 value;
1296 
1297 	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1298 	return (value >> 8) & 0x7F;
1299 }
1300 
1301 static int atom_get_max_pstate(void)
1302 {
1303 	u64 value;
1304 
1305 	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1306 	return (value >> 16) & 0x7F;
1307 }
1308 
1309 static int atom_get_turbo_pstate(void)
1310 {
1311 	u64 value;
1312 
1313 	rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
1314 	return value & 0x7F;
1315 }
1316 
1317 static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1318 {
1319 	u64 val;
1320 	int32_t vid_fp;
1321 	u32 vid;
1322 
1323 	val = (u64)pstate << 8;
1324 	if (global.no_turbo && !global.turbo_disabled)
1325 		val |= (u64)1 << 32;
1326 
1327 	vid_fp = cpudata->vid.min + mul_fp(
1328 		int_tofp(pstate - cpudata->pstate.min_pstate),
1329 		cpudata->vid.ratio);
1330 
1331 	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1332 	vid = ceiling_fp(vid_fp);
1333 
1334 	if (pstate > cpudata->pstate.max_pstate)
1335 		vid = cpudata->vid.turbo;
1336 
1337 	return val | vid;
1338 }
1339 
1340 static int silvermont_get_scaling(void)
1341 {
1342 	u64 value;
1343 	int i;
1344 	/* Defined in Table 35-6 from SDM (Sept 2015) */
1345 	static int silvermont_freq_table[] = {
1346 		83300, 100000, 133300, 116700, 80000};
1347 
1348 	rdmsrl(MSR_FSB_FREQ, value);
1349 	i = value & 0x7;
1350 	WARN_ON(i > 4);
1351 
1352 	return silvermont_freq_table[i];
1353 }
1354 
1355 static int airmont_get_scaling(void)
1356 {
1357 	u64 value;
1358 	int i;
1359 	/* Defined in Table 35-10 from SDM (Sept 2015) */
1360 	static int airmont_freq_table[] = {
1361 		83300, 100000, 133300, 116700, 80000,
1362 		93300, 90000, 88900, 87500};
1363 
1364 	rdmsrl(MSR_FSB_FREQ, value);
1365 	i = value & 0xF;
1366 	WARN_ON(i > 8);
1367 
1368 	return airmont_freq_table[i];
1369 }
1370 
1371 static void atom_get_vid(struct cpudata *cpudata)
1372 {
1373 	u64 value;
1374 
1375 	rdmsrl(MSR_ATOM_CORE_VIDS, value);
1376 	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
1377 	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1378 	cpudata->vid.ratio = div_fp(
1379 		cpudata->vid.max - cpudata->vid.min,
1380 		int_tofp(cpudata->pstate.max_pstate -
1381 			cpudata->pstate.min_pstate));
1382 
1383 	rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1384 	cpudata->vid.turbo = value & 0x7f;
1385 }
1386 
1387 static int core_get_min_pstate(void)
1388 {
1389 	u64 value;
1390 
1391 	rdmsrl(MSR_PLATFORM_INFO, value);
1392 	return (value >> 40) & 0xFF;
1393 }
1394 
1395 static int core_get_max_pstate_physical(void)
1396 {
1397 	u64 value;
1398 
1399 	rdmsrl(MSR_PLATFORM_INFO, value);
1400 	return (value >> 8) & 0xFF;
1401 }
1402 
1403 static int core_get_tdp_ratio(u64 plat_info)
1404 {
1405 	/* Check how many TDP levels present */
1406 	if (plat_info & 0x600000000) {
1407 		u64 tdp_ctrl;
1408 		u64 tdp_ratio;
1409 		int tdp_msr;
1410 		int err;
1411 
1412 		/* Get the TDP level (0, 1, 2) to get ratios */
1413 		err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
1414 		if (err)
1415 			return err;
1416 
1417 		/* TDP MSR are continuous starting at 0x648 */
1418 		tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
1419 		err = rdmsrl_safe(tdp_msr, &tdp_ratio);
1420 		if (err)
1421 			return err;
1422 
1423 		/* For level 1 and 2, bits[23:16] contain the ratio */
1424 		if (tdp_ctrl & 0x03)
1425 			tdp_ratio >>= 16;
1426 
1427 		tdp_ratio &= 0xff; /* ratios are only 8 bits long */
1428 		pr_debug("tdp_ratio %x\n", (int)tdp_ratio);
1429 
1430 		return (int)tdp_ratio;
1431 	}
1432 
1433 	return -ENXIO;
1434 }
1435 
1436 static int core_get_max_pstate(void)
1437 {
1438 	u64 tar;
1439 	u64 plat_info;
1440 	int max_pstate;
1441 	int tdp_ratio;
1442 	int err;
1443 
1444 	rdmsrl(MSR_PLATFORM_INFO, plat_info);
1445 	max_pstate = (plat_info >> 8) & 0xFF;
1446 
1447 	tdp_ratio = core_get_tdp_ratio(plat_info);
1448 	if (tdp_ratio <= 0)
1449 		return max_pstate;
1450 
1451 	if (hwp_active) {
1452 		/* Turbo activation ratio is not used on HWP platforms */
1453 		return tdp_ratio;
1454 	}
1455 
1456 	err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
1457 	if (!err) {
1458 		int tar_levels;
1459 
1460 		/* Do some sanity checking for safety */
1461 		tar_levels = tar & 0xff;
1462 		if (tdp_ratio - 1 == tar_levels) {
1463 			max_pstate = tar_levels;
1464 			pr_debug("max_pstate=TAC %x\n", max_pstate);
1465 		}
1466 	}
1467 
1468 	return max_pstate;
1469 }
1470 
1471 static int core_get_turbo_pstate(void)
1472 {
1473 	u64 value;
1474 	int nont, ret;
1475 
1476 	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1477 	nont = core_get_max_pstate();
1478 	ret = (value) & 255;
1479 	if (ret <= nont)
1480 		ret = nont;
1481 	return ret;
1482 }
1483 
1484 static inline int core_get_scaling(void)
1485 {
1486 	return 100000;
1487 }
1488 
1489 static u64 core_get_val(struct cpudata *cpudata, int pstate)
1490 {
1491 	u64 val;
1492 
1493 	val = (u64)pstate << 8;
1494 	if (global.no_turbo && !global.turbo_disabled)
1495 		val |= (u64)1 << 32;
1496 
1497 	return val;
1498 }
1499 
1500 static int knl_get_turbo_pstate(void)
1501 {
1502 	u64 value;
1503 	int nont, ret;
1504 
1505 	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1506 	nont = core_get_max_pstate();
1507 	ret = (((value) >> 8) & 0xFF);
1508 	if (ret <= nont)
1509 		ret = nont;
1510 	return ret;
1511 }
1512 
1513 static struct cpu_defaults core_params = {
1514 	.funcs = {
1515 		.get_max = core_get_max_pstate,
1516 		.get_max_physical = core_get_max_pstate_physical,
1517 		.get_min = core_get_min_pstate,
1518 		.get_turbo = core_get_turbo_pstate,
1519 		.get_scaling = core_get_scaling,
1520 		.get_val = core_get_val,
1521 		.get_target_pstate = get_target_pstate_use_performance,
1522 	},
1523 };
1524 
1525 static const struct cpu_defaults silvermont_params = {
1526 	.funcs = {
1527 		.get_max = atom_get_max_pstate,
1528 		.get_max_physical = atom_get_max_pstate,
1529 		.get_min = atom_get_min_pstate,
1530 		.get_turbo = atom_get_turbo_pstate,
1531 		.get_val = atom_get_val,
1532 		.get_scaling = silvermont_get_scaling,
1533 		.get_vid = atom_get_vid,
1534 		.get_target_pstate = get_target_pstate_use_cpu_load,
1535 	},
1536 };
1537 
1538 static const struct cpu_defaults airmont_params = {
1539 	.funcs = {
1540 		.get_max = atom_get_max_pstate,
1541 		.get_max_physical = atom_get_max_pstate,
1542 		.get_min = atom_get_min_pstate,
1543 		.get_turbo = atom_get_turbo_pstate,
1544 		.get_val = atom_get_val,
1545 		.get_scaling = airmont_get_scaling,
1546 		.get_vid = atom_get_vid,
1547 		.get_target_pstate = get_target_pstate_use_cpu_load,
1548 	},
1549 };
1550 
1551 static const struct cpu_defaults knl_params = {
1552 	.funcs = {
1553 		.get_max = core_get_max_pstate,
1554 		.get_max_physical = core_get_max_pstate_physical,
1555 		.get_min = core_get_min_pstate,
1556 		.get_turbo = knl_get_turbo_pstate,
1557 		.get_scaling = core_get_scaling,
1558 		.get_val = core_get_val,
1559 		.get_target_pstate = get_target_pstate_use_performance,
1560 	},
1561 };
1562 
1563 static const struct cpu_defaults bxt_params = {
1564 	.funcs = {
1565 		.get_max = core_get_max_pstate,
1566 		.get_max_physical = core_get_max_pstate_physical,
1567 		.get_min = core_get_min_pstate,
1568 		.get_turbo = core_get_turbo_pstate,
1569 		.get_scaling = core_get_scaling,
1570 		.get_val = core_get_val,
1571 		.get_target_pstate = get_target_pstate_use_cpu_load,
1572 	},
1573 };
1574 
1575 static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
1576 {
1577 	int max_perf = cpu->pstate.turbo_pstate;
1578 	int max_perf_adj;
1579 	int min_perf;
1580 
1581 	if (global.no_turbo || global.turbo_disabled)
1582 		max_perf = cpu->pstate.max_pstate;
1583 
1584 	/*
1585 	 * performance can be limited by user through sysfs, by cpufreq
1586 	 * policy, or by cpu specific default values determined through
1587 	 * experimentation.
1588 	 */
1589 	max_perf_adj = fp_ext_toint(max_perf * cpu->max_perf);
1590 	*max = clamp_t(int, max_perf_adj,
1591 			cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
1592 
1593 	min_perf = fp_ext_toint(max_perf * cpu->min_perf);
1594 	*min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
1595 }
1596 
1597 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1598 {
1599 	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1600 	cpu->pstate.current_pstate = pstate;
1601 	/*
1602 	 * Generally, there is no guarantee that this code will always run on
1603 	 * the CPU being updated, so force the register update to run on the
1604 	 * right CPU.
1605 	 */
1606 	wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1607 		      pstate_funcs.get_val(cpu, pstate));
1608 }
1609 
1610 static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1611 {
1612 	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
1613 }
1614 
1615 static void intel_pstate_max_within_limits(struct cpudata *cpu)
1616 {
1617 	int min_pstate, max_pstate;
1618 
1619 	update_turbo_state();
1620 	intel_pstate_get_min_max(cpu, &min_pstate, &max_pstate);
1621 	intel_pstate_set_pstate(cpu, max_pstate);
1622 }
1623 
1624 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1625 {
1626 	cpu->pstate.min_pstate = pstate_funcs.get_min();
1627 	cpu->pstate.max_pstate = pstate_funcs.get_max();
1628 	cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1629 	cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1630 	cpu->pstate.scaling = pstate_funcs.get_scaling();
1631 	cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
1632 	cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1633 
1634 	if (pstate_funcs.get_vid)
1635 		pstate_funcs.get_vid(cpu);
1636 
1637 	intel_pstate_set_min_pstate(cpu);
1638 }
1639 
1640 static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1641 {
1642 	struct sample *sample = &cpu->sample;
1643 
1644 	sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1645 }
1646 
1647 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1648 {
1649 	u64 aperf, mperf;
1650 	unsigned long flags;
1651 	u64 tsc;
1652 
1653 	local_irq_save(flags);
1654 	rdmsrl(MSR_IA32_APERF, aperf);
1655 	rdmsrl(MSR_IA32_MPERF, mperf);
1656 	tsc = rdtsc();
1657 	if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1658 		local_irq_restore(flags);
1659 		return false;
1660 	}
1661 	local_irq_restore(flags);
1662 
1663 	cpu->last_sample_time = cpu->sample.time;
1664 	cpu->sample.time = time;
1665 	cpu->sample.aperf = aperf;
1666 	cpu->sample.mperf = mperf;
1667 	cpu->sample.tsc =  tsc;
1668 	cpu->sample.aperf -= cpu->prev_aperf;
1669 	cpu->sample.mperf -= cpu->prev_mperf;
1670 	cpu->sample.tsc -= cpu->prev_tsc;
1671 
1672 	cpu->prev_aperf = aperf;
1673 	cpu->prev_mperf = mperf;
1674 	cpu->prev_tsc = tsc;
1675 	/*
1676 	 * First time this function is invoked in a given cycle, all of the
1677 	 * previous sample data fields are equal to zero or stale and they must
1678 	 * be populated with meaningful numbers for things to work, so assume
1679 	 * that sample.time will always be reset before setting the utilization
1680 	 * update hook and make the caller skip the sample then.
1681 	 */
1682 	if (cpu->last_sample_time) {
1683 		intel_pstate_calc_avg_perf(cpu);
1684 		return true;
1685 	}
1686 	return false;
1687 }
1688 
1689 static inline int32_t get_avg_frequency(struct cpudata *cpu)
1690 {
1691 	return mul_ext_fp(cpu->sample.core_avg_perf,
1692 			  cpu->pstate.max_pstate_physical * cpu->pstate.scaling);
1693 }
1694 
1695 static inline int32_t get_avg_pstate(struct cpudata *cpu)
1696 {
1697 	return mul_ext_fp(cpu->pstate.max_pstate_physical,
1698 			  cpu->sample.core_avg_perf);
1699 }
1700 
1701 static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
1702 {
1703 	struct sample *sample = &cpu->sample;
1704 	int32_t busy_frac, boost;
1705 	int target, avg_pstate;
1706 
1707 	busy_frac = div_fp(sample->mperf, sample->tsc);
1708 
1709 	boost = cpu->iowait_boost;
1710 	cpu->iowait_boost >>= 1;
1711 
1712 	if (busy_frac < boost)
1713 		busy_frac = boost;
1714 
1715 	sample->busy_scaled = busy_frac * 100;
1716 
1717 	target = global.no_turbo || global.turbo_disabled ?
1718 			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1719 	target += target >> 2;
1720 	target = mul_fp(target, busy_frac);
1721 	if (target < cpu->pstate.min_pstate)
1722 		target = cpu->pstate.min_pstate;
1723 
1724 	/*
1725 	 * If the average P-state during the previous cycle was higher than the
1726 	 * current target, add 50% of the difference to the target to reduce
1727 	 * possible performance oscillations and offset possible performance
1728 	 * loss related to moving the workload from one CPU to another within
1729 	 * a package/module.
1730 	 */
1731 	avg_pstate = get_avg_pstate(cpu);
1732 	if (avg_pstate > target)
1733 		target += (avg_pstate - target) >> 1;
1734 
1735 	return target;
1736 }
1737 
1738 static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
1739 {
1740 	int32_t perf_scaled, max_pstate, current_pstate, sample_ratio;
1741 	u64 duration_ns;
1742 
1743 	/*
1744 	 * perf_scaled is the ratio of the average P-state during the last
1745 	 * sampling period to the P-state requested last time (in percent).
1746 	 *
1747 	 * That measures the system's response to the previous P-state
1748 	 * selection.
1749 	 */
1750 	max_pstate = cpu->pstate.max_pstate_physical;
1751 	current_pstate = cpu->pstate.current_pstate;
1752 	perf_scaled = mul_ext_fp(cpu->sample.core_avg_perf,
1753 			       div_fp(100 * max_pstate, current_pstate));
1754 
1755 	/*
1756 	 * Since our utilization update callback will not run unless we are
1757 	 * in C0, check if the actual elapsed time is significantly greater (3x)
1758 	 * than our sample interval.  If it is, then we were idle for a long
1759 	 * enough period of time to adjust our performance metric.
1760 	 */
1761 	duration_ns = cpu->sample.time - cpu->last_sample_time;
1762 	if ((s64)duration_ns > pid_params.sample_rate_ns * 3) {
1763 		sample_ratio = div_fp(pid_params.sample_rate_ns, duration_ns);
1764 		perf_scaled = mul_fp(perf_scaled, sample_ratio);
1765 	} else {
1766 		sample_ratio = div_fp(100 * cpu->sample.mperf, cpu->sample.tsc);
1767 		if (sample_ratio < int_tofp(1))
1768 			perf_scaled = 0;
1769 	}
1770 
1771 	cpu->sample.busy_scaled = perf_scaled;
1772 	return cpu->pstate.current_pstate - pid_calc(&cpu->pid, perf_scaled);
1773 }
1774 
1775 static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
1776 {
1777 	int max_perf, min_perf;
1778 
1779 	intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
1780 	pstate = clamp_t(int, pstate, min_perf, max_perf);
1781 	return pstate;
1782 }
1783 
1784 static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1785 {
1786 	if (pstate == cpu->pstate.current_pstate)
1787 		return;
1788 
1789 	cpu->pstate.current_pstate = pstate;
1790 	wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1791 }
1792 
1793 static void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
1794 {
1795 	int from, target_pstate;
1796 	struct sample *sample;
1797 
1798 	from = cpu->pstate.current_pstate;
1799 
1800 	target_pstate = cpu->policy == CPUFREQ_POLICY_PERFORMANCE ?
1801 		cpu->pstate.turbo_pstate : pstate_funcs.get_target_pstate(cpu);
1802 
1803 	update_turbo_state();
1804 
1805 	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
1806 	trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
1807 	intel_pstate_update_pstate(cpu, target_pstate);
1808 
1809 	sample = &cpu->sample;
1810 	trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1811 		fp_toint(sample->busy_scaled),
1812 		from,
1813 		cpu->pstate.current_pstate,
1814 		sample->mperf,
1815 		sample->aperf,
1816 		sample->tsc,
1817 		get_avg_frequency(cpu),
1818 		fp_toint(cpu->iowait_boost * 100));
1819 }
1820 
1821 static void intel_pstate_update_util_hwp(struct update_util_data *data,
1822 					 u64 time, unsigned int flags)
1823 {
1824 	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1825 	u64 delta_ns = time - cpu->sample.time;
1826 
1827 	if ((s64)delta_ns >= INTEL_PSTATE_HWP_SAMPLING_INTERVAL)
1828 		intel_pstate_sample(cpu, time);
1829 }
1830 
1831 static void intel_pstate_update_util_pid(struct update_util_data *data,
1832 					 u64 time, unsigned int flags)
1833 {
1834 	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1835 	u64 delta_ns = time - cpu->sample.time;
1836 
1837 	if ((s64)delta_ns < pid_params.sample_rate_ns)
1838 		return;
1839 
1840 	if (intel_pstate_sample(cpu, time))
1841 		intel_pstate_adjust_busy_pstate(cpu);
1842 }
1843 
1844 static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1845 				     unsigned int flags)
1846 {
1847 	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1848 	u64 delta_ns;
1849 
1850 	if (flags & SCHED_CPUFREQ_IOWAIT) {
1851 		cpu->iowait_boost = int_tofp(1);
1852 	} else if (cpu->iowait_boost) {
1853 		/* Clear iowait_boost if the CPU may have been idle. */
1854 		delta_ns = time - cpu->last_update;
1855 		if (delta_ns > TICK_NSEC)
1856 			cpu->iowait_boost = 0;
1857 	}
1858 	cpu->last_update = time;
1859 	delta_ns = time - cpu->sample.time;
1860 	if ((s64)delta_ns < INTEL_PSTATE_DEFAULT_SAMPLING_INTERVAL)
1861 		return;
1862 
1863 	if (intel_pstate_sample(cpu, time))
1864 		intel_pstate_adjust_busy_pstate(cpu);
1865 }
1866 
1867 /* Utilization update callback to register in the active mode. */
1868 static void (*update_util_cb)(struct update_util_data *data, u64 time,
1869 			      unsigned int flags) = intel_pstate_update_util;
1870 
1871 #define ICPU(model, policy) \
1872 	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1873 			(unsigned long)&policy }
1874 
1875 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1876 	ICPU(INTEL_FAM6_SANDYBRIDGE, 		core_params),
1877 	ICPU(INTEL_FAM6_SANDYBRIDGE_X,		core_params),
1878 	ICPU(INTEL_FAM6_ATOM_SILVERMONT1,	silvermont_params),
1879 	ICPU(INTEL_FAM6_IVYBRIDGE,		core_params),
1880 	ICPU(INTEL_FAM6_HASWELL_CORE,		core_params),
1881 	ICPU(INTEL_FAM6_BROADWELL_CORE,		core_params),
1882 	ICPU(INTEL_FAM6_IVYBRIDGE_X,		core_params),
1883 	ICPU(INTEL_FAM6_HASWELL_X,		core_params),
1884 	ICPU(INTEL_FAM6_HASWELL_ULT,		core_params),
1885 	ICPU(INTEL_FAM6_HASWELL_GT3E,		core_params),
1886 	ICPU(INTEL_FAM6_BROADWELL_GT3E,		core_params),
1887 	ICPU(INTEL_FAM6_ATOM_AIRMONT,		airmont_params),
1888 	ICPU(INTEL_FAM6_SKYLAKE_MOBILE,		core_params),
1889 	ICPU(INTEL_FAM6_BROADWELL_X,		core_params),
1890 	ICPU(INTEL_FAM6_SKYLAKE_DESKTOP,	core_params),
1891 	ICPU(INTEL_FAM6_BROADWELL_XEON_D,	core_params),
1892 	ICPU(INTEL_FAM6_XEON_PHI_KNL,		knl_params),
1893 	ICPU(INTEL_FAM6_XEON_PHI_KNM,		knl_params),
1894 	ICPU(INTEL_FAM6_ATOM_GOLDMONT,		bxt_params),
1895 	{}
1896 };
1897 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1898 
1899 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
1900 	ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_params),
1901 	ICPU(INTEL_FAM6_BROADWELL_X, core_params),
1902 	ICPU(INTEL_FAM6_SKYLAKE_X, core_params),
1903 	{}
1904 };
1905 
1906 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
1907 	ICPU(INTEL_FAM6_KABYLAKE_DESKTOP, core_params),
1908 	{}
1909 };
1910 
1911 static int intel_pstate_init_cpu(unsigned int cpunum)
1912 {
1913 	struct cpudata *cpu;
1914 
1915 	cpu = all_cpu_data[cpunum];
1916 
1917 	if (!cpu) {
1918 		cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
1919 		if (!cpu)
1920 			return -ENOMEM;
1921 
1922 		all_cpu_data[cpunum] = cpu;
1923 
1924 		cpu->epp_default = -EINVAL;
1925 		cpu->epp_powersave = -EINVAL;
1926 		cpu->epp_saved = -EINVAL;
1927 	}
1928 
1929 	cpu = all_cpu_data[cpunum];
1930 
1931 	cpu->cpu = cpunum;
1932 
1933 	if (hwp_active) {
1934 		const struct x86_cpu_id *id;
1935 
1936 		id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
1937 		if (id)
1938 			intel_pstate_disable_ee(cpunum);
1939 
1940 		intel_pstate_hwp_enable(cpu);
1941 	} else if (pstate_funcs.get_target_pstate == get_target_pstate_use_performance) {
1942 		intel_pstate_pid_reset(cpu);
1943 	}
1944 
1945 	intel_pstate_get_cpu_pstates(cpu);
1946 
1947 	pr_debug("controlling: cpu %d\n", cpunum);
1948 
1949 	return 0;
1950 }
1951 
1952 static unsigned int intel_pstate_get(unsigned int cpu_num)
1953 {
1954 	struct cpudata *cpu = all_cpu_data[cpu_num];
1955 
1956 	return cpu ? get_avg_frequency(cpu) : 0;
1957 }
1958 
1959 static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
1960 {
1961 	struct cpudata *cpu = all_cpu_data[cpu_num];
1962 
1963 	if (cpu->update_util_set)
1964 		return;
1965 
1966 	/* Prevent intel_pstate_update_util() from using stale data. */
1967 	cpu->sample.time = 0;
1968 	cpufreq_add_update_util_hook(cpu_num, &cpu->update_util, update_util_cb);
1969 	cpu->update_util_set = true;
1970 }
1971 
1972 static void intel_pstate_clear_update_util_hook(unsigned int cpu)
1973 {
1974 	struct cpudata *cpu_data = all_cpu_data[cpu];
1975 
1976 	if (!cpu_data->update_util_set)
1977 		return;
1978 
1979 	cpufreq_remove_update_util_hook(cpu);
1980 	cpu_data->update_util_set = false;
1981 	synchronize_sched();
1982 }
1983 
1984 static int intel_pstate_get_max_freq(struct cpudata *cpu)
1985 {
1986 	return global.turbo_disabled || global.no_turbo ?
1987 			cpu->pstate.max_freq : cpu->pstate.turbo_freq;
1988 }
1989 
1990 static void intel_pstate_update_perf_limits(struct cpufreq_policy *policy,
1991 					    struct cpudata *cpu)
1992 {
1993 	int max_freq = intel_pstate_get_max_freq(cpu);
1994 	int32_t max_policy_perf, min_policy_perf;
1995 
1996 	max_policy_perf = div_ext_fp(policy->max, max_freq);
1997 	max_policy_perf = clamp_t(int32_t, max_policy_perf, 0, int_ext_tofp(1));
1998 	if (policy->max == policy->min) {
1999 		min_policy_perf = max_policy_perf;
2000 	} else {
2001 		min_policy_perf = div_ext_fp(policy->min, max_freq);
2002 		min_policy_perf = clamp_t(int32_t, min_policy_perf,
2003 					  0, max_policy_perf);
2004 	}
2005 
2006 	/* Normalize user input to [min_perf, max_perf] */
2007 	if (per_cpu_limits) {
2008 		cpu->min_perf = min_policy_perf;
2009 		cpu->max_perf = max_policy_perf;
2010 	} else {
2011 		int32_t global_min, global_max;
2012 
2013 		/* Global limits are in percent of the maximum turbo P-state. */
2014 		global_max = percent_ext_fp(global.max_perf_pct);
2015 		global_min = percent_ext_fp(global.min_perf_pct);
2016 		if (max_freq != cpu->pstate.turbo_freq) {
2017 			int32_t turbo_factor;
2018 
2019 			turbo_factor = div_ext_fp(cpu->pstate.turbo_pstate,
2020 						  cpu->pstate.max_pstate);
2021 			global_min = mul_ext_fp(global_min, turbo_factor);
2022 			global_max = mul_ext_fp(global_max, turbo_factor);
2023 		}
2024 		global_min = clamp_t(int32_t, global_min, 0, global_max);
2025 
2026 		cpu->min_perf = max(min_policy_perf, global_min);
2027 		cpu->min_perf = min(cpu->min_perf, max_policy_perf);
2028 		cpu->max_perf = min(max_policy_perf, global_max);
2029 		cpu->max_perf = max(min_policy_perf, cpu->max_perf);
2030 
2031 		/* Make sure min_perf <= max_perf */
2032 		cpu->min_perf = min(cpu->min_perf, cpu->max_perf);
2033 	}
2034 
2035 	cpu->max_perf = round_up(cpu->max_perf, EXT_FRAC_BITS);
2036 	cpu->min_perf = round_up(cpu->min_perf, EXT_FRAC_BITS);
2037 
2038 	pr_debug("cpu:%d max_perf_pct:%d min_perf_pct:%d\n", policy->cpu,
2039 		 fp_ext_toint(cpu->max_perf * 100),
2040 		 fp_ext_toint(cpu->min_perf * 100));
2041 }
2042 
2043 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
2044 {
2045 	struct cpudata *cpu;
2046 
2047 	if (!policy->cpuinfo.max_freq)
2048 		return -ENODEV;
2049 
2050 	pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
2051 		 policy->cpuinfo.max_freq, policy->max);
2052 
2053 	cpu = all_cpu_data[policy->cpu];
2054 	cpu->policy = policy->policy;
2055 
2056 	mutex_lock(&intel_pstate_limits_lock);
2057 
2058 	intel_pstate_update_perf_limits(policy, cpu);
2059 
2060 	if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
2061 		/*
2062 		 * NOHZ_FULL CPUs need this as the governor callback may not
2063 		 * be invoked on them.
2064 		 */
2065 		intel_pstate_clear_update_util_hook(policy->cpu);
2066 		intel_pstate_max_within_limits(cpu);
2067 	}
2068 
2069 	intel_pstate_set_update_util_hook(policy->cpu);
2070 
2071 	if (hwp_active)
2072 		intel_pstate_hwp_set(policy);
2073 
2074 	mutex_unlock(&intel_pstate_limits_lock);
2075 
2076 	return 0;
2077 }
2078 
2079 static void intel_pstate_adjust_policy_max(struct cpufreq_policy *policy,
2080 					 struct cpudata *cpu)
2081 {
2082 	if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
2083 	    policy->max < policy->cpuinfo.max_freq &&
2084 	    policy->max > cpu->pstate.max_freq) {
2085 		pr_debug("policy->max > max non turbo frequency\n");
2086 		policy->max = policy->cpuinfo.max_freq;
2087 	}
2088 }
2089 
2090 static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
2091 {
2092 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2093 
2094 	update_turbo_state();
2095 	cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
2096 				     intel_pstate_get_max_freq(cpu));
2097 
2098 	if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
2099 	    policy->policy != CPUFREQ_POLICY_PERFORMANCE)
2100 		return -EINVAL;
2101 
2102 	intel_pstate_adjust_policy_max(policy, cpu);
2103 
2104 	return 0;
2105 }
2106 
2107 static void intel_cpufreq_stop_cpu(struct cpufreq_policy *policy)
2108 {
2109 	intel_pstate_set_min_pstate(all_cpu_data[policy->cpu]);
2110 }
2111 
2112 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
2113 {
2114 	pr_debug("CPU %d exiting\n", policy->cpu);
2115 
2116 	intel_pstate_clear_update_util_hook(policy->cpu);
2117 	if (hwp_active)
2118 		intel_pstate_hwp_save_state(policy);
2119 	else
2120 		intel_cpufreq_stop_cpu(policy);
2121 }
2122 
2123 static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
2124 {
2125 	intel_pstate_exit_perf_limits(policy);
2126 
2127 	policy->fast_switch_possible = false;
2128 
2129 	return 0;
2130 }
2131 
2132 static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2133 {
2134 	struct cpudata *cpu;
2135 	int rc;
2136 
2137 	rc = intel_pstate_init_cpu(policy->cpu);
2138 	if (rc)
2139 		return rc;
2140 
2141 	cpu = all_cpu_data[policy->cpu];
2142 
2143 	cpu->max_perf = int_ext_tofp(1);
2144 	cpu->min_perf = 0;
2145 
2146 	policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
2147 	policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
2148 
2149 	/* cpuinfo and default policy values */
2150 	policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
2151 	update_turbo_state();
2152 	policy->cpuinfo.max_freq = global.turbo_disabled ?
2153 			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2154 	policy->cpuinfo.max_freq *= cpu->pstate.scaling;
2155 
2156 	intel_pstate_init_acpi_perf_limits(policy);
2157 	cpumask_set_cpu(policy->cpu, policy->cpus);
2158 
2159 	policy->fast_switch_possible = true;
2160 
2161 	return 0;
2162 }
2163 
2164 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2165 {
2166 	int ret = __intel_pstate_cpu_init(policy);
2167 
2168 	if (ret)
2169 		return ret;
2170 
2171 	policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
2172 	if (IS_ENABLED(CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE))
2173 		policy->policy = CPUFREQ_POLICY_PERFORMANCE;
2174 	else
2175 		policy->policy = CPUFREQ_POLICY_POWERSAVE;
2176 
2177 	return 0;
2178 }
2179 
2180 static struct cpufreq_driver intel_pstate = {
2181 	.flags		= CPUFREQ_CONST_LOOPS,
2182 	.verify		= intel_pstate_verify_policy,
2183 	.setpolicy	= intel_pstate_set_policy,
2184 	.suspend	= intel_pstate_hwp_save_state,
2185 	.resume		= intel_pstate_resume,
2186 	.get		= intel_pstate_get,
2187 	.init		= intel_pstate_cpu_init,
2188 	.exit		= intel_pstate_cpu_exit,
2189 	.stop_cpu	= intel_pstate_stop_cpu,
2190 	.name		= "intel_pstate",
2191 };
2192 
2193 static int intel_cpufreq_verify_policy(struct cpufreq_policy *policy)
2194 {
2195 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2196 
2197 	update_turbo_state();
2198 	cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
2199 				     intel_pstate_get_max_freq(cpu));
2200 
2201 	intel_pstate_adjust_policy_max(policy, cpu);
2202 
2203 	intel_pstate_update_perf_limits(policy, cpu);
2204 
2205 	return 0;
2206 }
2207 
2208 static int intel_cpufreq_target(struct cpufreq_policy *policy,
2209 				unsigned int target_freq,
2210 				unsigned int relation)
2211 {
2212 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2213 	struct cpufreq_freqs freqs;
2214 	int target_pstate;
2215 
2216 	update_turbo_state();
2217 
2218 	freqs.old = policy->cur;
2219 	freqs.new = target_freq;
2220 
2221 	cpufreq_freq_transition_begin(policy, &freqs);
2222 	switch (relation) {
2223 	case CPUFREQ_RELATION_L:
2224 		target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
2225 		break;
2226 	case CPUFREQ_RELATION_H:
2227 		target_pstate = freqs.new / cpu->pstate.scaling;
2228 		break;
2229 	default:
2230 		target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
2231 		break;
2232 	}
2233 	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2234 	if (target_pstate != cpu->pstate.current_pstate) {
2235 		cpu->pstate.current_pstate = target_pstate;
2236 		wrmsrl_on_cpu(policy->cpu, MSR_IA32_PERF_CTL,
2237 			      pstate_funcs.get_val(cpu, target_pstate));
2238 	}
2239 	freqs.new = target_pstate * cpu->pstate.scaling;
2240 	cpufreq_freq_transition_end(policy, &freqs, false);
2241 
2242 	return 0;
2243 }
2244 
2245 static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
2246 					      unsigned int target_freq)
2247 {
2248 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2249 	int target_pstate;
2250 
2251 	update_turbo_state();
2252 
2253 	target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
2254 	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2255 	intel_pstate_update_pstate(cpu, target_pstate);
2256 	return target_pstate * cpu->pstate.scaling;
2257 }
2258 
2259 static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
2260 {
2261 	int ret = __intel_pstate_cpu_init(policy);
2262 
2263 	if (ret)
2264 		return ret;
2265 
2266 	policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
2267 	/* This reflects the intel_pstate_get_cpu_pstates() setting. */
2268 	policy->cur = policy->cpuinfo.min_freq;
2269 
2270 	return 0;
2271 }
2272 
2273 static struct cpufreq_driver intel_cpufreq = {
2274 	.flags		= CPUFREQ_CONST_LOOPS,
2275 	.verify		= intel_cpufreq_verify_policy,
2276 	.target		= intel_cpufreq_target,
2277 	.fast_switch	= intel_cpufreq_fast_switch,
2278 	.init		= intel_cpufreq_cpu_init,
2279 	.exit		= intel_pstate_cpu_exit,
2280 	.stop_cpu	= intel_cpufreq_stop_cpu,
2281 	.name		= "intel_cpufreq",
2282 };
2283 
2284 static struct cpufreq_driver *default_driver = &intel_pstate;
2285 
2286 static void intel_pstate_driver_cleanup(void)
2287 {
2288 	unsigned int cpu;
2289 
2290 	get_online_cpus();
2291 	for_each_online_cpu(cpu) {
2292 		if (all_cpu_data[cpu]) {
2293 			if (intel_pstate_driver == &intel_pstate)
2294 				intel_pstate_clear_update_util_hook(cpu);
2295 
2296 			kfree(all_cpu_data[cpu]);
2297 			all_cpu_data[cpu] = NULL;
2298 		}
2299 	}
2300 	put_online_cpus();
2301 	intel_pstate_driver = NULL;
2302 }
2303 
2304 static int intel_pstate_register_driver(struct cpufreq_driver *driver)
2305 {
2306 	int ret;
2307 
2308 	memset(&global, 0, sizeof(global));
2309 	global.max_perf_pct = 100;
2310 
2311 	intel_pstate_driver = driver;
2312 	ret = cpufreq_register_driver(intel_pstate_driver);
2313 	if (ret) {
2314 		intel_pstate_driver_cleanup();
2315 		return ret;
2316 	}
2317 
2318 	global.min_perf_pct = min_perf_pct_min();
2319 
2320 	if (intel_pstate_driver == &intel_pstate && !hwp_active &&
2321 	    pstate_funcs.get_target_pstate != get_target_pstate_use_cpu_load)
2322 		intel_pstate_debug_expose_params();
2323 
2324 	return 0;
2325 }
2326 
2327 static int intel_pstate_unregister_driver(void)
2328 {
2329 	if (hwp_active)
2330 		return -EBUSY;
2331 
2332 	if (intel_pstate_driver == &intel_pstate && !hwp_active &&
2333 	    pstate_funcs.get_target_pstate != get_target_pstate_use_cpu_load)
2334 		intel_pstate_debug_hide_params();
2335 
2336 	cpufreq_unregister_driver(intel_pstate_driver);
2337 	intel_pstate_driver_cleanup();
2338 
2339 	return 0;
2340 }
2341 
2342 static ssize_t intel_pstate_show_status(char *buf)
2343 {
2344 	if (!intel_pstate_driver)
2345 		return sprintf(buf, "off\n");
2346 
2347 	return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
2348 					"active" : "passive");
2349 }
2350 
2351 static int intel_pstate_update_status(const char *buf, size_t size)
2352 {
2353 	int ret;
2354 
2355 	if (size == 3 && !strncmp(buf, "off", size))
2356 		return intel_pstate_driver ?
2357 			intel_pstate_unregister_driver() : -EINVAL;
2358 
2359 	if (size == 6 && !strncmp(buf, "active", size)) {
2360 		if (intel_pstate_driver) {
2361 			if (intel_pstate_driver == &intel_pstate)
2362 				return 0;
2363 
2364 			ret = intel_pstate_unregister_driver();
2365 			if (ret)
2366 				return ret;
2367 		}
2368 
2369 		return intel_pstate_register_driver(&intel_pstate);
2370 	}
2371 
2372 	if (size == 7 && !strncmp(buf, "passive", size)) {
2373 		if (intel_pstate_driver) {
2374 			if (intel_pstate_driver == &intel_cpufreq)
2375 				return 0;
2376 
2377 			ret = intel_pstate_unregister_driver();
2378 			if (ret)
2379 				return ret;
2380 		}
2381 
2382 		return intel_pstate_register_driver(&intel_cpufreq);
2383 	}
2384 
2385 	return -EINVAL;
2386 }
2387 
2388 static int no_load __initdata;
2389 static int no_hwp __initdata;
2390 static int hwp_only __initdata;
2391 static unsigned int force_load __initdata;
2392 
2393 static int __init intel_pstate_msrs_not_valid(void)
2394 {
2395 	if (!pstate_funcs.get_max() ||
2396 	    !pstate_funcs.get_min() ||
2397 	    !pstate_funcs.get_turbo())
2398 		return -ENODEV;
2399 
2400 	return 0;
2401 }
2402 
2403 #ifdef CONFIG_ACPI
2404 static void intel_pstate_use_acpi_profile(void)
2405 {
2406 	switch (acpi_gbl_FADT.preferred_profile) {
2407 	case PM_MOBILE:
2408 	case PM_TABLET:
2409 	case PM_APPLIANCE_PC:
2410 	case PM_DESKTOP:
2411 	case PM_WORKSTATION:
2412 		pstate_funcs.get_target_pstate =
2413 				get_target_pstate_use_cpu_load;
2414 	}
2415 }
2416 #else
2417 static void intel_pstate_use_acpi_profile(void)
2418 {
2419 }
2420 #endif
2421 
2422 static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
2423 {
2424 	pstate_funcs.get_max   = funcs->get_max;
2425 	pstate_funcs.get_max_physical = funcs->get_max_physical;
2426 	pstate_funcs.get_min   = funcs->get_min;
2427 	pstate_funcs.get_turbo = funcs->get_turbo;
2428 	pstate_funcs.get_scaling = funcs->get_scaling;
2429 	pstate_funcs.get_val   = funcs->get_val;
2430 	pstate_funcs.get_vid   = funcs->get_vid;
2431 	pstate_funcs.get_target_pstate = funcs->get_target_pstate;
2432 
2433 	intel_pstate_use_acpi_profile();
2434 
2435 	if (pstate_funcs.get_target_pstate == get_target_pstate_use_performance)
2436 		update_util_cb = intel_pstate_update_util_pid;
2437 }
2438 
2439 #ifdef CONFIG_ACPI
2440 
2441 static bool __init intel_pstate_no_acpi_pss(void)
2442 {
2443 	int i;
2444 
2445 	for_each_possible_cpu(i) {
2446 		acpi_status status;
2447 		union acpi_object *pss;
2448 		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
2449 		struct acpi_processor *pr = per_cpu(processors, i);
2450 
2451 		if (!pr)
2452 			continue;
2453 
2454 		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
2455 		if (ACPI_FAILURE(status))
2456 			continue;
2457 
2458 		pss = buffer.pointer;
2459 		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
2460 			kfree(pss);
2461 			return false;
2462 		}
2463 
2464 		kfree(pss);
2465 	}
2466 
2467 	return true;
2468 }
2469 
2470 static bool __init intel_pstate_has_acpi_ppc(void)
2471 {
2472 	int i;
2473 
2474 	for_each_possible_cpu(i) {
2475 		struct acpi_processor *pr = per_cpu(processors, i);
2476 
2477 		if (!pr)
2478 			continue;
2479 		if (acpi_has_method(pr->handle, "_PPC"))
2480 			return true;
2481 	}
2482 	return false;
2483 }
2484 
2485 enum {
2486 	PSS,
2487 	PPC,
2488 };
2489 
2490 struct hw_vendor_info {
2491 	u16  valid;
2492 	char oem_id[ACPI_OEM_ID_SIZE];
2493 	char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
2494 	int  oem_pwr_table;
2495 };
2496 
2497 /* Hardware vendor-specific info that has its own power management modes */
2498 static struct hw_vendor_info vendor_info[] __initdata = {
2499 	{1, "HP    ", "ProLiant", PSS},
2500 	{1, "ORACLE", "X4-2    ", PPC},
2501 	{1, "ORACLE", "X4-2L   ", PPC},
2502 	{1, "ORACLE", "X4-2B   ", PPC},
2503 	{1, "ORACLE", "X3-2    ", PPC},
2504 	{1, "ORACLE", "X3-2L   ", PPC},
2505 	{1, "ORACLE", "X3-2B   ", PPC},
2506 	{1, "ORACLE", "X4470M2 ", PPC},
2507 	{1, "ORACLE", "X4270M3 ", PPC},
2508 	{1, "ORACLE", "X4270M2 ", PPC},
2509 	{1, "ORACLE", "X4170M2 ", PPC},
2510 	{1, "ORACLE", "X4170 M3", PPC},
2511 	{1, "ORACLE", "X4275 M3", PPC},
2512 	{1, "ORACLE", "X6-2    ", PPC},
2513 	{1, "ORACLE", "Sudbury ", PPC},
2514 	{0, "", ""},
2515 };
2516 
2517 static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
2518 {
2519 	struct acpi_table_header hdr;
2520 	struct hw_vendor_info *v_info;
2521 	const struct x86_cpu_id *id;
2522 	u64 misc_pwr;
2523 
2524 	id = x86_match_cpu(intel_pstate_cpu_oob_ids);
2525 	if (id) {
2526 		rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
2527 		if ( misc_pwr & (1 << 8))
2528 			return true;
2529 	}
2530 
2531 	if (acpi_disabled ||
2532 	    ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
2533 		return false;
2534 
2535 	for (v_info = vendor_info; v_info->valid; v_info++) {
2536 		if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
2537 			!strncmp(hdr.oem_table_id, v_info->oem_table_id,
2538 						ACPI_OEM_TABLE_ID_SIZE))
2539 			switch (v_info->oem_pwr_table) {
2540 			case PSS:
2541 				return intel_pstate_no_acpi_pss();
2542 			case PPC:
2543 				return intel_pstate_has_acpi_ppc() &&
2544 					(!force_load);
2545 			}
2546 	}
2547 
2548 	return false;
2549 }
2550 
2551 static void intel_pstate_request_control_from_smm(void)
2552 {
2553 	/*
2554 	 * It may be unsafe to request P-states control from SMM if _PPC support
2555 	 * has not been enabled.
2556 	 */
2557 	if (acpi_ppc)
2558 		acpi_processor_pstate_control();
2559 }
2560 #else /* CONFIG_ACPI not enabled */
2561 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
2562 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
2563 static inline void intel_pstate_request_control_from_smm(void) {}
2564 #endif /* CONFIG_ACPI */
2565 
2566 static const struct x86_cpu_id hwp_support_ids[] __initconst = {
2567 	{ X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
2568 	{}
2569 };
2570 
2571 static int __init intel_pstate_init(void)
2572 {
2573 	int rc;
2574 
2575 	if (no_load)
2576 		return -ENODEV;
2577 
2578 	if (x86_match_cpu(hwp_support_ids)) {
2579 		copy_cpu_funcs(&core_params.funcs);
2580 		if (no_hwp) {
2581 			update_util_cb = intel_pstate_update_util;
2582 		} else {
2583 			hwp_active++;
2584 			intel_pstate.attr = hwp_cpufreq_attrs;
2585 			update_util_cb = intel_pstate_update_util_hwp;
2586 			goto hwp_cpu_matched;
2587 		}
2588 	} else {
2589 		const struct x86_cpu_id *id;
2590 		struct cpu_defaults *cpu_def;
2591 
2592 		id = x86_match_cpu(intel_pstate_cpu_ids);
2593 		if (!id)
2594 			return -ENODEV;
2595 
2596 		cpu_def = (struct cpu_defaults *)id->driver_data;
2597 		copy_cpu_funcs(&cpu_def->funcs);
2598 	}
2599 
2600 	if (intel_pstate_msrs_not_valid())
2601 		return -ENODEV;
2602 
2603 hwp_cpu_matched:
2604 	/*
2605 	 * The Intel pstate driver will be ignored if the platform
2606 	 * firmware has its own power management modes.
2607 	 */
2608 	if (intel_pstate_platform_pwr_mgmt_exists())
2609 		return -ENODEV;
2610 
2611 	if (!hwp_active && hwp_only)
2612 		return -ENOTSUPP;
2613 
2614 	pr_info("Intel P-state driver initializing\n");
2615 
2616 	all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
2617 	if (!all_cpu_data)
2618 		return -ENOMEM;
2619 
2620 	intel_pstate_request_control_from_smm();
2621 
2622 	intel_pstate_sysfs_expose_params();
2623 
2624 	mutex_lock(&intel_pstate_driver_lock);
2625 	rc = intel_pstate_register_driver(default_driver);
2626 	mutex_unlock(&intel_pstate_driver_lock);
2627 	if (rc)
2628 		return rc;
2629 
2630 	if (hwp_active)
2631 		pr_info("HWP enabled\n");
2632 
2633 	return 0;
2634 }
2635 device_initcall(intel_pstate_init);
2636 
2637 static int __init intel_pstate_setup(char *str)
2638 {
2639 	if (!str)
2640 		return -EINVAL;
2641 
2642 	if (!strcmp(str, "disable")) {
2643 		no_load = 1;
2644 	} else if (!strcmp(str, "passive")) {
2645 		pr_info("Passive mode enabled\n");
2646 		default_driver = &intel_cpufreq;
2647 		no_hwp = 1;
2648 	}
2649 	if (!strcmp(str, "no_hwp")) {
2650 		pr_info("HWP disabled\n");
2651 		no_hwp = 1;
2652 	}
2653 	if (!strcmp(str, "force"))
2654 		force_load = 1;
2655 	if (!strcmp(str, "hwp_only"))
2656 		hwp_only = 1;
2657 	if (!strcmp(str, "per_cpu_perf_limits"))
2658 		per_cpu_limits = true;
2659 
2660 #ifdef CONFIG_ACPI
2661 	if (!strcmp(str, "support_acpi_ppc"))
2662 		acpi_ppc = true;
2663 #endif
2664 
2665 	return 0;
2666 }
2667 early_param("intel_pstate", intel_pstate_setup);
2668 
2669 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
2670 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
2671 MODULE_LICENSE("GPL");
2672