1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * intel_pstate.c: Native P state management for Intel processors
4  *
5  * (C) Copyright 2012 Intel Corporation
6  * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
7  */
8 
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 
11 #include <linux/kernel.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/module.h>
14 #include <linux/ktime.h>
15 #include <linux/hrtimer.h>
16 #include <linux/tick.h>
17 #include <linux/slab.h>
18 #include <linux/sched/cpufreq.h>
19 #include <linux/list.h>
20 #include <linux/cpu.h>
21 #include <linux/cpufreq.h>
22 #include <linux/sysfs.h>
23 #include <linux/types.h>
24 #include <linux/fs.h>
25 #include <linux/acpi.h>
26 #include <linux/vmalloc.h>
27 #include <linux/pm_qos.h>
28 #include <trace/events/power.h>
29 
30 #include <asm/div64.h>
31 #include <asm/msr.h>
32 #include <asm/cpu_device_id.h>
33 #include <asm/cpufeature.h>
34 #include <asm/intel-family.h>
35 #include "../drivers/thermal/intel/thermal_interrupt.h"
36 
37 #define INTEL_PSTATE_SAMPLING_INTERVAL	(10 * NSEC_PER_MSEC)
38 
39 #define INTEL_CPUFREQ_TRANSITION_LATENCY	20000
40 #define INTEL_CPUFREQ_TRANSITION_DELAY_HWP	5000
41 #define INTEL_CPUFREQ_TRANSITION_DELAY		500
42 
43 #ifdef CONFIG_ACPI
44 #include <acpi/processor.h>
45 #include <acpi/cppc_acpi.h>
46 #endif
47 
48 #define FRAC_BITS 8
49 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
50 #define fp_toint(X) ((X) >> FRAC_BITS)
51 
52 #define ONE_EIGHTH_FP ((int64_t)1 << (FRAC_BITS - 3))
53 
54 #define EXT_BITS 6
55 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
56 #define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
57 #define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
58 
59 static inline int32_t mul_fp(int32_t x, int32_t y)
60 {
61 	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
62 }
63 
64 static inline int32_t div_fp(s64 x, s64 y)
65 {
66 	return div64_s64((int64_t)x << FRAC_BITS, y);
67 }
68 
69 static inline int ceiling_fp(int32_t x)
70 {
71 	int mask, ret;
72 
73 	ret = fp_toint(x);
74 	mask = (1 << FRAC_BITS) - 1;
75 	if (x & mask)
76 		ret += 1;
77 	return ret;
78 }
79 
80 static inline u64 mul_ext_fp(u64 x, u64 y)
81 {
82 	return (x * y) >> EXT_FRAC_BITS;
83 }
84 
85 static inline u64 div_ext_fp(u64 x, u64 y)
86 {
87 	return div64_u64(x << EXT_FRAC_BITS, y);
88 }
89 
90 /**
91  * struct sample -	Store performance sample
92  * @core_avg_perf:	Ratio of APERF/MPERF which is the actual average
93  *			performance during last sample period
94  * @busy_scaled:	Scaled busy value which is used to calculate next
95  *			P state. This can be different than core_avg_perf
96  *			to account for cpu idle period
97  * @aperf:		Difference of actual performance frequency clock count
98  *			read from APERF MSR between last and current sample
99  * @mperf:		Difference of maximum performance frequency clock count
100  *			read from MPERF MSR between last and current sample
101  * @tsc:		Difference of time stamp counter between last and
102  *			current sample
103  * @time:		Current time from scheduler
104  *
105  * This structure is used in the cpudata structure to store performance sample
106  * data for choosing next P State.
107  */
108 struct sample {
109 	int32_t core_avg_perf;
110 	int32_t busy_scaled;
111 	u64 aperf;
112 	u64 mperf;
113 	u64 tsc;
114 	u64 time;
115 };
116 
117 /**
118  * struct pstate_data - Store P state data
119  * @current_pstate:	Current requested P state
120  * @min_pstate:		Min P state possible for this platform
121  * @max_pstate:		Max P state possible for this platform
122  * @max_pstate_physical:This is physical Max P state for a processor
123  *			This can be higher than the max_pstate which can
124  *			be limited by platform thermal design power limits
125  * @perf_ctl_scaling:	PERF_CTL P-state to frequency scaling factor
126  * @scaling:		Scaling factor between performance and frequency
127  * @turbo_pstate:	Max Turbo P state possible for this platform
128  * @min_freq:		@min_pstate frequency in cpufreq units
129  * @max_freq:		@max_pstate frequency in cpufreq units
130  * @turbo_freq:		@turbo_pstate frequency in cpufreq units
131  *
132  * Stores the per cpu model P state limits and current P state.
133  */
134 struct pstate_data {
135 	int	current_pstate;
136 	int	min_pstate;
137 	int	max_pstate;
138 	int	max_pstate_physical;
139 	int	perf_ctl_scaling;
140 	int	scaling;
141 	int	turbo_pstate;
142 	unsigned int min_freq;
143 	unsigned int max_freq;
144 	unsigned int turbo_freq;
145 };
146 
147 /**
148  * struct vid_data -	Stores voltage information data
149  * @min:		VID data for this platform corresponding to
150  *			the lowest P state
151  * @max:		VID data corresponding to the highest P State.
152  * @turbo:		VID data for turbo P state
153  * @ratio:		Ratio of (vid max - vid min) /
154  *			(max P state - Min P State)
155  *
156  * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
157  * This data is used in Atom platforms, where in addition to target P state,
158  * the voltage data needs to be specified to select next P State.
159  */
160 struct vid_data {
161 	int min;
162 	int max;
163 	int turbo;
164 	int32_t ratio;
165 };
166 
167 /**
168  * struct global_params - Global parameters, mostly tunable via sysfs.
169  * @no_turbo:		Whether or not to use turbo P-states.
170  * @turbo_disabled:	Whether or not turbo P-states are available at all,
171  *			based on the MSR_IA32_MISC_ENABLE value and whether or
172  *			not the maximum reported turbo P-state is different from
173  *			the maximum reported non-turbo one.
174  * @turbo_disabled_mf:	The @turbo_disabled value reflected by cpuinfo.max_freq.
175  * @min_perf_pct:	Minimum capacity limit in percent of the maximum turbo
176  *			P-state capacity.
177  * @max_perf_pct:	Maximum capacity limit in percent of the maximum turbo
178  *			P-state capacity.
179  */
180 struct global_params {
181 	bool no_turbo;
182 	bool turbo_disabled;
183 	bool turbo_disabled_mf;
184 	int max_perf_pct;
185 	int min_perf_pct;
186 };
187 
188 /**
189  * struct cpudata -	Per CPU instance data storage
190  * @cpu:		CPU number for this instance data
191  * @policy:		CPUFreq policy value
192  * @update_util:	CPUFreq utility callback information
193  * @update_util_set:	CPUFreq utility callback is set
194  * @iowait_boost:	iowait-related boost fraction
195  * @last_update:	Time of the last update.
196  * @pstate:		Stores P state limits for this CPU
197  * @vid:		Stores VID limits for this CPU
198  * @last_sample_time:	Last Sample time
199  * @aperf_mperf_shift:	APERF vs MPERF counting frequency difference
200  * @prev_aperf:		Last APERF value read from APERF MSR
201  * @prev_mperf:		Last MPERF value read from MPERF MSR
202  * @prev_tsc:		Last timestamp counter (TSC) value
203  * @prev_cummulative_iowait: IO Wait time difference from last and
204  *			current sample
205  * @sample:		Storage for storing last Sample data
206  * @min_perf_ratio:	Minimum capacity in terms of PERF or HWP ratios
207  * @max_perf_ratio:	Maximum capacity in terms of PERF or HWP ratios
208  * @acpi_perf_data:	Stores ACPI perf information read from _PSS
209  * @valid_pss_table:	Set to true for valid ACPI _PSS entries found
210  * @epp_powersave:	Last saved HWP energy performance preference
211  *			(EPP) or energy performance bias (EPB),
212  *			when policy switched to performance
213  * @epp_policy:		Last saved policy used to set EPP/EPB
214  * @epp_default:	Power on default HWP energy performance
215  *			preference/bias
216  * @epp_cached		Cached HWP energy-performance preference value
217  * @hwp_req_cached:	Cached value of the last HWP Request MSR
218  * @hwp_cap_cached:	Cached value of the last HWP Capabilities MSR
219  * @last_io_update:	Last time when IO wake flag was set
220  * @sched_flags:	Store scheduler flags for possible cross CPU update
221  * @hwp_boost_min:	Last HWP boosted min performance
222  * @suspended:		Whether or not the driver has been suspended.
223  * @hwp_notify_work:	workqueue for HWP notifications.
224  *
225  * This structure stores per CPU instance data for all CPUs.
226  */
227 struct cpudata {
228 	int cpu;
229 
230 	unsigned int policy;
231 	struct update_util_data update_util;
232 	bool   update_util_set;
233 
234 	struct pstate_data pstate;
235 	struct vid_data vid;
236 
237 	u64	last_update;
238 	u64	last_sample_time;
239 	u64	aperf_mperf_shift;
240 	u64	prev_aperf;
241 	u64	prev_mperf;
242 	u64	prev_tsc;
243 	u64	prev_cummulative_iowait;
244 	struct sample sample;
245 	int32_t	min_perf_ratio;
246 	int32_t	max_perf_ratio;
247 #ifdef CONFIG_ACPI
248 	struct acpi_processor_performance acpi_perf_data;
249 	bool valid_pss_table;
250 #endif
251 	unsigned int iowait_boost;
252 	s16 epp_powersave;
253 	s16 epp_policy;
254 	s16 epp_default;
255 	s16 epp_cached;
256 	u64 hwp_req_cached;
257 	u64 hwp_cap_cached;
258 	u64 last_io_update;
259 	unsigned int sched_flags;
260 	u32 hwp_boost_min;
261 	bool suspended;
262 	struct delayed_work hwp_notify_work;
263 };
264 
265 static struct cpudata **all_cpu_data;
266 
267 /**
268  * struct pstate_funcs - Per CPU model specific callbacks
269  * @get_max:		Callback to get maximum non turbo effective P state
270  * @get_max_physical:	Callback to get maximum non turbo physical P state
271  * @get_min:		Callback to get minimum P state
272  * @get_turbo:		Callback to get turbo P state
273  * @get_scaling:	Callback to get frequency scaling factor
274  * @get_aperf_mperf_shift: Callback to get the APERF vs MPERF frequency difference
275  * @get_val:		Callback to convert P state to actual MSR write value
276  * @get_vid:		Callback to get VID data for Atom platforms
277  *
278  * Core and Atom CPU models have different way to get P State limits. This
279  * structure is used to store those callbacks.
280  */
281 struct pstate_funcs {
282 	int (*get_max)(void);
283 	int (*get_max_physical)(void);
284 	int (*get_min)(void);
285 	int (*get_turbo)(void);
286 	int (*get_scaling)(void);
287 	int (*get_aperf_mperf_shift)(void);
288 	u64 (*get_val)(struct cpudata*, int pstate);
289 	void (*get_vid)(struct cpudata *);
290 };
291 
292 static struct pstate_funcs pstate_funcs __read_mostly;
293 
294 static int hwp_active __read_mostly;
295 static int hwp_mode_bdw __read_mostly;
296 static bool per_cpu_limits __read_mostly;
297 static bool hwp_boost __read_mostly;
298 
299 static struct cpufreq_driver *intel_pstate_driver __read_mostly;
300 
301 #ifdef CONFIG_ACPI
302 static bool acpi_ppc;
303 #endif
304 
305 static struct global_params global;
306 
307 static DEFINE_MUTEX(intel_pstate_driver_lock);
308 static DEFINE_MUTEX(intel_pstate_limits_lock);
309 
310 #ifdef CONFIG_ACPI
311 
312 static bool intel_pstate_acpi_pm_profile_server(void)
313 {
314 	if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
315 	    acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
316 		return true;
317 
318 	return false;
319 }
320 
321 static bool intel_pstate_get_ppc_enable_status(void)
322 {
323 	if (intel_pstate_acpi_pm_profile_server())
324 		return true;
325 
326 	return acpi_ppc;
327 }
328 
329 #ifdef CONFIG_ACPI_CPPC_LIB
330 
331 /* The work item is needed to avoid CPU hotplug locking issues */
332 static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
333 {
334 	sched_set_itmt_support();
335 }
336 
337 static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);
338 
339 static void intel_pstate_set_itmt_prio(int cpu)
340 {
341 	struct cppc_perf_caps cppc_perf;
342 	static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
343 	int ret;
344 
345 	ret = cppc_get_perf_caps(cpu, &cppc_perf);
346 	if (ret)
347 		return;
348 
349 	/*
350 	 * The priorities can be set regardless of whether or not
351 	 * sched_set_itmt_support(true) has been called and it is valid to
352 	 * update them at any time after it has been called.
353 	 */
354 	sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);
355 
356 	if (max_highest_perf <= min_highest_perf) {
357 		if (cppc_perf.highest_perf > max_highest_perf)
358 			max_highest_perf = cppc_perf.highest_perf;
359 
360 		if (cppc_perf.highest_perf < min_highest_perf)
361 			min_highest_perf = cppc_perf.highest_perf;
362 
363 		if (max_highest_perf > min_highest_perf) {
364 			/*
365 			 * This code can be run during CPU online under the
366 			 * CPU hotplug locks, so sched_set_itmt_support()
367 			 * cannot be called from here.  Queue up a work item
368 			 * to invoke it.
369 			 */
370 			schedule_work(&sched_itmt_work);
371 		}
372 	}
373 }
374 
375 static int intel_pstate_get_cppc_guaranteed(int cpu)
376 {
377 	struct cppc_perf_caps cppc_perf;
378 	int ret;
379 
380 	ret = cppc_get_perf_caps(cpu, &cppc_perf);
381 	if (ret)
382 		return ret;
383 
384 	if (cppc_perf.guaranteed_perf)
385 		return cppc_perf.guaranteed_perf;
386 
387 	return cppc_perf.nominal_perf;
388 }
389 
390 #else /* CONFIG_ACPI_CPPC_LIB */
391 static inline void intel_pstate_set_itmt_prio(int cpu)
392 {
393 }
394 #endif /* CONFIG_ACPI_CPPC_LIB */
395 
396 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
397 {
398 	struct cpudata *cpu;
399 	int ret;
400 	int i;
401 
402 	if (hwp_active) {
403 		intel_pstate_set_itmt_prio(policy->cpu);
404 		return;
405 	}
406 
407 	if (!intel_pstate_get_ppc_enable_status())
408 		return;
409 
410 	cpu = all_cpu_data[policy->cpu];
411 
412 	ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
413 						  policy->cpu);
414 	if (ret)
415 		return;
416 
417 	/*
418 	 * Check if the control value in _PSS is for PERF_CTL MSR, which should
419 	 * guarantee that the states returned by it map to the states in our
420 	 * list directly.
421 	 */
422 	if (cpu->acpi_perf_data.control_register.space_id !=
423 						ACPI_ADR_SPACE_FIXED_HARDWARE)
424 		goto err;
425 
426 	/*
427 	 * If there is only one entry _PSS, simply ignore _PSS and continue as
428 	 * usual without taking _PSS into account
429 	 */
430 	if (cpu->acpi_perf_data.state_count < 2)
431 		goto err;
432 
433 	pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
434 	for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
435 		pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
436 			 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
437 			 (u32) cpu->acpi_perf_data.states[i].core_frequency,
438 			 (u32) cpu->acpi_perf_data.states[i].power,
439 			 (u32) cpu->acpi_perf_data.states[i].control);
440 	}
441 
442 	/*
443 	 * The _PSS table doesn't contain whole turbo frequency range.
444 	 * This just contains +1 MHZ above the max non turbo frequency,
445 	 * with control value corresponding to max turbo ratio. But
446 	 * when cpufreq set policy is called, it will call with this
447 	 * max frequency, which will cause a reduced performance as
448 	 * this driver uses real max turbo frequency as the max
449 	 * frequency. So correct this frequency in _PSS table to
450 	 * correct max turbo frequency based on the turbo state.
451 	 * Also need to convert to MHz as _PSS freq is in MHz.
452 	 */
453 	if (!global.turbo_disabled)
454 		cpu->acpi_perf_data.states[0].core_frequency =
455 					policy->cpuinfo.max_freq / 1000;
456 	cpu->valid_pss_table = true;
457 	pr_debug("_PPC limits will be enforced\n");
458 
459 	return;
460 
461  err:
462 	cpu->valid_pss_table = false;
463 	acpi_processor_unregister_performance(policy->cpu);
464 }
465 
466 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
467 {
468 	struct cpudata *cpu;
469 
470 	cpu = all_cpu_data[policy->cpu];
471 	if (!cpu->valid_pss_table)
472 		return;
473 
474 	acpi_processor_unregister_performance(policy->cpu);
475 }
476 
477 static bool intel_pstate_cppc_perf_valid(u32 perf, struct cppc_perf_caps *caps)
478 {
479 	return perf && perf <= caps->highest_perf && perf >= caps->lowest_perf;
480 }
481 
482 static bool intel_pstate_cppc_perf_caps(struct cpudata *cpu,
483 					struct cppc_perf_caps *caps)
484 {
485 	if (cppc_get_perf_caps(cpu->cpu, caps))
486 		return false;
487 
488 	return caps->highest_perf && caps->lowest_perf <= caps->highest_perf;
489 }
490 #else /* CONFIG_ACPI */
491 static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
492 {
493 }
494 
495 static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
496 {
497 }
498 
499 static inline bool intel_pstate_acpi_pm_profile_server(void)
500 {
501 	return false;
502 }
503 #endif /* CONFIG_ACPI */
504 
505 #ifndef CONFIG_ACPI_CPPC_LIB
506 static inline int intel_pstate_get_cppc_guaranteed(int cpu)
507 {
508 	return -ENOTSUPP;
509 }
510 #endif /* CONFIG_ACPI_CPPC_LIB */
511 
512 static void intel_pstate_hybrid_hwp_perf_ctl_parity(struct cpudata *cpu)
513 {
514 	pr_debug("CPU%d: Using PERF_CTL scaling for HWP\n", cpu->cpu);
515 
516 	cpu->pstate.scaling = cpu->pstate.perf_ctl_scaling;
517 }
518 
519 /**
520  * intel_pstate_hybrid_hwp_calibrate - Calibrate HWP performance levels.
521  * @cpu: Target CPU.
522  *
523  * On hybrid processors, HWP may expose more performance levels than there are
524  * P-states accessible through the PERF_CTL interface.  If that happens, the
525  * scaling factor between HWP performance levels and CPU frequency will be less
526  * than the scaling factor between P-state values and CPU frequency.
527  *
528  * In that case, the scaling factor between HWP performance levels and CPU
529  * frequency needs to be determined which can be done with the help of the
530  * observation that certain HWP performance levels should correspond to certain
531  * P-states, like for example the HWP highest performance should correspond
532  * to the maximum turbo P-state of the CPU.
533  */
534 static void intel_pstate_hybrid_hwp_calibrate(struct cpudata *cpu)
535 {
536 	int perf_ctl_max_phys = cpu->pstate.max_pstate_physical;
537 	int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling;
538 	int perf_ctl_turbo = pstate_funcs.get_turbo();
539 	int turbo_freq = perf_ctl_turbo * perf_ctl_scaling;
540 	int perf_ctl_max = pstate_funcs.get_max();
541 	int max_freq = perf_ctl_max * perf_ctl_scaling;
542 	int scaling = INT_MAX;
543 	int freq;
544 
545 	pr_debug("CPU%d: perf_ctl_max_phys = %d\n", cpu->cpu, perf_ctl_max_phys);
546 	pr_debug("CPU%d: perf_ctl_max = %d\n", cpu->cpu, perf_ctl_max);
547 	pr_debug("CPU%d: perf_ctl_turbo = %d\n", cpu->cpu, perf_ctl_turbo);
548 	pr_debug("CPU%d: perf_ctl_scaling = %d\n", cpu->cpu, perf_ctl_scaling);
549 
550 	pr_debug("CPU%d: HWP_CAP guaranteed = %d\n", cpu->cpu, cpu->pstate.max_pstate);
551 	pr_debug("CPU%d: HWP_CAP highest = %d\n", cpu->cpu, cpu->pstate.turbo_pstate);
552 
553 #ifdef CONFIG_ACPI
554 	if (IS_ENABLED(CONFIG_ACPI_CPPC_LIB)) {
555 		struct cppc_perf_caps caps;
556 
557 		if (intel_pstate_cppc_perf_caps(cpu, &caps)) {
558 			if (intel_pstate_cppc_perf_valid(caps.nominal_perf, &caps)) {
559 				pr_debug("CPU%d: Using CPPC nominal\n", cpu->cpu);
560 
561 				/*
562 				 * If the CPPC nominal performance is valid, it
563 				 * can be assumed to correspond to cpu_khz.
564 				 */
565 				if (caps.nominal_perf == perf_ctl_max_phys) {
566 					intel_pstate_hybrid_hwp_perf_ctl_parity(cpu);
567 					return;
568 				}
569 				scaling = DIV_ROUND_UP(cpu_khz, caps.nominal_perf);
570 			} else if (intel_pstate_cppc_perf_valid(caps.guaranteed_perf, &caps)) {
571 				pr_debug("CPU%d: Using CPPC guaranteed\n", cpu->cpu);
572 
573 				/*
574 				 * If the CPPC guaranteed performance is valid,
575 				 * it can be assumed to correspond to max_freq.
576 				 */
577 				if (caps.guaranteed_perf == perf_ctl_max) {
578 					intel_pstate_hybrid_hwp_perf_ctl_parity(cpu);
579 					return;
580 				}
581 				scaling = DIV_ROUND_UP(max_freq, caps.guaranteed_perf);
582 			}
583 		}
584 	}
585 #endif
586 	/*
587 	 * If using the CPPC data to compute the HWP-to-frequency scaling factor
588 	 * doesn't work, use the HWP_CAP gauranteed perf for this purpose with
589 	 * the assumption that it corresponds to max_freq.
590 	 */
591 	if (scaling > perf_ctl_scaling) {
592 		pr_debug("CPU%d: Using HWP_CAP guaranteed\n", cpu->cpu);
593 
594 		if (cpu->pstate.max_pstate == perf_ctl_max) {
595 			intel_pstate_hybrid_hwp_perf_ctl_parity(cpu);
596 			return;
597 		}
598 		scaling = DIV_ROUND_UP(max_freq, cpu->pstate.max_pstate);
599 		if (scaling > perf_ctl_scaling) {
600 			/*
601 			 * This should not happen, because it would mean that
602 			 * the number of HWP perf levels was less than the
603 			 * number of P-states, so use the PERF_CTL scaling in
604 			 * that case.
605 			 */
606 			pr_debug("CPU%d: scaling (%d) out of range\n", cpu->cpu,
607 				scaling);
608 
609 			intel_pstate_hybrid_hwp_perf_ctl_parity(cpu);
610 			return;
611 		}
612 	}
613 
614 	/*
615 	 * If the product of the HWP performance scaling factor obtained above
616 	 * and the HWP_CAP highest performance is greater than the maximum turbo
617 	 * frequency corresponding to the pstate_funcs.get_turbo() return value,
618 	 * the scaling factor is too high, so recompute it so that the HWP_CAP
619 	 * highest performance corresponds to the maximum turbo frequency.
620 	 */
621 	if (turbo_freq < cpu->pstate.turbo_pstate * scaling) {
622 		pr_debug("CPU%d: scaling too high (%d)\n", cpu->cpu, scaling);
623 
624 		cpu->pstate.turbo_freq = turbo_freq;
625 		scaling = DIV_ROUND_UP(turbo_freq, cpu->pstate.turbo_pstate);
626 	}
627 
628 	cpu->pstate.scaling = scaling;
629 
630 	pr_debug("CPU%d: HWP-to-frequency scaling factor: %d\n", cpu->cpu, scaling);
631 
632 	cpu->pstate.max_freq = rounddown(cpu->pstate.max_pstate * scaling,
633 					 perf_ctl_scaling);
634 
635 	freq = perf_ctl_max_phys * perf_ctl_scaling;
636 	cpu->pstate.max_pstate_physical = DIV_ROUND_UP(freq, scaling);
637 
638 	cpu->pstate.min_freq = cpu->pstate.min_pstate * perf_ctl_scaling;
639 	/*
640 	 * Cast the min P-state value retrieved via pstate_funcs.get_min() to
641 	 * the effective range of HWP performance levels.
642 	 */
643 	cpu->pstate.min_pstate = DIV_ROUND_UP(cpu->pstate.min_freq, scaling);
644 }
645 
646 static inline void update_turbo_state(void)
647 {
648 	u64 misc_en;
649 	struct cpudata *cpu;
650 
651 	cpu = all_cpu_data[0];
652 	rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
653 	global.turbo_disabled =
654 		(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
655 		 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
656 }
657 
658 static int min_perf_pct_min(void)
659 {
660 	struct cpudata *cpu = all_cpu_data[0];
661 	int turbo_pstate = cpu->pstate.turbo_pstate;
662 
663 	return turbo_pstate ?
664 		(cpu->pstate.min_pstate * 100 / turbo_pstate) : 0;
665 }
666 
667 static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
668 {
669 	u64 epb;
670 	int ret;
671 
672 	if (!boot_cpu_has(X86_FEATURE_EPB))
673 		return -ENXIO;
674 
675 	ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
676 	if (ret)
677 		return (s16)ret;
678 
679 	return (s16)(epb & 0x0f);
680 }
681 
682 static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
683 {
684 	s16 epp;
685 
686 	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
687 		/*
688 		 * When hwp_req_data is 0, means that caller didn't read
689 		 * MSR_HWP_REQUEST, so need to read and get EPP.
690 		 */
691 		if (!hwp_req_data) {
692 			epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
693 					    &hwp_req_data);
694 			if (epp)
695 				return epp;
696 		}
697 		epp = (hwp_req_data >> 24) & 0xff;
698 	} else {
699 		/* When there is no EPP present, HWP uses EPB settings */
700 		epp = intel_pstate_get_epb(cpu_data);
701 	}
702 
703 	return epp;
704 }
705 
706 static int intel_pstate_set_epb(int cpu, s16 pref)
707 {
708 	u64 epb;
709 	int ret;
710 
711 	if (!boot_cpu_has(X86_FEATURE_EPB))
712 		return -ENXIO;
713 
714 	ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
715 	if (ret)
716 		return ret;
717 
718 	epb = (epb & ~0x0f) | pref;
719 	wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
720 
721 	return 0;
722 }
723 
724 /*
725  * EPP/EPB display strings corresponding to EPP index in the
726  * energy_perf_strings[]
727  *	index		String
728  *-------------------------------------
729  *	0		default
730  *	1		performance
731  *	2		balance_performance
732  *	3		balance_power
733  *	4		power
734  */
735 static const char * const energy_perf_strings[] = {
736 	"default",
737 	"performance",
738 	"balance_performance",
739 	"balance_power",
740 	"power",
741 	NULL
742 };
743 static const unsigned int epp_values[] = {
744 	HWP_EPP_PERFORMANCE,
745 	HWP_EPP_BALANCE_PERFORMANCE,
746 	HWP_EPP_BALANCE_POWERSAVE,
747 	HWP_EPP_POWERSAVE
748 };
749 
750 static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data, int *raw_epp)
751 {
752 	s16 epp;
753 	int index = -EINVAL;
754 
755 	*raw_epp = 0;
756 	epp = intel_pstate_get_epp(cpu_data, 0);
757 	if (epp < 0)
758 		return epp;
759 
760 	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
761 		if (epp == HWP_EPP_PERFORMANCE)
762 			return 1;
763 		if (epp == HWP_EPP_BALANCE_PERFORMANCE)
764 			return 2;
765 		if (epp == HWP_EPP_BALANCE_POWERSAVE)
766 			return 3;
767 		if (epp == HWP_EPP_POWERSAVE)
768 			return 4;
769 		*raw_epp = epp;
770 		return 0;
771 	} else if (boot_cpu_has(X86_FEATURE_EPB)) {
772 		/*
773 		 * Range:
774 		 *	0x00-0x03	:	Performance
775 		 *	0x04-0x07	:	Balance performance
776 		 *	0x08-0x0B	:	Balance power
777 		 *	0x0C-0x0F	:	Power
778 		 * The EPB is a 4 bit value, but our ranges restrict the
779 		 * value which can be set. Here only using top two bits
780 		 * effectively.
781 		 */
782 		index = (epp >> 2) + 1;
783 	}
784 
785 	return index;
786 }
787 
788 static int intel_pstate_set_epp(struct cpudata *cpu, u32 epp)
789 {
790 	int ret;
791 
792 	/*
793 	 * Use the cached HWP Request MSR value, because in the active mode the
794 	 * register itself may be updated by intel_pstate_hwp_boost_up() or
795 	 * intel_pstate_hwp_boost_down() at any time.
796 	 */
797 	u64 value = READ_ONCE(cpu->hwp_req_cached);
798 
799 	value &= ~GENMASK_ULL(31, 24);
800 	value |= (u64)epp << 24;
801 	/*
802 	 * The only other updater of hwp_req_cached in the active mode,
803 	 * intel_pstate_hwp_set(), is called under the same lock as this
804 	 * function, so it cannot run in parallel with the update below.
805 	 */
806 	WRITE_ONCE(cpu->hwp_req_cached, value);
807 	ret = wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
808 	if (!ret)
809 		cpu->epp_cached = epp;
810 
811 	return ret;
812 }
813 
814 static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
815 					      int pref_index, bool use_raw,
816 					      u32 raw_epp)
817 {
818 	int epp = -EINVAL;
819 	int ret;
820 
821 	if (!pref_index)
822 		epp = cpu_data->epp_default;
823 
824 	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
825 		if (use_raw)
826 			epp = raw_epp;
827 		else if (epp == -EINVAL)
828 			epp = epp_values[pref_index - 1];
829 
830 		/*
831 		 * To avoid confusion, refuse to set EPP to any values different
832 		 * from 0 (performance) if the current policy is "performance",
833 		 * because those values would be overridden.
834 		 */
835 		if (epp > 0 && cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
836 			return -EBUSY;
837 
838 		ret = intel_pstate_set_epp(cpu_data, epp);
839 	} else {
840 		if (epp == -EINVAL)
841 			epp = (pref_index - 1) << 2;
842 		ret = intel_pstate_set_epb(cpu_data->cpu, epp);
843 	}
844 
845 	return ret;
846 }
847 
848 static ssize_t show_energy_performance_available_preferences(
849 				struct cpufreq_policy *policy, char *buf)
850 {
851 	int i = 0;
852 	int ret = 0;
853 
854 	while (energy_perf_strings[i] != NULL)
855 		ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);
856 
857 	ret += sprintf(&buf[ret], "\n");
858 
859 	return ret;
860 }
861 
862 cpufreq_freq_attr_ro(energy_performance_available_preferences);
863 
864 static struct cpufreq_driver intel_pstate;
865 
866 static ssize_t store_energy_performance_preference(
867 		struct cpufreq_policy *policy, const char *buf, size_t count)
868 {
869 	struct cpudata *cpu = all_cpu_data[policy->cpu];
870 	char str_preference[21];
871 	bool raw = false;
872 	ssize_t ret;
873 	u32 epp = 0;
874 
875 	ret = sscanf(buf, "%20s", str_preference);
876 	if (ret != 1)
877 		return -EINVAL;
878 
879 	ret = match_string(energy_perf_strings, -1, str_preference);
880 	if (ret < 0) {
881 		if (!boot_cpu_has(X86_FEATURE_HWP_EPP))
882 			return ret;
883 
884 		ret = kstrtouint(buf, 10, &epp);
885 		if (ret)
886 			return ret;
887 
888 		if (epp > 255)
889 			return -EINVAL;
890 
891 		raw = true;
892 	}
893 
894 	/*
895 	 * This function runs with the policy R/W semaphore held, which
896 	 * guarantees that the driver pointer will not change while it is
897 	 * running.
898 	 */
899 	if (!intel_pstate_driver)
900 		return -EAGAIN;
901 
902 	mutex_lock(&intel_pstate_limits_lock);
903 
904 	if (intel_pstate_driver == &intel_pstate) {
905 		ret = intel_pstate_set_energy_pref_index(cpu, ret, raw, epp);
906 	} else {
907 		/*
908 		 * In the passive mode the governor needs to be stopped on the
909 		 * target CPU before the EPP update and restarted after it,
910 		 * which is super-heavy-weight, so make sure it is worth doing
911 		 * upfront.
912 		 */
913 		if (!raw)
914 			epp = ret ? epp_values[ret - 1] : cpu->epp_default;
915 
916 		if (cpu->epp_cached != epp) {
917 			int err;
918 
919 			cpufreq_stop_governor(policy);
920 			ret = intel_pstate_set_epp(cpu, epp);
921 			err = cpufreq_start_governor(policy);
922 			if (!ret)
923 				ret = err;
924 		}
925 	}
926 
927 	mutex_unlock(&intel_pstate_limits_lock);
928 
929 	return ret ?: count;
930 }
931 
932 static ssize_t show_energy_performance_preference(
933 				struct cpufreq_policy *policy, char *buf)
934 {
935 	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
936 	int preference, raw_epp;
937 
938 	preference = intel_pstate_get_energy_pref_index(cpu_data, &raw_epp);
939 	if (preference < 0)
940 		return preference;
941 
942 	if (raw_epp)
943 		return  sprintf(buf, "%d\n", raw_epp);
944 	else
945 		return  sprintf(buf, "%s\n", energy_perf_strings[preference]);
946 }
947 
948 cpufreq_freq_attr_rw(energy_performance_preference);
949 
950 static ssize_t show_base_frequency(struct cpufreq_policy *policy, char *buf)
951 {
952 	struct cpudata *cpu = all_cpu_data[policy->cpu];
953 	int ratio, freq;
954 
955 	ratio = intel_pstate_get_cppc_guaranteed(policy->cpu);
956 	if (ratio <= 0) {
957 		u64 cap;
958 
959 		rdmsrl_on_cpu(policy->cpu, MSR_HWP_CAPABILITIES, &cap);
960 		ratio = HWP_GUARANTEED_PERF(cap);
961 	}
962 
963 	freq = ratio * cpu->pstate.scaling;
964 	if (cpu->pstate.scaling != cpu->pstate.perf_ctl_scaling)
965 		freq = rounddown(freq, cpu->pstate.perf_ctl_scaling);
966 
967 	return sprintf(buf, "%d\n", freq);
968 }
969 
970 cpufreq_freq_attr_ro(base_frequency);
971 
972 static struct freq_attr *hwp_cpufreq_attrs[] = {
973 	&energy_performance_preference,
974 	&energy_performance_available_preferences,
975 	&base_frequency,
976 	NULL,
977 };
978 
979 static void __intel_pstate_get_hwp_cap(struct cpudata *cpu)
980 {
981 	u64 cap;
982 
983 	rdmsrl_on_cpu(cpu->cpu, MSR_HWP_CAPABILITIES, &cap);
984 	WRITE_ONCE(cpu->hwp_cap_cached, cap);
985 	cpu->pstate.max_pstate = HWP_GUARANTEED_PERF(cap);
986 	cpu->pstate.turbo_pstate = HWP_HIGHEST_PERF(cap);
987 }
988 
989 static void intel_pstate_get_hwp_cap(struct cpudata *cpu)
990 {
991 	int scaling = cpu->pstate.scaling;
992 
993 	__intel_pstate_get_hwp_cap(cpu);
994 
995 	cpu->pstate.max_freq = cpu->pstate.max_pstate * scaling;
996 	cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * scaling;
997 	if (scaling != cpu->pstate.perf_ctl_scaling) {
998 		int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling;
999 
1000 		cpu->pstate.max_freq = rounddown(cpu->pstate.max_freq,
1001 						 perf_ctl_scaling);
1002 		cpu->pstate.turbo_freq = rounddown(cpu->pstate.turbo_freq,
1003 						   perf_ctl_scaling);
1004 	}
1005 }
1006 
1007 static void intel_pstate_hwp_set(unsigned int cpu)
1008 {
1009 	struct cpudata *cpu_data = all_cpu_data[cpu];
1010 	int max, min;
1011 	u64 value;
1012 	s16 epp;
1013 
1014 	max = cpu_data->max_perf_ratio;
1015 	min = cpu_data->min_perf_ratio;
1016 
1017 	if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
1018 		min = max;
1019 
1020 	rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
1021 
1022 	value &= ~HWP_MIN_PERF(~0L);
1023 	value |= HWP_MIN_PERF(min);
1024 
1025 	value &= ~HWP_MAX_PERF(~0L);
1026 	value |= HWP_MAX_PERF(max);
1027 
1028 	if (cpu_data->epp_policy == cpu_data->policy)
1029 		goto skip_epp;
1030 
1031 	cpu_data->epp_policy = cpu_data->policy;
1032 
1033 	if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
1034 		epp = intel_pstate_get_epp(cpu_data, value);
1035 		cpu_data->epp_powersave = epp;
1036 		/* If EPP read was failed, then don't try to write */
1037 		if (epp < 0)
1038 			goto skip_epp;
1039 
1040 		epp = 0;
1041 	} else {
1042 		/* skip setting EPP, when saved value is invalid */
1043 		if (cpu_data->epp_powersave < 0)
1044 			goto skip_epp;
1045 
1046 		/*
1047 		 * No need to restore EPP when it is not zero. This
1048 		 * means:
1049 		 *  - Policy is not changed
1050 		 *  - user has manually changed
1051 		 *  - Error reading EPB
1052 		 */
1053 		epp = intel_pstate_get_epp(cpu_data, value);
1054 		if (epp)
1055 			goto skip_epp;
1056 
1057 		epp = cpu_data->epp_powersave;
1058 	}
1059 	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
1060 		value &= ~GENMASK_ULL(31, 24);
1061 		value |= (u64)epp << 24;
1062 	} else {
1063 		intel_pstate_set_epb(cpu, epp);
1064 	}
1065 skip_epp:
1066 	WRITE_ONCE(cpu_data->hwp_req_cached, value);
1067 	wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
1068 }
1069 
1070 static void intel_pstate_hwp_offline(struct cpudata *cpu)
1071 {
1072 	u64 value = READ_ONCE(cpu->hwp_req_cached);
1073 	int min_perf;
1074 
1075 	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
1076 		/*
1077 		 * In case the EPP has been set to "performance" by the
1078 		 * active mode "performance" scaling algorithm, replace that
1079 		 * temporary value with the cached EPP one.
1080 		 */
1081 		value &= ~GENMASK_ULL(31, 24);
1082 		value |= HWP_ENERGY_PERF_PREFERENCE(cpu->epp_cached);
1083 		WRITE_ONCE(cpu->hwp_req_cached, value);
1084 	}
1085 
1086 	value &= ~GENMASK_ULL(31, 0);
1087 	min_perf = HWP_LOWEST_PERF(READ_ONCE(cpu->hwp_cap_cached));
1088 
1089 	/* Set hwp_max = hwp_min */
1090 	value |= HWP_MAX_PERF(min_perf);
1091 	value |= HWP_MIN_PERF(min_perf);
1092 
1093 	/* Set EPP to min */
1094 	if (boot_cpu_has(X86_FEATURE_HWP_EPP))
1095 		value |= HWP_ENERGY_PERF_PREFERENCE(HWP_EPP_POWERSAVE);
1096 
1097 	wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
1098 }
1099 
1100 #define POWER_CTL_EE_ENABLE	1
1101 #define POWER_CTL_EE_DISABLE	2
1102 
1103 static int power_ctl_ee_state;
1104 
1105 static void set_power_ctl_ee_state(bool input)
1106 {
1107 	u64 power_ctl;
1108 
1109 	mutex_lock(&intel_pstate_driver_lock);
1110 	rdmsrl(MSR_IA32_POWER_CTL, power_ctl);
1111 	if (input) {
1112 		power_ctl &= ~BIT(MSR_IA32_POWER_CTL_BIT_EE);
1113 		power_ctl_ee_state = POWER_CTL_EE_ENABLE;
1114 	} else {
1115 		power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
1116 		power_ctl_ee_state = POWER_CTL_EE_DISABLE;
1117 	}
1118 	wrmsrl(MSR_IA32_POWER_CTL, power_ctl);
1119 	mutex_unlock(&intel_pstate_driver_lock);
1120 }
1121 
1122 static void intel_pstate_hwp_enable(struct cpudata *cpudata);
1123 
1124 static void intel_pstate_hwp_reenable(struct cpudata *cpu)
1125 {
1126 	intel_pstate_hwp_enable(cpu);
1127 	wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, READ_ONCE(cpu->hwp_req_cached));
1128 }
1129 
1130 static int intel_pstate_suspend(struct cpufreq_policy *policy)
1131 {
1132 	struct cpudata *cpu = all_cpu_data[policy->cpu];
1133 
1134 	pr_debug("CPU %d suspending\n", cpu->cpu);
1135 
1136 	cpu->suspended = true;
1137 
1138 	return 0;
1139 }
1140 
1141 static int intel_pstate_resume(struct cpufreq_policy *policy)
1142 {
1143 	struct cpudata *cpu = all_cpu_data[policy->cpu];
1144 
1145 	pr_debug("CPU %d resuming\n", cpu->cpu);
1146 
1147 	/* Only restore if the system default is changed */
1148 	if (power_ctl_ee_state == POWER_CTL_EE_ENABLE)
1149 		set_power_ctl_ee_state(true);
1150 	else if (power_ctl_ee_state == POWER_CTL_EE_DISABLE)
1151 		set_power_ctl_ee_state(false);
1152 
1153 	if (cpu->suspended && hwp_active) {
1154 		mutex_lock(&intel_pstate_limits_lock);
1155 
1156 		/* Re-enable HWP, because "online" has not done that. */
1157 		intel_pstate_hwp_reenable(cpu);
1158 
1159 		mutex_unlock(&intel_pstate_limits_lock);
1160 	}
1161 
1162 	cpu->suspended = false;
1163 
1164 	return 0;
1165 }
1166 
1167 static void intel_pstate_update_policies(void)
1168 {
1169 	int cpu;
1170 
1171 	for_each_possible_cpu(cpu)
1172 		cpufreq_update_policy(cpu);
1173 }
1174 
1175 static void intel_pstate_update_max_freq(unsigned int cpu)
1176 {
1177 	struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
1178 	struct cpudata *cpudata;
1179 
1180 	if (!policy)
1181 		return;
1182 
1183 	cpudata = all_cpu_data[cpu];
1184 	policy->cpuinfo.max_freq = global.turbo_disabled_mf ?
1185 			cpudata->pstate.max_freq : cpudata->pstate.turbo_freq;
1186 
1187 	refresh_frequency_limits(policy);
1188 
1189 	cpufreq_cpu_release(policy);
1190 }
1191 
1192 static void intel_pstate_update_limits(unsigned int cpu)
1193 {
1194 	mutex_lock(&intel_pstate_driver_lock);
1195 
1196 	update_turbo_state();
1197 	/*
1198 	 * If turbo has been turned on or off globally, policy limits for
1199 	 * all CPUs need to be updated to reflect that.
1200 	 */
1201 	if (global.turbo_disabled_mf != global.turbo_disabled) {
1202 		global.turbo_disabled_mf = global.turbo_disabled;
1203 		arch_set_max_freq_ratio(global.turbo_disabled);
1204 		for_each_possible_cpu(cpu)
1205 			intel_pstate_update_max_freq(cpu);
1206 	} else {
1207 		cpufreq_update_policy(cpu);
1208 	}
1209 
1210 	mutex_unlock(&intel_pstate_driver_lock);
1211 }
1212 
1213 /************************** sysfs begin ************************/
1214 #define show_one(file_name, object)					\
1215 	static ssize_t show_##file_name					\
1216 	(struct kobject *kobj, struct kobj_attribute *attr, char *buf)	\
1217 	{								\
1218 		return sprintf(buf, "%u\n", global.object);		\
1219 	}
1220 
1221 static ssize_t intel_pstate_show_status(char *buf);
1222 static int intel_pstate_update_status(const char *buf, size_t size);
1223 
1224 static ssize_t show_status(struct kobject *kobj,
1225 			   struct kobj_attribute *attr, char *buf)
1226 {
1227 	ssize_t ret;
1228 
1229 	mutex_lock(&intel_pstate_driver_lock);
1230 	ret = intel_pstate_show_status(buf);
1231 	mutex_unlock(&intel_pstate_driver_lock);
1232 
1233 	return ret;
1234 }
1235 
1236 static ssize_t store_status(struct kobject *a, struct kobj_attribute *b,
1237 			    const char *buf, size_t count)
1238 {
1239 	char *p = memchr(buf, '\n', count);
1240 	int ret;
1241 
1242 	mutex_lock(&intel_pstate_driver_lock);
1243 	ret = intel_pstate_update_status(buf, p ? p - buf : count);
1244 	mutex_unlock(&intel_pstate_driver_lock);
1245 
1246 	return ret < 0 ? ret : count;
1247 }
1248 
1249 static ssize_t show_turbo_pct(struct kobject *kobj,
1250 				struct kobj_attribute *attr, char *buf)
1251 {
1252 	struct cpudata *cpu;
1253 	int total, no_turbo, turbo_pct;
1254 	uint32_t turbo_fp;
1255 
1256 	mutex_lock(&intel_pstate_driver_lock);
1257 
1258 	if (!intel_pstate_driver) {
1259 		mutex_unlock(&intel_pstate_driver_lock);
1260 		return -EAGAIN;
1261 	}
1262 
1263 	cpu = all_cpu_data[0];
1264 
1265 	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1266 	no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
1267 	turbo_fp = div_fp(no_turbo, total);
1268 	turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
1269 
1270 	mutex_unlock(&intel_pstate_driver_lock);
1271 
1272 	return sprintf(buf, "%u\n", turbo_pct);
1273 }
1274 
1275 static ssize_t show_num_pstates(struct kobject *kobj,
1276 				struct kobj_attribute *attr, char *buf)
1277 {
1278 	struct cpudata *cpu;
1279 	int total;
1280 
1281 	mutex_lock(&intel_pstate_driver_lock);
1282 
1283 	if (!intel_pstate_driver) {
1284 		mutex_unlock(&intel_pstate_driver_lock);
1285 		return -EAGAIN;
1286 	}
1287 
1288 	cpu = all_cpu_data[0];
1289 	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1290 
1291 	mutex_unlock(&intel_pstate_driver_lock);
1292 
1293 	return sprintf(buf, "%u\n", total);
1294 }
1295 
1296 static ssize_t show_no_turbo(struct kobject *kobj,
1297 			     struct kobj_attribute *attr, char *buf)
1298 {
1299 	ssize_t ret;
1300 
1301 	mutex_lock(&intel_pstate_driver_lock);
1302 
1303 	if (!intel_pstate_driver) {
1304 		mutex_unlock(&intel_pstate_driver_lock);
1305 		return -EAGAIN;
1306 	}
1307 
1308 	update_turbo_state();
1309 	if (global.turbo_disabled)
1310 		ret = sprintf(buf, "%u\n", global.turbo_disabled);
1311 	else
1312 		ret = sprintf(buf, "%u\n", global.no_turbo);
1313 
1314 	mutex_unlock(&intel_pstate_driver_lock);
1315 
1316 	return ret;
1317 }
1318 
1319 static ssize_t store_no_turbo(struct kobject *a, struct kobj_attribute *b,
1320 			      const char *buf, size_t count)
1321 {
1322 	unsigned int input;
1323 	int ret;
1324 
1325 	ret = sscanf(buf, "%u", &input);
1326 	if (ret != 1)
1327 		return -EINVAL;
1328 
1329 	mutex_lock(&intel_pstate_driver_lock);
1330 
1331 	if (!intel_pstate_driver) {
1332 		mutex_unlock(&intel_pstate_driver_lock);
1333 		return -EAGAIN;
1334 	}
1335 
1336 	mutex_lock(&intel_pstate_limits_lock);
1337 
1338 	update_turbo_state();
1339 	if (global.turbo_disabled) {
1340 		pr_notice_once("Turbo disabled by BIOS or unavailable on processor\n");
1341 		mutex_unlock(&intel_pstate_limits_lock);
1342 		mutex_unlock(&intel_pstate_driver_lock);
1343 		return -EPERM;
1344 	}
1345 
1346 	global.no_turbo = clamp_t(int, input, 0, 1);
1347 
1348 	if (global.no_turbo) {
1349 		struct cpudata *cpu = all_cpu_data[0];
1350 		int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;
1351 
1352 		/* Squash the global minimum into the permitted range. */
1353 		if (global.min_perf_pct > pct)
1354 			global.min_perf_pct = pct;
1355 	}
1356 
1357 	mutex_unlock(&intel_pstate_limits_lock);
1358 
1359 	intel_pstate_update_policies();
1360 
1361 	mutex_unlock(&intel_pstate_driver_lock);
1362 
1363 	return count;
1364 }
1365 
1366 static void update_qos_request(enum freq_qos_req_type type)
1367 {
1368 	struct freq_qos_request *req;
1369 	struct cpufreq_policy *policy;
1370 	int i;
1371 
1372 	for_each_possible_cpu(i) {
1373 		struct cpudata *cpu = all_cpu_data[i];
1374 		unsigned int freq, perf_pct;
1375 
1376 		policy = cpufreq_cpu_get(i);
1377 		if (!policy)
1378 			continue;
1379 
1380 		req = policy->driver_data;
1381 		cpufreq_cpu_put(policy);
1382 
1383 		if (!req)
1384 			continue;
1385 
1386 		if (hwp_active)
1387 			intel_pstate_get_hwp_cap(cpu);
1388 
1389 		if (type == FREQ_QOS_MIN) {
1390 			perf_pct = global.min_perf_pct;
1391 		} else {
1392 			req++;
1393 			perf_pct = global.max_perf_pct;
1394 		}
1395 
1396 		freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * perf_pct, 100);
1397 
1398 		if (freq_qos_update_request(req, freq) < 0)
1399 			pr_warn("Failed to update freq constraint: CPU%d\n", i);
1400 	}
1401 }
1402 
1403 static ssize_t store_max_perf_pct(struct kobject *a, struct kobj_attribute *b,
1404 				  const char *buf, size_t count)
1405 {
1406 	unsigned int input;
1407 	int ret;
1408 
1409 	ret = sscanf(buf, "%u", &input);
1410 	if (ret != 1)
1411 		return -EINVAL;
1412 
1413 	mutex_lock(&intel_pstate_driver_lock);
1414 
1415 	if (!intel_pstate_driver) {
1416 		mutex_unlock(&intel_pstate_driver_lock);
1417 		return -EAGAIN;
1418 	}
1419 
1420 	mutex_lock(&intel_pstate_limits_lock);
1421 
1422 	global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
1423 
1424 	mutex_unlock(&intel_pstate_limits_lock);
1425 
1426 	if (intel_pstate_driver == &intel_pstate)
1427 		intel_pstate_update_policies();
1428 	else
1429 		update_qos_request(FREQ_QOS_MAX);
1430 
1431 	mutex_unlock(&intel_pstate_driver_lock);
1432 
1433 	return count;
1434 }
1435 
1436 static ssize_t store_min_perf_pct(struct kobject *a, struct kobj_attribute *b,
1437 				  const char *buf, size_t count)
1438 {
1439 	unsigned int input;
1440 	int ret;
1441 
1442 	ret = sscanf(buf, "%u", &input);
1443 	if (ret != 1)
1444 		return -EINVAL;
1445 
1446 	mutex_lock(&intel_pstate_driver_lock);
1447 
1448 	if (!intel_pstate_driver) {
1449 		mutex_unlock(&intel_pstate_driver_lock);
1450 		return -EAGAIN;
1451 	}
1452 
1453 	mutex_lock(&intel_pstate_limits_lock);
1454 
1455 	global.min_perf_pct = clamp_t(int, input,
1456 				      min_perf_pct_min(), global.max_perf_pct);
1457 
1458 	mutex_unlock(&intel_pstate_limits_lock);
1459 
1460 	if (intel_pstate_driver == &intel_pstate)
1461 		intel_pstate_update_policies();
1462 	else
1463 		update_qos_request(FREQ_QOS_MIN);
1464 
1465 	mutex_unlock(&intel_pstate_driver_lock);
1466 
1467 	return count;
1468 }
1469 
1470 static ssize_t show_hwp_dynamic_boost(struct kobject *kobj,
1471 				struct kobj_attribute *attr, char *buf)
1472 {
1473 	return sprintf(buf, "%u\n", hwp_boost);
1474 }
1475 
1476 static ssize_t store_hwp_dynamic_boost(struct kobject *a,
1477 				       struct kobj_attribute *b,
1478 				       const char *buf, size_t count)
1479 {
1480 	unsigned int input;
1481 	int ret;
1482 
1483 	ret = kstrtouint(buf, 10, &input);
1484 	if (ret)
1485 		return ret;
1486 
1487 	mutex_lock(&intel_pstate_driver_lock);
1488 	hwp_boost = !!input;
1489 	intel_pstate_update_policies();
1490 	mutex_unlock(&intel_pstate_driver_lock);
1491 
1492 	return count;
1493 }
1494 
1495 static ssize_t show_energy_efficiency(struct kobject *kobj, struct kobj_attribute *attr,
1496 				      char *buf)
1497 {
1498 	u64 power_ctl;
1499 	int enable;
1500 
1501 	rdmsrl(MSR_IA32_POWER_CTL, power_ctl);
1502 	enable = !!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE));
1503 	return sprintf(buf, "%d\n", !enable);
1504 }
1505 
1506 static ssize_t store_energy_efficiency(struct kobject *a, struct kobj_attribute *b,
1507 				       const char *buf, size_t count)
1508 {
1509 	bool input;
1510 	int ret;
1511 
1512 	ret = kstrtobool(buf, &input);
1513 	if (ret)
1514 		return ret;
1515 
1516 	set_power_ctl_ee_state(input);
1517 
1518 	return count;
1519 }
1520 
1521 show_one(max_perf_pct, max_perf_pct);
1522 show_one(min_perf_pct, min_perf_pct);
1523 
1524 define_one_global_rw(status);
1525 define_one_global_rw(no_turbo);
1526 define_one_global_rw(max_perf_pct);
1527 define_one_global_rw(min_perf_pct);
1528 define_one_global_ro(turbo_pct);
1529 define_one_global_ro(num_pstates);
1530 define_one_global_rw(hwp_dynamic_boost);
1531 define_one_global_rw(energy_efficiency);
1532 
1533 static struct attribute *intel_pstate_attributes[] = {
1534 	&status.attr,
1535 	&no_turbo.attr,
1536 	NULL
1537 };
1538 
1539 static const struct attribute_group intel_pstate_attr_group = {
1540 	.attrs = intel_pstate_attributes,
1541 };
1542 
1543 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[];
1544 
1545 static struct kobject *intel_pstate_kobject;
1546 
1547 static void __init intel_pstate_sysfs_expose_params(void)
1548 {
1549 	int rc;
1550 
1551 	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
1552 						&cpu_subsys.dev_root->kobj);
1553 	if (WARN_ON(!intel_pstate_kobject))
1554 		return;
1555 
1556 	rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1557 	if (WARN_ON(rc))
1558 		return;
1559 
1560 	if (!boot_cpu_has(X86_FEATURE_HYBRID_CPU)) {
1561 		rc = sysfs_create_file(intel_pstate_kobject, &turbo_pct.attr);
1562 		WARN_ON(rc);
1563 
1564 		rc = sysfs_create_file(intel_pstate_kobject, &num_pstates.attr);
1565 		WARN_ON(rc);
1566 	}
1567 
1568 	/*
1569 	 * If per cpu limits are enforced there are no global limits, so
1570 	 * return without creating max/min_perf_pct attributes
1571 	 */
1572 	if (per_cpu_limits)
1573 		return;
1574 
1575 	rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
1576 	WARN_ON(rc);
1577 
1578 	rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
1579 	WARN_ON(rc);
1580 
1581 	if (x86_match_cpu(intel_pstate_cpu_ee_disable_ids)) {
1582 		rc = sysfs_create_file(intel_pstate_kobject, &energy_efficiency.attr);
1583 		WARN_ON(rc);
1584 	}
1585 }
1586 
1587 static void __init intel_pstate_sysfs_remove(void)
1588 {
1589 	if (!intel_pstate_kobject)
1590 		return;
1591 
1592 	sysfs_remove_group(intel_pstate_kobject, &intel_pstate_attr_group);
1593 
1594 	if (!boot_cpu_has(X86_FEATURE_HYBRID_CPU)) {
1595 		sysfs_remove_file(intel_pstate_kobject, &num_pstates.attr);
1596 		sysfs_remove_file(intel_pstate_kobject, &turbo_pct.attr);
1597 	}
1598 
1599 	if (!per_cpu_limits) {
1600 		sysfs_remove_file(intel_pstate_kobject, &max_perf_pct.attr);
1601 		sysfs_remove_file(intel_pstate_kobject, &min_perf_pct.attr);
1602 
1603 		if (x86_match_cpu(intel_pstate_cpu_ee_disable_ids))
1604 			sysfs_remove_file(intel_pstate_kobject, &energy_efficiency.attr);
1605 	}
1606 
1607 	kobject_put(intel_pstate_kobject);
1608 }
1609 
1610 static void intel_pstate_sysfs_expose_hwp_dynamic_boost(void)
1611 {
1612 	int rc;
1613 
1614 	if (!hwp_active)
1615 		return;
1616 
1617 	rc = sysfs_create_file(intel_pstate_kobject, &hwp_dynamic_boost.attr);
1618 	WARN_ON_ONCE(rc);
1619 }
1620 
1621 static void intel_pstate_sysfs_hide_hwp_dynamic_boost(void)
1622 {
1623 	if (!hwp_active)
1624 		return;
1625 
1626 	sysfs_remove_file(intel_pstate_kobject, &hwp_dynamic_boost.attr);
1627 }
1628 
1629 /************************** sysfs end ************************/
1630 
1631 static void intel_pstate_notify_work(struct work_struct *work)
1632 {
1633 	mutex_lock(&intel_pstate_driver_lock);
1634 	cpufreq_update_policy(smp_processor_id());
1635 	wrmsrl(MSR_HWP_STATUS, 0);
1636 	mutex_unlock(&intel_pstate_driver_lock);
1637 }
1638 
1639 void notify_hwp_interrupt(void)
1640 {
1641 	unsigned int this_cpu = smp_processor_id();
1642 	struct cpudata *cpudata;
1643 	u64 value;
1644 
1645 	if (!hwp_active || !boot_cpu_has(X86_FEATURE_HWP_NOTIFY))
1646 		return;
1647 
1648 	rdmsrl(MSR_HWP_STATUS, value);
1649 	if (!(value & 0x01))
1650 		return;
1651 
1652 	cpudata = all_cpu_data[this_cpu];
1653 	schedule_delayed_work_on(this_cpu, &cpudata->hwp_notify_work, msecs_to_jiffies(10));
1654 }
1655 
1656 static void intel_pstate_enable_hwp_interrupt(struct cpudata *cpudata)
1657 {
1658 	/* Enable HWP notification interrupt for guaranteed performance change */
1659 	if (boot_cpu_has(X86_FEATURE_HWP_NOTIFY)) {
1660 		INIT_DELAYED_WORK(&cpudata->hwp_notify_work, intel_pstate_notify_work);
1661 		wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x01);
1662 	}
1663 }
1664 
1665 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
1666 {
1667 	/* First disable HWP notification interrupt as we don't process them */
1668 	if (boot_cpu_has(X86_FEATURE_HWP_NOTIFY))
1669 		wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1670 
1671 	wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1672 	if (cpudata->epp_default == -EINVAL)
1673 		cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
1674 
1675 	intel_pstate_enable_hwp_interrupt(cpudata);
1676 }
1677 
1678 static int atom_get_min_pstate(void)
1679 {
1680 	u64 value;
1681 
1682 	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1683 	return (value >> 8) & 0x7F;
1684 }
1685 
1686 static int atom_get_max_pstate(void)
1687 {
1688 	u64 value;
1689 
1690 	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1691 	return (value >> 16) & 0x7F;
1692 }
1693 
1694 static int atom_get_turbo_pstate(void)
1695 {
1696 	u64 value;
1697 
1698 	rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
1699 	return value & 0x7F;
1700 }
1701 
1702 static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1703 {
1704 	u64 val;
1705 	int32_t vid_fp;
1706 	u32 vid;
1707 
1708 	val = (u64)pstate << 8;
1709 	if (global.no_turbo && !global.turbo_disabled)
1710 		val |= (u64)1 << 32;
1711 
1712 	vid_fp = cpudata->vid.min + mul_fp(
1713 		int_tofp(pstate - cpudata->pstate.min_pstate),
1714 		cpudata->vid.ratio);
1715 
1716 	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1717 	vid = ceiling_fp(vid_fp);
1718 
1719 	if (pstate > cpudata->pstate.max_pstate)
1720 		vid = cpudata->vid.turbo;
1721 
1722 	return val | vid;
1723 }
1724 
1725 static int silvermont_get_scaling(void)
1726 {
1727 	u64 value;
1728 	int i;
1729 	/* Defined in Table 35-6 from SDM (Sept 2015) */
1730 	static int silvermont_freq_table[] = {
1731 		83300, 100000, 133300, 116700, 80000};
1732 
1733 	rdmsrl(MSR_FSB_FREQ, value);
1734 	i = value & 0x7;
1735 	WARN_ON(i > 4);
1736 
1737 	return silvermont_freq_table[i];
1738 }
1739 
1740 static int airmont_get_scaling(void)
1741 {
1742 	u64 value;
1743 	int i;
1744 	/* Defined in Table 35-10 from SDM (Sept 2015) */
1745 	static int airmont_freq_table[] = {
1746 		83300, 100000, 133300, 116700, 80000,
1747 		93300, 90000, 88900, 87500};
1748 
1749 	rdmsrl(MSR_FSB_FREQ, value);
1750 	i = value & 0xF;
1751 	WARN_ON(i > 8);
1752 
1753 	return airmont_freq_table[i];
1754 }
1755 
1756 static void atom_get_vid(struct cpudata *cpudata)
1757 {
1758 	u64 value;
1759 
1760 	rdmsrl(MSR_ATOM_CORE_VIDS, value);
1761 	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
1762 	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1763 	cpudata->vid.ratio = div_fp(
1764 		cpudata->vid.max - cpudata->vid.min,
1765 		int_tofp(cpudata->pstate.max_pstate -
1766 			cpudata->pstate.min_pstate));
1767 
1768 	rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1769 	cpudata->vid.turbo = value & 0x7f;
1770 }
1771 
1772 static int core_get_min_pstate(void)
1773 {
1774 	u64 value;
1775 
1776 	rdmsrl(MSR_PLATFORM_INFO, value);
1777 	return (value >> 40) & 0xFF;
1778 }
1779 
1780 static int core_get_max_pstate_physical(void)
1781 {
1782 	u64 value;
1783 
1784 	rdmsrl(MSR_PLATFORM_INFO, value);
1785 	return (value >> 8) & 0xFF;
1786 }
1787 
1788 static int core_get_tdp_ratio(u64 plat_info)
1789 {
1790 	/* Check how many TDP levels present */
1791 	if (plat_info & 0x600000000) {
1792 		u64 tdp_ctrl;
1793 		u64 tdp_ratio;
1794 		int tdp_msr;
1795 		int err;
1796 
1797 		/* Get the TDP level (0, 1, 2) to get ratios */
1798 		err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
1799 		if (err)
1800 			return err;
1801 
1802 		/* TDP MSR are continuous starting at 0x648 */
1803 		tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
1804 		err = rdmsrl_safe(tdp_msr, &tdp_ratio);
1805 		if (err)
1806 			return err;
1807 
1808 		/* For level 1 and 2, bits[23:16] contain the ratio */
1809 		if (tdp_ctrl & 0x03)
1810 			tdp_ratio >>= 16;
1811 
1812 		tdp_ratio &= 0xff; /* ratios are only 8 bits long */
1813 		pr_debug("tdp_ratio %x\n", (int)tdp_ratio);
1814 
1815 		return (int)tdp_ratio;
1816 	}
1817 
1818 	return -ENXIO;
1819 }
1820 
1821 static int core_get_max_pstate(void)
1822 {
1823 	u64 tar;
1824 	u64 plat_info;
1825 	int max_pstate;
1826 	int tdp_ratio;
1827 	int err;
1828 
1829 	rdmsrl(MSR_PLATFORM_INFO, plat_info);
1830 	max_pstate = (plat_info >> 8) & 0xFF;
1831 
1832 	tdp_ratio = core_get_tdp_ratio(plat_info);
1833 	if (tdp_ratio <= 0)
1834 		return max_pstate;
1835 
1836 	if (hwp_active) {
1837 		/* Turbo activation ratio is not used on HWP platforms */
1838 		return tdp_ratio;
1839 	}
1840 
1841 	err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
1842 	if (!err) {
1843 		int tar_levels;
1844 
1845 		/* Do some sanity checking for safety */
1846 		tar_levels = tar & 0xff;
1847 		if (tdp_ratio - 1 == tar_levels) {
1848 			max_pstate = tar_levels;
1849 			pr_debug("max_pstate=TAC %x\n", max_pstate);
1850 		}
1851 	}
1852 
1853 	return max_pstate;
1854 }
1855 
1856 static int core_get_turbo_pstate(void)
1857 {
1858 	u64 value;
1859 	int nont, ret;
1860 
1861 	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1862 	nont = core_get_max_pstate();
1863 	ret = (value) & 255;
1864 	if (ret <= nont)
1865 		ret = nont;
1866 	return ret;
1867 }
1868 
1869 static inline int core_get_scaling(void)
1870 {
1871 	return 100000;
1872 }
1873 
1874 static u64 core_get_val(struct cpudata *cpudata, int pstate)
1875 {
1876 	u64 val;
1877 
1878 	val = (u64)pstate << 8;
1879 	if (global.no_turbo && !global.turbo_disabled)
1880 		val |= (u64)1 << 32;
1881 
1882 	return val;
1883 }
1884 
1885 static int knl_get_aperf_mperf_shift(void)
1886 {
1887 	return 10;
1888 }
1889 
1890 static int knl_get_turbo_pstate(void)
1891 {
1892 	u64 value;
1893 	int nont, ret;
1894 
1895 	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1896 	nont = core_get_max_pstate();
1897 	ret = (((value) >> 8) & 0xFF);
1898 	if (ret <= nont)
1899 		ret = nont;
1900 	return ret;
1901 }
1902 
1903 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1904 {
1905 	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1906 	cpu->pstate.current_pstate = pstate;
1907 	/*
1908 	 * Generally, there is no guarantee that this code will always run on
1909 	 * the CPU being updated, so force the register update to run on the
1910 	 * right CPU.
1911 	 */
1912 	wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1913 		      pstate_funcs.get_val(cpu, pstate));
1914 }
1915 
1916 static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1917 {
1918 	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
1919 }
1920 
1921 static void intel_pstate_max_within_limits(struct cpudata *cpu)
1922 {
1923 	int pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio);
1924 
1925 	update_turbo_state();
1926 	intel_pstate_set_pstate(cpu, pstate);
1927 }
1928 
1929 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1930 {
1931 	bool hybrid_cpu = boot_cpu_has(X86_FEATURE_HYBRID_CPU);
1932 	int perf_ctl_max_phys = pstate_funcs.get_max_physical();
1933 	int perf_ctl_scaling = hybrid_cpu ? cpu_khz / perf_ctl_max_phys :
1934 					    pstate_funcs.get_scaling();
1935 
1936 	cpu->pstate.min_pstate = pstate_funcs.get_min();
1937 	cpu->pstate.max_pstate_physical = perf_ctl_max_phys;
1938 	cpu->pstate.perf_ctl_scaling = perf_ctl_scaling;
1939 
1940 	if (hwp_active && !hwp_mode_bdw) {
1941 		__intel_pstate_get_hwp_cap(cpu);
1942 
1943 		if (hybrid_cpu)
1944 			intel_pstate_hybrid_hwp_calibrate(cpu);
1945 		else
1946 			cpu->pstate.scaling = perf_ctl_scaling;
1947 	} else {
1948 		cpu->pstate.scaling = perf_ctl_scaling;
1949 		cpu->pstate.max_pstate = pstate_funcs.get_max();
1950 		cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1951 	}
1952 
1953 	if (cpu->pstate.scaling == perf_ctl_scaling) {
1954 		cpu->pstate.min_freq = cpu->pstate.min_pstate * perf_ctl_scaling;
1955 		cpu->pstate.max_freq = cpu->pstate.max_pstate * perf_ctl_scaling;
1956 		cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * perf_ctl_scaling;
1957 	}
1958 
1959 	if (pstate_funcs.get_aperf_mperf_shift)
1960 		cpu->aperf_mperf_shift = pstate_funcs.get_aperf_mperf_shift();
1961 
1962 	if (pstate_funcs.get_vid)
1963 		pstate_funcs.get_vid(cpu);
1964 
1965 	intel_pstate_set_min_pstate(cpu);
1966 }
1967 
1968 /*
1969  * Long hold time will keep high perf limits for long time,
1970  * which negatively impacts perf/watt for some workloads,
1971  * like specpower. 3ms is based on experiements on some
1972  * workoads.
1973  */
1974 static int hwp_boost_hold_time_ns = 3 * NSEC_PER_MSEC;
1975 
1976 static inline void intel_pstate_hwp_boost_up(struct cpudata *cpu)
1977 {
1978 	u64 hwp_req = READ_ONCE(cpu->hwp_req_cached);
1979 	u64 hwp_cap = READ_ONCE(cpu->hwp_cap_cached);
1980 	u32 max_limit = (hwp_req & 0xff00) >> 8;
1981 	u32 min_limit = (hwp_req & 0xff);
1982 	u32 boost_level1;
1983 
1984 	/*
1985 	 * Cases to consider (User changes via sysfs or boot time):
1986 	 * If, P0 (Turbo max) = P1 (Guaranteed max) = min:
1987 	 *	No boost, return.
1988 	 * If, P0 (Turbo max) > P1 (Guaranteed max) = min:
1989 	 *     Should result in one level boost only for P0.
1990 	 * If, P0 (Turbo max) = P1 (Guaranteed max) > min:
1991 	 *     Should result in two level boost:
1992 	 *         (min + p1)/2 and P1.
1993 	 * If, P0 (Turbo max) > P1 (Guaranteed max) > min:
1994 	 *     Should result in three level boost:
1995 	 *        (min + p1)/2, P1 and P0.
1996 	 */
1997 
1998 	/* If max and min are equal or already at max, nothing to boost */
1999 	if (max_limit == min_limit || cpu->hwp_boost_min >= max_limit)
2000 		return;
2001 
2002 	if (!cpu->hwp_boost_min)
2003 		cpu->hwp_boost_min = min_limit;
2004 
2005 	/* level at half way mark between min and guranteed */
2006 	boost_level1 = (HWP_GUARANTEED_PERF(hwp_cap) + min_limit) >> 1;
2007 
2008 	if (cpu->hwp_boost_min < boost_level1)
2009 		cpu->hwp_boost_min = boost_level1;
2010 	else if (cpu->hwp_boost_min < HWP_GUARANTEED_PERF(hwp_cap))
2011 		cpu->hwp_boost_min = HWP_GUARANTEED_PERF(hwp_cap);
2012 	else if (cpu->hwp_boost_min == HWP_GUARANTEED_PERF(hwp_cap) &&
2013 		 max_limit != HWP_GUARANTEED_PERF(hwp_cap))
2014 		cpu->hwp_boost_min = max_limit;
2015 	else
2016 		return;
2017 
2018 	hwp_req = (hwp_req & ~GENMASK_ULL(7, 0)) | cpu->hwp_boost_min;
2019 	wrmsrl(MSR_HWP_REQUEST, hwp_req);
2020 	cpu->last_update = cpu->sample.time;
2021 }
2022 
2023 static inline void intel_pstate_hwp_boost_down(struct cpudata *cpu)
2024 {
2025 	if (cpu->hwp_boost_min) {
2026 		bool expired;
2027 
2028 		/* Check if we are idle for hold time to boost down */
2029 		expired = time_after64(cpu->sample.time, cpu->last_update +
2030 				       hwp_boost_hold_time_ns);
2031 		if (expired) {
2032 			wrmsrl(MSR_HWP_REQUEST, cpu->hwp_req_cached);
2033 			cpu->hwp_boost_min = 0;
2034 		}
2035 	}
2036 	cpu->last_update = cpu->sample.time;
2037 }
2038 
2039 static inline void intel_pstate_update_util_hwp_local(struct cpudata *cpu,
2040 						      u64 time)
2041 {
2042 	cpu->sample.time = time;
2043 
2044 	if (cpu->sched_flags & SCHED_CPUFREQ_IOWAIT) {
2045 		bool do_io = false;
2046 
2047 		cpu->sched_flags = 0;
2048 		/*
2049 		 * Set iowait_boost flag and update time. Since IO WAIT flag
2050 		 * is set all the time, we can't just conclude that there is
2051 		 * some IO bound activity is scheduled on this CPU with just
2052 		 * one occurrence. If we receive at least two in two
2053 		 * consecutive ticks, then we treat as boost candidate.
2054 		 */
2055 		if (time_before64(time, cpu->last_io_update + 2 * TICK_NSEC))
2056 			do_io = true;
2057 
2058 		cpu->last_io_update = time;
2059 
2060 		if (do_io)
2061 			intel_pstate_hwp_boost_up(cpu);
2062 
2063 	} else {
2064 		intel_pstate_hwp_boost_down(cpu);
2065 	}
2066 }
2067 
2068 static inline void intel_pstate_update_util_hwp(struct update_util_data *data,
2069 						u64 time, unsigned int flags)
2070 {
2071 	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
2072 
2073 	cpu->sched_flags |= flags;
2074 
2075 	if (smp_processor_id() == cpu->cpu)
2076 		intel_pstate_update_util_hwp_local(cpu, time);
2077 }
2078 
2079 static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
2080 {
2081 	struct sample *sample = &cpu->sample;
2082 
2083 	sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
2084 }
2085 
2086 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
2087 {
2088 	u64 aperf, mperf;
2089 	unsigned long flags;
2090 	u64 tsc;
2091 
2092 	local_irq_save(flags);
2093 	rdmsrl(MSR_IA32_APERF, aperf);
2094 	rdmsrl(MSR_IA32_MPERF, mperf);
2095 	tsc = rdtsc();
2096 	if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
2097 		local_irq_restore(flags);
2098 		return false;
2099 	}
2100 	local_irq_restore(flags);
2101 
2102 	cpu->last_sample_time = cpu->sample.time;
2103 	cpu->sample.time = time;
2104 	cpu->sample.aperf = aperf;
2105 	cpu->sample.mperf = mperf;
2106 	cpu->sample.tsc =  tsc;
2107 	cpu->sample.aperf -= cpu->prev_aperf;
2108 	cpu->sample.mperf -= cpu->prev_mperf;
2109 	cpu->sample.tsc -= cpu->prev_tsc;
2110 
2111 	cpu->prev_aperf = aperf;
2112 	cpu->prev_mperf = mperf;
2113 	cpu->prev_tsc = tsc;
2114 	/*
2115 	 * First time this function is invoked in a given cycle, all of the
2116 	 * previous sample data fields are equal to zero or stale and they must
2117 	 * be populated with meaningful numbers for things to work, so assume
2118 	 * that sample.time will always be reset before setting the utilization
2119 	 * update hook and make the caller skip the sample then.
2120 	 */
2121 	if (cpu->last_sample_time) {
2122 		intel_pstate_calc_avg_perf(cpu);
2123 		return true;
2124 	}
2125 	return false;
2126 }
2127 
2128 static inline int32_t get_avg_frequency(struct cpudata *cpu)
2129 {
2130 	return mul_ext_fp(cpu->sample.core_avg_perf, cpu_khz);
2131 }
2132 
2133 static inline int32_t get_avg_pstate(struct cpudata *cpu)
2134 {
2135 	return mul_ext_fp(cpu->pstate.max_pstate_physical,
2136 			  cpu->sample.core_avg_perf);
2137 }
2138 
2139 static inline int32_t get_target_pstate(struct cpudata *cpu)
2140 {
2141 	struct sample *sample = &cpu->sample;
2142 	int32_t busy_frac;
2143 	int target, avg_pstate;
2144 
2145 	busy_frac = div_fp(sample->mperf << cpu->aperf_mperf_shift,
2146 			   sample->tsc);
2147 
2148 	if (busy_frac < cpu->iowait_boost)
2149 		busy_frac = cpu->iowait_boost;
2150 
2151 	sample->busy_scaled = busy_frac * 100;
2152 
2153 	target = global.no_turbo || global.turbo_disabled ?
2154 			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2155 	target += target >> 2;
2156 	target = mul_fp(target, busy_frac);
2157 	if (target < cpu->pstate.min_pstate)
2158 		target = cpu->pstate.min_pstate;
2159 
2160 	/*
2161 	 * If the average P-state during the previous cycle was higher than the
2162 	 * current target, add 50% of the difference to the target to reduce
2163 	 * possible performance oscillations and offset possible performance
2164 	 * loss related to moving the workload from one CPU to another within
2165 	 * a package/module.
2166 	 */
2167 	avg_pstate = get_avg_pstate(cpu);
2168 	if (avg_pstate > target)
2169 		target += (avg_pstate - target) >> 1;
2170 
2171 	return target;
2172 }
2173 
2174 static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
2175 {
2176 	int min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio);
2177 	int max_pstate = max(min_pstate, cpu->max_perf_ratio);
2178 
2179 	return clamp_t(int, pstate, min_pstate, max_pstate);
2180 }
2181 
2182 static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
2183 {
2184 	if (pstate == cpu->pstate.current_pstate)
2185 		return;
2186 
2187 	cpu->pstate.current_pstate = pstate;
2188 	wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
2189 }
2190 
2191 static void intel_pstate_adjust_pstate(struct cpudata *cpu)
2192 {
2193 	int from = cpu->pstate.current_pstate;
2194 	struct sample *sample;
2195 	int target_pstate;
2196 
2197 	update_turbo_state();
2198 
2199 	target_pstate = get_target_pstate(cpu);
2200 	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2201 	trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
2202 	intel_pstate_update_pstate(cpu, target_pstate);
2203 
2204 	sample = &cpu->sample;
2205 	trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
2206 		fp_toint(sample->busy_scaled),
2207 		from,
2208 		cpu->pstate.current_pstate,
2209 		sample->mperf,
2210 		sample->aperf,
2211 		sample->tsc,
2212 		get_avg_frequency(cpu),
2213 		fp_toint(cpu->iowait_boost * 100));
2214 }
2215 
2216 static void intel_pstate_update_util(struct update_util_data *data, u64 time,
2217 				     unsigned int flags)
2218 {
2219 	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
2220 	u64 delta_ns;
2221 
2222 	/* Don't allow remote callbacks */
2223 	if (smp_processor_id() != cpu->cpu)
2224 		return;
2225 
2226 	delta_ns = time - cpu->last_update;
2227 	if (flags & SCHED_CPUFREQ_IOWAIT) {
2228 		/* Start over if the CPU may have been idle. */
2229 		if (delta_ns > TICK_NSEC) {
2230 			cpu->iowait_boost = ONE_EIGHTH_FP;
2231 		} else if (cpu->iowait_boost >= ONE_EIGHTH_FP) {
2232 			cpu->iowait_boost <<= 1;
2233 			if (cpu->iowait_boost > int_tofp(1))
2234 				cpu->iowait_boost = int_tofp(1);
2235 		} else {
2236 			cpu->iowait_boost = ONE_EIGHTH_FP;
2237 		}
2238 	} else if (cpu->iowait_boost) {
2239 		/* Clear iowait_boost if the CPU may have been idle. */
2240 		if (delta_ns > TICK_NSEC)
2241 			cpu->iowait_boost = 0;
2242 		else
2243 			cpu->iowait_boost >>= 1;
2244 	}
2245 	cpu->last_update = time;
2246 	delta_ns = time - cpu->sample.time;
2247 	if ((s64)delta_ns < INTEL_PSTATE_SAMPLING_INTERVAL)
2248 		return;
2249 
2250 	if (intel_pstate_sample(cpu, time))
2251 		intel_pstate_adjust_pstate(cpu);
2252 }
2253 
2254 static struct pstate_funcs core_funcs = {
2255 	.get_max = core_get_max_pstate,
2256 	.get_max_physical = core_get_max_pstate_physical,
2257 	.get_min = core_get_min_pstate,
2258 	.get_turbo = core_get_turbo_pstate,
2259 	.get_scaling = core_get_scaling,
2260 	.get_val = core_get_val,
2261 };
2262 
2263 static const struct pstate_funcs silvermont_funcs = {
2264 	.get_max = atom_get_max_pstate,
2265 	.get_max_physical = atom_get_max_pstate,
2266 	.get_min = atom_get_min_pstate,
2267 	.get_turbo = atom_get_turbo_pstate,
2268 	.get_val = atom_get_val,
2269 	.get_scaling = silvermont_get_scaling,
2270 	.get_vid = atom_get_vid,
2271 };
2272 
2273 static const struct pstate_funcs airmont_funcs = {
2274 	.get_max = atom_get_max_pstate,
2275 	.get_max_physical = atom_get_max_pstate,
2276 	.get_min = atom_get_min_pstate,
2277 	.get_turbo = atom_get_turbo_pstate,
2278 	.get_val = atom_get_val,
2279 	.get_scaling = airmont_get_scaling,
2280 	.get_vid = atom_get_vid,
2281 };
2282 
2283 static const struct pstate_funcs knl_funcs = {
2284 	.get_max = core_get_max_pstate,
2285 	.get_max_physical = core_get_max_pstate_physical,
2286 	.get_min = core_get_min_pstate,
2287 	.get_turbo = knl_get_turbo_pstate,
2288 	.get_aperf_mperf_shift = knl_get_aperf_mperf_shift,
2289 	.get_scaling = core_get_scaling,
2290 	.get_val = core_get_val,
2291 };
2292 
2293 #define X86_MATCH(model, policy)					 \
2294 	X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6, INTEL_FAM6_##model, \
2295 					   X86_FEATURE_APERFMPERF, &policy)
2296 
2297 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
2298 	X86_MATCH(SANDYBRIDGE,		core_funcs),
2299 	X86_MATCH(SANDYBRIDGE_X,	core_funcs),
2300 	X86_MATCH(ATOM_SILVERMONT,	silvermont_funcs),
2301 	X86_MATCH(IVYBRIDGE,		core_funcs),
2302 	X86_MATCH(HASWELL,		core_funcs),
2303 	X86_MATCH(BROADWELL,		core_funcs),
2304 	X86_MATCH(IVYBRIDGE_X,		core_funcs),
2305 	X86_MATCH(HASWELL_X,		core_funcs),
2306 	X86_MATCH(HASWELL_L,		core_funcs),
2307 	X86_MATCH(HASWELL_G,		core_funcs),
2308 	X86_MATCH(BROADWELL_G,		core_funcs),
2309 	X86_MATCH(ATOM_AIRMONT,		airmont_funcs),
2310 	X86_MATCH(SKYLAKE_L,		core_funcs),
2311 	X86_MATCH(BROADWELL_X,		core_funcs),
2312 	X86_MATCH(SKYLAKE,		core_funcs),
2313 	X86_MATCH(BROADWELL_D,		core_funcs),
2314 	X86_MATCH(XEON_PHI_KNL,		knl_funcs),
2315 	X86_MATCH(XEON_PHI_KNM,		knl_funcs),
2316 	X86_MATCH(ATOM_GOLDMONT,	core_funcs),
2317 	X86_MATCH(ATOM_GOLDMONT_PLUS,	core_funcs),
2318 	X86_MATCH(SKYLAKE_X,		core_funcs),
2319 	X86_MATCH(COMETLAKE,		core_funcs),
2320 	X86_MATCH(ICELAKE_X,		core_funcs),
2321 	{}
2322 };
2323 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
2324 
2325 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
2326 	X86_MATCH(BROADWELL_D,		core_funcs),
2327 	X86_MATCH(BROADWELL_X,		core_funcs),
2328 	X86_MATCH(SKYLAKE_X,		core_funcs),
2329 	{}
2330 };
2331 
2332 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
2333 	X86_MATCH(KABYLAKE,		core_funcs),
2334 	{}
2335 };
2336 
2337 static const struct x86_cpu_id intel_pstate_hwp_boost_ids[] = {
2338 	X86_MATCH(SKYLAKE_X,		core_funcs),
2339 	X86_MATCH(SKYLAKE,		core_funcs),
2340 	{}
2341 };
2342 
2343 static int intel_pstate_init_cpu(unsigned int cpunum)
2344 {
2345 	struct cpudata *cpu;
2346 
2347 	cpu = all_cpu_data[cpunum];
2348 
2349 	if (!cpu) {
2350 		cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
2351 		if (!cpu)
2352 			return -ENOMEM;
2353 
2354 		all_cpu_data[cpunum] = cpu;
2355 
2356 		cpu->cpu = cpunum;
2357 
2358 		cpu->epp_default = -EINVAL;
2359 
2360 		if (hwp_active) {
2361 			const struct x86_cpu_id *id;
2362 
2363 			intel_pstate_hwp_enable(cpu);
2364 
2365 			id = x86_match_cpu(intel_pstate_hwp_boost_ids);
2366 			if (id && intel_pstate_acpi_pm_profile_server())
2367 				hwp_boost = true;
2368 		}
2369 	} else if (hwp_active) {
2370 		/*
2371 		 * Re-enable HWP in case this happens after a resume from ACPI
2372 		 * S3 if the CPU was offline during the whole system/resume
2373 		 * cycle.
2374 		 */
2375 		intel_pstate_hwp_reenable(cpu);
2376 	}
2377 
2378 	cpu->epp_powersave = -EINVAL;
2379 	cpu->epp_policy = 0;
2380 
2381 	intel_pstate_get_cpu_pstates(cpu);
2382 
2383 	pr_debug("controlling: cpu %d\n", cpunum);
2384 
2385 	return 0;
2386 }
2387 
2388 static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
2389 {
2390 	struct cpudata *cpu = all_cpu_data[cpu_num];
2391 
2392 	if (hwp_active && !hwp_boost)
2393 		return;
2394 
2395 	if (cpu->update_util_set)
2396 		return;
2397 
2398 	/* Prevent intel_pstate_update_util() from using stale data. */
2399 	cpu->sample.time = 0;
2400 	cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
2401 				     (hwp_active ?
2402 				      intel_pstate_update_util_hwp :
2403 				      intel_pstate_update_util));
2404 	cpu->update_util_set = true;
2405 }
2406 
2407 static void intel_pstate_clear_update_util_hook(unsigned int cpu)
2408 {
2409 	struct cpudata *cpu_data = all_cpu_data[cpu];
2410 
2411 	if (!cpu_data->update_util_set)
2412 		return;
2413 
2414 	cpufreq_remove_update_util_hook(cpu);
2415 	cpu_data->update_util_set = false;
2416 	synchronize_rcu();
2417 }
2418 
2419 static int intel_pstate_get_max_freq(struct cpudata *cpu)
2420 {
2421 	return global.turbo_disabled || global.no_turbo ?
2422 			cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2423 }
2424 
2425 static void intel_pstate_update_perf_limits(struct cpudata *cpu,
2426 					    unsigned int policy_min,
2427 					    unsigned int policy_max)
2428 {
2429 	int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling;
2430 	int32_t max_policy_perf, min_policy_perf;
2431 
2432 	max_policy_perf = policy_max / perf_ctl_scaling;
2433 	if (policy_max == policy_min) {
2434 		min_policy_perf = max_policy_perf;
2435 	} else {
2436 		min_policy_perf = policy_min / perf_ctl_scaling;
2437 		min_policy_perf = clamp_t(int32_t, min_policy_perf,
2438 					  0, max_policy_perf);
2439 	}
2440 
2441 	/*
2442 	 * HWP needs some special consideration, because HWP_REQUEST uses
2443 	 * abstract values to represent performance rather than pure ratios.
2444 	 */
2445 	if (hwp_active) {
2446 		intel_pstate_get_hwp_cap(cpu);
2447 
2448 		if (cpu->pstate.scaling != perf_ctl_scaling) {
2449 			int scaling = cpu->pstate.scaling;
2450 			int freq;
2451 
2452 			freq = max_policy_perf * perf_ctl_scaling;
2453 			max_policy_perf = DIV_ROUND_UP(freq, scaling);
2454 			freq = min_policy_perf * perf_ctl_scaling;
2455 			min_policy_perf = DIV_ROUND_UP(freq, scaling);
2456 		}
2457 	}
2458 
2459 	pr_debug("cpu:%d min_policy_perf:%d max_policy_perf:%d\n",
2460 		 cpu->cpu, min_policy_perf, max_policy_perf);
2461 
2462 	/* Normalize user input to [min_perf, max_perf] */
2463 	if (per_cpu_limits) {
2464 		cpu->min_perf_ratio = min_policy_perf;
2465 		cpu->max_perf_ratio = max_policy_perf;
2466 	} else {
2467 		int turbo_max = cpu->pstate.turbo_pstate;
2468 		int32_t global_min, global_max;
2469 
2470 		/* Global limits are in percent of the maximum turbo P-state. */
2471 		global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
2472 		global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
2473 		global_min = clamp_t(int32_t, global_min, 0, global_max);
2474 
2475 		pr_debug("cpu:%d global_min:%d global_max:%d\n", cpu->cpu,
2476 			 global_min, global_max);
2477 
2478 		cpu->min_perf_ratio = max(min_policy_perf, global_min);
2479 		cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf);
2480 		cpu->max_perf_ratio = min(max_policy_perf, global_max);
2481 		cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio);
2482 
2483 		/* Make sure min_perf <= max_perf */
2484 		cpu->min_perf_ratio = min(cpu->min_perf_ratio,
2485 					  cpu->max_perf_ratio);
2486 
2487 	}
2488 	pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", cpu->cpu,
2489 		 cpu->max_perf_ratio,
2490 		 cpu->min_perf_ratio);
2491 }
2492 
2493 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
2494 {
2495 	struct cpudata *cpu;
2496 
2497 	if (!policy->cpuinfo.max_freq)
2498 		return -ENODEV;
2499 
2500 	pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
2501 		 policy->cpuinfo.max_freq, policy->max);
2502 
2503 	cpu = all_cpu_data[policy->cpu];
2504 	cpu->policy = policy->policy;
2505 
2506 	mutex_lock(&intel_pstate_limits_lock);
2507 
2508 	intel_pstate_update_perf_limits(cpu, policy->min, policy->max);
2509 
2510 	if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
2511 		/*
2512 		 * NOHZ_FULL CPUs need this as the governor callback may not
2513 		 * be invoked on them.
2514 		 */
2515 		intel_pstate_clear_update_util_hook(policy->cpu);
2516 		intel_pstate_max_within_limits(cpu);
2517 	} else {
2518 		intel_pstate_set_update_util_hook(policy->cpu);
2519 	}
2520 
2521 	if (hwp_active) {
2522 		/*
2523 		 * When hwp_boost was active before and dynamically it
2524 		 * was turned off, in that case we need to clear the
2525 		 * update util hook.
2526 		 */
2527 		if (!hwp_boost)
2528 			intel_pstate_clear_update_util_hook(policy->cpu);
2529 		intel_pstate_hwp_set(policy->cpu);
2530 	}
2531 
2532 	mutex_unlock(&intel_pstate_limits_lock);
2533 
2534 	return 0;
2535 }
2536 
2537 static void intel_pstate_adjust_policy_max(struct cpudata *cpu,
2538 					   struct cpufreq_policy_data *policy)
2539 {
2540 	if (!hwp_active &&
2541 	    cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
2542 	    policy->max < policy->cpuinfo.max_freq &&
2543 	    policy->max > cpu->pstate.max_freq) {
2544 		pr_debug("policy->max > max non turbo frequency\n");
2545 		policy->max = policy->cpuinfo.max_freq;
2546 	}
2547 }
2548 
2549 static void intel_pstate_verify_cpu_policy(struct cpudata *cpu,
2550 					   struct cpufreq_policy_data *policy)
2551 {
2552 	int max_freq;
2553 
2554 	update_turbo_state();
2555 	if (hwp_active) {
2556 		intel_pstate_get_hwp_cap(cpu);
2557 		max_freq = global.no_turbo || global.turbo_disabled ?
2558 				cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2559 	} else {
2560 		max_freq = intel_pstate_get_max_freq(cpu);
2561 	}
2562 	cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq, max_freq);
2563 
2564 	intel_pstate_adjust_policy_max(cpu, policy);
2565 }
2566 
2567 static int intel_pstate_verify_policy(struct cpufreq_policy_data *policy)
2568 {
2569 	intel_pstate_verify_cpu_policy(all_cpu_data[policy->cpu], policy);
2570 
2571 	return 0;
2572 }
2573 
2574 static int intel_cpufreq_cpu_offline(struct cpufreq_policy *policy)
2575 {
2576 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2577 
2578 	pr_debug("CPU %d going offline\n", cpu->cpu);
2579 
2580 	if (cpu->suspended)
2581 		return 0;
2582 
2583 	/*
2584 	 * If the CPU is an SMT thread and it goes offline with the performance
2585 	 * settings different from the minimum, it will prevent its sibling
2586 	 * from getting to lower performance levels, so force the minimum
2587 	 * performance on CPU offline to prevent that from happening.
2588 	 */
2589 	if (hwp_active)
2590 		intel_pstate_hwp_offline(cpu);
2591 	else
2592 		intel_pstate_set_min_pstate(cpu);
2593 
2594 	intel_pstate_exit_perf_limits(policy);
2595 
2596 	return 0;
2597 }
2598 
2599 static int intel_pstate_cpu_online(struct cpufreq_policy *policy)
2600 {
2601 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2602 
2603 	pr_debug("CPU %d going online\n", cpu->cpu);
2604 
2605 	intel_pstate_init_acpi_perf_limits(policy);
2606 
2607 	if (hwp_active) {
2608 		/*
2609 		 * Re-enable HWP and clear the "suspended" flag to let "resume"
2610 		 * know that it need not do that.
2611 		 */
2612 		intel_pstate_hwp_reenable(cpu);
2613 		cpu->suspended = false;
2614 	}
2615 
2616 	return 0;
2617 }
2618 
2619 static int intel_pstate_cpu_offline(struct cpufreq_policy *policy)
2620 {
2621 	intel_pstate_clear_update_util_hook(policy->cpu);
2622 
2623 	return intel_cpufreq_cpu_offline(policy);
2624 }
2625 
2626 static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
2627 {
2628 	pr_debug("CPU %d exiting\n", policy->cpu);
2629 
2630 	policy->fast_switch_possible = false;
2631 
2632 	return 0;
2633 }
2634 
2635 static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2636 {
2637 	struct cpudata *cpu;
2638 	int rc;
2639 
2640 	rc = intel_pstate_init_cpu(policy->cpu);
2641 	if (rc)
2642 		return rc;
2643 
2644 	cpu = all_cpu_data[policy->cpu];
2645 
2646 	cpu->max_perf_ratio = 0xFF;
2647 	cpu->min_perf_ratio = 0;
2648 
2649 	/* cpuinfo and default policy values */
2650 	policy->cpuinfo.min_freq = cpu->pstate.min_freq;
2651 	update_turbo_state();
2652 	global.turbo_disabled_mf = global.turbo_disabled;
2653 	policy->cpuinfo.max_freq = global.turbo_disabled ?
2654 			cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2655 
2656 	policy->min = policy->cpuinfo.min_freq;
2657 	policy->max = policy->cpuinfo.max_freq;
2658 
2659 	intel_pstate_init_acpi_perf_limits(policy);
2660 
2661 	policy->fast_switch_possible = true;
2662 
2663 	return 0;
2664 }
2665 
2666 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2667 {
2668 	int ret = __intel_pstate_cpu_init(policy);
2669 
2670 	if (ret)
2671 		return ret;
2672 
2673 	/*
2674 	 * Set the policy to powersave to provide a valid fallback value in case
2675 	 * the default cpufreq governor is neither powersave nor performance.
2676 	 */
2677 	policy->policy = CPUFREQ_POLICY_POWERSAVE;
2678 
2679 	if (hwp_active) {
2680 		struct cpudata *cpu = all_cpu_data[policy->cpu];
2681 
2682 		cpu->epp_cached = intel_pstate_get_epp(cpu, 0);
2683 	}
2684 
2685 	return 0;
2686 }
2687 
2688 static struct cpufreq_driver intel_pstate = {
2689 	.flags		= CPUFREQ_CONST_LOOPS,
2690 	.verify		= intel_pstate_verify_policy,
2691 	.setpolicy	= intel_pstate_set_policy,
2692 	.suspend	= intel_pstate_suspend,
2693 	.resume		= intel_pstate_resume,
2694 	.init		= intel_pstate_cpu_init,
2695 	.exit		= intel_pstate_cpu_exit,
2696 	.offline	= intel_pstate_cpu_offline,
2697 	.online		= intel_pstate_cpu_online,
2698 	.update_limits	= intel_pstate_update_limits,
2699 	.name		= "intel_pstate",
2700 };
2701 
2702 static int intel_cpufreq_verify_policy(struct cpufreq_policy_data *policy)
2703 {
2704 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2705 
2706 	intel_pstate_verify_cpu_policy(cpu, policy);
2707 	intel_pstate_update_perf_limits(cpu, policy->min, policy->max);
2708 
2709 	return 0;
2710 }
2711 
2712 /* Use of trace in passive mode:
2713  *
2714  * In passive mode the trace core_busy field (also known as the
2715  * performance field, and lablelled as such on the graphs; also known as
2716  * core_avg_perf) is not needed and so is re-assigned to indicate if the
2717  * driver call was via the normal or fast switch path. Various graphs
2718  * output from the intel_pstate_tracer.py utility that include core_busy
2719  * (or performance or core_avg_perf) have a fixed y-axis from 0 to 100%,
2720  * so we use 10 to indicate the normal path through the driver, and
2721  * 90 to indicate the fast switch path through the driver.
2722  * The scaled_busy field is not used, and is set to 0.
2723  */
2724 
2725 #define	INTEL_PSTATE_TRACE_TARGET 10
2726 #define	INTEL_PSTATE_TRACE_FAST_SWITCH 90
2727 
2728 static void intel_cpufreq_trace(struct cpudata *cpu, unsigned int trace_type, int old_pstate)
2729 {
2730 	struct sample *sample;
2731 
2732 	if (!trace_pstate_sample_enabled())
2733 		return;
2734 
2735 	if (!intel_pstate_sample(cpu, ktime_get()))
2736 		return;
2737 
2738 	sample = &cpu->sample;
2739 	trace_pstate_sample(trace_type,
2740 		0,
2741 		old_pstate,
2742 		cpu->pstate.current_pstate,
2743 		sample->mperf,
2744 		sample->aperf,
2745 		sample->tsc,
2746 		get_avg_frequency(cpu),
2747 		fp_toint(cpu->iowait_boost * 100));
2748 }
2749 
2750 static void intel_cpufreq_hwp_update(struct cpudata *cpu, u32 min, u32 max,
2751 				     u32 desired, bool fast_switch)
2752 {
2753 	u64 prev = READ_ONCE(cpu->hwp_req_cached), value = prev;
2754 
2755 	value &= ~HWP_MIN_PERF(~0L);
2756 	value |= HWP_MIN_PERF(min);
2757 
2758 	value &= ~HWP_MAX_PERF(~0L);
2759 	value |= HWP_MAX_PERF(max);
2760 
2761 	value &= ~HWP_DESIRED_PERF(~0L);
2762 	value |= HWP_DESIRED_PERF(desired);
2763 
2764 	if (value == prev)
2765 		return;
2766 
2767 	WRITE_ONCE(cpu->hwp_req_cached, value);
2768 	if (fast_switch)
2769 		wrmsrl(MSR_HWP_REQUEST, value);
2770 	else
2771 		wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
2772 }
2773 
2774 static void intel_cpufreq_perf_ctl_update(struct cpudata *cpu,
2775 					  u32 target_pstate, bool fast_switch)
2776 {
2777 	if (fast_switch)
2778 		wrmsrl(MSR_IA32_PERF_CTL,
2779 		       pstate_funcs.get_val(cpu, target_pstate));
2780 	else
2781 		wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
2782 			      pstate_funcs.get_val(cpu, target_pstate));
2783 }
2784 
2785 static int intel_cpufreq_update_pstate(struct cpufreq_policy *policy,
2786 				       int target_pstate, bool fast_switch)
2787 {
2788 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2789 	int old_pstate = cpu->pstate.current_pstate;
2790 
2791 	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2792 	if (hwp_active) {
2793 		int max_pstate = policy->strict_target ?
2794 					target_pstate : cpu->max_perf_ratio;
2795 
2796 		intel_cpufreq_hwp_update(cpu, target_pstate, max_pstate, 0,
2797 					 fast_switch);
2798 	} else if (target_pstate != old_pstate) {
2799 		intel_cpufreq_perf_ctl_update(cpu, target_pstate, fast_switch);
2800 	}
2801 
2802 	cpu->pstate.current_pstate = target_pstate;
2803 
2804 	intel_cpufreq_trace(cpu, fast_switch ? INTEL_PSTATE_TRACE_FAST_SWITCH :
2805 			    INTEL_PSTATE_TRACE_TARGET, old_pstate);
2806 
2807 	return target_pstate;
2808 }
2809 
2810 static int intel_cpufreq_target(struct cpufreq_policy *policy,
2811 				unsigned int target_freq,
2812 				unsigned int relation)
2813 {
2814 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2815 	struct cpufreq_freqs freqs;
2816 	int target_pstate;
2817 
2818 	update_turbo_state();
2819 
2820 	freqs.old = policy->cur;
2821 	freqs.new = target_freq;
2822 
2823 	cpufreq_freq_transition_begin(policy, &freqs);
2824 
2825 	switch (relation) {
2826 	case CPUFREQ_RELATION_L:
2827 		target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
2828 		break;
2829 	case CPUFREQ_RELATION_H:
2830 		target_pstate = freqs.new / cpu->pstate.scaling;
2831 		break;
2832 	default:
2833 		target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
2834 		break;
2835 	}
2836 
2837 	target_pstate = intel_cpufreq_update_pstate(policy, target_pstate, false);
2838 
2839 	freqs.new = target_pstate * cpu->pstate.scaling;
2840 
2841 	cpufreq_freq_transition_end(policy, &freqs, false);
2842 
2843 	return 0;
2844 }
2845 
2846 static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
2847 					      unsigned int target_freq)
2848 {
2849 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2850 	int target_pstate;
2851 
2852 	update_turbo_state();
2853 
2854 	target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
2855 
2856 	target_pstate = intel_cpufreq_update_pstate(policy, target_pstate, true);
2857 
2858 	return target_pstate * cpu->pstate.scaling;
2859 }
2860 
2861 static void intel_cpufreq_adjust_perf(unsigned int cpunum,
2862 				      unsigned long min_perf,
2863 				      unsigned long target_perf,
2864 				      unsigned long capacity)
2865 {
2866 	struct cpudata *cpu = all_cpu_data[cpunum];
2867 	u64 hwp_cap = READ_ONCE(cpu->hwp_cap_cached);
2868 	int old_pstate = cpu->pstate.current_pstate;
2869 	int cap_pstate, min_pstate, max_pstate, target_pstate;
2870 
2871 	update_turbo_state();
2872 	cap_pstate = global.turbo_disabled ? HWP_GUARANTEED_PERF(hwp_cap) :
2873 					     HWP_HIGHEST_PERF(hwp_cap);
2874 
2875 	/* Optimization: Avoid unnecessary divisions. */
2876 
2877 	target_pstate = cap_pstate;
2878 	if (target_perf < capacity)
2879 		target_pstate = DIV_ROUND_UP(cap_pstate * target_perf, capacity);
2880 
2881 	min_pstate = cap_pstate;
2882 	if (min_perf < capacity)
2883 		min_pstate = DIV_ROUND_UP(cap_pstate * min_perf, capacity);
2884 
2885 	if (min_pstate < cpu->pstate.min_pstate)
2886 		min_pstate = cpu->pstate.min_pstate;
2887 
2888 	if (min_pstate < cpu->min_perf_ratio)
2889 		min_pstate = cpu->min_perf_ratio;
2890 
2891 	max_pstate = min(cap_pstate, cpu->max_perf_ratio);
2892 	if (max_pstate < min_pstate)
2893 		max_pstate = min_pstate;
2894 
2895 	target_pstate = clamp_t(int, target_pstate, min_pstate, max_pstate);
2896 
2897 	intel_cpufreq_hwp_update(cpu, min_pstate, max_pstate, target_pstate, true);
2898 
2899 	cpu->pstate.current_pstate = target_pstate;
2900 	intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_FAST_SWITCH, old_pstate);
2901 }
2902 
2903 static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
2904 {
2905 	struct freq_qos_request *req;
2906 	struct cpudata *cpu;
2907 	struct device *dev;
2908 	int ret, freq;
2909 
2910 	dev = get_cpu_device(policy->cpu);
2911 	if (!dev)
2912 		return -ENODEV;
2913 
2914 	ret = __intel_pstate_cpu_init(policy);
2915 	if (ret)
2916 		return ret;
2917 
2918 	policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
2919 	/* This reflects the intel_pstate_get_cpu_pstates() setting. */
2920 	policy->cur = policy->cpuinfo.min_freq;
2921 
2922 	req = kcalloc(2, sizeof(*req), GFP_KERNEL);
2923 	if (!req) {
2924 		ret = -ENOMEM;
2925 		goto pstate_exit;
2926 	}
2927 
2928 	cpu = all_cpu_data[policy->cpu];
2929 
2930 	if (hwp_active) {
2931 		u64 value;
2932 
2933 		policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY_HWP;
2934 
2935 		intel_pstate_get_hwp_cap(cpu);
2936 
2937 		rdmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, &value);
2938 		WRITE_ONCE(cpu->hwp_req_cached, value);
2939 
2940 		cpu->epp_cached = intel_pstate_get_epp(cpu, value);
2941 	} else {
2942 		policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY;
2943 	}
2944 
2945 	freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * global.min_perf_pct, 100);
2946 
2947 	ret = freq_qos_add_request(&policy->constraints, req, FREQ_QOS_MIN,
2948 				   freq);
2949 	if (ret < 0) {
2950 		dev_err(dev, "Failed to add min-freq constraint (%d)\n", ret);
2951 		goto free_req;
2952 	}
2953 
2954 	freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * global.max_perf_pct, 100);
2955 
2956 	ret = freq_qos_add_request(&policy->constraints, req + 1, FREQ_QOS_MAX,
2957 				   freq);
2958 	if (ret < 0) {
2959 		dev_err(dev, "Failed to add max-freq constraint (%d)\n", ret);
2960 		goto remove_min_req;
2961 	}
2962 
2963 	policy->driver_data = req;
2964 
2965 	return 0;
2966 
2967 remove_min_req:
2968 	freq_qos_remove_request(req);
2969 free_req:
2970 	kfree(req);
2971 pstate_exit:
2972 	intel_pstate_exit_perf_limits(policy);
2973 
2974 	return ret;
2975 }
2976 
2977 static int intel_cpufreq_cpu_exit(struct cpufreq_policy *policy)
2978 {
2979 	struct freq_qos_request *req;
2980 
2981 	req = policy->driver_data;
2982 
2983 	freq_qos_remove_request(req + 1);
2984 	freq_qos_remove_request(req);
2985 	kfree(req);
2986 
2987 	return intel_pstate_cpu_exit(policy);
2988 }
2989 
2990 static struct cpufreq_driver intel_cpufreq = {
2991 	.flags		= CPUFREQ_CONST_LOOPS,
2992 	.verify		= intel_cpufreq_verify_policy,
2993 	.target		= intel_cpufreq_target,
2994 	.fast_switch	= intel_cpufreq_fast_switch,
2995 	.init		= intel_cpufreq_cpu_init,
2996 	.exit		= intel_cpufreq_cpu_exit,
2997 	.offline	= intel_cpufreq_cpu_offline,
2998 	.online		= intel_pstate_cpu_online,
2999 	.suspend	= intel_pstate_suspend,
3000 	.resume		= intel_pstate_resume,
3001 	.update_limits	= intel_pstate_update_limits,
3002 	.name		= "intel_cpufreq",
3003 };
3004 
3005 static struct cpufreq_driver *default_driver;
3006 
3007 static void intel_pstate_driver_cleanup(void)
3008 {
3009 	unsigned int cpu;
3010 
3011 	cpus_read_lock();
3012 	for_each_online_cpu(cpu) {
3013 		if (all_cpu_data[cpu]) {
3014 			if (intel_pstate_driver == &intel_pstate)
3015 				intel_pstate_clear_update_util_hook(cpu);
3016 
3017 			kfree(all_cpu_data[cpu]);
3018 			all_cpu_data[cpu] = NULL;
3019 		}
3020 	}
3021 	cpus_read_unlock();
3022 
3023 	intel_pstate_driver = NULL;
3024 }
3025 
3026 static int intel_pstate_register_driver(struct cpufreq_driver *driver)
3027 {
3028 	int ret;
3029 
3030 	if (driver == &intel_pstate)
3031 		intel_pstate_sysfs_expose_hwp_dynamic_boost();
3032 
3033 	memset(&global, 0, sizeof(global));
3034 	global.max_perf_pct = 100;
3035 
3036 	intel_pstate_driver = driver;
3037 	ret = cpufreq_register_driver(intel_pstate_driver);
3038 	if (ret) {
3039 		intel_pstate_driver_cleanup();
3040 		return ret;
3041 	}
3042 
3043 	global.min_perf_pct = min_perf_pct_min();
3044 
3045 	return 0;
3046 }
3047 
3048 static ssize_t intel_pstate_show_status(char *buf)
3049 {
3050 	if (!intel_pstate_driver)
3051 		return sprintf(buf, "off\n");
3052 
3053 	return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
3054 					"active" : "passive");
3055 }
3056 
3057 static int intel_pstate_update_status(const char *buf, size_t size)
3058 {
3059 	if (size == 3 && !strncmp(buf, "off", size)) {
3060 		if (!intel_pstate_driver)
3061 			return -EINVAL;
3062 
3063 		if (hwp_active)
3064 			return -EBUSY;
3065 
3066 		cpufreq_unregister_driver(intel_pstate_driver);
3067 		intel_pstate_driver_cleanup();
3068 		return 0;
3069 	}
3070 
3071 	if (size == 6 && !strncmp(buf, "active", size)) {
3072 		if (intel_pstate_driver) {
3073 			if (intel_pstate_driver == &intel_pstate)
3074 				return 0;
3075 
3076 			cpufreq_unregister_driver(intel_pstate_driver);
3077 		}
3078 
3079 		return intel_pstate_register_driver(&intel_pstate);
3080 	}
3081 
3082 	if (size == 7 && !strncmp(buf, "passive", size)) {
3083 		if (intel_pstate_driver) {
3084 			if (intel_pstate_driver == &intel_cpufreq)
3085 				return 0;
3086 
3087 			cpufreq_unregister_driver(intel_pstate_driver);
3088 			intel_pstate_sysfs_hide_hwp_dynamic_boost();
3089 		}
3090 
3091 		return intel_pstate_register_driver(&intel_cpufreq);
3092 	}
3093 
3094 	return -EINVAL;
3095 }
3096 
3097 static int no_load __initdata;
3098 static int no_hwp __initdata;
3099 static int hwp_only __initdata;
3100 static unsigned int force_load __initdata;
3101 
3102 static int __init intel_pstate_msrs_not_valid(void)
3103 {
3104 	if (!pstate_funcs.get_max() ||
3105 	    !pstate_funcs.get_min() ||
3106 	    !pstate_funcs.get_turbo())
3107 		return -ENODEV;
3108 
3109 	return 0;
3110 }
3111 
3112 static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
3113 {
3114 	pstate_funcs.get_max   = funcs->get_max;
3115 	pstate_funcs.get_max_physical = funcs->get_max_physical;
3116 	pstate_funcs.get_min   = funcs->get_min;
3117 	pstate_funcs.get_turbo = funcs->get_turbo;
3118 	pstate_funcs.get_scaling = funcs->get_scaling;
3119 	pstate_funcs.get_val   = funcs->get_val;
3120 	pstate_funcs.get_vid   = funcs->get_vid;
3121 	pstate_funcs.get_aperf_mperf_shift = funcs->get_aperf_mperf_shift;
3122 }
3123 
3124 #ifdef CONFIG_ACPI
3125 
3126 static bool __init intel_pstate_no_acpi_pss(void)
3127 {
3128 	int i;
3129 
3130 	for_each_possible_cpu(i) {
3131 		acpi_status status;
3132 		union acpi_object *pss;
3133 		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
3134 		struct acpi_processor *pr = per_cpu(processors, i);
3135 
3136 		if (!pr)
3137 			continue;
3138 
3139 		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
3140 		if (ACPI_FAILURE(status))
3141 			continue;
3142 
3143 		pss = buffer.pointer;
3144 		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
3145 			kfree(pss);
3146 			return false;
3147 		}
3148 
3149 		kfree(pss);
3150 	}
3151 
3152 	pr_debug("ACPI _PSS not found\n");
3153 	return true;
3154 }
3155 
3156 static bool __init intel_pstate_no_acpi_pcch(void)
3157 {
3158 	acpi_status status;
3159 	acpi_handle handle;
3160 
3161 	status = acpi_get_handle(NULL, "\\_SB", &handle);
3162 	if (ACPI_FAILURE(status))
3163 		goto not_found;
3164 
3165 	if (acpi_has_method(handle, "PCCH"))
3166 		return false;
3167 
3168 not_found:
3169 	pr_debug("ACPI PCCH not found\n");
3170 	return true;
3171 }
3172 
3173 static bool __init intel_pstate_has_acpi_ppc(void)
3174 {
3175 	int i;
3176 
3177 	for_each_possible_cpu(i) {
3178 		struct acpi_processor *pr = per_cpu(processors, i);
3179 
3180 		if (!pr)
3181 			continue;
3182 		if (acpi_has_method(pr->handle, "_PPC"))
3183 			return true;
3184 	}
3185 	pr_debug("ACPI _PPC not found\n");
3186 	return false;
3187 }
3188 
3189 enum {
3190 	PSS,
3191 	PPC,
3192 };
3193 
3194 /* Hardware vendor-specific info that has its own power management modes */
3195 static struct acpi_platform_list plat_info[] __initdata = {
3196 	{"HP    ", "ProLiant", 0, ACPI_SIG_FADT, all_versions, NULL, PSS},
3197 	{"ORACLE", "X4-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3198 	{"ORACLE", "X4-2L   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3199 	{"ORACLE", "X4-2B   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3200 	{"ORACLE", "X3-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3201 	{"ORACLE", "X3-2L   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3202 	{"ORACLE", "X3-2B   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3203 	{"ORACLE", "X4470M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3204 	{"ORACLE", "X4270M3 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3205 	{"ORACLE", "X4270M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3206 	{"ORACLE", "X4170M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3207 	{"ORACLE", "X4170 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3208 	{"ORACLE", "X4275 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3209 	{"ORACLE", "X6-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3210 	{"ORACLE", "Sudbury ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3211 	{ } /* End */
3212 };
3213 
3214 #define BITMASK_OOB	(BIT(8) | BIT(18))
3215 
3216 static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
3217 {
3218 	const struct x86_cpu_id *id;
3219 	u64 misc_pwr;
3220 	int idx;
3221 
3222 	id = x86_match_cpu(intel_pstate_cpu_oob_ids);
3223 	if (id) {
3224 		rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
3225 		if (misc_pwr & BITMASK_OOB) {
3226 			pr_debug("Bit 8 or 18 in the MISC_PWR_MGMT MSR set\n");
3227 			pr_debug("P states are controlled in Out of Band mode by the firmware/hardware\n");
3228 			return true;
3229 		}
3230 	}
3231 
3232 	idx = acpi_match_platform_list(plat_info);
3233 	if (idx < 0)
3234 		return false;
3235 
3236 	switch (plat_info[idx].data) {
3237 	case PSS:
3238 		if (!intel_pstate_no_acpi_pss())
3239 			return false;
3240 
3241 		return intel_pstate_no_acpi_pcch();
3242 	case PPC:
3243 		return intel_pstate_has_acpi_ppc() && !force_load;
3244 	}
3245 
3246 	return false;
3247 }
3248 
3249 static void intel_pstate_request_control_from_smm(void)
3250 {
3251 	/*
3252 	 * It may be unsafe to request P-states control from SMM if _PPC support
3253 	 * has not been enabled.
3254 	 */
3255 	if (acpi_ppc)
3256 		acpi_processor_pstate_control();
3257 }
3258 #else /* CONFIG_ACPI not enabled */
3259 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
3260 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
3261 static inline void intel_pstate_request_control_from_smm(void) {}
3262 #endif /* CONFIG_ACPI */
3263 
3264 #define INTEL_PSTATE_HWP_BROADWELL	0x01
3265 
3266 #define X86_MATCH_HWP(model, hwp_mode)					\
3267 	X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6, INTEL_FAM6_##model, \
3268 					   X86_FEATURE_HWP, hwp_mode)
3269 
3270 static const struct x86_cpu_id hwp_support_ids[] __initconst = {
3271 	X86_MATCH_HWP(BROADWELL_X,	INTEL_PSTATE_HWP_BROADWELL),
3272 	X86_MATCH_HWP(BROADWELL_D,	INTEL_PSTATE_HWP_BROADWELL),
3273 	X86_MATCH_HWP(ANY,		0),
3274 	{}
3275 };
3276 
3277 static bool intel_pstate_hwp_is_enabled(void)
3278 {
3279 	u64 value;
3280 
3281 	rdmsrl(MSR_PM_ENABLE, value);
3282 	return !!(value & 0x1);
3283 }
3284 
3285 static int __init intel_pstate_init(void)
3286 {
3287 	const struct x86_cpu_id *id;
3288 	int rc;
3289 
3290 	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
3291 		return -ENODEV;
3292 
3293 	if (no_load)
3294 		return -ENODEV;
3295 
3296 	id = x86_match_cpu(hwp_support_ids);
3297 	if (id) {
3298 		copy_cpu_funcs(&core_funcs);
3299 		/*
3300 		 * Avoid enabling HWP for processors without EPP support,
3301 		 * because that means incomplete HWP implementation which is a
3302 		 * corner case and supporting it is generally problematic.
3303 		 *
3304 		 * If HWP is enabled already, though, there is no choice but to
3305 		 * deal with it.
3306 		 */
3307 		if ((!no_hwp && boot_cpu_has(X86_FEATURE_HWP_EPP)) ||
3308 		    intel_pstate_hwp_is_enabled()) {
3309 			hwp_active++;
3310 			hwp_mode_bdw = id->driver_data;
3311 			intel_pstate.attr = hwp_cpufreq_attrs;
3312 			intel_cpufreq.attr = hwp_cpufreq_attrs;
3313 			intel_cpufreq.flags |= CPUFREQ_NEED_UPDATE_LIMITS;
3314 			intel_cpufreq.adjust_perf = intel_cpufreq_adjust_perf;
3315 			if (!default_driver)
3316 				default_driver = &intel_pstate;
3317 
3318 			goto hwp_cpu_matched;
3319 		}
3320 	} else {
3321 		id = x86_match_cpu(intel_pstate_cpu_ids);
3322 		if (!id) {
3323 			pr_info("CPU model not supported\n");
3324 			return -ENODEV;
3325 		}
3326 
3327 		copy_cpu_funcs((struct pstate_funcs *)id->driver_data);
3328 	}
3329 
3330 	if (intel_pstate_msrs_not_valid()) {
3331 		pr_info("Invalid MSRs\n");
3332 		return -ENODEV;
3333 	}
3334 	/* Without HWP start in the passive mode. */
3335 	if (!default_driver)
3336 		default_driver = &intel_cpufreq;
3337 
3338 hwp_cpu_matched:
3339 	/*
3340 	 * The Intel pstate driver will be ignored if the platform
3341 	 * firmware has its own power management modes.
3342 	 */
3343 	if (intel_pstate_platform_pwr_mgmt_exists()) {
3344 		pr_info("P-states controlled by the platform\n");
3345 		return -ENODEV;
3346 	}
3347 
3348 	if (!hwp_active && hwp_only)
3349 		return -ENOTSUPP;
3350 
3351 	pr_info("Intel P-state driver initializing\n");
3352 
3353 	all_cpu_data = vzalloc(array_size(sizeof(void *), num_possible_cpus()));
3354 	if (!all_cpu_data)
3355 		return -ENOMEM;
3356 
3357 	intel_pstate_request_control_from_smm();
3358 
3359 	intel_pstate_sysfs_expose_params();
3360 
3361 	mutex_lock(&intel_pstate_driver_lock);
3362 	rc = intel_pstate_register_driver(default_driver);
3363 	mutex_unlock(&intel_pstate_driver_lock);
3364 	if (rc) {
3365 		intel_pstate_sysfs_remove();
3366 		return rc;
3367 	}
3368 
3369 	if (hwp_active) {
3370 		const struct x86_cpu_id *id;
3371 
3372 		id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
3373 		if (id) {
3374 			set_power_ctl_ee_state(false);
3375 			pr_info("Disabling energy efficiency optimization\n");
3376 		}
3377 
3378 		pr_info("HWP enabled\n");
3379 	} else if (boot_cpu_has(X86_FEATURE_HYBRID_CPU)) {
3380 		pr_warn("Problematic setup: Hybrid processor with disabled HWP\n");
3381 	}
3382 
3383 	return 0;
3384 }
3385 device_initcall(intel_pstate_init);
3386 
3387 static int __init intel_pstate_setup(char *str)
3388 {
3389 	if (!str)
3390 		return -EINVAL;
3391 
3392 	if (!strcmp(str, "disable"))
3393 		no_load = 1;
3394 	else if (!strcmp(str, "active"))
3395 		default_driver = &intel_pstate;
3396 	else if (!strcmp(str, "passive"))
3397 		default_driver = &intel_cpufreq;
3398 
3399 	if (!strcmp(str, "no_hwp")) {
3400 		pr_info("HWP disabled\n");
3401 		no_hwp = 1;
3402 	}
3403 	if (!strcmp(str, "force"))
3404 		force_load = 1;
3405 	if (!strcmp(str, "hwp_only"))
3406 		hwp_only = 1;
3407 	if (!strcmp(str, "per_cpu_perf_limits"))
3408 		per_cpu_limits = true;
3409 
3410 #ifdef CONFIG_ACPI
3411 	if (!strcmp(str, "support_acpi_ppc"))
3412 		acpi_ppc = true;
3413 #endif
3414 
3415 	return 0;
3416 }
3417 early_param("intel_pstate", intel_pstate_setup);
3418 
3419 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
3420 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
3421 MODULE_LICENSE("GPL");
3422