1 /*
2  * intel_pstate.c: Native P state management for Intel processors
3  *
4  * (C) Copyright 2012 Intel Corporation
5  * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; version 2
10  * of the License.
11  */
12 
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 
15 #include <linux/kernel.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/module.h>
18 #include <linux/ktime.h>
19 #include <linux/hrtimer.h>
20 #include <linux/tick.h>
21 #include <linux/slab.h>
22 #include <linux/sched.h>
23 #include <linux/list.h>
24 #include <linux/cpu.h>
25 #include <linux/cpufreq.h>
26 #include <linux/sysfs.h>
27 #include <linux/types.h>
28 #include <linux/fs.h>
29 #include <linux/debugfs.h>
30 #include <linux/acpi.h>
31 #include <linux/vmalloc.h>
32 #include <trace/events/power.h>
33 
34 #include <asm/div64.h>
35 #include <asm/msr.h>
36 #include <asm/cpu_device_id.h>
37 #include <asm/cpufeature.h>
38 
39 #define ATOM_RATIOS		0x66a
40 #define ATOM_VIDS		0x66b
41 #define ATOM_TURBO_RATIOS	0x66c
42 #define ATOM_TURBO_VIDS		0x66d
43 
44 #ifdef CONFIG_ACPI
45 #include <acpi/processor.h>
46 #endif
47 
48 #define FRAC_BITS 8
49 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
50 #define fp_toint(X) ((X) >> FRAC_BITS)
51 
52 static inline int32_t mul_fp(int32_t x, int32_t y)
53 {
54 	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
55 }
56 
57 static inline int32_t div_fp(s64 x, s64 y)
58 {
59 	return div64_s64((int64_t)x << FRAC_BITS, y);
60 }
61 
62 static inline int ceiling_fp(int32_t x)
63 {
64 	int mask, ret;
65 
66 	ret = fp_toint(x);
67 	mask = (1 << FRAC_BITS) - 1;
68 	if (x & mask)
69 		ret += 1;
70 	return ret;
71 }
72 
73 /**
74  * struct sample -	Store performance sample
75  * @core_pct_busy:	Ratio of APERF/MPERF in percent, which is actual
76  *			performance during last sample period
77  * @busy_scaled:	Scaled busy value which is used to calculate next
78  *			P state. This can be different than core_pct_busy
79  *			to account for cpu idle period
80  * @aperf:		Difference of actual performance frequency clock count
81  *			read from APERF MSR between last and current sample
82  * @mperf:		Difference of maximum performance frequency clock count
83  *			read from MPERF MSR between last and current sample
84  * @tsc:		Difference of time stamp counter between last and
85  *			current sample
86  * @freq:		Effective frequency calculated from APERF/MPERF
87  * @time:		Current time from scheduler
88  *
89  * This structure is used in the cpudata structure to store performance sample
90  * data for choosing next P State.
91  */
92 struct sample {
93 	int32_t core_pct_busy;
94 	int32_t busy_scaled;
95 	u64 aperf;
96 	u64 mperf;
97 	u64 tsc;
98 	int freq;
99 	u64 time;
100 };
101 
102 /**
103  * struct pstate_data - Store P state data
104  * @current_pstate:	Current requested P state
105  * @min_pstate:		Min P state possible for this platform
106  * @max_pstate:		Max P state possible for this platform
107  * @max_pstate_physical:This is physical Max P state for a processor
108  *			This can be higher than the max_pstate which can
109  *			be limited by platform thermal design power limits
110  * @scaling:		Scaling factor to  convert frequency to cpufreq
111  *			frequency units
112  * @turbo_pstate:	Max Turbo P state possible for this platform
113  *
114  * Stores the per cpu model P state limits and current P state.
115  */
116 struct pstate_data {
117 	int	current_pstate;
118 	int	min_pstate;
119 	int	max_pstate;
120 	int	max_pstate_physical;
121 	int	scaling;
122 	int	turbo_pstate;
123 };
124 
125 /**
126  * struct vid_data -	Stores voltage information data
127  * @min:		VID data for this platform corresponding to
128  *			the lowest P state
129  * @max:		VID data corresponding to the highest P State.
130  * @turbo:		VID data for turbo P state
131  * @ratio:		Ratio of (vid max - vid min) /
132  *			(max P state - Min P State)
133  *
134  * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
135  * This data is used in Atom platforms, where in addition to target P state,
136  * the voltage data needs to be specified to select next P State.
137  */
138 struct vid_data {
139 	int min;
140 	int max;
141 	int turbo;
142 	int32_t ratio;
143 };
144 
145 /**
146  * struct _pid -	Stores PID data
147  * @setpoint:		Target set point for busyness or performance
148  * @integral:		Storage for accumulated error values
149  * @p_gain:		PID proportional gain
150  * @i_gain:		PID integral gain
151  * @d_gain:		PID derivative gain
152  * @deadband:		PID deadband
153  * @last_err:		Last error storage for integral part of PID calculation
154  *
155  * Stores PID coefficients and last error for PID controller.
156  */
157 struct _pid {
158 	int setpoint;
159 	int32_t integral;
160 	int32_t p_gain;
161 	int32_t i_gain;
162 	int32_t d_gain;
163 	int deadband;
164 	int32_t last_err;
165 };
166 
167 /**
168  * struct cpudata -	Per CPU instance data storage
169  * @cpu:		CPU number for this instance data
170  * @update_util:	CPUFreq utility callback information
171  * @pstate:		Stores P state limits for this CPU
172  * @vid:		Stores VID limits for this CPU
173  * @pid:		Stores PID parameters for this CPU
174  * @last_sample_time:	Last Sample time
175  * @prev_aperf:		Last APERF value read from APERF MSR
176  * @prev_mperf:		Last MPERF value read from MPERF MSR
177  * @prev_tsc:		Last timestamp counter (TSC) value
178  * @prev_cummulative_iowait: IO Wait time difference from last and
179  *			current sample
180  * @sample:		Storage for storing last Sample data
181  * @acpi_perf_data:	Stores ACPI perf information read from _PSS
182  * @valid_pss_table:	Set to true for valid ACPI _PSS entries found
183  *
184  * This structure stores per CPU instance data for all CPUs.
185  */
186 struct cpudata {
187 	int cpu;
188 
189 	struct update_util_data update_util;
190 
191 	struct pstate_data pstate;
192 	struct vid_data vid;
193 	struct _pid pid;
194 
195 	u64	last_sample_time;
196 	u64	prev_aperf;
197 	u64	prev_mperf;
198 	u64	prev_tsc;
199 	u64	prev_cummulative_iowait;
200 	struct sample sample;
201 #ifdef CONFIG_ACPI
202 	struct acpi_processor_performance acpi_perf_data;
203 	bool valid_pss_table;
204 #endif
205 };
206 
207 static struct cpudata **all_cpu_data;
208 
209 /**
210  * struct pid_adjust_policy - Stores static PID configuration data
211  * @sample_rate_ms:	PID calculation sample rate in ms
212  * @sample_rate_ns:	Sample rate calculation in ns
213  * @deadband:		PID deadband
214  * @setpoint:		PID Setpoint
215  * @p_gain_pct:		PID proportional gain
216  * @i_gain_pct:		PID integral gain
217  * @d_gain_pct:		PID derivative gain
218  *
219  * Stores per CPU model static PID configuration data.
220  */
221 struct pstate_adjust_policy {
222 	int sample_rate_ms;
223 	s64 sample_rate_ns;
224 	int deadband;
225 	int setpoint;
226 	int p_gain_pct;
227 	int d_gain_pct;
228 	int i_gain_pct;
229 };
230 
231 /**
232  * struct pstate_funcs - Per CPU model specific callbacks
233  * @get_max:		Callback to get maximum non turbo effective P state
234  * @get_max_physical:	Callback to get maximum non turbo physical P state
235  * @get_min:		Callback to get minimum P state
236  * @get_turbo:		Callback to get turbo P state
237  * @get_scaling:	Callback to get frequency scaling factor
238  * @get_val:		Callback to convert P state to actual MSR write value
239  * @get_vid:		Callback to get VID data for Atom platforms
240  * @get_target_pstate:	Callback to a function to calculate next P state to use
241  *
242  * Core and Atom CPU models have different way to get P State limits. This
243  * structure is used to store those callbacks.
244  */
245 struct pstate_funcs {
246 	int (*get_max)(void);
247 	int (*get_max_physical)(void);
248 	int (*get_min)(void);
249 	int (*get_turbo)(void);
250 	int (*get_scaling)(void);
251 	u64 (*get_val)(struct cpudata*, int pstate);
252 	void (*get_vid)(struct cpudata *);
253 	int32_t (*get_target_pstate)(struct cpudata *);
254 };
255 
256 /**
257  * struct cpu_defaults- Per CPU model default config data
258  * @pid_policy:	PID config data
259  * @funcs:		Callback function data
260  */
261 struct cpu_defaults {
262 	struct pstate_adjust_policy pid_policy;
263 	struct pstate_funcs funcs;
264 };
265 
266 static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu);
267 static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu);
268 
269 static struct pstate_adjust_policy pid_params;
270 static struct pstate_funcs pstate_funcs;
271 static int hwp_active;
272 
273 #ifdef CONFIG_ACPI
274 static bool acpi_ppc;
275 #endif
276 
277 /**
278  * struct perf_limits - Store user and policy limits
279  * @no_turbo:		User requested turbo state from intel_pstate sysfs
280  * @turbo_disabled:	Platform turbo status either from msr
281  *			MSR_IA32_MISC_ENABLE or when maximum available pstate
282  *			matches the maximum turbo pstate
283  * @max_perf_pct:	Effective maximum performance limit in percentage, this
284  *			is minimum of either limits enforced by cpufreq policy
285  *			or limits from user set limits via intel_pstate sysfs
286  * @min_perf_pct:	Effective minimum performance limit in percentage, this
287  *			is maximum of either limits enforced by cpufreq policy
288  *			or limits from user set limits via intel_pstate sysfs
289  * @max_perf:		This is a scaled value between 0 to 255 for max_perf_pct
290  *			This value is used to limit max pstate
291  * @min_perf:		This is a scaled value between 0 to 255 for min_perf_pct
292  *			This value is used to limit min pstate
293  * @max_policy_pct:	The maximum performance in percentage enforced by
294  *			cpufreq setpolicy interface
295  * @max_sysfs_pct:	The maximum performance in percentage enforced by
296  *			intel pstate sysfs interface
297  * @min_policy_pct:	The minimum performance in percentage enforced by
298  *			cpufreq setpolicy interface
299  * @min_sysfs_pct:	The minimum performance in percentage enforced by
300  *			intel pstate sysfs interface
301  *
302  * Storage for user and policy defined limits.
303  */
304 struct perf_limits {
305 	int no_turbo;
306 	int turbo_disabled;
307 	int max_perf_pct;
308 	int min_perf_pct;
309 	int32_t max_perf;
310 	int32_t min_perf;
311 	int max_policy_pct;
312 	int max_sysfs_pct;
313 	int min_policy_pct;
314 	int min_sysfs_pct;
315 };
316 
317 static struct perf_limits performance_limits = {
318 	.no_turbo = 0,
319 	.turbo_disabled = 0,
320 	.max_perf_pct = 100,
321 	.max_perf = int_tofp(1),
322 	.min_perf_pct = 100,
323 	.min_perf = int_tofp(1),
324 	.max_policy_pct = 100,
325 	.max_sysfs_pct = 100,
326 	.min_policy_pct = 0,
327 	.min_sysfs_pct = 0,
328 };
329 
330 static struct perf_limits powersave_limits = {
331 	.no_turbo = 0,
332 	.turbo_disabled = 0,
333 	.max_perf_pct = 100,
334 	.max_perf = int_tofp(1),
335 	.min_perf_pct = 0,
336 	.min_perf = 0,
337 	.max_policy_pct = 100,
338 	.max_sysfs_pct = 100,
339 	.min_policy_pct = 0,
340 	.min_sysfs_pct = 0,
341 };
342 
343 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE
344 static struct perf_limits *limits = &performance_limits;
345 #else
346 static struct perf_limits *limits = &powersave_limits;
347 #endif
348 
349 #ifdef CONFIG_ACPI
350 
351 static bool intel_pstate_get_ppc_enable_status(void)
352 {
353 	if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
354 	    acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
355 		return true;
356 
357 	return acpi_ppc;
358 }
359 
360 /*
361  * The max target pstate ratio is a 8 bit value in both PLATFORM_INFO MSR and
362  * in TURBO_RATIO_LIMIT MSR, which pstate driver stores in max_pstate and
363  * max_turbo_pstate fields. The PERF_CTL MSR contains 16 bit value for P state
364  * ratio, out of it only high 8 bits are used. For example 0x1700 is setting
365  * target ratio 0x17. The _PSS control value stores in a format which can be
366  * directly written to PERF_CTL MSR. But in intel_pstate driver this shift
367  * occurs during write to PERF_CTL (E.g. for cores core_set_pstate()).
368  * This function converts the _PSS control value to intel pstate driver format
369  * for comparison and assignment.
370  */
371 static int convert_to_native_pstate_format(struct cpudata *cpu, int index)
372 {
373 	return cpu->acpi_perf_data.states[index].control >> 8;
374 }
375 
376 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
377 {
378 	struct cpudata *cpu;
379 	int turbo_pss_ctl;
380 	int ret;
381 	int i;
382 
383 	if (hwp_active)
384 		return;
385 
386 	if (!intel_pstate_get_ppc_enable_status())
387 		return;
388 
389 	cpu = all_cpu_data[policy->cpu];
390 
391 	ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
392 						  policy->cpu);
393 	if (ret)
394 		return;
395 
396 	/*
397 	 * Check if the control value in _PSS is for PERF_CTL MSR, which should
398 	 * guarantee that the states returned by it map to the states in our
399 	 * list directly.
400 	 */
401 	if (cpu->acpi_perf_data.control_register.space_id !=
402 						ACPI_ADR_SPACE_FIXED_HARDWARE)
403 		goto err;
404 
405 	/*
406 	 * If there is only one entry _PSS, simply ignore _PSS and continue as
407 	 * usual without taking _PSS into account
408 	 */
409 	if (cpu->acpi_perf_data.state_count < 2)
410 		goto err;
411 
412 	pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
413 	for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
414 		pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
415 			 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
416 			 (u32) cpu->acpi_perf_data.states[i].core_frequency,
417 			 (u32) cpu->acpi_perf_data.states[i].power,
418 			 (u32) cpu->acpi_perf_data.states[i].control);
419 	}
420 
421 	/*
422 	 * The _PSS table doesn't contain whole turbo frequency range.
423 	 * This just contains +1 MHZ above the max non turbo frequency,
424 	 * with control value corresponding to max turbo ratio. But
425 	 * when cpufreq set policy is called, it will call with this
426 	 * max frequency, which will cause a reduced performance as
427 	 * this driver uses real max turbo frequency as the max
428 	 * frequency. So correct this frequency in _PSS table to
429 	 * correct max turbo frequency based on the turbo ratio.
430 	 * Also need to convert to MHz as _PSS freq is in MHz.
431 	 */
432 	turbo_pss_ctl = convert_to_native_pstate_format(cpu, 0);
433 	if (turbo_pss_ctl > cpu->pstate.max_pstate)
434 		cpu->acpi_perf_data.states[0].core_frequency =
435 					policy->cpuinfo.max_freq / 1000;
436 	cpu->valid_pss_table = true;
437 	pr_info("_PPC limits will be enforced\n");
438 
439 	return;
440 
441  err:
442 	cpu->valid_pss_table = false;
443 	acpi_processor_unregister_performance(policy->cpu);
444 }
445 
446 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
447 {
448 	struct cpudata *cpu;
449 
450 	cpu = all_cpu_data[policy->cpu];
451 	if (!cpu->valid_pss_table)
452 		return;
453 
454 	acpi_processor_unregister_performance(policy->cpu);
455 }
456 
457 #else
458 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
459 {
460 }
461 
462 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
463 {
464 }
465 #endif
466 
467 static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
468 			     int deadband, int integral) {
469 	pid->setpoint = int_tofp(setpoint);
470 	pid->deadband  = int_tofp(deadband);
471 	pid->integral  = int_tofp(integral);
472 	pid->last_err  = int_tofp(setpoint) - int_tofp(busy);
473 }
474 
475 static inline void pid_p_gain_set(struct _pid *pid, int percent)
476 {
477 	pid->p_gain = div_fp(percent, 100);
478 }
479 
480 static inline void pid_i_gain_set(struct _pid *pid, int percent)
481 {
482 	pid->i_gain = div_fp(percent, 100);
483 }
484 
485 static inline void pid_d_gain_set(struct _pid *pid, int percent)
486 {
487 	pid->d_gain = div_fp(percent, 100);
488 }
489 
490 static signed int pid_calc(struct _pid *pid, int32_t busy)
491 {
492 	signed int result;
493 	int32_t pterm, dterm, fp_error;
494 	int32_t integral_limit;
495 
496 	fp_error = pid->setpoint - busy;
497 
498 	if (abs(fp_error) <= pid->deadband)
499 		return 0;
500 
501 	pterm = mul_fp(pid->p_gain, fp_error);
502 
503 	pid->integral += fp_error;
504 
505 	/*
506 	 * We limit the integral here so that it will never
507 	 * get higher than 30.  This prevents it from becoming
508 	 * too large an input over long periods of time and allows
509 	 * it to get factored out sooner.
510 	 *
511 	 * The value of 30 was chosen through experimentation.
512 	 */
513 	integral_limit = int_tofp(30);
514 	if (pid->integral > integral_limit)
515 		pid->integral = integral_limit;
516 	if (pid->integral < -integral_limit)
517 		pid->integral = -integral_limit;
518 
519 	dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
520 	pid->last_err = fp_error;
521 
522 	result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
523 	result = result + (1 << (FRAC_BITS-1));
524 	return (signed int)fp_toint(result);
525 }
526 
527 static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
528 {
529 	pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
530 	pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
531 	pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
532 
533 	pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
534 }
535 
536 static inline void intel_pstate_reset_all_pid(void)
537 {
538 	unsigned int cpu;
539 
540 	for_each_online_cpu(cpu) {
541 		if (all_cpu_data[cpu])
542 			intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
543 	}
544 }
545 
546 static inline void update_turbo_state(void)
547 {
548 	u64 misc_en;
549 	struct cpudata *cpu;
550 
551 	cpu = all_cpu_data[0];
552 	rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
553 	limits->turbo_disabled =
554 		(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
555 		 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
556 }
557 
558 static void intel_pstate_hwp_set(const struct cpumask *cpumask)
559 {
560 	int min, hw_min, max, hw_max, cpu, range, adj_range;
561 	u64 value, cap;
562 
563 	rdmsrl(MSR_HWP_CAPABILITIES, cap);
564 	hw_min = HWP_LOWEST_PERF(cap);
565 	hw_max = HWP_HIGHEST_PERF(cap);
566 	range = hw_max - hw_min;
567 
568 	for_each_cpu(cpu, cpumask) {
569 		rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
570 		adj_range = limits->min_perf_pct * range / 100;
571 		min = hw_min + adj_range;
572 		value &= ~HWP_MIN_PERF(~0L);
573 		value |= HWP_MIN_PERF(min);
574 
575 		adj_range = limits->max_perf_pct * range / 100;
576 		max = hw_min + adj_range;
577 		if (limits->no_turbo) {
578 			hw_max = HWP_GUARANTEED_PERF(cap);
579 			if (hw_max < max)
580 				max = hw_max;
581 		}
582 
583 		value &= ~HWP_MAX_PERF(~0L);
584 		value |= HWP_MAX_PERF(max);
585 		wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
586 	}
587 }
588 
589 static void intel_pstate_hwp_set_online_cpus(void)
590 {
591 	get_online_cpus();
592 	intel_pstate_hwp_set(cpu_online_mask);
593 	put_online_cpus();
594 }
595 
596 /************************** debugfs begin ************************/
597 static int pid_param_set(void *data, u64 val)
598 {
599 	*(u32 *)data = val;
600 	intel_pstate_reset_all_pid();
601 	return 0;
602 }
603 
604 static int pid_param_get(void *data, u64 *val)
605 {
606 	*val = *(u32 *)data;
607 	return 0;
608 }
609 DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
610 
611 struct pid_param {
612 	char *name;
613 	void *value;
614 };
615 
616 static struct pid_param pid_files[] = {
617 	{"sample_rate_ms", &pid_params.sample_rate_ms},
618 	{"d_gain_pct", &pid_params.d_gain_pct},
619 	{"i_gain_pct", &pid_params.i_gain_pct},
620 	{"deadband", &pid_params.deadband},
621 	{"setpoint", &pid_params.setpoint},
622 	{"p_gain_pct", &pid_params.p_gain_pct},
623 	{NULL, NULL}
624 };
625 
626 static void __init intel_pstate_debug_expose_params(void)
627 {
628 	struct dentry *debugfs_parent;
629 	int i = 0;
630 
631 	if (hwp_active)
632 		return;
633 	debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
634 	if (IS_ERR_OR_NULL(debugfs_parent))
635 		return;
636 	while (pid_files[i].name) {
637 		debugfs_create_file(pid_files[i].name, 0660,
638 				    debugfs_parent, pid_files[i].value,
639 				    &fops_pid_param);
640 		i++;
641 	}
642 }
643 
644 /************************** debugfs end ************************/
645 
646 /************************** sysfs begin ************************/
647 #define show_one(file_name, object)					\
648 	static ssize_t show_##file_name					\
649 	(struct kobject *kobj, struct attribute *attr, char *buf)	\
650 	{								\
651 		return sprintf(buf, "%u\n", limits->object);		\
652 	}
653 
654 static ssize_t show_turbo_pct(struct kobject *kobj,
655 				struct attribute *attr, char *buf)
656 {
657 	struct cpudata *cpu;
658 	int total, no_turbo, turbo_pct;
659 	uint32_t turbo_fp;
660 
661 	cpu = all_cpu_data[0];
662 
663 	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
664 	no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
665 	turbo_fp = div_fp(no_turbo, total);
666 	turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
667 	return sprintf(buf, "%u\n", turbo_pct);
668 }
669 
670 static ssize_t show_num_pstates(struct kobject *kobj,
671 				struct attribute *attr, char *buf)
672 {
673 	struct cpudata *cpu;
674 	int total;
675 
676 	cpu = all_cpu_data[0];
677 	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
678 	return sprintf(buf, "%u\n", total);
679 }
680 
681 static ssize_t show_no_turbo(struct kobject *kobj,
682 			     struct attribute *attr, char *buf)
683 {
684 	ssize_t ret;
685 
686 	update_turbo_state();
687 	if (limits->turbo_disabled)
688 		ret = sprintf(buf, "%u\n", limits->turbo_disabled);
689 	else
690 		ret = sprintf(buf, "%u\n", limits->no_turbo);
691 
692 	return ret;
693 }
694 
695 static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
696 			      const char *buf, size_t count)
697 {
698 	unsigned int input;
699 	int ret;
700 
701 	ret = sscanf(buf, "%u", &input);
702 	if (ret != 1)
703 		return -EINVAL;
704 
705 	update_turbo_state();
706 	if (limits->turbo_disabled) {
707 		pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
708 		return -EPERM;
709 	}
710 
711 	limits->no_turbo = clamp_t(int, input, 0, 1);
712 
713 	if (hwp_active)
714 		intel_pstate_hwp_set_online_cpus();
715 
716 	return count;
717 }
718 
719 static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
720 				  const char *buf, size_t count)
721 {
722 	unsigned int input;
723 	int ret;
724 
725 	ret = sscanf(buf, "%u", &input);
726 	if (ret != 1)
727 		return -EINVAL;
728 
729 	limits->max_sysfs_pct = clamp_t(int, input, 0 , 100);
730 	limits->max_perf_pct = min(limits->max_policy_pct,
731 				   limits->max_sysfs_pct);
732 	limits->max_perf_pct = max(limits->min_policy_pct,
733 				   limits->max_perf_pct);
734 	limits->max_perf_pct = max(limits->min_perf_pct,
735 				   limits->max_perf_pct);
736 	limits->max_perf = div_fp(limits->max_perf_pct, 100);
737 
738 	if (hwp_active)
739 		intel_pstate_hwp_set_online_cpus();
740 	return count;
741 }
742 
743 static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
744 				  const char *buf, size_t count)
745 {
746 	unsigned int input;
747 	int ret;
748 
749 	ret = sscanf(buf, "%u", &input);
750 	if (ret != 1)
751 		return -EINVAL;
752 
753 	limits->min_sysfs_pct = clamp_t(int, input, 0 , 100);
754 	limits->min_perf_pct = max(limits->min_policy_pct,
755 				   limits->min_sysfs_pct);
756 	limits->min_perf_pct = min(limits->max_policy_pct,
757 				   limits->min_perf_pct);
758 	limits->min_perf_pct = min(limits->max_perf_pct,
759 				   limits->min_perf_pct);
760 	limits->min_perf = div_fp(limits->min_perf_pct, 100);
761 
762 	if (hwp_active)
763 		intel_pstate_hwp_set_online_cpus();
764 	return count;
765 }
766 
767 show_one(max_perf_pct, max_perf_pct);
768 show_one(min_perf_pct, min_perf_pct);
769 
770 define_one_global_rw(no_turbo);
771 define_one_global_rw(max_perf_pct);
772 define_one_global_rw(min_perf_pct);
773 define_one_global_ro(turbo_pct);
774 define_one_global_ro(num_pstates);
775 
776 static struct attribute *intel_pstate_attributes[] = {
777 	&no_turbo.attr,
778 	&max_perf_pct.attr,
779 	&min_perf_pct.attr,
780 	&turbo_pct.attr,
781 	&num_pstates.attr,
782 	NULL
783 };
784 
785 static struct attribute_group intel_pstate_attr_group = {
786 	.attrs = intel_pstate_attributes,
787 };
788 
789 static void __init intel_pstate_sysfs_expose_params(void)
790 {
791 	struct kobject *intel_pstate_kobject;
792 	int rc;
793 
794 	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
795 						&cpu_subsys.dev_root->kobj);
796 	BUG_ON(!intel_pstate_kobject);
797 	rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
798 	BUG_ON(rc);
799 }
800 /************************** sysfs end ************************/
801 
802 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
803 {
804 	/* First disable HWP notification interrupt as we don't process them */
805 	wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
806 
807 	wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
808 }
809 
810 static int atom_get_min_pstate(void)
811 {
812 	u64 value;
813 
814 	rdmsrl(ATOM_RATIOS, value);
815 	return (value >> 8) & 0x7F;
816 }
817 
818 static int atom_get_max_pstate(void)
819 {
820 	u64 value;
821 
822 	rdmsrl(ATOM_RATIOS, value);
823 	return (value >> 16) & 0x7F;
824 }
825 
826 static int atom_get_turbo_pstate(void)
827 {
828 	u64 value;
829 
830 	rdmsrl(ATOM_TURBO_RATIOS, value);
831 	return value & 0x7F;
832 }
833 
834 static u64 atom_get_val(struct cpudata *cpudata, int pstate)
835 {
836 	u64 val;
837 	int32_t vid_fp;
838 	u32 vid;
839 
840 	val = (u64)pstate << 8;
841 	if (limits->no_turbo && !limits->turbo_disabled)
842 		val |= (u64)1 << 32;
843 
844 	vid_fp = cpudata->vid.min + mul_fp(
845 		int_tofp(pstate - cpudata->pstate.min_pstate),
846 		cpudata->vid.ratio);
847 
848 	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
849 	vid = ceiling_fp(vid_fp);
850 
851 	if (pstate > cpudata->pstate.max_pstate)
852 		vid = cpudata->vid.turbo;
853 
854 	return val | vid;
855 }
856 
857 static int silvermont_get_scaling(void)
858 {
859 	u64 value;
860 	int i;
861 	/* Defined in Table 35-6 from SDM (Sept 2015) */
862 	static int silvermont_freq_table[] = {
863 		83300, 100000, 133300, 116700, 80000};
864 
865 	rdmsrl(MSR_FSB_FREQ, value);
866 	i = value & 0x7;
867 	WARN_ON(i > 4);
868 
869 	return silvermont_freq_table[i];
870 }
871 
872 static int airmont_get_scaling(void)
873 {
874 	u64 value;
875 	int i;
876 	/* Defined in Table 35-10 from SDM (Sept 2015) */
877 	static int airmont_freq_table[] = {
878 		83300, 100000, 133300, 116700, 80000,
879 		93300, 90000, 88900, 87500};
880 
881 	rdmsrl(MSR_FSB_FREQ, value);
882 	i = value & 0xF;
883 	WARN_ON(i > 8);
884 
885 	return airmont_freq_table[i];
886 }
887 
888 static void atom_get_vid(struct cpudata *cpudata)
889 {
890 	u64 value;
891 
892 	rdmsrl(ATOM_VIDS, value);
893 	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
894 	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
895 	cpudata->vid.ratio = div_fp(
896 		cpudata->vid.max - cpudata->vid.min,
897 		int_tofp(cpudata->pstate.max_pstate -
898 			cpudata->pstate.min_pstate));
899 
900 	rdmsrl(ATOM_TURBO_VIDS, value);
901 	cpudata->vid.turbo = value & 0x7f;
902 }
903 
904 static int core_get_min_pstate(void)
905 {
906 	u64 value;
907 
908 	rdmsrl(MSR_PLATFORM_INFO, value);
909 	return (value >> 40) & 0xFF;
910 }
911 
912 static int core_get_max_pstate_physical(void)
913 {
914 	u64 value;
915 
916 	rdmsrl(MSR_PLATFORM_INFO, value);
917 	return (value >> 8) & 0xFF;
918 }
919 
920 static int core_get_max_pstate(void)
921 {
922 	u64 tar;
923 	u64 plat_info;
924 	int max_pstate;
925 	int err;
926 
927 	rdmsrl(MSR_PLATFORM_INFO, plat_info);
928 	max_pstate = (plat_info >> 8) & 0xFF;
929 
930 	err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
931 	if (!err) {
932 		/* Do some sanity checking for safety */
933 		if (plat_info & 0x600000000) {
934 			u64 tdp_ctrl;
935 			u64 tdp_ratio;
936 			int tdp_msr;
937 
938 			err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
939 			if (err)
940 				goto skip_tar;
941 
942 			tdp_msr = MSR_CONFIG_TDP_NOMINAL + tdp_ctrl;
943 			err = rdmsrl_safe(tdp_msr, &tdp_ratio);
944 			if (err)
945 				goto skip_tar;
946 
947 			if (tdp_ratio - 1 == tar) {
948 				max_pstate = tar;
949 				pr_debug("max_pstate=TAC %x\n", max_pstate);
950 			} else {
951 				goto skip_tar;
952 			}
953 		}
954 	}
955 
956 skip_tar:
957 	return max_pstate;
958 }
959 
960 static int core_get_turbo_pstate(void)
961 {
962 	u64 value;
963 	int nont, ret;
964 
965 	rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
966 	nont = core_get_max_pstate();
967 	ret = (value) & 255;
968 	if (ret <= nont)
969 		ret = nont;
970 	return ret;
971 }
972 
973 static inline int core_get_scaling(void)
974 {
975 	return 100000;
976 }
977 
978 static u64 core_get_val(struct cpudata *cpudata, int pstate)
979 {
980 	u64 val;
981 
982 	val = (u64)pstate << 8;
983 	if (limits->no_turbo && !limits->turbo_disabled)
984 		val |= (u64)1 << 32;
985 
986 	return val;
987 }
988 
989 static int knl_get_turbo_pstate(void)
990 {
991 	u64 value;
992 	int nont, ret;
993 
994 	rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
995 	nont = core_get_max_pstate();
996 	ret = (((value) >> 8) & 0xFF);
997 	if (ret <= nont)
998 		ret = nont;
999 	return ret;
1000 }
1001 
1002 static struct cpu_defaults core_params = {
1003 	.pid_policy = {
1004 		.sample_rate_ms = 10,
1005 		.deadband = 0,
1006 		.setpoint = 97,
1007 		.p_gain_pct = 20,
1008 		.d_gain_pct = 0,
1009 		.i_gain_pct = 0,
1010 	},
1011 	.funcs = {
1012 		.get_max = core_get_max_pstate,
1013 		.get_max_physical = core_get_max_pstate_physical,
1014 		.get_min = core_get_min_pstate,
1015 		.get_turbo = core_get_turbo_pstate,
1016 		.get_scaling = core_get_scaling,
1017 		.get_val = core_get_val,
1018 		.get_target_pstate = get_target_pstate_use_performance,
1019 	},
1020 };
1021 
1022 static struct cpu_defaults silvermont_params = {
1023 	.pid_policy = {
1024 		.sample_rate_ms = 10,
1025 		.deadband = 0,
1026 		.setpoint = 60,
1027 		.p_gain_pct = 14,
1028 		.d_gain_pct = 0,
1029 		.i_gain_pct = 4,
1030 	},
1031 	.funcs = {
1032 		.get_max = atom_get_max_pstate,
1033 		.get_max_physical = atom_get_max_pstate,
1034 		.get_min = atom_get_min_pstate,
1035 		.get_turbo = atom_get_turbo_pstate,
1036 		.get_val = atom_get_val,
1037 		.get_scaling = silvermont_get_scaling,
1038 		.get_vid = atom_get_vid,
1039 		.get_target_pstate = get_target_pstate_use_cpu_load,
1040 	},
1041 };
1042 
1043 static struct cpu_defaults airmont_params = {
1044 	.pid_policy = {
1045 		.sample_rate_ms = 10,
1046 		.deadband = 0,
1047 		.setpoint = 60,
1048 		.p_gain_pct = 14,
1049 		.d_gain_pct = 0,
1050 		.i_gain_pct = 4,
1051 	},
1052 	.funcs = {
1053 		.get_max = atom_get_max_pstate,
1054 		.get_max_physical = atom_get_max_pstate,
1055 		.get_min = atom_get_min_pstate,
1056 		.get_turbo = atom_get_turbo_pstate,
1057 		.get_val = atom_get_val,
1058 		.get_scaling = airmont_get_scaling,
1059 		.get_vid = atom_get_vid,
1060 		.get_target_pstate = get_target_pstate_use_cpu_load,
1061 	},
1062 };
1063 
1064 static struct cpu_defaults knl_params = {
1065 	.pid_policy = {
1066 		.sample_rate_ms = 10,
1067 		.deadband = 0,
1068 		.setpoint = 97,
1069 		.p_gain_pct = 20,
1070 		.d_gain_pct = 0,
1071 		.i_gain_pct = 0,
1072 	},
1073 	.funcs = {
1074 		.get_max = core_get_max_pstate,
1075 		.get_max_physical = core_get_max_pstate_physical,
1076 		.get_min = core_get_min_pstate,
1077 		.get_turbo = knl_get_turbo_pstate,
1078 		.get_scaling = core_get_scaling,
1079 		.get_val = core_get_val,
1080 		.get_target_pstate = get_target_pstate_use_performance,
1081 	},
1082 };
1083 
1084 static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
1085 {
1086 	int max_perf = cpu->pstate.turbo_pstate;
1087 	int max_perf_adj;
1088 	int min_perf;
1089 
1090 	if (limits->no_turbo || limits->turbo_disabled)
1091 		max_perf = cpu->pstate.max_pstate;
1092 
1093 	/*
1094 	 * performance can be limited by user through sysfs, by cpufreq
1095 	 * policy, or by cpu specific default values determined through
1096 	 * experimentation.
1097 	 */
1098 	max_perf_adj = fp_toint(max_perf * limits->max_perf);
1099 	*max = clamp_t(int, max_perf_adj,
1100 			cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
1101 
1102 	min_perf = fp_toint(max_perf * limits->min_perf);
1103 	*min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
1104 }
1105 
1106 static inline void intel_pstate_record_pstate(struct cpudata *cpu, int pstate)
1107 {
1108 	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1109 	cpu->pstate.current_pstate = pstate;
1110 }
1111 
1112 static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1113 {
1114 	int pstate = cpu->pstate.min_pstate;
1115 
1116 	intel_pstate_record_pstate(cpu, pstate);
1117 	/*
1118 	 * Generally, there is no guarantee that this code will always run on
1119 	 * the CPU being updated, so force the register update to run on the
1120 	 * right CPU.
1121 	 */
1122 	wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1123 		      pstate_funcs.get_val(cpu, pstate));
1124 }
1125 
1126 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1127 {
1128 	cpu->pstate.min_pstate = pstate_funcs.get_min();
1129 	cpu->pstate.max_pstate = pstate_funcs.get_max();
1130 	cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1131 	cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1132 	cpu->pstate.scaling = pstate_funcs.get_scaling();
1133 
1134 	if (pstate_funcs.get_vid)
1135 		pstate_funcs.get_vid(cpu);
1136 
1137 	intel_pstate_set_min_pstate(cpu);
1138 }
1139 
1140 static inline void intel_pstate_calc_busy(struct cpudata *cpu)
1141 {
1142 	struct sample *sample = &cpu->sample;
1143 	int64_t core_pct;
1144 
1145 	core_pct = sample->aperf * int_tofp(100);
1146 	core_pct = div64_u64(core_pct, sample->mperf);
1147 
1148 	sample->core_pct_busy = (int32_t)core_pct;
1149 }
1150 
1151 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1152 {
1153 	u64 aperf, mperf;
1154 	unsigned long flags;
1155 	u64 tsc;
1156 
1157 	local_irq_save(flags);
1158 	rdmsrl(MSR_IA32_APERF, aperf);
1159 	rdmsrl(MSR_IA32_MPERF, mperf);
1160 	tsc = rdtsc();
1161 	if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1162 		local_irq_restore(flags);
1163 		return false;
1164 	}
1165 	local_irq_restore(flags);
1166 
1167 	cpu->last_sample_time = cpu->sample.time;
1168 	cpu->sample.time = time;
1169 	cpu->sample.aperf = aperf;
1170 	cpu->sample.mperf = mperf;
1171 	cpu->sample.tsc =  tsc;
1172 	cpu->sample.aperf -= cpu->prev_aperf;
1173 	cpu->sample.mperf -= cpu->prev_mperf;
1174 	cpu->sample.tsc -= cpu->prev_tsc;
1175 
1176 	cpu->prev_aperf = aperf;
1177 	cpu->prev_mperf = mperf;
1178 	cpu->prev_tsc = tsc;
1179 	/*
1180 	 * First time this function is invoked in a given cycle, all of the
1181 	 * previous sample data fields are equal to zero or stale and they must
1182 	 * be populated with meaningful numbers for things to work, so assume
1183 	 * that sample.time will always be reset before setting the utilization
1184 	 * update hook and make the caller skip the sample then.
1185 	 */
1186 	return !!cpu->last_sample_time;
1187 }
1188 
1189 static inline int32_t get_avg_frequency(struct cpudata *cpu)
1190 {
1191 	return div64_u64(cpu->pstate.max_pstate_physical * cpu->sample.aperf *
1192 		cpu->pstate.scaling, cpu->sample.mperf);
1193 }
1194 
1195 static inline int32_t get_avg_pstate(struct cpudata *cpu)
1196 {
1197 	return div64_u64(cpu->pstate.max_pstate_physical * cpu->sample.aperf,
1198 			 cpu->sample.mperf);
1199 }
1200 
1201 static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
1202 {
1203 	struct sample *sample = &cpu->sample;
1204 	u64 cummulative_iowait, delta_iowait_us;
1205 	u64 delta_iowait_mperf;
1206 	u64 mperf, now;
1207 	int32_t cpu_load;
1208 
1209 	cummulative_iowait = get_cpu_iowait_time_us(cpu->cpu, &now);
1210 
1211 	/*
1212 	 * Convert iowait time into number of IO cycles spent at max_freq.
1213 	 * IO is considered as busy only for the cpu_load algorithm. For
1214 	 * performance this is not needed since we always try to reach the
1215 	 * maximum P-State, so we are already boosting the IOs.
1216 	 */
1217 	delta_iowait_us = cummulative_iowait - cpu->prev_cummulative_iowait;
1218 	delta_iowait_mperf = div64_u64(delta_iowait_us * cpu->pstate.scaling *
1219 		cpu->pstate.max_pstate, MSEC_PER_SEC);
1220 
1221 	mperf = cpu->sample.mperf + delta_iowait_mperf;
1222 	cpu->prev_cummulative_iowait = cummulative_iowait;
1223 
1224 	/*
1225 	 * The load can be estimated as the ratio of the mperf counter
1226 	 * running at a constant frequency during active periods
1227 	 * (C0) and the time stamp counter running at the same frequency
1228 	 * also during C-states.
1229 	 */
1230 	cpu_load = div64_u64(int_tofp(100) * mperf, sample->tsc);
1231 	cpu->sample.busy_scaled = cpu_load;
1232 
1233 	return get_avg_pstate(cpu) - pid_calc(&cpu->pid, cpu_load);
1234 }
1235 
1236 static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
1237 {
1238 	int32_t core_busy, max_pstate, current_pstate, sample_ratio;
1239 	u64 duration_ns;
1240 
1241 	intel_pstate_calc_busy(cpu);
1242 
1243 	/*
1244 	 * core_busy is the ratio of actual performance to max
1245 	 * max_pstate is the max non turbo pstate available
1246 	 * current_pstate was the pstate that was requested during
1247 	 * 	the last sample period.
1248 	 *
1249 	 * We normalize core_busy, which was our actual percent
1250 	 * performance to what we requested during the last sample
1251 	 * period. The result will be a percentage of busy at a
1252 	 * specified pstate.
1253 	 */
1254 	core_busy = cpu->sample.core_pct_busy;
1255 	max_pstate = cpu->pstate.max_pstate_physical;
1256 	current_pstate = cpu->pstate.current_pstate;
1257 	core_busy = mul_fp(core_busy, div_fp(max_pstate, current_pstate));
1258 
1259 	/*
1260 	 * Since our utilization update callback will not run unless we are
1261 	 * in C0, check if the actual elapsed time is significantly greater (3x)
1262 	 * than our sample interval.  If it is, then we were idle for a long
1263 	 * enough period of time to adjust our busyness.
1264 	 */
1265 	duration_ns = cpu->sample.time - cpu->last_sample_time;
1266 	if ((s64)duration_ns > pid_params.sample_rate_ns * 3) {
1267 		sample_ratio = div_fp(pid_params.sample_rate_ns, duration_ns);
1268 		core_busy = mul_fp(core_busy, sample_ratio);
1269 	} else {
1270 		sample_ratio = div_fp(100 * cpu->sample.mperf, cpu->sample.tsc);
1271 		if (sample_ratio < int_tofp(1))
1272 			core_busy = 0;
1273 	}
1274 
1275 	cpu->sample.busy_scaled = core_busy;
1276 	return cpu->pstate.current_pstate - pid_calc(&cpu->pid, core_busy);
1277 }
1278 
1279 static inline void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1280 {
1281 	int max_perf, min_perf;
1282 
1283 	update_turbo_state();
1284 
1285 	intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
1286 	pstate = clamp_t(int, pstate, min_perf, max_perf);
1287 	if (pstate == cpu->pstate.current_pstate)
1288 		return;
1289 
1290 	intel_pstate_record_pstate(cpu, pstate);
1291 	wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1292 }
1293 
1294 static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
1295 {
1296 	int from, target_pstate;
1297 	struct sample *sample;
1298 
1299 	from = cpu->pstate.current_pstate;
1300 
1301 	target_pstate = pstate_funcs.get_target_pstate(cpu);
1302 
1303 	intel_pstate_update_pstate(cpu, target_pstate);
1304 
1305 	sample = &cpu->sample;
1306 	trace_pstate_sample(fp_toint(sample->core_pct_busy),
1307 		fp_toint(sample->busy_scaled),
1308 		from,
1309 		cpu->pstate.current_pstate,
1310 		sample->mperf,
1311 		sample->aperf,
1312 		sample->tsc,
1313 		get_avg_frequency(cpu));
1314 }
1315 
1316 static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1317 				     unsigned long util, unsigned long max)
1318 {
1319 	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1320 	u64 delta_ns = time - cpu->sample.time;
1321 
1322 	if ((s64)delta_ns >= pid_params.sample_rate_ns) {
1323 		bool sample_taken = intel_pstate_sample(cpu, time);
1324 
1325 		if (sample_taken && !hwp_active)
1326 			intel_pstate_adjust_busy_pstate(cpu);
1327 	}
1328 }
1329 
1330 #define ICPU(model, policy) \
1331 	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1332 			(unsigned long)&policy }
1333 
1334 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1335 	ICPU(0x2a, core_params),
1336 	ICPU(0x2d, core_params),
1337 	ICPU(0x37, silvermont_params),
1338 	ICPU(0x3a, core_params),
1339 	ICPU(0x3c, core_params),
1340 	ICPU(0x3d, core_params),
1341 	ICPU(0x3e, core_params),
1342 	ICPU(0x3f, core_params),
1343 	ICPU(0x45, core_params),
1344 	ICPU(0x46, core_params),
1345 	ICPU(0x47, core_params),
1346 	ICPU(0x4c, airmont_params),
1347 	ICPU(0x4e, core_params),
1348 	ICPU(0x4f, core_params),
1349 	ICPU(0x5e, core_params),
1350 	ICPU(0x56, core_params),
1351 	ICPU(0x57, knl_params),
1352 	{}
1353 };
1354 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1355 
1356 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] = {
1357 	ICPU(0x56, core_params),
1358 	{}
1359 };
1360 
1361 static int intel_pstate_init_cpu(unsigned int cpunum)
1362 {
1363 	struct cpudata *cpu;
1364 
1365 	if (!all_cpu_data[cpunum])
1366 		all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata),
1367 					       GFP_KERNEL);
1368 	if (!all_cpu_data[cpunum])
1369 		return -ENOMEM;
1370 
1371 	cpu = all_cpu_data[cpunum];
1372 
1373 	cpu->cpu = cpunum;
1374 
1375 	if (hwp_active) {
1376 		intel_pstate_hwp_enable(cpu);
1377 		pid_params.sample_rate_ms = 50;
1378 		pid_params.sample_rate_ns = 50 * NSEC_PER_MSEC;
1379 	}
1380 
1381 	intel_pstate_get_cpu_pstates(cpu);
1382 
1383 	intel_pstate_busy_pid_reset(cpu);
1384 
1385 	pr_debug("controlling: cpu %d\n", cpunum);
1386 
1387 	return 0;
1388 }
1389 
1390 static unsigned int intel_pstate_get(unsigned int cpu_num)
1391 {
1392 	struct sample *sample;
1393 	struct cpudata *cpu;
1394 
1395 	cpu = all_cpu_data[cpu_num];
1396 	if (!cpu)
1397 		return 0;
1398 	sample = &cpu->sample;
1399 	return get_avg_frequency(cpu);
1400 }
1401 
1402 static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
1403 {
1404 	struct cpudata *cpu = all_cpu_data[cpu_num];
1405 
1406 	/* Prevent intel_pstate_update_util() from using stale data. */
1407 	cpu->sample.time = 0;
1408 	cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
1409 				     intel_pstate_update_util);
1410 }
1411 
1412 static void intel_pstate_clear_update_util_hook(unsigned int cpu)
1413 {
1414 	cpufreq_remove_update_util_hook(cpu);
1415 	synchronize_sched();
1416 }
1417 
1418 static void intel_pstate_set_performance_limits(struct perf_limits *limits)
1419 {
1420 	limits->no_turbo = 0;
1421 	limits->turbo_disabled = 0;
1422 	limits->max_perf_pct = 100;
1423 	limits->max_perf = int_tofp(1);
1424 	limits->min_perf_pct = 100;
1425 	limits->min_perf = int_tofp(1);
1426 	limits->max_policy_pct = 100;
1427 	limits->max_sysfs_pct = 100;
1428 	limits->min_policy_pct = 0;
1429 	limits->min_sysfs_pct = 0;
1430 }
1431 
1432 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
1433 {
1434 	struct cpudata *cpu;
1435 
1436 	if (!policy->cpuinfo.max_freq)
1437 		return -ENODEV;
1438 
1439 	intel_pstate_clear_update_util_hook(policy->cpu);
1440 
1441 	cpu = all_cpu_data[0];
1442 	if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate) {
1443 		if (policy->max < policy->cpuinfo.max_freq &&
1444 		    policy->max > cpu->pstate.max_pstate * cpu->pstate.scaling) {
1445 			pr_debug("policy->max > max non turbo frequency\n");
1446 			policy->max = policy->cpuinfo.max_freq;
1447 		}
1448 	}
1449 
1450 	if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) {
1451 		limits = &performance_limits;
1452 		if (policy->max >= policy->cpuinfo.max_freq) {
1453 			pr_debug("set performance\n");
1454 			intel_pstate_set_performance_limits(limits);
1455 			goto out;
1456 		}
1457 	} else {
1458 		pr_debug("set powersave\n");
1459 		limits = &powersave_limits;
1460 	}
1461 
1462 	limits->min_policy_pct = (policy->min * 100) / policy->cpuinfo.max_freq;
1463 	limits->min_policy_pct = clamp_t(int, limits->min_policy_pct, 0 , 100);
1464 	limits->max_policy_pct = DIV_ROUND_UP(policy->max * 100,
1465 					      policy->cpuinfo.max_freq);
1466 	limits->max_policy_pct = clamp_t(int, limits->max_policy_pct, 0 , 100);
1467 
1468 	/* Normalize user input to [min_policy_pct, max_policy_pct] */
1469 	limits->min_perf_pct = max(limits->min_policy_pct,
1470 				   limits->min_sysfs_pct);
1471 	limits->min_perf_pct = min(limits->max_policy_pct,
1472 				   limits->min_perf_pct);
1473 	limits->max_perf_pct = min(limits->max_policy_pct,
1474 				   limits->max_sysfs_pct);
1475 	limits->max_perf_pct = max(limits->min_policy_pct,
1476 				   limits->max_perf_pct);
1477 	limits->max_perf = round_up(limits->max_perf, FRAC_BITS);
1478 
1479 	/* Make sure min_perf_pct <= max_perf_pct */
1480 	limits->min_perf_pct = min(limits->max_perf_pct, limits->min_perf_pct);
1481 
1482 	limits->min_perf = div_fp(limits->min_perf_pct, 100);
1483 	limits->max_perf = div_fp(limits->max_perf_pct, 100);
1484 
1485  out:
1486 	intel_pstate_set_update_util_hook(policy->cpu);
1487 
1488 	if (hwp_active)
1489 		intel_pstate_hwp_set(policy->cpus);
1490 
1491 	return 0;
1492 }
1493 
1494 static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
1495 {
1496 	cpufreq_verify_within_cpu_limits(policy);
1497 
1498 	if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
1499 	    policy->policy != CPUFREQ_POLICY_PERFORMANCE)
1500 		return -EINVAL;
1501 
1502 	return 0;
1503 }
1504 
1505 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
1506 {
1507 	int cpu_num = policy->cpu;
1508 	struct cpudata *cpu = all_cpu_data[cpu_num];
1509 
1510 	pr_debug("CPU %d exiting\n", cpu_num);
1511 
1512 	intel_pstate_clear_update_util_hook(cpu_num);
1513 
1514 	if (hwp_active)
1515 		return;
1516 
1517 	intel_pstate_set_min_pstate(cpu);
1518 }
1519 
1520 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
1521 {
1522 	struct cpudata *cpu;
1523 	int rc;
1524 
1525 	rc = intel_pstate_init_cpu(policy->cpu);
1526 	if (rc)
1527 		return rc;
1528 
1529 	cpu = all_cpu_data[policy->cpu];
1530 
1531 	if (limits->min_perf_pct == 100 && limits->max_perf_pct == 100)
1532 		policy->policy = CPUFREQ_POLICY_PERFORMANCE;
1533 	else
1534 		policy->policy = CPUFREQ_POLICY_POWERSAVE;
1535 
1536 	policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
1537 	policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1538 
1539 	/* cpuinfo and default policy values */
1540 	policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
1541 	policy->cpuinfo.max_freq =
1542 		cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1543 	intel_pstate_init_acpi_perf_limits(policy);
1544 	policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
1545 	cpumask_set_cpu(policy->cpu, policy->cpus);
1546 
1547 	return 0;
1548 }
1549 
1550 static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
1551 {
1552 	intel_pstate_exit_perf_limits(policy);
1553 
1554 	return 0;
1555 }
1556 
1557 static struct cpufreq_driver intel_pstate_driver = {
1558 	.flags		= CPUFREQ_CONST_LOOPS,
1559 	.verify		= intel_pstate_verify_policy,
1560 	.setpolicy	= intel_pstate_set_policy,
1561 	.get		= intel_pstate_get,
1562 	.init		= intel_pstate_cpu_init,
1563 	.exit		= intel_pstate_cpu_exit,
1564 	.stop_cpu	= intel_pstate_stop_cpu,
1565 	.name		= "intel_pstate",
1566 };
1567 
1568 static int __initdata no_load;
1569 static int __initdata no_hwp;
1570 static int __initdata hwp_only;
1571 static unsigned int force_load;
1572 
1573 static int intel_pstate_msrs_not_valid(void)
1574 {
1575 	if (!pstate_funcs.get_max() ||
1576 	    !pstate_funcs.get_min() ||
1577 	    !pstate_funcs.get_turbo())
1578 		return -ENODEV;
1579 
1580 	return 0;
1581 }
1582 
1583 static void copy_pid_params(struct pstate_adjust_policy *policy)
1584 {
1585 	pid_params.sample_rate_ms = policy->sample_rate_ms;
1586 	pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
1587 	pid_params.p_gain_pct = policy->p_gain_pct;
1588 	pid_params.i_gain_pct = policy->i_gain_pct;
1589 	pid_params.d_gain_pct = policy->d_gain_pct;
1590 	pid_params.deadband = policy->deadband;
1591 	pid_params.setpoint = policy->setpoint;
1592 }
1593 
1594 static void copy_cpu_funcs(struct pstate_funcs *funcs)
1595 {
1596 	pstate_funcs.get_max   = funcs->get_max;
1597 	pstate_funcs.get_max_physical = funcs->get_max_physical;
1598 	pstate_funcs.get_min   = funcs->get_min;
1599 	pstate_funcs.get_turbo = funcs->get_turbo;
1600 	pstate_funcs.get_scaling = funcs->get_scaling;
1601 	pstate_funcs.get_val   = funcs->get_val;
1602 	pstate_funcs.get_vid   = funcs->get_vid;
1603 	pstate_funcs.get_target_pstate = funcs->get_target_pstate;
1604 
1605 }
1606 
1607 #ifdef CONFIG_ACPI
1608 
1609 static bool intel_pstate_no_acpi_pss(void)
1610 {
1611 	int i;
1612 
1613 	for_each_possible_cpu(i) {
1614 		acpi_status status;
1615 		union acpi_object *pss;
1616 		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
1617 		struct acpi_processor *pr = per_cpu(processors, i);
1618 
1619 		if (!pr)
1620 			continue;
1621 
1622 		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
1623 		if (ACPI_FAILURE(status))
1624 			continue;
1625 
1626 		pss = buffer.pointer;
1627 		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
1628 			kfree(pss);
1629 			return false;
1630 		}
1631 
1632 		kfree(pss);
1633 	}
1634 
1635 	return true;
1636 }
1637 
1638 static bool intel_pstate_has_acpi_ppc(void)
1639 {
1640 	int i;
1641 
1642 	for_each_possible_cpu(i) {
1643 		struct acpi_processor *pr = per_cpu(processors, i);
1644 
1645 		if (!pr)
1646 			continue;
1647 		if (acpi_has_method(pr->handle, "_PPC"))
1648 			return true;
1649 	}
1650 	return false;
1651 }
1652 
1653 enum {
1654 	PSS,
1655 	PPC,
1656 };
1657 
1658 struct hw_vendor_info {
1659 	u16  valid;
1660 	char oem_id[ACPI_OEM_ID_SIZE];
1661 	char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
1662 	int  oem_pwr_table;
1663 };
1664 
1665 /* Hardware vendor-specific info that has its own power management modes */
1666 static struct hw_vendor_info vendor_info[] = {
1667 	{1, "HP    ", "ProLiant", PSS},
1668 	{1, "ORACLE", "X4-2    ", PPC},
1669 	{1, "ORACLE", "X4-2L   ", PPC},
1670 	{1, "ORACLE", "X4-2B   ", PPC},
1671 	{1, "ORACLE", "X3-2    ", PPC},
1672 	{1, "ORACLE", "X3-2L   ", PPC},
1673 	{1, "ORACLE", "X3-2B   ", PPC},
1674 	{1, "ORACLE", "X4470M2 ", PPC},
1675 	{1, "ORACLE", "X4270M3 ", PPC},
1676 	{1, "ORACLE", "X4270M2 ", PPC},
1677 	{1, "ORACLE", "X4170M2 ", PPC},
1678 	{1, "ORACLE", "X4170 M3", PPC},
1679 	{1, "ORACLE", "X4275 M3", PPC},
1680 	{1, "ORACLE", "X6-2    ", PPC},
1681 	{1, "ORACLE", "Sudbury ", PPC},
1682 	{0, "", ""},
1683 };
1684 
1685 static bool intel_pstate_platform_pwr_mgmt_exists(void)
1686 {
1687 	struct acpi_table_header hdr;
1688 	struct hw_vendor_info *v_info;
1689 	const struct x86_cpu_id *id;
1690 	u64 misc_pwr;
1691 
1692 	id = x86_match_cpu(intel_pstate_cpu_oob_ids);
1693 	if (id) {
1694 		rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
1695 		if ( misc_pwr & (1 << 8))
1696 			return true;
1697 	}
1698 
1699 	if (acpi_disabled ||
1700 	    ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
1701 		return false;
1702 
1703 	for (v_info = vendor_info; v_info->valid; v_info++) {
1704 		if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
1705 			!strncmp(hdr.oem_table_id, v_info->oem_table_id,
1706 						ACPI_OEM_TABLE_ID_SIZE))
1707 			switch (v_info->oem_pwr_table) {
1708 			case PSS:
1709 				return intel_pstate_no_acpi_pss();
1710 			case PPC:
1711 				return intel_pstate_has_acpi_ppc() &&
1712 					(!force_load);
1713 			}
1714 	}
1715 
1716 	return false;
1717 }
1718 #else /* CONFIG_ACPI not enabled */
1719 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
1720 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
1721 #endif /* CONFIG_ACPI */
1722 
1723 static const struct x86_cpu_id hwp_support_ids[] __initconst = {
1724 	{ X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
1725 	{}
1726 };
1727 
1728 static int __init intel_pstate_init(void)
1729 {
1730 	int cpu, rc = 0;
1731 	const struct x86_cpu_id *id;
1732 	struct cpu_defaults *cpu_def;
1733 
1734 	if (no_load)
1735 		return -ENODEV;
1736 
1737 	if (x86_match_cpu(hwp_support_ids) && !no_hwp) {
1738 		copy_cpu_funcs(&core_params.funcs);
1739 		hwp_active++;
1740 		goto hwp_cpu_matched;
1741 	}
1742 
1743 	id = x86_match_cpu(intel_pstate_cpu_ids);
1744 	if (!id)
1745 		return -ENODEV;
1746 
1747 	cpu_def = (struct cpu_defaults *)id->driver_data;
1748 
1749 	copy_pid_params(&cpu_def->pid_policy);
1750 	copy_cpu_funcs(&cpu_def->funcs);
1751 
1752 	if (intel_pstate_msrs_not_valid())
1753 		return -ENODEV;
1754 
1755 hwp_cpu_matched:
1756 	/*
1757 	 * The Intel pstate driver will be ignored if the platform
1758 	 * firmware has its own power management modes.
1759 	 */
1760 	if (intel_pstate_platform_pwr_mgmt_exists())
1761 		return -ENODEV;
1762 
1763 	pr_info("Intel P-state driver initializing\n");
1764 
1765 	all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
1766 	if (!all_cpu_data)
1767 		return -ENOMEM;
1768 
1769 	if (!hwp_active && hwp_only)
1770 		goto out;
1771 
1772 	rc = cpufreq_register_driver(&intel_pstate_driver);
1773 	if (rc)
1774 		goto out;
1775 
1776 	intel_pstate_debug_expose_params();
1777 	intel_pstate_sysfs_expose_params();
1778 
1779 	if (hwp_active)
1780 		pr_info("HWP enabled\n");
1781 
1782 	return rc;
1783 out:
1784 	get_online_cpus();
1785 	for_each_online_cpu(cpu) {
1786 		if (all_cpu_data[cpu]) {
1787 			intel_pstate_clear_update_util_hook(cpu);
1788 			kfree(all_cpu_data[cpu]);
1789 		}
1790 	}
1791 
1792 	put_online_cpus();
1793 	vfree(all_cpu_data);
1794 	return -ENODEV;
1795 }
1796 device_initcall(intel_pstate_init);
1797 
1798 static int __init intel_pstate_setup(char *str)
1799 {
1800 	if (!str)
1801 		return -EINVAL;
1802 
1803 	if (!strcmp(str, "disable"))
1804 		no_load = 1;
1805 	if (!strcmp(str, "no_hwp")) {
1806 		pr_info("HWP disabled\n");
1807 		no_hwp = 1;
1808 	}
1809 	if (!strcmp(str, "force"))
1810 		force_load = 1;
1811 	if (!strcmp(str, "hwp_only"))
1812 		hwp_only = 1;
1813 
1814 #ifdef CONFIG_ACPI
1815 	if (!strcmp(str, "support_acpi_ppc"))
1816 		acpi_ppc = true;
1817 #endif
1818 
1819 	return 0;
1820 }
1821 early_param("intel_pstate", intel_pstate_setup);
1822 
1823 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
1824 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
1825 MODULE_LICENSE("GPL");
1826