1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * intel_pstate.c: Native P state management for Intel processors 4 * 5 * (C) Copyright 2012 Intel Corporation 6 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com> 7 */ 8 9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 10 11 #include <linux/kernel.h> 12 #include <linux/kernel_stat.h> 13 #include <linux/module.h> 14 #include <linux/ktime.h> 15 #include <linux/hrtimer.h> 16 #include <linux/tick.h> 17 #include <linux/slab.h> 18 #include <linux/sched/cpufreq.h> 19 #include <linux/list.h> 20 #include <linux/cpu.h> 21 #include <linux/cpufreq.h> 22 #include <linux/sysfs.h> 23 #include <linux/types.h> 24 #include <linux/fs.h> 25 #include <linux/acpi.h> 26 #include <linux/vmalloc.h> 27 #include <linux/pm_qos.h> 28 #include <trace/events/power.h> 29 30 #include <asm/cpu.h> 31 #include <asm/div64.h> 32 #include <asm/msr.h> 33 #include <asm/cpu_device_id.h> 34 #include <asm/cpufeature.h> 35 #include <asm/intel-family.h> 36 #include "../drivers/thermal/intel/thermal_interrupt.h" 37 38 #define INTEL_PSTATE_SAMPLING_INTERVAL (10 * NSEC_PER_MSEC) 39 40 #define INTEL_CPUFREQ_TRANSITION_LATENCY 20000 41 #define INTEL_CPUFREQ_TRANSITION_DELAY_HWP 5000 42 #define INTEL_CPUFREQ_TRANSITION_DELAY 500 43 44 #ifdef CONFIG_ACPI 45 #include <acpi/processor.h> 46 #include <acpi/cppc_acpi.h> 47 #endif 48 49 #define FRAC_BITS 8 50 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS) 51 #define fp_toint(X) ((X) >> FRAC_BITS) 52 53 #define ONE_EIGHTH_FP ((int64_t)1 << (FRAC_BITS - 3)) 54 55 #define EXT_BITS 6 56 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS) 57 #define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS) 58 #define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS) 59 60 static inline int32_t mul_fp(int32_t x, int32_t y) 61 { 62 return ((int64_t)x * (int64_t)y) >> FRAC_BITS; 63 } 64 65 static inline int32_t div_fp(s64 x, s64 y) 66 { 67 return div64_s64((int64_t)x << FRAC_BITS, y); 68 } 69 70 static inline int ceiling_fp(int32_t x) 71 { 72 int mask, ret; 73 74 ret = fp_toint(x); 75 mask = (1 << FRAC_BITS) - 1; 76 if (x & mask) 77 ret += 1; 78 return ret; 79 } 80 81 static inline u64 mul_ext_fp(u64 x, u64 y) 82 { 83 return (x * y) >> EXT_FRAC_BITS; 84 } 85 86 static inline u64 div_ext_fp(u64 x, u64 y) 87 { 88 return div64_u64(x << EXT_FRAC_BITS, y); 89 } 90 91 /** 92 * struct sample - Store performance sample 93 * @core_avg_perf: Ratio of APERF/MPERF which is the actual average 94 * performance during last sample period 95 * @busy_scaled: Scaled busy value which is used to calculate next 96 * P state. This can be different than core_avg_perf 97 * to account for cpu idle period 98 * @aperf: Difference of actual performance frequency clock count 99 * read from APERF MSR between last and current sample 100 * @mperf: Difference of maximum performance frequency clock count 101 * read from MPERF MSR between last and current sample 102 * @tsc: Difference of time stamp counter between last and 103 * current sample 104 * @time: Current time from scheduler 105 * 106 * This structure is used in the cpudata structure to store performance sample 107 * data for choosing next P State. 108 */ 109 struct sample { 110 int32_t core_avg_perf; 111 int32_t busy_scaled; 112 u64 aperf; 113 u64 mperf; 114 u64 tsc; 115 u64 time; 116 }; 117 118 /** 119 * struct pstate_data - Store P state data 120 * @current_pstate: Current requested P state 121 * @min_pstate: Min P state possible for this platform 122 * @max_pstate: Max P state possible for this platform 123 * @max_pstate_physical:This is physical Max P state for a processor 124 * This can be higher than the max_pstate which can 125 * be limited by platform thermal design power limits 126 * @perf_ctl_scaling: PERF_CTL P-state to frequency scaling factor 127 * @scaling: Scaling factor between performance and frequency 128 * @turbo_pstate: Max Turbo P state possible for this platform 129 * @min_freq: @min_pstate frequency in cpufreq units 130 * @max_freq: @max_pstate frequency in cpufreq units 131 * @turbo_freq: @turbo_pstate frequency in cpufreq units 132 * 133 * Stores the per cpu model P state limits and current P state. 134 */ 135 struct pstate_data { 136 int current_pstate; 137 int min_pstate; 138 int max_pstate; 139 int max_pstate_physical; 140 int perf_ctl_scaling; 141 int scaling; 142 int turbo_pstate; 143 unsigned int min_freq; 144 unsigned int max_freq; 145 unsigned int turbo_freq; 146 }; 147 148 /** 149 * struct vid_data - Stores voltage information data 150 * @min: VID data for this platform corresponding to 151 * the lowest P state 152 * @max: VID data corresponding to the highest P State. 153 * @turbo: VID data for turbo P state 154 * @ratio: Ratio of (vid max - vid min) / 155 * (max P state - Min P State) 156 * 157 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling) 158 * This data is used in Atom platforms, where in addition to target P state, 159 * the voltage data needs to be specified to select next P State. 160 */ 161 struct vid_data { 162 int min; 163 int max; 164 int turbo; 165 int32_t ratio; 166 }; 167 168 /** 169 * struct global_params - Global parameters, mostly tunable via sysfs. 170 * @no_turbo: Whether or not to use turbo P-states. 171 * @turbo_disabled: Whether or not turbo P-states are available at all, 172 * based on the MSR_IA32_MISC_ENABLE value and whether or 173 * not the maximum reported turbo P-state is different from 174 * the maximum reported non-turbo one. 175 * @turbo_disabled_mf: The @turbo_disabled value reflected by cpuinfo.max_freq. 176 * @min_perf_pct: Minimum capacity limit in percent of the maximum turbo 177 * P-state capacity. 178 * @max_perf_pct: Maximum capacity limit in percent of the maximum turbo 179 * P-state capacity. 180 */ 181 struct global_params { 182 bool no_turbo; 183 bool turbo_disabled; 184 bool turbo_disabled_mf; 185 int max_perf_pct; 186 int min_perf_pct; 187 }; 188 189 /** 190 * struct cpudata - Per CPU instance data storage 191 * @cpu: CPU number for this instance data 192 * @policy: CPUFreq policy value 193 * @update_util: CPUFreq utility callback information 194 * @update_util_set: CPUFreq utility callback is set 195 * @iowait_boost: iowait-related boost fraction 196 * @last_update: Time of the last update. 197 * @pstate: Stores P state limits for this CPU 198 * @vid: Stores VID limits for this CPU 199 * @last_sample_time: Last Sample time 200 * @aperf_mperf_shift: APERF vs MPERF counting frequency difference 201 * @prev_aperf: Last APERF value read from APERF MSR 202 * @prev_mperf: Last MPERF value read from MPERF MSR 203 * @prev_tsc: Last timestamp counter (TSC) value 204 * @prev_cummulative_iowait: IO Wait time difference from last and 205 * current sample 206 * @sample: Storage for storing last Sample data 207 * @min_perf_ratio: Minimum capacity in terms of PERF or HWP ratios 208 * @max_perf_ratio: Maximum capacity in terms of PERF or HWP ratios 209 * @acpi_perf_data: Stores ACPI perf information read from _PSS 210 * @valid_pss_table: Set to true for valid ACPI _PSS entries found 211 * @epp_powersave: Last saved HWP energy performance preference 212 * (EPP) or energy performance bias (EPB), 213 * when policy switched to performance 214 * @epp_policy: Last saved policy used to set EPP/EPB 215 * @epp_default: Power on default HWP energy performance 216 * preference/bias 217 * @epp_cached Cached HWP energy-performance preference value 218 * @hwp_req_cached: Cached value of the last HWP Request MSR 219 * @hwp_cap_cached: Cached value of the last HWP Capabilities MSR 220 * @last_io_update: Last time when IO wake flag was set 221 * @sched_flags: Store scheduler flags for possible cross CPU update 222 * @hwp_boost_min: Last HWP boosted min performance 223 * @suspended: Whether or not the driver has been suspended. 224 * @hwp_notify_work: workqueue for HWP notifications. 225 * 226 * This structure stores per CPU instance data for all CPUs. 227 */ 228 struct cpudata { 229 int cpu; 230 231 unsigned int policy; 232 struct update_util_data update_util; 233 bool update_util_set; 234 235 struct pstate_data pstate; 236 struct vid_data vid; 237 238 u64 last_update; 239 u64 last_sample_time; 240 u64 aperf_mperf_shift; 241 u64 prev_aperf; 242 u64 prev_mperf; 243 u64 prev_tsc; 244 u64 prev_cummulative_iowait; 245 struct sample sample; 246 int32_t min_perf_ratio; 247 int32_t max_perf_ratio; 248 #ifdef CONFIG_ACPI 249 struct acpi_processor_performance acpi_perf_data; 250 bool valid_pss_table; 251 #endif 252 unsigned int iowait_boost; 253 s16 epp_powersave; 254 s16 epp_policy; 255 s16 epp_default; 256 s16 epp_cached; 257 u64 hwp_req_cached; 258 u64 hwp_cap_cached; 259 u64 last_io_update; 260 unsigned int sched_flags; 261 u32 hwp_boost_min; 262 bool suspended; 263 struct delayed_work hwp_notify_work; 264 }; 265 266 static struct cpudata **all_cpu_data; 267 268 /** 269 * struct pstate_funcs - Per CPU model specific callbacks 270 * @get_max: Callback to get maximum non turbo effective P state 271 * @get_max_physical: Callback to get maximum non turbo physical P state 272 * @get_min: Callback to get minimum P state 273 * @get_turbo: Callback to get turbo P state 274 * @get_scaling: Callback to get frequency scaling factor 275 * @get_cpu_scaling: Get frequency scaling factor for a given cpu 276 * @get_aperf_mperf_shift: Callback to get the APERF vs MPERF frequency difference 277 * @get_val: Callback to convert P state to actual MSR write value 278 * @get_vid: Callback to get VID data for Atom platforms 279 * 280 * Core and Atom CPU models have different way to get P State limits. This 281 * structure is used to store those callbacks. 282 */ 283 struct pstate_funcs { 284 int (*get_max)(int cpu); 285 int (*get_max_physical)(int cpu); 286 int (*get_min)(int cpu); 287 int (*get_turbo)(int cpu); 288 int (*get_scaling)(void); 289 int (*get_cpu_scaling)(int cpu); 290 int (*get_aperf_mperf_shift)(void); 291 u64 (*get_val)(struct cpudata*, int pstate); 292 void (*get_vid)(struct cpudata *); 293 }; 294 295 static struct pstate_funcs pstate_funcs __read_mostly; 296 297 static int hwp_active __read_mostly; 298 static int hwp_mode_bdw __read_mostly; 299 static bool per_cpu_limits __read_mostly; 300 static bool hwp_boost __read_mostly; 301 static bool hwp_forced __read_mostly; 302 303 static struct cpufreq_driver *intel_pstate_driver __read_mostly; 304 305 #ifdef CONFIG_ACPI 306 static bool acpi_ppc; 307 #endif 308 309 static struct global_params global; 310 311 static DEFINE_MUTEX(intel_pstate_driver_lock); 312 static DEFINE_MUTEX(intel_pstate_limits_lock); 313 314 #ifdef CONFIG_ACPI 315 316 static bool intel_pstate_acpi_pm_profile_server(void) 317 { 318 if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER || 319 acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER) 320 return true; 321 322 return false; 323 } 324 325 static bool intel_pstate_get_ppc_enable_status(void) 326 { 327 if (intel_pstate_acpi_pm_profile_server()) 328 return true; 329 330 return acpi_ppc; 331 } 332 333 #ifdef CONFIG_ACPI_CPPC_LIB 334 335 /* The work item is needed to avoid CPU hotplug locking issues */ 336 static void intel_pstste_sched_itmt_work_fn(struct work_struct *work) 337 { 338 sched_set_itmt_support(); 339 } 340 341 static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn); 342 343 #define CPPC_MAX_PERF U8_MAX 344 345 static void intel_pstate_set_itmt_prio(int cpu) 346 { 347 struct cppc_perf_caps cppc_perf; 348 static u32 max_highest_perf = 0, min_highest_perf = U32_MAX; 349 int ret; 350 351 ret = cppc_get_perf_caps(cpu, &cppc_perf); 352 if (ret) 353 return; 354 355 /* 356 * On some systems with overclocking enabled, CPPC.highest_perf is hardcoded to 0xff. 357 * In this case we can't use CPPC.highest_perf to enable ITMT. 358 * In this case we can look at MSR_HWP_CAPABILITIES bits [8:0] to decide. 359 */ 360 if (cppc_perf.highest_perf == CPPC_MAX_PERF) 361 cppc_perf.highest_perf = HWP_HIGHEST_PERF(READ_ONCE(all_cpu_data[cpu]->hwp_cap_cached)); 362 363 /* 364 * The priorities can be set regardless of whether or not 365 * sched_set_itmt_support(true) has been called and it is valid to 366 * update them at any time after it has been called. 367 */ 368 sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu); 369 370 if (max_highest_perf <= min_highest_perf) { 371 if (cppc_perf.highest_perf > max_highest_perf) 372 max_highest_perf = cppc_perf.highest_perf; 373 374 if (cppc_perf.highest_perf < min_highest_perf) 375 min_highest_perf = cppc_perf.highest_perf; 376 377 if (max_highest_perf > min_highest_perf) { 378 /* 379 * This code can be run during CPU online under the 380 * CPU hotplug locks, so sched_set_itmt_support() 381 * cannot be called from here. Queue up a work item 382 * to invoke it. 383 */ 384 schedule_work(&sched_itmt_work); 385 } 386 } 387 } 388 389 static int intel_pstate_get_cppc_guaranteed(int cpu) 390 { 391 struct cppc_perf_caps cppc_perf; 392 int ret; 393 394 ret = cppc_get_perf_caps(cpu, &cppc_perf); 395 if (ret) 396 return ret; 397 398 if (cppc_perf.guaranteed_perf) 399 return cppc_perf.guaranteed_perf; 400 401 return cppc_perf.nominal_perf; 402 } 403 #else /* CONFIG_ACPI_CPPC_LIB */ 404 static inline void intel_pstate_set_itmt_prio(int cpu) 405 { 406 } 407 #endif /* CONFIG_ACPI_CPPC_LIB */ 408 409 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy) 410 { 411 struct cpudata *cpu; 412 int ret; 413 int i; 414 415 if (hwp_active) { 416 intel_pstate_set_itmt_prio(policy->cpu); 417 return; 418 } 419 420 if (!intel_pstate_get_ppc_enable_status()) 421 return; 422 423 cpu = all_cpu_data[policy->cpu]; 424 425 ret = acpi_processor_register_performance(&cpu->acpi_perf_data, 426 policy->cpu); 427 if (ret) 428 return; 429 430 /* 431 * Check if the control value in _PSS is for PERF_CTL MSR, which should 432 * guarantee that the states returned by it map to the states in our 433 * list directly. 434 */ 435 if (cpu->acpi_perf_data.control_register.space_id != 436 ACPI_ADR_SPACE_FIXED_HARDWARE) 437 goto err; 438 439 /* 440 * If there is only one entry _PSS, simply ignore _PSS and continue as 441 * usual without taking _PSS into account 442 */ 443 if (cpu->acpi_perf_data.state_count < 2) 444 goto err; 445 446 pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu); 447 for (i = 0; i < cpu->acpi_perf_data.state_count; i++) { 448 pr_debug(" %cP%d: %u MHz, %u mW, 0x%x\n", 449 (i == cpu->acpi_perf_data.state ? '*' : ' '), i, 450 (u32) cpu->acpi_perf_data.states[i].core_frequency, 451 (u32) cpu->acpi_perf_data.states[i].power, 452 (u32) cpu->acpi_perf_data.states[i].control); 453 } 454 455 /* 456 * The _PSS table doesn't contain whole turbo frequency range. 457 * This just contains +1 MHZ above the max non turbo frequency, 458 * with control value corresponding to max turbo ratio. But 459 * when cpufreq set policy is called, it will call with this 460 * max frequency, which will cause a reduced performance as 461 * this driver uses real max turbo frequency as the max 462 * frequency. So correct this frequency in _PSS table to 463 * correct max turbo frequency based on the turbo state. 464 * Also need to convert to MHz as _PSS freq is in MHz. 465 */ 466 if (!global.turbo_disabled) 467 cpu->acpi_perf_data.states[0].core_frequency = 468 policy->cpuinfo.max_freq / 1000; 469 cpu->valid_pss_table = true; 470 pr_debug("_PPC limits will be enforced\n"); 471 472 return; 473 474 err: 475 cpu->valid_pss_table = false; 476 acpi_processor_unregister_performance(policy->cpu); 477 } 478 479 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy) 480 { 481 struct cpudata *cpu; 482 483 cpu = all_cpu_data[policy->cpu]; 484 if (!cpu->valid_pss_table) 485 return; 486 487 acpi_processor_unregister_performance(policy->cpu); 488 } 489 #else /* CONFIG_ACPI */ 490 static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy) 491 { 492 } 493 494 static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy) 495 { 496 } 497 498 static inline bool intel_pstate_acpi_pm_profile_server(void) 499 { 500 return false; 501 } 502 #endif /* CONFIG_ACPI */ 503 504 #ifndef CONFIG_ACPI_CPPC_LIB 505 static inline int intel_pstate_get_cppc_guaranteed(int cpu) 506 { 507 return -ENOTSUPP; 508 } 509 #endif /* CONFIG_ACPI_CPPC_LIB */ 510 511 /** 512 * intel_pstate_hybrid_hwp_adjust - Calibrate HWP performance levels. 513 * @cpu: Target CPU. 514 * 515 * On hybrid processors, HWP may expose more performance levels than there are 516 * P-states accessible through the PERF_CTL interface. If that happens, the 517 * scaling factor between HWP performance levels and CPU frequency will be less 518 * than the scaling factor between P-state values and CPU frequency. 519 * 520 * In that case, adjust the CPU parameters used in computations accordingly. 521 */ 522 static void intel_pstate_hybrid_hwp_adjust(struct cpudata *cpu) 523 { 524 int perf_ctl_max_phys = cpu->pstate.max_pstate_physical; 525 int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling; 526 int perf_ctl_turbo = pstate_funcs.get_turbo(cpu->cpu); 527 int scaling = cpu->pstate.scaling; 528 529 pr_debug("CPU%d: perf_ctl_max_phys = %d\n", cpu->cpu, perf_ctl_max_phys); 530 pr_debug("CPU%d: perf_ctl_turbo = %d\n", cpu->cpu, perf_ctl_turbo); 531 pr_debug("CPU%d: perf_ctl_scaling = %d\n", cpu->cpu, perf_ctl_scaling); 532 pr_debug("CPU%d: HWP_CAP guaranteed = %d\n", cpu->cpu, cpu->pstate.max_pstate); 533 pr_debug("CPU%d: HWP_CAP highest = %d\n", cpu->cpu, cpu->pstate.turbo_pstate); 534 pr_debug("CPU%d: HWP-to-frequency scaling factor: %d\n", cpu->cpu, scaling); 535 536 cpu->pstate.turbo_freq = rounddown(cpu->pstate.turbo_pstate * scaling, 537 perf_ctl_scaling); 538 cpu->pstate.max_freq = rounddown(cpu->pstate.max_pstate * scaling, 539 perf_ctl_scaling); 540 541 cpu->pstate.max_pstate_physical = 542 DIV_ROUND_UP(perf_ctl_max_phys * perf_ctl_scaling, 543 scaling); 544 545 cpu->pstate.min_freq = cpu->pstate.min_pstate * perf_ctl_scaling; 546 /* 547 * Cast the min P-state value retrieved via pstate_funcs.get_min() to 548 * the effective range of HWP performance levels. 549 */ 550 cpu->pstate.min_pstate = DIV_ROUND_UP(cpu->pstate.min_freq, scaling); 551 } 552 553 static inline void update_turbo_state(void) 554 { 555 u64 misc_en; 556 struct cpudata *cpu; 557 558 cpu = all_cpu_data[0]; 559 rdmsrl(MSR_IA32_MISC_ENABLE, misc_en); 560 global.turbo_disabled = 561 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE || 562 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate); 563 } 564 565 static int min_perf_pct_min(void) 566 { 567 struct cpudata *cpu = all_cpu_data[0]; 568 int turbo_pstate = cpu->pstate.turbo_pstate; 569 570 return turbo_pstate ? 571 (cpu->pstate.min_pstate * 100 / turbo_pstate) : 0; 572 } 573 574 static s16 intel_pstate_get_epb(struct cpudata *cpu_data) 575 { 576 u64 epb; 577 int ret; 578 579 if (!boot_cpu_has(X86_FEATURE_EPB)) 580 return -ENXIO; 581 582 ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb); 583 if (ret) 584 return (s16)ret; 585 586 return (s16)(epb & 0x0f); 587 } 588 589 static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data) 590 { 591 s16 epp; 592 593 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) { 594 /* 595 * When hwp_req_data is 0, means that caller didn't read 596 * MSR_HWP_REQUEST, so need to read and get EPP. 597 */ 598 if (!hwp_req_data) { 599 epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, 600 &hwp_req_data); 601 if (epp) 602 return epp; 603 } 604 epp = (hwp_req_data >> 24) & 0xff; 605 } else { 606 /* When there is no EPP present, HWP uses EPB settings */ 607 epp = intel_pstate_get_epb(cpu_data); 608 } 609 610 return epp; 611 } 612 613 static int intel_pstate_set_epb(int cpu, s16 pref) 614 { 615 u64 epb; 616 int ret; 617 618 if (!boot_cpu_has(X86_FEATURE_EPB)) 619 return -ENXIO; 620 621 ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb); 622 if (ret) 623 return ret; 624 625 epb = (epb & ~0x0f) | pref; 626 wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb); 627 628 return 0; 629 } 630 631 /* 632 * EPP/EPB display strings corresponding to EPP index in the 633 * energy_perf_strings[] 634 * index String 635 *------------------------------------- 636 * 0 default 637 * 1 performance 638 * 2 balance_performance 639 * 3 balance_power 640 * 4 power 641 */ 642 643 enum energy_perf_value_index { 644 EPP_INDEX_DEFAULT = 0, 645 EPP_INDEX_PERFORMANCE, 646 EPP_INDEX_BALANCE_PERFORMANCE, 647 EPP_INDEX_BALANCE_POWERSAVE, 648 EPP_INDEX_POWERSAVE, 649 }; 650 651 static const char * const energy_perf_strings[] = { 652 [EPP_INDEX_DEFAULT] = "default", 653 [EPP_INDEX_PERFORMANCE] = "performance", 654 [EPP_INDEX_BALANCE_PERFORMANCE] = "balance_performance", 655 [EPP_INDEX_BALANCE_POWERSAVE] = "balance_power", 656 [EPP_INDEX_POWERSAVE] = "power", 657 NULL 658 }; 659 static unsigned int epp_values[] = { 660 [EPP_INDEX_DEFAULT] = 0, /* Unused index */ 661 [EPP_INDEX_PERFORMANCE] = HWP_EPP_PERFORMANCE, 662 [EPP_INDEX_BALANCE_PERFORMANCE] = HWP_EPP_BALANCE_PERFORMANCE, 663 [EPP_INDEX_BALANCE_POWERSAVE] = HWP_EPP_BALANCE_POWERSAVE, 664 [EPP_INDEX_POWERSAVE] = HWP_EPP_POWERSAVE, 665 }; 666 667 static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data, int *raw_epp) 668 { 669 s16 epp; 670 int index = -EINVAL; 671 672 *raw_epp = 0; 673 epp = intel_pstate_get_epp(cpu_data, 0); 674 if (epp < 0) 675 return epp; 676 677 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) { 678 if (epp == epp_values[EPP_INDEX_PERFORMANCE]) 679 return EPP_INDEX_PERFORMANCE; 680 if (epp == epp_values[EPP_INDEX_BALANCE_PERFORMANCE]) 681 return EPP_INDEX_BALANCE_PERFORMANCE; 682 if (epp == epp_values[EPP_INDEX_BALANCE_POWERSAVE]) 683 return EPP_INDEX_BALANCE_POWERSAVE; 684 if (epp == epp_values[EPP_INDEX_POWERSAVE]) 685 return EPP_INDEX_POWERSAVE; 686 *raw_epp = epp; 687 return 0; 688 } else if (boot_cpu_has(X86_FEATURE_EPB)) { 689 /* 690 * Range: 691 * 0x00-0x03 : Performance 692 * 0x04-0x07 : Balance performance 693 * 0x08-0x0B : Balance power 694 * 0x0C-0x0F : Power 695 * The EPB is a 4 bit value, but our ranges restrict the 696 * value which can be set. Here only using top two bits 697 * effectively. 698 */ 699 index = (epp >> 2) + 1; 700 } 701 702 return index; 703 } 704 705 static int intel_pstate_set_epp(struct cpudata *cpu, u32 epp) 706 { 707 int ret; 708 709 /* 710 * Use the cached HWP Request MSR value, because in the active mode the 711 * register itself may be updated by intel_pstate_hwp_boost_up() or 712 * intel_pstate_hwp_boost_down() at any time. 713 */ 714 u64 value = READ_ONCE(cpu->hwp_req_cached); 715 716 value &= ~GENMASK_ULL(31, 24); 717 value |= (u64)epp << 24; 718 /* 719 * The only other updater of hwp_req_cached in the active mode, 720 * intel_pstate_hwp_set(), is called under the same lock as this 721 * function, so it cannot run in parallel with the update below. 722 */ 723 WRITE_ONCE(cpu->hwp_req_cached, value); 724 ret = wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value); 725 if (!ret) 726 cpu->epp_cached = epp; 727 728 return ret; 729 } 730 731 static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data, 732 int pref_index, bool use_raw, 733 u32 raw_epp) 734 { 735 int epp = -EINVAL; 736 int ret; 737 738 if (!pref_index) 739 epp = cpu_data->epp_default; 740 741 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) { 742 if (use_raw) 743 epp = raw_epp; 744 else if (epp == -EINVAL) 745 epp = epp_values[pref_index]; 746 747 /* 748 * To avoid confusion, refuse to set EPP to any values different 749 * from 0 (performance) if the current policy is "performance", 750 * because those values would be overridden. 751 */ 752 if (epp > 0 && cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) 753 return -EBUSY; 754 755 ret = intel_pstate_set_epp(cpu_data, epp); 756 } else { 757 if (epp == -EINVAL) 758 epp = (pref_index - 1) << 2; 759 ret = intel_pstate_set_epb(cpu_data->cpu, epp); 760 } 761 762 return ret; 763 } 764 765 static ssize_t show_energy_performance_available_preferences( 766 struct cpufreq_policy *policy, char *buf) 767 { 768 int i = 0; 769 int ret = 0; 770 771 while (energy_perf_strings[i] != NULL) 772 ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]); 773 774 ret += sprintf(&buf[ret], "\n"); 775 776 return ret; 777 } 778 779 cpufreq_freq_attr_ro(energy_performance_available_preferences); 780 781 static struct cpufreq_driver intel_pstate; 782 783 static ssize_t store_energy_performance_preference( 784 struct cpufreq_policy *policy, const char *buf, size_t count) 785 { 786 struct cpudata *cpu = all_cpu_data[policy->cpu]; 787 char str_preference[21]; 788 bool raw = false; 789 ssize_t ret; 790 u32 epp = 0; 791 792 ret = sscanf(buf, "%20s", str_preference); 793 if (ret != 1) 794 return -EINVAL; 795 796 ret = match_string(energy_perf_strings, -1, str_preference); 797 if (ret < 0) { 798 if (!boot_cpu_has(X86_FEATURE_HWP_EPP)) 799 return ret; 800 801 ret = kstrtouint(buf, 10, &epp); 802 if (ret) 803 return ret; 804 805 if (epp > 255) 806 return -EINVAL; 807 808 raw = true; 809 } 810 811 /* 812 * This function runs with the policy R/W semaphore held, which 813 * guarantees that the driver pointer will not change while it is 814 * running. 815 */ 816 if (!intel_pstate_driver) 817 return -EAGAIN; 818 819 mutex_lock(&intel_pstate_limits_lock); 820 821 if (intel_pstate_driver == &intel_pstate) { 822 ret = intel_pstate_set_energy_pref_index(cpu, ret, raw, epp); 823 } else { 824 /* 825 * In the passive mode the governor needs to be stopped on the 826 * target CPU before the EPP update and restarted after it, 827 * which is super-heavy-weight, so make sure it is worth doing 828 * upfront. 829 */ 830 if (!raw) 831 epp = ret ? epp_values[ret] : cpu->epp_default; 832 833 if (cpu->epp_cached != epp) { 834 int err; 835 836 cpufreq_stop_governor(policy); 837 ret = intel_pstate_set_epp(cpu, epp); 838 err = cpufreq_start_governor(policy); 839 if (!ret) 840 ret = err; 841 } 842 } 843 844 mutex_unlock(&intel_pstate_limits_lock); 845 846 return ret ?: count; 847 } 848 849 static ssize_t show_energy_performance_preference( 850 struct cpufreq_policy *policy, char *buf) 851 { 852 struct cpudata *cpu_data = all_cpu_data[policy->cpu]; 853 int preference, raw_epp; 854 855 preference = intel_pstate_get_energy_pref_index(cpu_data, &raw_epp); 856 if (preference < 0) 857 return preference; 858 859 if (raw_epp) 860 return sprintf(buf, "%d\n", raw_epp); 861 else 862 return sprintf(buf, "%s\n", energy_perf_strings[preference]); 863 } 864 865 cpufreq_freq_attr_rw(energy_performance_preference); 866 867 static ssize_t show_base_frequency(struct cpufreq_policy *policy, char *buf) 868 { 869 struct cpudata *cpu = all_cpu_data[policy->cpu]; 870 int ratio, freq; 871 872 ratio = intel_pstate_get_cppc_guaranteed(policy->cpu); 873 if (ratio <= 0) { 874 u64 cap; 875 876 rdmsrl_on_cpu(policy->cpu, MSR_HWP_CAPABILITIES, &cap); 877 ratio = HWP_GUARANTEED_PERF(cap); 878 } 879 880 freq = ratio * cpu->pstate.scaling; 881 if (cpu->pstate.scaling != cpu->pstate.perf_ctl_scaling) 882 freq = rounddown(freq, cpu->pstate.perf_ctl_scaling); 883 884 return sprintf(buf, "%d\n", freq); 885 } 886 887 cpufreq_freq_attr_ro(base_frequency); 888 889 static struct freq_attr *hwp_cpufreq_attrs[] = { 890 &energy_performance_preference, 891 &energy_performance_available_preferences, 892 &base_frequency, 893 NULL, 894 }; 895 896 static void __intel_pstate_get_hwp_cap(struct cpudata *cpu) 897 { 898 u64 cap; 899 900 rdmsrl_on_cpu(cpu->cpu, MSR_HWP_CAPABILITIES, &cap); 901 WRITE_ONCE(cpu->hwp_cap_cached, cap); 902 cpu->pstate.max_pstate = HWP_GUARANTEED_PERF(cap); 903 cpu->pstate.turbo_pstate = HWP_HIGHEST_PERF(cap); 904 } 905 906 static void intel_pstate_get_hwp_cap(struct cpudata *cpu) 907 { 908 int scaling = cpu->pstate.scaling; 909 910 __intel_pstate_get_hwp_cap(cpu); 911 912 cpu->pstate.max_freq = cpu->pstate.max_pstate * scaling; 913 cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * scaling; 914 if (scaling != cpu->pstate.perf_ctl_scaling) { 915 int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling; 916 917 cpu->pstate.max_freq = rounddown(cpu->pstate.max_freq, 918 perf_ctl_scaling); 919 cpu->pstate.turbo_freq = rounddown(cpu->pstate.turbo_freq, 920 perf_ctl_scaling); 921 } 922 } 923 924 static void intel_pstate_hwp_set(unsigned int cpu) 925 { 926 struct cpudata *cpu_data = all_cpu_data[cpu]; 927 int max, min; 928 u64 value; 929 s16 epp; 930 931 max = cpu_data->max_perf_ratio; 932 min = cpu_data->min_perf_ratio; 933 934 if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) 935 min = max; 936 937 rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value); 938 939 value &= ~HWP_MIN_PERF(~0L); 940 value |= HWP_MIN_PERF(min); 941 942 value &= ~HWP_MAX_PERF(~0L); 943 value |= HWP_MAX_PERF(max); 944 945 if (cpu_data->epp_policy == cpu_data->policy) 946 goto skip_epp; 947 948 cpu_data->epp_policy = cpu_data->policy; 949 950 if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) { 951 epp = intel_pstate_get_epp(cpu_data, value); 952 cpu_data->epp_powersave = epp; 953 /* If EPP read was failed, then don't try to write */ 954 if (epp < 0) 955 goto skip_epp; 956 957 epp = 0; 958 } else { 959 /* skip setting EPP, when saved value is invalid */ 960 if (cpu_data->epp_powersave < 0) 961 goto skip_epp; 962 963 /* 964 * No need to restore EPP when it is not zero. This 965 * means: 966 * - Policy is not changed 967 * - user has manually changed 968 * - Error reading EPB 969 */ 970 epp = intel_pstate_get_epp(cpu_data, value); 971 if (epp) 972 goto skip_epp; 973 974 epp = cpu_data->epp_powersave; 975 } 976 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) { 977 value &= ~GENMASK_ULL(31, 24); 978 value |= (u64)epp << 24; 979 } else { 980 intel_pstate_set_epb(cpu, epp); 981 } 982 skip_epp: 983 WRITE_ONCE(cpu_data->hwp_req_cached, value); 984 wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value); 985 } 986 987 static void intel_pstate_disable_hwp_interrupt(struct cpudata *cpudata); 988 989 static void intel_pstate_hwp_offline(struct cpudata *cpu) 990 { 991 u64 value = READ_ONCE(cpu->hwp_req_cached); 992 int min_perf; 993 994 intel_pstate_disable_hwp_interrupt(cpu); 995 996 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) { 997 /* 998 * In case the EPP has been set to "performance" by the 999 * active mode "performance" scaling algorithm, replace that 1000 * temporary value with the cached EPP one. 1001 */ 1002 value &= ~GENMASK_ULL(31, 24); 1003 value |= HWP_ENERGY_PERF_PREFERENCE(cpu->epp_cached); 1004 /* 1005 * However, make sure that EPP will be set to "performance" when 1006 * the CPU is brought back online again and the "performance" 1007 * scaling algorithm is still in effect. 1008 */ 1009 cpu->epp_policy = CPUFREQ_POLICY_UNKNOWN; 1010 } 1011 1012 /* 1013 * Clear the desired perf field in the cached HWP request value to 1014 * prevent nonzero desired values from being leaked into the active 1015 * mode. 1016 */ 1017 value &= ~HWP_DESIRED_PERF(~0L); 1018 WRITE_ONCE(cpu->hwp_req_cached, value); 1019 1020 value &= ~GENMASK_ULL(31, 0); 1021 min_perf = HWP_LOWEST_PERF(READ_ONCE(cpu->hwp_cap_cached)); 1022 1023 /* Set hwp_max = hwp_min */ 1024 value |= HWP_MAX_PERF(min_perf); 1025 value |= HWP_MIN_PERF(min_perf); 1026 1027 /* Set EPP to min */ 1028 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) 1029 value |= HWP_ENERGY_PERF_PREFERENCE(HWP_EPP_POWERSAVE); 1030 1031 wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value); 1032 } 1033 1034 #define POWER_CTL_EE_ENABLE 1 1035 #define POWER_CTL_EE_DISABLE 2 1036 1037 static int power_ctl_ee_state; 1038 1039 static void set_power_ctl_ee_state(bool input) 1040 { 1041 u64 power_ctl; 1042 1043 mutex_lock(&intel_pstate_driver_lock); 1044 rdmsrl(MSR_IA32_POWER_CTL, power_ctl); 1045 if (input) { 1046 power_ctl &= ~BIT(MSR_IA32_POWER_CTL_BIT_EE); 1047 power_ctl_ee_state = POWER_CTL_EE_ENABLE; 1048 } else { 1049 power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE); 1050 power_ctl_ee_state = POWER_CTL_EE_DISABLE; 1051 } 1052 wrmsrl(MSR_IA32_POWER_CTL, power_ctl); 1053 mutex_unlock(&intel_pstate_driver_lock); 1054 } 1055 1056 static void intel_pstate_hwp_enable(struct cpudata *cpudata); 1057 1058 static void intel_pstate_hwp_reenable(struct cpudata *cpu) 1059 { 1060 intel_pstate_hwp_enable(cpu); 1061 wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, READ_ONCE(cpu->hwp_req_cached)); 1062 } 1063 1064 static int intel_pstate_suspend(struct cpufreq_policy *policy) 1065 { 1066 struct cpudata *cpu = all_cpu_data[policy->cpu]; 1067 1068 pr_debug("CPU %d suspending\n", cpu->cpu); 1069 1070 cpu->suspended = true; 1071 1072 /* disable HWP interrupt and cancel any pending work */ 1073 intel_pstate_disable_hwp_interrupt(cpu); 1074 1075 return 0; 1076 } 1077 1078 static int intel_pstate_resume(struct cpufreq_policy *policy) 1079 { 1080 struct cpudata *cpu = all_cpu_data[policy->cpu]; 1081 1082 pr_debug("CPU %d resuming\n", cpu->cpu); 1083 1084 /* Only restore if the system default is changed */ 1085 if (power_ctl_ee_state == POWER_CTL_EE_ENABLE) 1086 set_power_ctl_ee_state(true); 1087 else if (power_ctl_ee_state == POWER_CTL_EE_DISABLE) 1088 set_power_ctl_ee_state(false); 1089 1090 if (cpu->suspended && hwp_active) { 1091 mutex_lock(&intel_pstate_limits_lock); 1092 1093 /* Re-enable HWP, because "online" has not done that. */ 1094 intel_pstate_hwp_reenable(cpu); 1095 1096 mutex_unlock(&intel_pstate_limits_lock); 1097 } 1098 1099 cpu->suspended = false; 1100 1101 return 0; 1102 } 1103 1104 static void intel_pstate_update_policies(void) 1105 { 1106 int cpu; 1107 1108 for_each_possible_cpu(cpu) 1109 cpufreq_update_policy(cpu); 1110 } 1111 1112 static void __intel_pstate_update_max_freq(struct cpudata *cpudata, 1113 struct cpufreq_policy *policy) 1114 { 1115 policy->cpuinfo.max_freq = global.turbo_disabled_mf ? 1116 cpudata->pstate.max_freq : cpudata->pstate.turbo_freq; 1117 refresh_frequency_limits(policy); 1118 } 1119 1120 static void intel_pstate_update_max_freq(unsigned int cpu) 1121 { 1122 struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu); 1123 1124 if (!policy) 1125 return; 1126 1127 __intel_pstate_update_max_freq(all_cpu_data[cpu], policy); 1128 1129 cpufreq_cpu_release(policy); 1130 } 1131 1132 static void intel_pstate_update_limits(unsigned int cpu) 1133 { 1134 mutex_lock(&intel_pstate_driver_lock); 1135 1136 update_turbo_state(); 1137 /* 1138 * If turbo has been turned on or off globally, policy limits for 1139 * all CPUs need to be updated to reflect that. 1140 */ 1141 if (global.turbo_disabled_mf != global.turbo_disabled) { 1142 global.turbo_disabled_mf = global.turbo_disabled; 1143 arch_set_max_freq_ratio(global.turbo_disabled); 1144 for_each_possible_cpu(cpu) 1145 intel_pstate_update_max_freq(cpu); 1146 } else { 1147 cpufreq_update_policy(cpu); 1148 } 1149 1150 mutex_unlock(&intel_pstate_driver_lock); 1151 } 1152 1153 /************************** sysfs begin ************************/ 1154 #define show_one(file_name, object) \ 1155 static ssize_t show_##file_name \ 1156 (struct kobject *kobj, struct kobj_attribute *attr, char *buf) \ 1157 { \ 1158 return sprintf(buf, "%u\n", global.object); \ 1159 } 1160 1161 static ssize_t intel_pstate_show_status(char *buf); 1162 static int intel_pstate_update_status(const char *buf, size_t size); 1163 1164 static ssize_t show_status(struct kobject *kobj, 1165 struct kobj_attribute *attr, char *buf) 1166 { 1167 ssize_t ret; 1168 1169 mutex_lock(&intel_pstate_driver_lock); 1170 ret = intel_pstate_show_status(buf); 1171 mutex_unlock(&intel_pstate_driver_lock); 1172 1173 return ret; 1174 } 1175 1176 static ssize_t store_status(struct kobject *a, struct kobj_attribute *b, 1177 const char *buf, size_t count) 1178 { 1179 char *p = memchr(buf, '\n', count); 1180 int ret; 1181 1182 mutex_lock(&intel_pstate_driver_lock); 1183 ret = intel_pstate_update_status(buf, p ? p - buf : count); 1184 mutex_unlock(&intel_pstate_driver_lock); 1185 1186 return ret < 0 ? ret : count; 1187 } 1188 1189 static ssize_t show_turbo_pct(struct kobject *kobj, 1190 struct kobj_attribute *attr, char *buf) 1191 { 1192 struct cpudata *cpu; 1193 int total, no_turbo, turbo_pct; 1194 uint32_t turbo_fp; 1195 1196 mutex_lock(&intel_pstate_driver_lock); 1197 1198 if (!intel_pstate_driver) { 1199 mutex_unlock(&intel_pstate_driver_lock); 1200 return -EAGAIN; 1201 } 1202 1203 cpu = all_cpu_data[0]; 1204 1205 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1; 1206 no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1; 1207 turbo_fp = div_fp(no_turbo, total); 1208 turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100))); 1209 1210 mutex_unlock(&intel_pstate_driver_lock); 1211 1212 return sprintf(buf, "%u\n", turbo_pct); 1213 } 1214 1215 static ssize_t show_num_pstates(struct kobject *kobj, 1216 struct kobj_attribute *attr, char *buf) 1217 { 1218 struct cpudata *cpu; 1219 int total; 1220 1221 mutex_lock(&intel_pstate_driver_lock); 1222 1223 if (!intel_pstate_driver) { 1224 mutex_unlock(&intel_pstate_driver_lock); 1225 return -EAGAIN; 1226 } 1227 1228 cpu = all_cpu_data[0]; 1229 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1; 1230 1231 mutex_unlock(&intel_pstate_driver_lock); 1232 1233 return sprintf(buf, "%u\n", total); 1234 } 1235 1236 static ssize_t show_no_turbo(struct kobject *kobj, 1237 struct kobj_attribute *attr, char *buf) 1238 { 1239 ssize_t ret; 1240 1241 mutex_lock(&intel_pstate_driver_lock); 1242 1243 if (!intel_pstate_driver) { 1244 mutex_unlock(&intel_pstate_driver_lock); 1245 return -EAGAIN; 1246 } 1247 1248 update_turbo_state(); 1249 if (global.turbo_disabled) 1250 ret = sprintf(buf, "%u\n", global.turbo_disabled); 1251 else 1252 ret = sprintf(buf, "%u\n", global.no_turbo); 1253 1254 mutex_unlock(&intel_pstate_driver_lock); 1255 1256 return ret; 1257 } 1258 1259 static ssize_t store_no_turbo(struct kobject *a, struct kobj_attribute *b, 1260 const char *buf, size_t count) 1261 { 1262 unsigned int input; 1263 int ret; 1264 1265 ret = sscanf(buf, "%u", &input); 1266 if (ret != 1) 1267 return -EINVAL; 1268 1269 mutex_lock(&intel_pstate_driver_lock); 1270 1271 if (!intel_pstate_driver) { 1272 mutex_unlock(&intel_pstate_driver_lock); 1273 return -EAGAIN; 1274 } 1275 1276 mutex_lock(&intel_pstate_limits_lock); 1277 1278 update_turbo_state(); 1279 if (global.turbo_disabled) { 1280 pr_notice_once("Turbo disabled by BIOS or unavailable on processor\n"); 1281 mutex_unlock(&intel_pstate_limits_lock); 1282 mutex_unlock(&intel_pstate_driver_lock); 1283 return -EPERM; 1284 } 1285 1286 global.no_turbo = clamp_t(int, input, 0, 1); 1287 1288 if (global.no_turbo) { 1289 struct cpudata *cpu = all_cpu_data[0]; 1290 int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate; 1291 1292 /* Squash the global minimum into the permitted range. */ 1293 if (global.min_perf_pct > pct) 1294 global.min_perf_pct = pct; 1295 } 1296 1297 mutex_unlock(&intel_pstate_limits_lock); 1298 1299 intel_pstate_update_policies(); 1300 arch_set_max_freq_ratio(global.no_turbo); 1301 1302 mutex_unlock(&intel_pstate_driver_lock); 1303 1304 return count; 1305 } 1306 1307 static void update_qos_request(enum freq_qos_req_type type) 1308 { 1309 struct freq_qos_request *req; 1310 struct cpufreq_policy *policy; 1311 int i; 1312 1313 for_each_possible_cpu(i) { 1314 struct cpudata *cpu = all_cpu_data[i]; 1315 unsigned int freq, perf_pct; 1316 1317 policy = cpufreq_cpu_get(i); 1318 if (!policy) 1319 continue; 1320 1321 req = policy->driver_data; 1322 cpufreq_cpu_put(policy); 1323 1324 if (!req) 1325 continue; 1326 1327 if (hwp_active) 1328 intel_pstate_get_hwp_cap(cpu); 1329 1330 if (type == FREQ_QOS_MIN) { 1331 perf_pct = global.min_perf_pct; 1332 } else { 1333 req++; 1334 perf_pct = global.max_perf_pct; 1335 } 1336 1337 freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * perf_pct, 100); 1338 1339 if (freq_qos_update_request(req, freq) < 0) 1340 pr_warn("Failed to update freq constraint: CPU%d\n", i); 1341 } 1342 } 1343 1344 static ssize_t store_max_perf_pct(struct kobject *a, struct kobj_attribute *b, 1345 const char *buf, size_t count) 1346 { 1347 unsigned int input; 1348 int ret; 1349 1350 ret = sscanf(buf, "%u", &input); 1351 if (ret != 1) 1352 return -EINVAL; 1353 1354 mutex_lock(&intel_pstate_driver_lock); 1355 1356 if (!intel_pstate_driver) { 1357 mutex_unlock(&intel_pstate_driver_lock); 1358 return -EAGAIN; 1359 } 1360 1361 mutex_lock(&intel_pstate_limits_lock); 1362 1363 global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100); 1364 1365 mutex_unlock(&intel_pstate_limits_lock); 1366 1367 if (intel_pstate_driver == &intel_pstate) 1368 intel_pstate_update_policies(); 1369 else 1370 update_qos_request(FREQ_QOS_MAX); 1371 1372 mutex_unlock(&intel_pstate_driver_lock); 1373 1374 return count; 1375 } 1376 1377 static ssize_t store_min_perf_pct(struct kobject *a, struct kobj_attribute *b, 1378 const char *buf, size_t count) 1379 { 1380 unsigned int input; 1381 int ret; 1382 1383 ret = sscanf(buf, "%u", &input); 1384 if (ret != 1) 1385 return -EINVAL; 1386 1387 mutex_lock(&intel_pstate_driver_lock); 1388 1389 if (!intel_pstate_driver) { 1390 mutex_unlock(&intel_pstate_driver_lock); 1391 return -EAGAIN; 1392 } 1393 1394 mutex_lock(&intel_pstate_limits_lock); 1395 1396 global.min_perf_pct = clamp_t(int, input, 1397 min_perf_pct_min(), global.max_perf_pct); 1398 1399 mutex_unlock(&intel_pstate_limits_lock); 1400 1401 if (intel_pstate_driver == &intel_pstate) 1402 intel_pstate_update_policies(); 1403 else 1404 update_qos_request(FREQ_QOS_MIN); 1405 1406 mutex_unlock(&intel_pstate_driver_lock); 1407 1408 return count; 1409 } 1410 1411 static ssize_t show_hwp_dynamic_boost(struct kobject *kobj, 1412 struct kobj_attribute *attr, char *buf) 1413 { 1414 return sprintf(buf, "%u\n", hwp_boost); 1415 } 1416 1417 static ssize_t store_hwp_dynamic_boost(struct kobject *a, 1418 struct kobj_attribute *b, 1419 const char *buf, size_t count) 1420 { 1421 unsigned int input; 1422 int ret; 1423 1424 ret = kstrtouint(buf, 10, &input); 1425 if (ret) 1426 return ret; 1427 1428 mutex_lock(&intel_pstate_driver_lock); 1429 hwp_boost = !!input; 1430 intel_pstate_update_policies(); 1431 mutex_unlock(&intel_pstate_driver_lock); 1432 1433 return count; 1434 } 1435 1436 static ssize_t show_energy_efficiency(struct kobject *kobj, struct kobj_attribute *attr, 1437 char *buf) 1438 { 1439 u64 power_ctl; 1440 int enable; 1441 1442 rdmsrl(MSR_IA32_POWER_CTL, power_ctl); 1443 enable = !!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE)); 1444 return sprintf(buf, "%d\n", !enable); 1445 } 1446 1447 static ssize_t store_energy_efficiency(struct kobject *a, struct kobj_attribute *b, 1448 const char *buf, size_t count) 1449 { 1450 bool input; 1451 int ret; 1452 1453 ret = kstrtobool(buf, &input); 1454 if (ret) 1455 return ret; 1456 1457 set_power_ctl_ee_state(input); 1458 1459 return count; 1460 } 1461 1462 show_one(max_perf_pct, max_perf_pct); 1463 show_one(min_perf_pct, min_perf_pct); 1464 1465 define_one_global_rw(status); 1466 define_one_global_rw(no_turbo); 1467 define_one_global_rw(max_perf_pct); 1468 define_one_global_rw(min_perf_pct); 1469 define_one_global_ro(turbo_pct); 1470 define_one_global_ro(num_pstates); 1471 define_one_global_rw(hwp_dynamic_boost); 1472 define_one_global_rw(energy_efficiency); 1473 1474 static struct attribute *intel_pstate_attributes[] = { 1475 &status.attr, 1476 &no_turbo.attr, 1477 NULL 1478 }; 1479 1480 static const struct attribute_group intel_pstate_attr_group = { 1481 .attrs = intel_pstate_attributes, 1482 }; 1483 1484 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[]; 1485 1486 static struct kobject *intel_pstate_kobject; 1487 1488 static void __init intel_pstate_sysfs_expose_params(void) 1489 { 1490 int rc; 1491 1492 intel_pstate_kobject = kobject_create_and_add("intel_pstate", 1493 &cpu_subsys.dev_root->kobj); 1494 if (WARN_ON(!intel_pstate_kobject)) 1495 return; 1496 1497 rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group); 1498 if (WARN_ON(rc)) 1499 return; 1500 1501 if (!boot_cpu_has(X86_FEATURE_HYBRID_CPU)) { 1502 rc = sysfs_create_file(intel_pstate_kobject, &turbo_pct.attr); 1503 WARN_ON(rc); 1504 1505 rc = sysfs_create_file(intel_pstate_kobject, &num_pstates.attr); 1506 WARN_ON(rc); 1507 } 1508 1509 /* 1510 * If per cpu limits are enforced there are no global limits, so 1511 * return without creating max/min_perf_pct attributes 1512 */ 1513 if (per_cpu_limits) 1514 return; 1515 1516 rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr); 1517 WARN_ON(rc); 1518 1519 rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr); 1520 WARN_ON(rc); 1521 1522 if (x86_match_cpu(intel_pstate_cpu_ee_disable_ids)) { 1523 rc = sysfs_create_file(intel_pstate_kobject, &energy_efficiency.attr); 1524 WARN_ON(rc); 1525 } 1526 } 1527 1528 static void __init intel_pstate_sysfs_remove(void) 1529 { 1530 if (!intel_pstate_kobject) 1531 return; 1532 1533 sysfs_remove_group(intel_pstate_kobject, &intel_pstate_attr_group); 1534 1535 if (!boot_cpu_has(X86_FEATURE_HYBRID_CPU)) { 1536 sysfs_remove_file(intel_pstate_kobject, &num_pstates.attr); 1537 sysfs_remove_file(intel_pstate_kobject, &turbo_pct.attr); 1538 } 1539 1540 if (!per_cpu_limits) { 1541 sysfs_remove_file(intel_pstate_kobject, &max_perf_pct.attr); 1542 sysfs_remove_file(intel_pstate_kobject, &min_perf_pct.attr); 1543 1544 if (x86_match_cpu(intel_pstate_cpu_ee_disable_ids)) 1545 sysfs_remove_file(intel_pstate_kobject, &energy_efficiency.attr); 1546 } 1547 1548 kobject_put(intel_pstate_kobject); 1549 } 1550 1551 static void intel_pstate_sysfs_expose_hwp_dynamic_boost(void) 1552 { 1553 int rc; 1554 1555 if (!hwp_active) 1556 return; 1557 1558 rc = sysfs_create_file(intel_pstate_kobject, &hwp_dynamic_boost.attr); 1559 WARN_ON_ONCE(rc); 1560 } 1561 1562 static void intel_pstate_sysfs_hide_hwp_dynamic_boost(void) 1563 { 1564 if (!hwp_active) 1565 return; 1566 1567 sysfs_remove_file(intel_pstate_kobject, &hwp_dynamic_boost.attr); 1568 } 1569 1570 /************************** sysfs end ************************/ 1571 1572 static void intel_pstate_notify_work(struct work_struct *work) 1573 { 1574 struct cpudata *cpudata = 1575 container_of(to_delayed_work(work), struct cpudata, hwp_notify_work); 1576 struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpudata->cpu); 1577 1578 if (policy) { 1579 intel_pstate_get_hwp_cap(cpudata); 1580 __intel_pstate_update_max_freq(cpudata, policy); 1581 1582 cpufreq_cpu_release(policy); 1583 } 1584 1585 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_STATUS, 0); 1586 } 1587 1588 static DEFINE_SPINLOCK(hwp_notify_lock); 1589 static cpumask_t hwp_intr_enable_mask; 1590 1591 void notify_hwp_interrupt(void) 1592 { 1593 unsigned int this_cpu = smp_processor_id(); 1594 struct cpudata *cpudata; 1595 unsigned long flags; 1596 u64 value; 1597 1598 if (!READ_ONCE(hwp_active) || !boot_cpu_has(X86_FEATURE_HWP_NOTIFY)) 1599 return; 1600 1601 rdmsrl_safe(MSR_HWP_STATUS, &value); 1602 if (!(value & 0x01)) 1603 return; 1604 1605 spin_lock_irqsave(&hwp_notify_lock, flags); 1606 1607 if (!cpumask_test_cpu(this_cpu, &hwp_intr_enable_mask)) 1608 goto ack_intr; 1609 1610 /* 1611 * Currently we never free all_cpu_data. And we can't reach here 1612 * without this allocated. But for safety for future changes, added 1613 * check. 1614 */ 1615 if (unlikely(!READ_ONCE(all_cpu_data))) 1616 goto ack_intr; 1617 1618 /* 1619 * The free is done during cleanup, when cpufreq registry is failed. 1620 * We wouldn't be here if it fails on init or switch status. But for 1621 * future changes, added check. 1622 */ 1623 cpudata = READ_ONCE(all_cpu_data[this_cpu]); 1624 if (unlikely(!cpudata)) 1625 goto ack_intr; 1626 1627 schedule_delayed_work(&cpudata->hwp_notify_work, msecs_to_jiffies(10)); 1628 1629 spin_unlock_irqrestore(&hwp_notify_lock, flags); 1630 1631 return; 1632 1633 ack_intr: 1634 wrmsrl_safe(MSR_HWP_STATUS, 0); 1635 spin_unlock_irqrestore(&hwp_notify_lock, flags); 1636 } 1637 1638 static void intel_pstate_disable_hwp_interrupt(struct cpudata *cpudata) 1639 { 1640 unsigned long flags; 1641 1642 if (!boot_cpu_has(X86_FEATURE_HWP_NOTIFY)) 1643 return; 1644 1645 /* wrmsrl_on_cpu has to be outside spinlock as this can result in IPC */ 1646 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00); 1647 1648 spin_lock_irqsave(&hwp_notify_lock, flags); 1649 if (cpumask_test_and_clear_cpu(cpudata->cpu, &hwp_intr_enable_mask)) 1650 cancel_delayed_work(&cpudata->hwp_notify_work); 1651 spin_unlock_irqrestore(&hwp_notify_lock, flags); 1652 } 1653 1654 static void intel_pstate_enable_hwp_interrupt(struct cpudata *cpudata) 1655 { 1656 /* Enable HWP notification interrupt for guaranteed performance change */ 1657 if (boot_cpu_has(X86_FEATURE_HWP_NOTIFY)) { 1658 unsigned long flags; 1659 1660 spin_lock_irqsave(&hwp_notify_lock, flags); 1661 INIT_DELAYED_WORK(&cpudata->hwp_notify_work, intel_pstate_notify_work); 1662 cpumask_set_cpu(cpudata->cpu, &hwp_intr_enable_mask); 1663 spin_unlock_irqrestore(&hwp_notify_lock, flags); 1664 1665 /* wrmsrl_on_cpu has to be outside spinlock as this can result in IPC */ 1666 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x01); 1667 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_STATUS, 0); 1668 } 1669 } 1670 1671 static void intel_pstate_update_epp_defaults(struct cpudata *cpudata) 1672 { 1673 cpudata->epp_default = intel_pstate_get_epp(cpudata, 0); 1674 1675 /* 1676 * If this CPU gen doesn't call for change in balance_perf 1677 * EPP return. 1678 */ 1679 if (epp_values[EPP_INDEX_BALANCE_PERFORMANCE] == HWP_EPP_BALANCE_PERFORMANCE) 1680 return; 1681 1682 /* 1683 * If the EPP is set by firmware, which means that firmware enabled HWP 1684 * - Is equal or less than 0x80 (default balance_perf EPP) 1685 * - But less performance oriented than performance EPP 1686 * then use this as new balance_perf EPP. 1687 */ 1688 if (hwp_forced && cpudata->epp_default <= HWP_EPP_BALANCE_PERFORMANCE && 1689 cpudata->epp_default > HWP_EPP_PERFORMANCE) { 1690 epp_values[EPP_INDEX_BALANCE_PERFORMANCE] = cpudata->epp_default; 1691 return; 1692 } 1693 1694 /* 1695 * Use hard coded value per gen to update the balance_perf 1696 * and default EPP. 1697 */ 1698 cpudata->epp_default = epp_values[EPP_INDEX_BALANCE_PERFORMANCE]; 1699 intel_pstate_set_epp(cpudata, cpudata->epp_default); 1700 } 1701 1702 static void intel_pstate_hwp_enable(struct cpudata *cpudata) 1703 { 1704 /* First disable HWP notification interrupt till we activate again */ 1705 if (boot_cpu_has(X86_FEATURE_HWP_NOTIFY)) 1706 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00); 1707 1708 wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1); 1709 1710 intel_pstate_enable_hwp_interrupt(cpudata); 1711 1712 if (cpudata->epp_default >= 0) 1713 return; 1714 1715 intel_pstate_update_epp_defaults(cpudata); 1716 } 1717 1718 static int atom_get_min_pstate(int not_used) 1719 { 1720 u64 value; 1721 1722 rdmsrl(MSR_ATOM_CORE_RATIOS, value); 1723 return (value >> 8) & 0x7F; 1724 } 1725 1726 static int atom_get_max_pstate(int not_used) 1727 { 1728 u64 value; 1729 1730 rdmsrl(MSR_ATOM_CORE_RATIOS, value); 1731 return (value >> 16) & 0x7F; 1732 } 1733 1734 static int atom_get_turbo_pstate(int not_used) 1735 { 1736 u64 value; 1737 1738 rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value); 1739 return value & 0x7F; 1740 } 1741 1742 static u64 atom_get_val(struct cpudata *cpudata, int pstate) 1743 { 1744 u64 val; 1745 int32_t vid_fp; 1746 u32 vid; 1747 1748 val = (u64)pstate << 8; 1749 if (global.no_turbo && !global.turbo_disabled) 1750 val |= (u64)1 << 32; 1751 1752 vid_fp = cpudata->vid.min + mul_fp( 1753 int_tofp(pstate - cpudata->pstate.min_pstate), 1754 cpudata->vid.ratio); 1755 1756 vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max); 1757 vid = ceiling_fp(vid_fp); 1758 1759 if (pstate > cpudata->pstate.max_pstate) 1760 vid = cpudata->vid.turbo; 1761 1762 return val | vid; 1763 } 1764 1765 static int silvermont_get_scaling(void) 1766 { 1767 u64 value; 1768 int i; 1769 /* Defined in Table 35-6 from SDM (Sept 2015) */ 1770 static int silvermont_freq_table[] = { 1771 83300, 100000, 133300, 116700, 80000}; 1772 1773 rdmsrl(MSR_FSB_FREQ, value); 1774 i = value & 0x7; 1775 WARN_ON(i > 4); 1776 1777 return silvermont_freq_table[i]; 1778 } 1779 1780 static int airmont_get_scaling(void) 1781 { 1782 u64 value; 1783 int i; 1784 /* Defined in Table 35-10 from SDM (Sept 2015) */ 1785 static int airmont_freq_table[] = { 1786 83300, 100000, 133300, 116700, 80000, 1787 93300, 90000, 88900, 87500}; 1788 1789 rdmsrl(MSR_FSB_FREQ, value); 1790 i = value & 0xF; 1791 WARN_ON(i > 8); 1792 1793 return airmont_freq_table[i]; 1794 } 1795 1796 static void atom_get_vid(struct cpudata *cpudata) 1797 { 1798 u64 value; 1799 1800 rdmsrl(MSR_ATOM_CORE_VIDS, value); 1801 cpudata->vid.min = int_tofp((value >> 8) & 0x7f); 1802 cpudata->vid.max = int_tofp((value >> 16) & 0x7f); 1803 cpudata->vid.ratio = div_fp( 1804 cpudata->vid.max - cpudata->vid.min, 1805 int_tofp(cpudata->pstate.max_pstate - 1806 cpudata->pstate.min_pstate)); 1807 1808 rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value); 1809 cpudata->vid.turbo = value & 0x7f; 1810 } 1811 1812 static int core_get_min_pstate(int cpu) 1813 { 1814 u64 value; 1815 1816 rdmsrl_on_cpu(cpu, MSR_PLATFORM_INFO, &value); 1817 return (value >> 40) & 0xFF; 1818 } 1819 1820 static int core_get_max_pstate_physical(int cpu) 1821 { 1822 u64 value; 1823 1824 rdmsrl_on_cpu(cpu, MSR_PLATFORM_INFO, &value); 1825 return (value >> 8) & 0xFF; 1826 } 1827 1828 static int core_get_tdp_ratio(int cpu, u64 plat_info) 1829 { 1830 /* Check how many TDP levels present */ 1831 if (plat_info & 0x600000000) { 1832 u64 tdp_ctrl; 1833 u64 tdp_ratio; 1834 int tdp_msr; 1835 int err; 1836 1837 /* Get the TDP level (0, 1, 2) to get ratios */ 1838 err = rdmsrl_safe_on_cpu(cpu, MSR_CONFIG_TDP_CONTROL, &tdp_ctrl); 1839 if (err) 1840 return err; 1841 1842 /* TDP MSR are continuous starting at 0x648 */ 1843 tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03); 1844 err = rdmsrl_safe_on_cpu(cpu, tdp_msr, &tdp_ratio); 1845 if (err) 1846 return err; 1847 1848 /* For level 1 and 2, bits[23:16] contain the ratio */ 1849 if (tdp_ctrl & 0x03) 1850 tdp_ratio >>= 16; 1851 1852 tdp_ratio &= 0xff; /* ratios are only 8 bits long */ 1853 pr_debug("tdp_ratio %x\n", (int)tdp_ratio); 1854 1855 return (int)tdp_ratio; 1856 } 1857 1858 return -ENXIO; 1859 } 1860 1861 static int core_get_max_pstate(int cpu) 1862 { 1863 u64 tar; 1864 u64 plat_info; 1865 int max_pstate; 1866 int tdp_ratio; 1867 int err; 1868 1869 rdmsrl_on_cpu(cpu, MSR_PLATFORM_INFO, &plat_info); 1870 max_pstate = (plat_info >> 8) & 0xFF; 1871 1872 tdp_ratio = core_get_tdp_ratio(cpu, plat_info); 1873 if (tdp_ratio <= 0) 1874 return max_pstate; 1875 1876 if (hwp_active) { 1877 /* Turbo activation ratio is not used on HWP platforms */ 1878 return tdp_ratio; 1879 } 1880 1881 err = rdmsrl_safe_on_cpu(cpu, MSR_TURBO_ACTIVATION_RATIO, &tar); 1882 if (!err) { 1883 int tar_levels; 1884 1885 /* Do some sanity checking for safety */ 1886 tar_levels = tar & 0xff; 1887 if (tdp_ratio - 1 == tar_levels) { 1888 max_pstate = tar_levels; 1889 pr_debug("max_pstate=TAC %x\n", max_pstate); 1890 } 1891 } 1892 1893 return max_pstate; 1894 } 1895 1896 static int core_get_turbo_pstate(int cpu) 1897 { 1898 u64 value; 1899 int nont, ret; 1900 1901 rdmsrl_on_cpu(cpu, MSR_TURBO_RATIO_LIMIT, &value); 1902 nont = core_get_max_pstate(cpu); 1903 ret = (value) & 255; 1904 if (ret <= nont) 1905 ret = nont; 1906 return ret; 1907 } 1908 1909 static inline int core_get_scaling(void) 1910 { 1911 return 100000; 1912 } 1913 1914 static u64 core_get_val(struct cpudata *cpudata, int pstate) 1915 { 1916 u64 val; 1917 1918 val = (u64)pstate << 8; 1919 if (global.no_turbo && !global.turbo_disabled) 1920 val |= (u64)1 << 32; 1921 1922 return val; 1923 } 1924 1925 static int knl_get_aperf_mperf_shift(void) 1926 { 1927 return 10; 1928 } 1929 1930 static int knl_get_turbo_pstate(int cpu) 1931 { 1932 u64 value; 1933 int nont, ret; 1934 1935 rdmsrl_on_cpu(cpu, MSR_TURBO_RATIO_LIMIT, &value); 1936 nont = core_get_max_pstate(cpu); 1937 ret = (((value) >> 8) & 0xFF); 1938 if (ret <= nont) 1939 ret = nont; 1940 return ret; 1941 } 1942 1943 static void hybrid_get_type(void *data) 1944 { 1945 u8 *cpu_type = data; 1946 1947 *cpu_type = get_this_hybrid_cpu_type(); 1948 } 1949 1950 static int hybrid_get_cpu_scaling(int cpu) 1951 { 1952 u8 cpu_type = 0; 1953 1954 smp_call_function_single(cpu, hybrid_get_type, &cpu_type, 1); 1955 /* P-cores have a smaller perf level-to-freqency scaling factor. */ 1956 if (cpu_type == 0x40) 1957 return 78741; 1958 1959 return core_get_scaling(); 1960 } 1961 1962 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate) 1963 { 1964 trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu); 1965 cpu->pstate.current_pstate = pstate; 1966 /* 1967 * Generally, there is no guarantee that this code will always run on 1968 * the CPU being updated, so force the register update to run on the 1969 * right CPU. 1970 */ 1971 wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL, 1972 pstate_funcs.get_val(cpu, pstate)); 1973 } 1974 1975 static void intel_pstate_set_min_pstate(struct cpudata *cpu) 1976 { 1977 intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate); 1978 } 1979 1980 static void intel_pstate_max_within_limits(struct cpudata *cpu) 1981 { 1982 int pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio); 1983 1984 update_turbo_state(); 1985 intel_pstate_set_pstate(cpu, pstate); 1986 } 1987 1988 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu) 1989 { 1990 int perf_ctl_max_phys = pstate_funcs.get_max_physical(cpu->cpu); 1991 int perf_ctl_scaling = pstate_funcs.get_scaling(); 1992 1993 cpu->pstate.min_pstate = pstate_funcs.get_min(cpu->cpu); 1994 cpu->pstate.max_pstate_physical = perf_ctl_max_phys; 1995 cpu->pstate.perf_ctl_scaling = perf_ctl_scaling; 1996 1997 if (hwp_active && !hwp_mode_bdw) { 1998 __intel_pstate_get_hwp_cap(cpu); 1999 2000 if (pstate_funcs.get_cpu_scaling) { 2001 cpu->pstate.scaling = pstate_funcs.get_cpu_scaling(cpu->cpu); 2002 if (cpu->pstate.scaling != perf_ctl_scaling) 2003 intel_pstate_hybrid_hwp_adjust(cpu); 2004 } else { 2005 cpu->pstate.scaling = perf_ctl_scaling; 2006 } 2007 } else { 2008 cpu->pstate.scaling = perf_ctl_scaling; 2009 cpu->pstate.max_pstate = pstate_funcs.get_max(cpu->cpu); 2010 cpu->pstate.turbo_pstate = pstate_funcs.get_turbo(cpu->cpu); 2011 } 2012 2013 if (cpu->pstate.scaling == perf_ctl_scaling) { 2014 cpu->pstate.min_freq = cpu->pstate.min_pstate * perf_ctl_scaling; 2015 cpu->pstate.max_freq = cpu->pstate.max_pstate * perf_ctl_scaling; 2016 cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * perf_ctl_scaling; 2017 } 2018 2019 if (pstate_funcs.get_aperf_mperf_shift) 2020 cpu->aperf_mperf_shift = pstate_funcs.get_aperf_mperf_shift(); 2021 2022 if (pstate_funcs.get_vid) 2023 pstate_funcs.get_vid(cpu); 2024 2025 intel_pstate_set_min_pstate(cpu); 2026 } 2027 2028 /* 2029 * Long hold time will keep high perf limits for long time, 2030 * which negatively impacts perf/watt for some workloads, 2031 * like specpower. 3ms is based on experiements on some 2032 * workoads. 2033 */ 2034 static int hwp_boost_hold_time_ns = 3 * NSEC_PER_MSEC; 2035 2036 static inline void intel_pstate_hwp_boost_up(struct cpudata *cpu) 2037 { 2038 u64 hwp_req = READ_ONCE(cpu->hwp_req_cached); 2039 u64 hwp_cap = READ_ONCE(cpu->hwp_cap_cached); 2040 u32 max_limit = (hwp_req & 0xff00) >> 8; 2041 u32 min_limit = (hwp_req & 0xff); 2042 u32 boost_level1; 2043 2044 /* 2045 * Cases to consider (User changes via sysfs or boot time): 2046 * If, P0 (Turbo max) = P1 (Guaranteed max) = min: 2047 * No boost, return. 2048 * If, P0 (Turbo max) > P1 (Guaranteed max) = min: 2049 * Should result in one level boost only for P0. 2050 * If, P0 (Turbo max) = P1 (Guaranteed max) > min: 2051 * Should result in two level boost: 2052 * (min + p1)/2 and P1. 2053 * If, P0 (Turbo max) > P1 (Guaranteed max) > min: 2054 * Should result in three level boost: 2055 * (min + p1)/2, P1 and P0. 2056 */ 2057 2058 /* If max and min are equal or already at max, nothing to boost */ 2059 if (max_limit == min_limit || cpu->hwp_boost_min >= max_limit) 2060 return; 2061 2062 if (!cpu->hwp_boost_min) 2063 cpu->hwp_boost_min = min_limit; 2064 2065 /* level at half way mark between min and guranteed */ 2066 boost_level1 = (HWP_GUARANTEED_PERF(hwp_cap) + min_limit) >> 1; 2067 2068 if (cpu->hwp_boost_min < boost_level1) 2069 cpu->hwp_boost_min = boost_level1; 2070 else if (cpu->hwp_boost_min < HWP_GUARANTEED_PERF(hwp_cap)) 2071 cpu->hwp_boost_min = HWP_GUARANTEED_PERF(hwp_cap); 2072 else if (cpu->hwp_boost_min == HWP_GUARANTEED_PERF(hwp_cap) && 2073 max_limit != HWP_GUARANTEED_PERF(hwp_cap)) 2074 cpu->hwp_boost_min = max_limit; 2075 else 2076 return; 2077 2078 hwp_req = (hwp_req & ~GENMASK_ULL(7, 0)) | cpu->hwp_boost_min; 2079 wrmsrl(MSR_HWP_REQUEST, hwp_req); 2080 cpu->last_update = cpu->sample.time; 2081 } 2082 2083 static inline void intel_pstate_hwp_boost_down(struct cpudata *cpu) 2084 { 2085 if (cpu->hwp_boost_min) { 2086 bool expired; 2087 2088 /* Check if we are idle for hold time to boost down */ 2089 expired = time_after64(cpu->sample.time, cpu->last_update + 2090 hwp_boost_hold_time_ns); 2091 if (expired) { 2092 wrmsrl(MSR_HWP_REQUEST, cpu->hwp_req_cached); 2093 cpu->hwp_boost_min = 0; 2094 } 2095 } 2096 cpu->last_update = cpu->sample.time; 2097 } 2098 2099 static inline void intel_pstate_update_util_hwp_local(struct cpudata *cpu, 2100 u64 time) 2101 { 2102 cpu->sample.time = time; 2103 2104 if (cpu->sched_flags & SCHED_CPUFREQ_IOWAIT) { 2105 bool do_io = false; 2106 2107 cpu->sched_flags = 0; 2108 /* 2109 * Set iowait_boost flag and update time. Since IO WAIT flag 2110 * is set all the time, we can't just conclude that there is 2111 * some IO bound activity is scheduled on this CPU with just 2112 * one occurrence. If we receive at least two in two 2113 * consecutive ticks, then we treat as boost candidate. 2114 */ 2115 if (time_before64(time, cpu->last_io_update + 2 * TICK_NSEC)) 2116 do_io = true; 2117 2118 cpu->last_io_update = time; 2119 2120 if (do_io) 2121 intel_pstate_hwp_boost_up(cpu); 2122 2123 } else { 2124 intel_pstate_hwp_boost_down(cpu); 2125 } 2126 } 2127 2128 static inline void intel_pstate_update_util_hwp(struct update_util_data *data, 2129 u64 time, unsigned int flags) 2130 { 2131 struct cpudata *cpu = container_of(data, struct cpudata, update_util); 2132 2133 cpu->sched_flags |= flags; 2134 2135 if (smp_processor_id() == cpu->cpu) 2136 intel_pstate_update_util_hwp_local(cpu, time); 2137 } 2138 2139 static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu) 2140 { 2141 struct sample *sample = &cpu->sample; 2142 2143 sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf); 2144 } 2145 2146 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time) 2147 { 2148 u64 aperf, mperf; 2149 unsigned long flags; 2150 u64 tsc; 2151 2152 local_irq_save(flags); 2153 rdmsrl(MSR_IA32_APERF, aperf); 2154 rdmsrl(MSR_IA32_MPERF, mperf); 2155 tsc = rdtsc(); 2156 if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) { 2157 local_irq_restore(flags); 2158 return false; 2159 } 2160 local_irq_restore(flags); 2161 2162 cpu->last_sample_time = cpu->sample.time; 2163 cpu->sample.time = time; 2164 cpu->sample.aperf = aperf; 2165 cpu->sample.mperf = mperf; 2166 cpu->sample.tsc = tsc; 2167 cpu->sample.aperf -= cpu->prev_aperf; 2168 cpu->sample.mperf -= cpu->prev_mperf; 2169 cpu->sample.tsc -= cpu->prev_tsc; 2170 2171 cpu->prev_aperf = aperf; 2172 cpu->prev_mperf = mperf; 2173 cpu->prev_tsc = tsc; 2174 /* 2175 * First time this function is invoked in a given cycle, all of the 2176 * previous sample data fields are equal to zero or stale and they must 2177 * be populated with meaningful numbers for things to work, so assume 2178 * that sample.time will always be reset before setting the utilization 2179 * update hook and make the caller skip the sample then. 2180 */ 2181 if (cpu->last_sample_time) { 2182 intel_pstate_calc_avg_perf(cpu); 2183 return true; 2184 } 2185 return false; 2186 } 2187 2188 static inline int32_t get_avg_frequency(struct cpudata *cpu) 2189 { 2190 return mul_ext_fp(cpu->sample.core_avg_perf, cpu_khz); 2191 } 2192 2193 static inline int32_t get_avg_pstate(struct cpudata *cpu) 2194 { 2195 return mul_ext_fp(cpu->pstate.max_pstate_physical, 2196 cpu->sample.core_avg_perf); 2197 } 2198 2199 static inline int32_t get_target_pstate(struct cpudata *cpu) 2200 { 2201 struct sample *sample = &cpu->sample; 2202 int32_t busy_frac; 2203 int target, avg_pstate; 2204 2205 busy_frac = div_fp(sample->mperf << cpu->aperf_mperf_shift, 2206 sample->tsc); 2207 2208 if (busy_frac < cpu->iowait_boost) 2209 busy_frac = cpu->iowait_boost; 2210 2211 sample->busy_scaled = busy_frac * 100; 2212 2213 target = global.no_turbo || global.turbo_disabled ? 2214 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate; 2215 target += target >> 2; 2216 target = mul_fp(target, busy_frac); 2217 if (target < cpu->pstate.min_pstate) 2218 target = cpu->pstate.min_pstate; 2219 2220 /* 2221 * If the average P-state during the previous cycle was higher than the 2222 * current target, add 50% of the difference to the target to reduce 2223 * possible performance oscillations and offset possible performance 2224 * loss related to moving the workload from one CPU to another within 2225 * a package/module. 2226 */ 2227 avg_pstate = get_avg_pstate(cpu); 2228 if (avg_pstate > target) 2229 target += (avg_pstate - target) >> 1; 2230 2231 return target; 2232 } 2233 2234 static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate) 2235 { 2236 int min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio); 2237 int max_pstate = max(min_pstate, cpu->max_perf_ratio); 2238 2239 return clamp_t(int, pstate, min_pstate, max_pstate); 2240 } 2241 2242 static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate) 2243 { 2244 if (pstate == cpu->pstate.current_pstate) 2245 return; 2246 2247 cpu->pstate.current_pstate = pstate; 2248 wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate)); 2249 } 2250 2251 static void intel_pstate_adjust_pstate(struct cpudata *cpu) 2252 { 2253 int from = cpu->pstate.current_pstate; 2254 struct sample *sample; 2255 int target_pstate; 2256 2257 update_turbo_state(); 2258 2259 target_pstate = get_target_pstate(cpu); 2260 target_pstate = intel_pstate_prepare_request(cpu, target_pstate); 2261 trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu); 2262 intel_pstate_update_pstate(cpu, target_pstate); 2263 2264 sample = &cpu->sample; 2265 trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf), 2266 fp_toint(sample->busy_scaled), 2267 from, 2268 cpu->pstate.current_pstate, 2269 sample->mperf, 2270 sample->aperf, 2271 sample->tsc, 2272 get_avg_frequency(cpu), 2273 fp_toint(cpu->iowait_boost * 100)); 2274 } 2275 2276 static void intel_pstate_update_util(struct update_util_data *data, u64 time, 2277 unsigned int flags) 2278 { 2279 struct cpudata *cpu = container_of(data, struct cpudata, update_util); 2280 u64 delta_ns; 2281 2282 /* Don't allow remote callbacks */ 2283 if (smp_processor_id() != cpu->cpu) 2284 return; 2285 2286 delta_ns = time - cpu->last_update; 2287 if (flags & SCHED_CPUFREQ_IOWAIT) { 2288 /* Start over if the CPU may have been idle. */ 2289 if (delta_ns > TICK_NSEC) { 2290 cpu->iowait_boost = ONE_EIGHTH_FP; 2291 } else if (cpu->iowait_boost >= ONE_EIGHTH_FP) { 2292 cpu->iowait_boost <<= 1; 2293 if (cpu->iowait_boost > int_tofp(1)) 2294 cpu->iowait_boost = int_tofp(1); 2295 } else { 2296 cpu->iowait_boost = ONE_EIGHTH_FP; 2297 } 2298 } else if (cpu->iowait_boost) { 2299 /* Clear iowait_boost if the CPU may have been idle. */ 2300 if (delta_ns > TICK_NSEC) 2301 cpu->iowait_boost = 0; 2302 else 2303 cpu->iowait_boost >>= 1; 2304 } 2305 cpu->last_update = time; 2306 delta_ns = time - cpu->sample.time; 2307 if ((s64)delta_ns < INTEL_PSTATE_SAMPLING_INTERVAL) 2308 return; 2309 2310 if (intel_pstate_sample(cpu, time)) 2311 intel_pstate_adjust_pstate(cpu); 2312 } 2313 2314 static struct pstate_funcs core_funcs = { 2315 .get_max = core_get_max_pstate, 2316 .get_max_physical = core_get_max_pstate_physical, 2317 .get_min = core_get_min_pstate, 2318 .get_turbo = core_get_turbo_pstate, 2319 .get_scaling = core_get_scaling, 2320 .get_val = core_get_val, 2321 }; 2322 2323 static const struct pstate_funcs silvermont_funcs = { 2324 .get_max = atom_get_max_pstate, 2325 .get_max_physical = atom_get_max_pstate, 2326 .get_min = atom_get_min_pstate, 2327 .get_turbo = atom_get_turbo_pstate, 2328 .get_val = atom_get_val, 2329 .get_scaling = silvermont_get_scaling, 2330 .get_vid = atom_get_vid, 2331 }; 2332 2333 static const struct pstate_funcs airmont_funcs = { 2334 .get_max = atom_get_max_pstate, 2335 .get_max_physical = atom_get_max_pstate, 2336 .get_min = atom_get_min_pstate, 2337 .get_turbo = atom_get_turbo_pstate, 2338 .get_val = atom_get_val, 2339 .get_scaling = airmont_get_scaling, 2340 .get_vid = atom_get_vid, 2341 }; 2342 2343 static const struct pstate_funcs knl_funcs = { 2344 .get_max = core_get_max_pstate, 2345 .get_max_physical = core_get_max_pstate_physical, 2346 .get_min = core_get_min_pstate, 2347 .get_turbo = knl_get_turbo_pstate, 2348 .get_aperf_mperf_shift = knl_get_aperf_mperf_shift, 2349 .get_scaling = core_get_scaling, 2350 .get_val = core_get_val, 2351 }; 2352 2353 #define X86_MATCH(model, policy) \ 2354 X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6, INTEL_FAM6_##model, \ 2355 X86_FEATURE_APERFMPERF, &policy) 2356 2357 static const struct x86_cpu_id intel_pstate_cpu_ids[] = { 2358 X86_MATCH(SANDYBRIDGE, core_funcs), 2359 X86_MATCH(SANDYBRIDGE_X, core_funcs), 2360 X86_MATCH(ATOM_SILVERMONT, silvermont_funcs), 2361 X86_MATCH(IVYBRIDGE, core_funcs), 2362 X86_MATCH(HASWELL, core_funcs), 2363 X86_MATCH(BROADWELL, core_funcs), 2364 X86_MATCH(IVYBRIDGE_X, core_funcs), 2365 X86_MATCH(HASWELL_X, core_funcs), 2366 X86_MATCH(HASWELL_L, core_funcs), 2367 X86_MATCH(HASWELL_G, core_funcs), 2368 X86_MATCH(BROADWELL_G, core_funcs), 2369 X86_MATCH(ATOM_AIRMONT, airmont_funcs), 2370 X86_MATCH(SKYLAKE_L, core_funcs), 2371 X86_MATCH(BROADWELL_X, core_funcs), 2372 X86_MATCH(SKYLAKE, core_funcs), 2373 X86_MATCH(BROADWELL_D, core_funcs), 2374 X86_MATCH(XEON_PHI_KNL, knl_funcs), 2375 X86_MATCH(XEON_PHI_KNM, knl_funcs), 2376 X86_MATCH(ATOM_GOLDMONT, core_funcs), 2377 X86_MATCH(ATOM_GOLDMONT_PLUS, core_funcs), 2378 X86_MATCH(SKYLAKE_X, core_funcs), 2379 X86_MATCH(COMETLAKE, core_funcs), 2380 X86_MATCH(ICELAKE_X, core_funcs), 2381 X86_MATCH(TIGERLAKE, core_funcs), 2382 X86_MATCH(SAPPHIRERAPIDS_X, core_funcs), 2383 {} 2384 }; 2385 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids); 2386 2387 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = { 2388 X86_MATCH(BROADWELL_D, core_funcs), 2389 X86_MATCH(BROADWELL_X, core_funcs), 2390 X86_MATCH(SKYLAKE_X, core_funcs), 2391 X86_MATCH(ICELAKE_X, core_funcs), 2392 X86_MATCH(SAPPHIRERAPIDS_X, core_funcs), 2393 {} 2394 }; 2395 2396 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = { 2397 X86_MATCH(KABYLAKE, core_funcs), 2398 {} 2399 }; 2400 2401 static const struct x86_cpu_id intel_pstate_hwp_boost_ids[] = { 2402 X86_MATCH(SKYLAKE_X, core_funcs), 2403 X86_MATCH(SKYLAKE, core_funcs), 2404 {} 2405 }; 2406 2407 static int intel_pstate_init_cpu(unsigned int cpunum) 2408 { 2409 struct cpudata *cpu; 2410 2411 cpu = all_cpu_data[cpunum]; 2412 2413 if (!cpu) { 2414 cpu = kzalloc(sizeof(*cpu), GFP_KERNEL); 2415 if (!cpu) 2416 return -ENOMEM; 2417 2418 WRITE_ONCE(all_cpu_data[cpunum], cpu); 2419 2420 cpu->cpu = cpunum; 2421 2422 cpu->epp_default = -EINVAL; 2423 2424 if (hwp_active) { 2425 const struct x86_cpu_id *id; 2426 2427 intel_pstate_hwp_enable(cpu); 2428 2429 id = x86_match_cpu(intel_pstate_hwp_boost_ids); 2430 if (id && intel_pstate_acpi_pm_profile_server()) 2431 hwp_boost = true; 2432 } 2433 } else if (hwp_active) { 2434 /* 2435 * Re-enable HWP in case this happens after a resume from ACPI 2436 * S3 if the CPU was offline during the whole system/resume 2437 * cycle. 2438 */ 2439 intel_pstate_hwp_reenable(cpu); 2440 } 2441 2442 cpu->epp_powersave = -EINVAL; 2443 cpu->epp_policy = 0; 2444 2445 intel_pstate_get_cpu_pstates(cpu); 2446 2447 pr_debug("controlling: cpu %d\n", cpunum); 2448 2449 return 0; 2450 } 2451 2452 static void intel_pstate_set_update_util_hook(unsigned int cpu_num) 2453 { 2454 struct cpudata *cpu = all_cpu_data[cpu_num]; 2455 2456 if (hwp_active && !hwp_boost) 2457 return; 2458 2459 if (cpu->update_util_set) 2460 return; 2461 2462 /* Prevent intel_pstate_update_util() from using stale data. */ 2463 cpu->sample.time = 0; 2464 cpufreq_add_update_util_hook(cpu_num, &cpu->update_util, 2465 (hwp_active ? 2466 intel_pstate_update_util_hwp : 2467 intel_pstate_update_util)); 2468 cpu->update_util_set = true; 2469 } 2470 2471 static void intel_pstate_clear_update_util_hook(unsigned int cpu) 2472 { 2473 struct cpudata *cpu_data = all_cpu_data[cpu]; 2474 2475 if (!cpu_data->update_util_set) 2476 return; 2477 2478 cpufreq_remove_update_util_hook(cpu); 2479 cpu_data->update_util_set = false; 2480 synchronize_rcu(); 2481 } 2482 2483 static int intel_pstate_get_max_freq(struct cpudata *cpu) 2484 { 2485 return global.turbo_disabled || global.no_turbo ? 2486 cpu->pstate.max_freq : cpu->pstate.turbo_freq; 2487 } 2488 2489 static void intel_pstate_update_perf_limits(struct cpudata *cpu, 2490 unsigned int policy_min, 2491 unsigned int policy_max) 2492 { 2493 int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling; 2494 int32_t max_policy_perf, min_policy_perf; 2495 2496 max_policy_perf = policy_max / perf_ctl_scaling; 2497 if (policy_max == policy_min) { 2498 min_policy_perf = max_policy_perf; 2499 } else { 2500 min_policy_perf = policy_min / perf_ctl_scaling; 2501 min_policy_perf = clamp_t(int32_t, min_policy_perf, 2502 0, max_policy_perf); 2503 } 2504 2505 /* 2506 * HWP needs some special consideration, because HWP_REQUEST uses 2507 * abstract values to represent performance rather than pure ratios. 2508 */ 2509 if (hwp_active && cpu->pstate.scaling != perf_ctl_scaling) { 2510 int scaling = cpu->pstate.scaling; 2511 int freq; 2512 2513 freq = max_policy_perf * perf_ctl_scaling; 2514 max_policy_perf = DIV_ROUND_UP(freq, scaling); 2515 freq = min_policy_perf * perf_ctl_scaling; 2516 min_policy_perf = DIV_ROUND_UP(freq, scaling); 2517 } 2518 2519 pr_debug("cpu:%d min_policy_perf:%d max_policy_perf:%d\n", 2520 cpu->cpu, min_policy_perf, max_policy_perf); 2521 2522 /* Normalize user input to [min_perf, max_perf] */ 2523 if (per_cpu_limits) { 2524 cpu->min_perf_ratio = min_policy_perf; 2525 cpu->max_perf_ratio = max_policy_perf; 2526 } else { 2527 int turbo_max = cpu->pstate.turbo_pstate; 2528 int32_t global_min, global_max; 2529 2530 /* Global limits are in percent of the maximum turbo P-state. */ 2531 global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100); 2532 global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100); 2533 global_min = clamp_t(int32_t, global_min, 0, global_max); 2534 2535 pr_debug("cpu:%d global_min:%d global_max:%d\n", cpu->cpu, 2536 global_min, global_max); 2537 2538 cpu->min_perf_ratio = max(min_policy_perf, global_min); 2539 cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf); 2540 cpu->max_perf_ratio = min(max_policy_perf, global_max); 2541 cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio); 2542 2543 /* Make sure min_perf <= max_perf */ 2544 cpu->min_perf_ratio = min(cpu->min_perf_ratio, 2545 cpu->max_perf_ratio); 2546 2547 } 2548 pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", cpu->cpu, 2549 cpu->max_perf_ratio, 2550 cpu->min_perf_ratio); 2551 } 2552 2553 static int intel_pstate_set_policy(struct cpufreq_policy *policy) 2554 { 2555 struct cpudata *cpu; 2556 2557 if (!policy->cpuinfo.max_freq) 2558 return -ENODEV; 2559 2560 pr_debug("set_policy cpuinfo.max %u policy->max %u\n", 2561 policy->cpuinfo.max_freq, policy->max); 2562 2563 cpu = all_cpu_data[policy->cpu]; 2564 cpu->policy = policy->policy; 2565 2566 mutex_lock(&intel_pstate_limits_lock); 2567 2568 intel_pstate_update_perf_limits(cpu, policy->min, policy->max); 2569 2570 if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) { 2571 /* 2572 * NOHZ_FULL CPUs need this as the governor callback may not 2573 * be invoked on them. 2574 */ 2575 intel_pstate_clear_update_util_hook(policy->cpu); 2576 intel_pstate_max_within_limits(cpu); 2577 } else { 2578 intel_pstate_set_update_util_hook(policy->cpu); 2579 } 2580 2581 if (hwp_active) { 2582 /* 2583 * When hwp_boost was active before and dynamically it 2584 * was turned off, in that case we need to clear the 2585 * update util hook. 2586 */ 2587 if (!hwp_boost) 2588 intel_pstate_clear_update_util_hook(policy->cpu); 2589 intel_pstate_hwp_set(policy->cpu); 2590 } 2591 2592 mutex_unlock(&intel_pstate_limits_lock); 2593 2594 return 0; 2595 } 2596 2597 static void intel_pstate_adjust_policy_max(struct cpudata *cpu, 2598 struct cpufreq_policy_data *policy) 2599 { 2600 if (!hwp_active && 2601 cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate && 2602 policy->max < policy->cpuinfo.max_freq && 2603 policy->max > cpu->pstate.max_freq) { 2604 pr_debug("policy->max > max non turbo frequency\n"); 2605 policy->max = policy->cpuinfo.max_freq; 2606 } 2607 } 2608 2609 static void intel_pstate_verify_cpu_policy(struct cpudata *cpu, 2610 struct cpufreq_policy_data *policy) 2611 { 2612 int max_freq; 2613 2614 update_turbo_state(); 2615 if (hwp_active) { 2616 intel_pstate_get_hwp_cap(cpu); 2617 max_freq = global.no_turbo || global.turbo_disabled ? 2618 cpu->pstate.max_freq : cpu->pstate.turbo_freq; 2619 } else { 2620 max_freq = intel_pstate_get_max_freq(cpu); 2621 } 2622 cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq, max_freq); 2623 2624 intel_pstate_adjust_policy_max(cpu, policy); 2625 } 2626 2627 static int intel_pstate_verify_policy(struct cpufreq_policy_data *policy) 2628 { 2629 intel_pstate_verify_cpu_policy(all_cpu_data[policy->cpu], policy); 2630 2631 return 0; 2632 } 2633 2634 static int intel_cpufreq_cpu_offline(struct cpufreq_policy *policy) 2635 { 2636 struct cpudata *cpu = all_cpu_data[policy->cpu]; 2637 2638 pr_debug("CPU %d going offline\n", cpu->cpu); 2639 2640 if (cpu->suspended) 2641 return 0; 2642 2643 /* 2644 * If the CPU is an SMT thread and it goes offline with the performance 2645 * settings different from the minimum, it will prevent its sibling 2646 * from getting to lower performance levels, so force the minimum 2647 * performance on CPU offline to prevent that from happening. 2648 */ 2649 if (hwp_active) 2650 intel_pstate_hwp_offline(cpu); 2651 else 2652 intel_pstate_set_min_pstate(cpu); 2653 2654 intel_pstate_exit_perf_limits(policy); 2655 2656 return 0; 2657 } 2658 2659 static int intel_pstate_cpu_online(struct cpufreq_policy *policy) 2660 { 2661 struct cpudata *cpu = all_cpu_data[policy->cpu]; 2662 2663 pr_debug("CPU %d going online\n", cpu->cpu); 2664 2665 intel_pstate_init_acpi_perf_limits(policy); 2666 2667 if (hwp_active) { 2668 /* 2669 * Re-enable HWP and clear the "suspended" flag to let "resume" 2670 * know that it need not do that. 2671 */ 2672 intel_pstate_hwp_reenable(cpu); 2673 cpu->suspended = false; 2674 } 2675 2676 return 0; 2677 } 2678 2679 static int intel_pstate_cpu_offline(struct cpufreq_policy *policy) 2680 { 2681 intel_pstate_clear_update_util_hook(policy->cpu); 2682 2683 return intel_cpufreq_cpu_offline(policy); 2684 } 2685 2686 static int intel_pstate_cpu_exit(struct cpufreq_policy *policy) 2687 { 2688 pr_debug("CPU %d exiting\n", policy->cpu); 2689 2690 policy->fast_switch_possible = false; 2691 2692 return 0; 2693 } 2694 2695 static int __intel_pstate_cpu_init(struct cpufreq_policy *policy) 2696 { 2697 struct cpudata *cpu; 2698 int rc; 2699 2700 rc = intel_pstate_init_cpu(policy->cpu); 2701 if (rc) 2702 return rc; 2703 2704 cpu = all_cpu_data[policy->cpu]; 2705 2706 cpu->max_perf_ratio = 0xFF; 2707 cpu->min_perf_ratio = 0; 2708 2709 /* cpuinfo and default policy values */ 2710 policy->cpuinfo.min_freq = cpu->pstate.min_freq; 2711 update_turbo_state(); 2712 global.turbo_disabled_mf = global.turbo_disabled; 2713 policy->cpuinfo.max_freq = global.turbo_disabled ? 2714 cpu->pstate.max_freq : cpu->pstate.turbo_freq; 2715 2716 policy->min = policy->cpuinfo.min_freq; 2717 policy->max = policy->cpuinfo.max_freq; 2718 2719 intel_pstate_init_acpi_perf_limits(policy); 2720 2721 policy->fast_switch_possible = true; 2722 2723 return 0; 2724 } 2725 2726 static int intel_pstate_cpu_init(struct cpufreq_policy *policy) 2727 { 2728 int ret = __intel_pstate_cpu_init(policy); 2729 2730 if (ret) 2731 return ret; 2732 2733 /* 2734 * Set the policy to powersave to provide a valid fallback value in case 2735 * the default cpufreq governor is neither powersave nor performance. 2736 */ 2737 policy->policy = CPUFREQ_POLICY_POWERSAVE; 2738 2739 if (hwp_active) { 2740 struct cpudata *cpu = all_cpu_data[policy->cpu]; 2741 2742 cpu->epp_cached = intel_pstate_get_epp(cpu, 0); 2743 } 2744 2745 return 0; 2746 } 2747 2748 static struct cpufreq_driver intel_pstate = { 2749 .flags = CPUFREQ_CONST_LOOPS, 2750 .verify = intel_pstate_verify_policy, 2751 .setpolicy = intel_pstate_set_policy, 2752 .suspend = intel_pstate_suspend, 2753 .resume = intel_pstate_resume, 2754 .init = intel_pstate_cpu_init, 2755 .exit = intel_pstate_cpu_exit, 2756 .offline = intel_pstate_cpu_offline, 2757 .online = intel_pstate_cpu_online, 2758 .update_limits = intel_pstate_update_limits, 2759 .name = "intel_pstate", 2760 }; 2761 2762 static int intel_cpufreq_verify_policy(struct cpufreq_policy_data *policy) 2763 { 2764 struct cpudata *cpu = all_cpu_data[policy->cpu]; 2765 2766 intel_pstate_verify_cpu_policy(cpu, policy); 2767 intel_pstate_update_perf_limits(cpu, policy->min, policy->max); 2768 2769 return 0; 2770 } 2771 2772 /* Use of trace in passive mode: 2773 * 2774 * In passive mode the trace core_busy field (also known as the 2775 * performance field, and lablelled as such on the graphs; also known as 2776 * core_avg_perf) is not needed and so is re-assigned to indicate if the 2777 * driver call was via the normal or fast switch path. Various graphs 2778 * output from the intel_pstate_tracer.py utility that include core_busy 2779 * (or performance or core_avg_perf) have a fixed y-axis from 0 to 100%, 2780 * so we use 10 to indicate the normal path through the driver, and 2781 * 90 to indicate the fast switch path through the driver. 2782 * The scaled_busy field is not used, and is set to 0. 2783 */ 2784 2785 #define INTEL_PSTATE_TRACE_TARGET 10 2786 #define INTEL_PSTATE_TRACE_FAST_SWITCH 90 2787 2788 static void intel_cpufreq_trace(struct cpudata *cpu, unsigned int trace_type, int old_pstate) 2789 { 2790 struct sample *sample; 2791 2792 if (!trace_pstate_sample_enabled()) 2793 return; 2794 2795 if (!intel_pstate_sample(cpu, ktime_get())) 2796 return; 2797 2798 sample = &cpu->sample; 2799 trace_pstate_sample(trace_type, 2800 0, 2801 old_pstate, 2802 cpu->pstate.current_pstate, 2803 sample->mperf, 2804 sample->aperf, 2805 sample->tsc, 2806 get_avg_frequency(cpu), 2807 fp_toint(cpu->iowait_boost * 100)); 2808 } 2809 2810 static void intel_cpufreq_hwp_update(struct cpudata *cpu, u32 min, u32 max, 2811 u32 desired, bool fast_switch) 2812 { 2813 u64 prev = READ_ONCE(cpu->hwp_req_cached), value = prev; 2814 2815 value &= ~HWP_MIN_PERF(~0L); 2816 value |= HWP_MIN_PERF(min); 2817 2818 value &= ~HWP_MAX_PERF(~0L); 2819 value |= HWP_MAX_PERF(max); 2820 2821 value &= ~HWP_DESIRED_PERF(~0L); 2822 value |= HWP_DESIRED_PERF(desired); 2823 2824 if (value == prev) 2825 return; 2826 2827 WRITE_ONCE(cpu->hwp_req_cached, value); 2828 if (fast_switch) 2829 wrmsrl(MSR_HWP_REQUEST, value); 2830 else 2831 wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value); 2832 } 2833 2834 static void intel_cpufreq_perf_ctl_update(struct cpudata *cpu, 2835 u32 target_pstate, bool fast_switch) 2836 { 2837 if (fast_switch) 2838 wrmsrl(MSR_IA32_PERF_CTL, 2839 pstate_funcs.get_val(cpu, target_pstate)); 2840 else 2841 wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL, 2842 pstate_funcs.get_val(cpu, target_pstate)); 2843 } 2844 2845 static int intel_cpufreq_update_pstate(struct cpufreq_policy *policy, 2846 int target_pstate, bool fast_switch) 2847 { 2848 struct cpudata *cpu = all_cpu_data[policy->cpu]; 2849 int old_pstate = cpu->pstate.current_pstate; 2850 2851 target_pstate = intel_pstate_prepare_request(cpu, target_pstate); 2852 if (hwp_active) { 2853 int max_pstate = policy->strict_target ? 2854 target_pstate : cpu->max_perf_ratio; 2855 2856 intel_cpufreq_hwp_update(cpu, target_pstate, max_pstate, 0, 2857 fast_switch); 2858 } else if (target_pstate != old_pstate) { 2859 intel_cpufreq_perf_ctl_update(cpu, target_pstate, fast_switch); 2860 } 2861 2862 cpu->pstate.current_pstate = target_pstate; 2863 2864 intel_cpufreq_trace(cpu, fast_switch ? INTEL_PSTATE_TRACE_FAST_SWITCH : 2865 INTEL_PSTATE_TRACE_TARGET, old_pstate); 2866 2867 return target_pstate; 2868 } 2869 2870 static int intel_cpufreq_target(struct cpufreq_policy *policy, 2871 unsigned int target_freq, 2872 unsigned int relation) 2873 { 2874 struct cpudata *cpu = all_cpu_data[policy->cpu]; 2875 struct cpufreq_freqs freqs; 2876 int target_pstate; 2877 2878 update_turbo_state(); 2879 2880 freqs.old = policy->cur; 2881 freqs.new = target_freq; 2882 2883 cpufreq_freq_transition_begin(policy, &freqs); 2884 2885 switch (relation) { 2886 case CPUFREQ_RELATION_L: 2887 target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling); 2888 break; 2889 case CPUFREQ_RELATION_H: 2890 target_pstate = freqs.new / cpu->pstate.scaling; 2891 break; 2892 default: 2893 target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling); 2894 break; 2895 } 2896 2897 target_pstate = intel_cpufreq_update_pstate(policy, target_pstate, false); 2898 2899 freqs.new = target_pstate * cpu->pstate.scaling; 2900 2901 cpufreq_freq_transition_end(policy, &freqs, false); 2902 2903 return 0; 2904 } 2905 2906 static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy, 2907 unsigned int target_freq) 2908 { 2909 struct cpudata *cpu = all_cpu_data[policy->cpu]; 2910 int target_pstate; 2911 2912 update_turbo_state(); 2913 2914 target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling); 2915 2916 target_pstate = intel_cpufreq_update_pstate(policy, target_pstate, true); 2917 2918 return target_pstate * cpu->pstate.scaling; 2919 } 2920 2921 static void intel_cpufreq_adjust_perf(unsigned int cpunum, 2922 unsigned long min_perf, 2923 unsigned long target_perf, 2924 unsigned long capacity) 2925 { 2926 struct cpudata *cpu = all_cpu_data[cpunum]; 2927 u64 hwp_cap = READ_ONCE(cpu->hwp_cap_cached); 2928 int old_pstate = cpu->pstate.current_pstate; 2929 int cap_pstate, min_pstate, max_pstate, target_pstate; 2930 2931 update_turbo_state(); 2932 cap_pstate = global.turbo_disabled ? HWP_GUARANTEED_PERF(hwp_cap) : 2933 HWP_HIGHEST_PERF(hwp_cap); 2934 2935 /* Optimization: Avoid unnecessary divisions. */ 2936 2937 target_pstate = cap_pstate; 2938 if (target_perf < capacity) 2939 target_pstate = DIV_ROUND_UP(cap_pstate * target_perf, capacity); 2940 2941 min_pstate = cap_pstate; 2942 if (min_perf < capacity) 2943 min_pstate = DIV_ROUND_UP(cap_pstate * min_perf, capacity); 2944 2945 if (min_pstate < cpu->pstate.min_pstate) 2946 min_pstate = cpu->pstate.min_pstate; 2947 2948 if (min_pstate < cpu->min_perf_ratio) 2949 min_pstate = cpu->min_perf_ratio; 2950 2951 max_pstate = min(cap_pstate, cpu->max_perf_ratio); 2952 if (max_pstate < min_pstate) 2953 max_pstate = min_pstate; 2954 2955 target_pstate = clamp_t(int, target_pstate, min_pstate, max_pstate); 2956 2957 intel_cpufreq_hwp_update(cpu, min_pstate, max_pstate, target_pstate, true); 2958 2959 cpu->pstate.current_pstate = target_pstate; 2960 intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_FAST_SWITCH, old_pstate); 2961 } 2962 2963 static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy) 2964 { 2965 struct freq_qos_request *req; 2966 struct cpudata *cpu; 2967 struct device *dev; 2968 int ret, freq; 2969 2970 dev = get_cpu_device(policy->cpu); 2971 if (!dev) 2972 return -ENODEV; 2973 2974 ret = __intel_pstate_cpu_init(policy); 2975 if (ret) 2976 return ret; 2977 2978 policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY; 2979 /* This reflects the intel_pstate_get_cpu_pstates() setting. */ 2980 policy->cur = policy->cpuinfo.min_freq; 2981 2982 req = kcalloc(2, sizeof(*req), GFP_KERNEL); 2983 if (!req) { 2984 ret = -ENOMEM; 2985 goto pstate_exit; 2986 } 2987 2988 cpu = all_cpu_data[policy->cpu]; 2989 2990 if (hwp_active) { 2991 u64 value; 2992 2993 policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY_HWP; 2994 2995 intel_pstate_get_hwp_cap(cpu); 2996 2997 rdmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, &value); 2998 WRITE_ONCE(cpu->hwp_req_cached, value); 2999 3000 cpu->epp_cached = intel_pstate_get_epp(cpu, value); 3001 } else { 3002 policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY; 3003 } 3004 3005 freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * global.min_perf_pct, 100); 3006 3007 ret = freq_qos_add_request(&policy->constraints, req, FREQ_QOS_MIN, 3008 freq); 3009 if (ret < 0) { 3010 dev_err(dev, "Failed to add min-freq constraint (%d)\n", ret); 3011 goto free_req; 3012 } 3013 3014 freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * global.max_perf_pct, 100); 3015 3016 ret = freq_qos_add_request(&policy->constraints, req + 1, FREQ_QOS_MAX, 3017 freq); 3018 if (ret < 0) { 3019 dev_err(dev, "Failed to add max-freq constraint (%d)\n", ret); 3020 goto remove_min_req; 3021 } 3022 3023 policy->driver_data = req; 3024 3025 return 0; 3026 3027 remove_min_req: 3028 freq_qos_remove_request(req); 3029 free_req: 3030 kfree(req); 3031 pstate_exit: 3032 intel_pstate_exit_perf_limits(policy); 3033 3034 return ret; 3035 } 3036 3037 static int intel_cpufreq_cpu_exit(struct cpufreq_policy *policy) 3038 { 3039 struct freq_qos_request *req; 3040 3041 req = policy->driver_data; 3042 3043 freq_qos_remove_request(req + 1); 3044 freq_qos_remove_request(req); 3045 kfree(req); 3046 3047 return intel_pstate_cpu_exit(policy); 3048 } 3049 3050 static int intel_cpufreq_suspend(struct cpufreq_policy *policy) 3051 { 3052 intel_pstate_suspend(policy); 3053 3054 if (hwp_active) { 3055 struct cpudata *cpu = all_cpu_data[policy->cpu]; 3056 u64 value = READ_ONCE(cpu->hwp_req_cached); 3057 3058 /* 3059 * Clear the desired perf field in MSR_HWP_REQUEST in case 3060 * intel_cpufreq_adjust_perf() is in use and the last value 3061 * written by it may not be suitable. 3062 */ 3063 value &= ~HWP_DESIRED_PERF(~0L); 3064 wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value); 3065 WRITE_ONCE(cpu->hwp_req_cached, value); 3066 } 3067 3068 return 0; 3069 } 3070 3071 static struct cpufreq_driver intel_cpufreq = { 3072 .flags = CPUFREQ_CONST_LOOPS, 3073 .verify = intel_cpufreq_verify_policy, 3074 .target = intel_cpufreq_target, 3075 .fast_switch = intel_cpufreq_fast_switch, 3076 .init = intel_cpufreq_cpu_init, 3077 .exit = intel_cpufreq_cpu_exit, 3078 .offline = intel_cpufreq_cpu_offline, 3079 .online = intel_pstate_cpu_online, 3080 .suspend = intel_cpufreq_suspend, 3081 .resume = intel_pstate_resume, 3082 .update_limits = intel_pstate_update_limits, 3083 .name = "intel_cpufreq", 3084 }; 3085 3086 static struct cpufreq_driver *default_driver; 3087 3088 static void intel_pstate_driver_cleanup(void) 3089 { 3090 unsigned int cpu; 3091 3092 cpus_read_lock(); 3093 for_each_online_cpu(cpu) { 3094 if (all_cpu_data[cpu]) { 3095 if (intel_pstate_driver == &intel_pstate) 3096 intel_pstate_clear_update_util_hook(cpu); 3097 3098 spin_lock(&hwp_notify_lock); 3099 kfree(all_cpu_data[cpu]); 3100 WRITE_ONCE(all_cpu_data[cpu], NULL); 3101 spin_unlock(&hwp_notify_lock); 3102 } 3103 } 3104 cpus_read_unlock(); 3105 3106 intel_pstate_driver = NULL; 3107 } 3108 3109 static int intel_pstate_register_driver(struct cpufreq_driver *driver) 3110 { 3111 int ret; 3112 3113 if (driver == &intel_pstate) 3114 intel_pstate_sysfs_expose_hwp_dynamic_boost(); 3115 3116 memset(&global, 0, sizeof(global)); 3117 global.max_perf_pct = 100; 3118 3119 intel_pstate_driver = driver; 3120 ret = cpufreq_register_driver(intel_pstate_driver); 3121 if (ret) { 3122 intel_pstate_driver_cleanup(); 3123 return ret; 3124 } 3125 3126 global.min_perf_pct = min_perf_pct_min(); 3127 3128 return 0; 3129 } 3130 3131 static ssize_t intel_pstate_show_status(char *buf) 3132 { 3133 if (!intel_pstate_driver) 3134 return sprintf(buf, "off\n"); 3135 3136 return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ? 3137 "active" : "passive"); 3138 } 3139 3140 static int intel_pstate_update_status(const char *buf, size_t size) 3141 { 3142 if (size == 3 && !strncmp(buf, "off", size)) { 3143 if (!intel_pstate_driver) 3144 return -EINVAL; 3145 3146 if (hwp_active) 3147 return -EBUSY; 3148 3149 cpufreq_unregister_driver(intel_pstate_driver); 3150 intel_pstate_driver_cleanup(); 3151 return 0; 3152 } 3153 3154 if (size == 6 && !strncmp(buf, "active", size)) { 3155 if (intel_pstate_driver) { 3156 if (intel_pstate_driver == &intel_pstate) 3157 return 0; 3158 3159 cpufreq_unregister_driver(intel_pstate_driver); 3160 } 3161 3162 return intel_pstate_register_driver(&intel_pstate); 3163 } 3164 3165 if (size == 7 && !strncmp(buf, "passive", size)) { 3166 if (intel_pstate_driver) { 3167 if (intel_pstate_driver == &intel_cpufreq) 3168 return 0; 3169 3170 cpufreq_unregister_driver(intel_pstate_driver); 3171 intel_pstate_sysfs_hide_hwp_dynamic_boost(); 3172 } 3173 3174 return intel_pstate_register_driver(&intel_cpufreq); 3175 } 3176 3177 return -EINVAL; 3178 } 3179 3180 static int no_load __initdata; 3181 static int no_hwp __initdata; 3182 static int hwp_only __initdata; 3183 static unsigned int force_load __initdata; 3184 3185 static int __init intel_pstate_msrs_not_valid(void) 3186 { 3187 if (!pstate_funcs.get_max(0) || 3188 !pstate_funcs.get_min(0) || 3189 !pstate_funcs.get_turbo(0)) 3190 return -ENODEV; 3191 3192 return 0; 3193 } 3194 3195 static void __init copy_cpu_funcs(struct pstate_funcs *funcs) 3196 { 3197 pstate_funcs.get_max = funcs->get_max; 3198 pstate_funcs.get_max_physical = funcs->get_max_physical; 3199 pstate_funcs.get_min = funcs->get_min; 3200 pstate_funcs.get_turbo = funcs->get_turbo; 3201 pstate_funcs.get_scaling = funcs->get_scaling; 3202 pstate_funcs.get_val = funcs->get_val; 3203 pstate_funcs.get_vid = funcs->get_vid; 3204 pstate_funcs.get_aperf_mperf_shift = funcs->get_aperf_mperf_shift; 3205 } 3206 3207 #ifdef CONFIG_ACPI 3208 3209 static bool __init intel_pstate_no_acpi_pss(void) 3210 { 3211 int i; 3212 3213 for_each_possible_cpu(i) { 3214 acpi_status status; 3215 union acpi_object *pss; 3216 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL }; 3217 struct acpi_processor *pr = per_cpu(processors, i); 3218 3219 if (!pr) 3220 continue; 3221 3222 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer); 3223 if (ACPI_FAILURE(status)) 3224 continue; 3225 3226 pss = buffer.pointer; 3227 if (pss && pss->type == ACPI_TYPE_PACKAGE) { 3228 kfree(pss); 3229 return false; 3230 } 3231 3232 kfree(pss); 3233 } 3234 3235 pr_debug("ACPI _PSS not found\n"); 3236 return true; 3237 } 3238 3239 static bool __init intel_pstate_no_acpi_pcch(void) 3240 { 3241 acpi_status status; 3242 acpi_handle handle; 3243 3244 status = acpi_get_handle(NULL, "\\_SB", &handle); 3245 if (ACPI_FAILURE(status)) 3246 goto not_found; 3247 3248 if (acpi_has_method(handle, "PCCH")) 3249 return false; 3250 3251 not_found: 3252 pr_debug("ACPI PCCH not found\n"); 3253 return true; 3254 } 3255 3256 static bool __init intel_pstate_has_acpi_ppc(void) 3257 { 3258 int i; 3259 3260 for_each_possible_cpu(i) { 3261 struct acpi_processor *pr = per_cpu(processors, i); 3262 3263 if (!pr) 3264 continue; 3265 if (acpi_has_method(pr->handle, "_PPC")) 3266 return true; 3267 } 3268 pr_debug("ACPI _PPC not found\n"); 3269 return false; 3270 } 3271 3272 enum { 3273 PSS, 3274 PPC, 3275 }; 3276 3277 /* Hardware vendor-specific info that has its own power management modes */ 3278 static struct acpi_platform_list plat_info[] __initdata = { 3279 {"HP ", "ProLiant", 0, ACPI_SIG_FADT, all_versions, NULL, PSS}, 3280 {"ORACLE", "X4-2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 3281 {"ORACLE", "X4-2L ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 3282 {"ORACLE", "X4-2B ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 3283 {"ORACLE", "X3-2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 3284 {"ORACLE", "X3-2L ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 3285 {"ORACLE", "X3-2B ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 3286 {"ORACLE", "X4470M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 3287 {"ORACLE", "X4270M3 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 3288 {"ORACLE", "X4270M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 3289 {"ORACLE", "X4170M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 3290 {"ORACLE", "X4170 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 3291 {"ORACLE", "X4275 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 3292 {"ORACLE", "X6-2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 3293 {"ORACLE", "Sudbury ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 3294 { } /* End */ 3295 }; 3296 3297 #define BITMASK_OOB (BIT(8) | BIT(18)) 3298 3299 static bool __init intel_pstate_platform_pwr_mgmt_exists(void) 3300 { 3301 const struct x86_cpu_id *id; 3302 u64 misc_pwr; 3303 int idx; 3304 3305 id = x86_match_cpu(intel_pstate_cpu_oob_ids); 3306 if (id) { 3307 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr); 3308 if (misc_pwr & BITMASK_OOB) { 3309 pr_debug("Bit 8 or 18 in the MISC_PWR_MGMT MSR set\n"); 3310 pr_debug("P states are controlled in Out of Band mode by the firmware/hardware\n"); 3311 return true; 3312 } 3313 } 3314 3315 idx = acpi_match_platform_list(plat_info); 3316 if (idx < 0) 3317 return false; 3318 3319 switch (plat_info[idx].data) { 3320 case PSS: 3321 if (!intel_pstate_no_acpi_pss()) 3322 return false; 3323 3324 return intel_pstate_no_acpi_pcch(); 3325 case PPC: 3326 return intel_pstate_has_acpi_ppc() && !force_load; 3327 } 3328 3329 return false; 3330 } 3331 3332 static void intel_pstate_request_control_from_smm(void) 3333 { 3334 /* 3335 * It may be unsafe to request P-states control from SMM if _PPC support 3336 * has not been enabled. 3337 */ 3338 if (acpi_ppc) 3339 acpi_processor_pstate_control(); 3340 } 3341 #else /* CONFIG_ACPI not enabled */ 3342 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; } 3343 static inline bool intel_pstate_has_acpi_ppc(void) { return false; } 3344 static inline void intel_pstate_request_control_from_smm(void) {} 3345 #endif /* CONFIG_ACPI */ 3346 3347 #define INTEL_PSTATE_HWP_BROADWELL 0x01 3348 3349 #define X86_MATCH_HWP(model, hwp_mode) \ 3350 X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6, INTEL_FAM6_##model, \ 3351 X86_FEATURE_HWP, hwp_mode) 3352 3353 static const struct x86_cpu_id hwp_support_ids[] __initconst = { 3354 X86_MATCH_HWP(BROADWELL_X, INTEL_PSTATE_HWP_BROADWELL), 3355 X86_MATCH_HWP(BROADWELL_D, INTEL_PSTATE_HWP_BROADWELL), 3356 X86_MATCH_HWP(ANY, 0), 3357 {} 3358 }; 3359 3360 static bool intel_pstate_hwp_is_enabled(void) 3361 { 3362 u64 value; 3363 3364 rdmsrl(MSR_PM_ENABLE, value); 3365 return !!(value & 0x1); 3366 } 3367 3368 static const struct x86_cpu_id intel_epp_balance_perf[] = { 3369 /* 3370 * Set EPP value as 102, this is the max suggested EPP 3371 * which can result in one core turbo frequency for 3372 * AlderLake Mobile CPUs. 3373 */ 3374 X86_MATCH_INTEL_FAM6_MODEL(ALDERLAKE_L, 102), 3375 {} 3376 }; 3377 3378 static int __init intel_pstate_init(void) 3379 { 3380 static struct cpudata **_all_cpu_data; 3381 const struct x86_cpu_id *id; 3382 int rc; 3383 3384 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) 3385 return -ENODEV; 3386 3387 id = x86_match_cpu(hwp_support_ids); 3388 if (id) { 3389 hwp_forced = intel_pstate_hwp_is_enabled(); 3390 3391 if (hwp_forced) 3392 pr_info("HWP enabled by BIOS\n"); 3393 else if (no_load) 3394 return -ENODEV; 3395 3396 copy_cpu_funcs(&core_funcs); 3397 /* 3398 * Avoid enabling HWP for processors without EPP support, 3399 * because that means incomplete HWP implementation which is a 3400 * corner case and supporting it is generally problematic. 3401 * 3402 * If HWP is enabled already, though, there is no choice but to 3403 * deal with it. 3404 */ 3405 if ((!no_hwp && boot_cpu_has(X86_FEATURE_HWP_EPP)) || hwp_forced) { 3406 WRITE_ONCE(hwp_active, 1); 3407 hwp_mode_bdw = id->driver_data; 3408 intel_pstate.attr = hwp_cpufreq_attrs; 3409 intel_cpufreq.attr = hwp_cpufreq_attrs; 3410 intel_cpufreq.flags |= CPUFREQ_NEED_UPDATE_LIMITS; 3411 intel_cpufreq.adjust_perf = intel_cpufreq_adjust_perf; 3412 if (!default_driver) 3413 default_driver = &intel_pstate; 3414 3415 if (boot_cpu_has(X86_FEATURE_HYBRID_CPU)) 3416 pstate_funcs.get_cpu_scaling = hybrid_get_cpu_scaling; 3417 3418 goto hwp_cpu_matched; 3419 } 3420 pr_info("HWP not enabled\n"); 3421 } else { 3422 if (no_load) 3423 return -ENODEV; 3424 3425 id = x86_match_cpu(intel_pstate_cpu_ids); 3426 if (!id) { 3427 pr_info("CPU model not supported\n"); 3428 return -ENODEV; 3429 } 3430 3431 copy_cpu_funcs((struct pstate_funcs *)id->driver_data); 3432 } 3433 3434 if (intel_pstate_msrs_not_valid()) { 3435 pr_info("Invalid MSRs\n"); 3436 return -ENODEV; 3437 } 3438 /* Without HWP start in the passive mode. */ 3439 if (!default_driver) 3440 default_driver = &intel_cpufreq; 3441 3442 hwp_cpu_matched: 3443 /* 3444 * The Intel pstate driver will be ignored if the platform 3445 * firmware has its own power management modes. 3446 */ 3447 if (intel_pstate_platform_pwr_mgmt_exists()) { 3448 pr_info("P-states controlled by the platform\n"); 3449 return -ENODEV; 3450 } 3451 3452 if (!hwp_active && hwp_only) 3453 return -ENOTSUPP; 3454 3455 pr_info("Intel P-state driver initializing\n"); 3456 3457 _all_cpu_data = vzalloc(array_size(sizeof(void *), num_possible_cpus())); 3458 if (!_all_cpu_data) 3459 return -ENOMEM; 3460 3461 WRITE_ONCE(all_cpu_data, _all_cpu_data); 3462 3463 intel_pstate_request_control_from_smm(); 3464 3465 intel_pstate_sysfs_expose_params(); 3466 3467 if (hwp_active) { 3468 const struct x86_cpu_id *id = x86_match_cpu(intel_epp_balance_perf); 3469 3470 if (id) 3471 epp_values[EPP_INDEX_BALANCE_PERFORMANCE] = id->driver_data; 3472 } 3473 3474 mutex_lock(&intel_pstate_driver_lock); 3475 rc = intel_pstate_register_driver(default_driver); 3476 mutex_unlock(&intel_pstate_driver_lock); 3477 if (rc) { 3478 intel_pstate_sysfs_remove(); 3479 return rc; 3480 } 3481 3482 if (hwp_active) { 3483 const struct x86_cpu_id *id; 3484 3485 id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids); 3486 if (id) { 3487 set_power_ctl_ee_state(false); 3488 pr_info("Disabling energy efficiency optimization\n"); 3489 } 3490 3491 pr_info("HWP enabled\n"); 3492 } else if (boot_cpu_has(X86_FEATURE_HYBRID_CPU)) { 3493 pr_warn("Problematic setup: Hybrid processor with disabled HWP\n"); 3494 } 3495 3496 return 0; 3497 } 3498 device_initcall(intel_pstate_init); 3499 3500 static int __init intel_pstate_setup(char *str) 3501 { 3502 if (!str) 3503 return -EINVAL; 3504 3505 if (!strcmp(str, "disable")) 3506 no_load = 1; 3507 else if (!strcmp(str, "active")) 3508 default_driver = &intel_pstate; 3509 else if (!strcmp(str, "passive")) 3510 default_driver = &intel_cpufreq; 3511 3512 if (!strcmp(str, "no_hwp")) 3513 no_hwp = 1; 3514 3515 if (!strcmp(str, "force")) 3516 force_load = 1; 3517 if (!strcmp(str, "hwp_only")) 3518 hwp_only = 1; 3519 if (!strcmp(str, "per_cpu_perf_limits")) 3520 per_cpu_limits = true; 3521 3522 #ifdef CONFIG_ACPI 3523 if (!strcmp(str, "support_acpi_ppc")) 3524 acpi_ppc = true; 3525 #endif 3526 3527 return 0; 3528 } 3529 early_param("intel_pstate", intel_pstate_setup); 3530 3531 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>"); 3532 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors"); 3533 MODULE_LICENSE("GPL"); 3534