1 /*
2  * intel_pstate.c: Native P state management for Intel processors
3  *
4  * (C) Copyright 2012 Intel Corporation
5  * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; version 2
10  * of the License.
11  */
12 
13 #include <linux/kernel.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/module.h>
16 #include <linux/ktime.h>
17 #include <linux/hrtimer.h>
18 #include <linux/tick.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/list.h>
22 #include <linux/cpu.h>
23 #include <linux/cpufreq.h>
24 #include <linux/sysfs.h>
25 #include <linux/types.h>
26 #include <linux/fs.h>
27 #include <linux/debugfs.h>
28 #include <trace/events/power.h>
29 
30 #include <asm/div64.h>
31 #include <asm/msr.h>
32 #include <asm/cpu_device_id.h>
33 
34 #define SAMPLE_COUNT		3
35 
36 #define FRAC_BITS 8
37 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
38 #define fp_toint(X) ((X) >> FRAC_BITS)
39 
40 static inline int32_t mul_fp(int32_t x, int32_t y)
41 {
42 	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
43 }
44 
45 static inline int32_t div_fp(int32_t x, int32_t y)
46 {
47 	return div_s64((int64_t)x << FRAC_BITS, (int64_t)y);
48 }
49 
50 struct sample {
51 	int core_pct_busy;
52 	u64 aperf;
53 	u64 mperf;
54 	int freq;
55 };
56 
57 struct pstate_data {
58 	int	current_pstate;
59 	int	min_pstate;
60 	int	max_pstate;
61 	int	turbo_pstate;
62 };
63 
64 struct _pid {
65 	int setpoint;
66 	int32_t integral;
67 	int32_t p_gain;
68 	int32_t i_gain;
69 	int32_t d_gain;
70 	int deadband;
71 	int last_err;
72 };
73 
74 struct cpudata {
75 	int cpu;
76 
77 	char name[64];
78 
79 	struct timer_list timer;
80 
81 	struct pstate_adjust_policy *pstate_policy;
82 	struct pstate_data pstate;
83 	struct _pid pid;
84 
85 	int min_pstate_count;
86 
87 	u64	prev_aperf;
88 	u64	prev_mperf;
89 	int	sample_ptr;
90 	struct sample samples[SAMPLE_COUNT];
91 };
92 
93 static struct cpudata **all_cpu_data;
94 struct pstate_adjust_policy {
95 	int sample_rate_ms;
96 	int deadband;
97 	int setpoint;
98 	int p_gain_pct;
99 	int d_gain_pct;
100 	int i_gain_pct;
101 };
102 
103 static struct pstate_adjust_policy default_policy = {
104 	.sample_rate_ms = 10,
105 	.deadband = 0,
106 	.setpoint = 97,
107 	.p_gain_pct = 20,
108 	.d_gain_pct = 0,
109 	.i_gain_pct = 0,
110 };
111 
112 struct perf_limits {
113 	int no_turbo;
114 	int max_perf_pct;
115 	int min_perf_pct;
116 	int32_t max_perf;
117 	int32_t min_perf;
118 	int max_policy_pct;
119 	int max_sysfs_pct;
120 };
121 
122 static struct perf_limits limits = {
123 	.no_turbo = 0,
124 	.max_perf_pct = 100,
125 	.max_perf = int_tofp(1),
126 	.min_perf_pct = 0,
127 	.min_perf = 0,
128 	.max_policy_pct = 100,
129 	.max_sysfs_pct = 100,
130 };
131 
132 static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
133 			int deadband, int integral) {
134 	pid->setpoint = setpoint;
135 	pid->deadband  = deadband;
136 	pid->integral  = int_tofp(integral);
137 	pid->last_err  = setpoint - busy;
138 }
139 
140 static inline void pid_p_gain_set(struct _pid *pid, int percent)
141 {
142 	pid->p_gain = div_fp(int_tofp(percent), int_tofp(100));
143 }
144 
145 static inline void pid_i_gain_set(struct _pid *pid, int percent)
146 {
147 	pid->i_gain = div_fp(int_tofp(percent), int_tofp(100));
148 }
149 
150 static inline void pid_d_gain_set(struct _pid *pid, int percent)
151 {
152 
153 	pid->d_gain = div_fp(int_tofp(percent), int_tofp(100));
154 }
155 
156 static signed int pid_calc(struct _pid *pid, int busy)
157 {
158 	signed int err, result;
159 	int32_t pterm, dterm, fp_error;
160 	int32_t integral_limit;
161 
162 	err = pid->setpoint - busy;
163 	fp_error = int_tofp(err);
164 
165 	if (abs(err) <= pid->deadband)
166 		return 0;
167 
168 	pterm = mul_fp(pid->p_gain, fp_error);
169 
170 	pid->integral += fp_error;
171 
172 	/* limit the integral term */
173 	integral_limit = int_tofp(30);
174 	if (pid->integral > integral_limit)
175 		pid->integral = integral_limit;
176 	if (pid->integral < -integral_limit)
177 		pid->integral = -integral_limit;
178 
179 	dterm = mul_fp(pid->d_gain, (err - pid->last_err));
180 	pid->last_err = err;
181 
182 	result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
183 
184 	return (signed int)fp_toint(result);
185 }
186 
187 static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
188 {
189 	pid_p_gain_set(&cpu->pid, cpu->pstate_policy->p_gain_pct);
190 	pid_d_gain_set(&cpu->pid, cpu->pstate_policy->d_gain_pct);
191 	pid_i_gain_set(&cpu->pid, cpu->pstate_policy->i_gain_pct);
192 
193 	pid_reset(&cpu->pid,
194 		cpu->pstate_policy->setpoint,
195 		100,
196 		cpu->pstate_policy->deadband,
197 		0);
198 }
199 
200 static inline void intel_pstate_reset_all_pid(void)
201 {
202 	unsigned int cpu;
203 	for_each_online_cpu(cpu) {
204 		if (all_cpu_data[cpu])
205 			intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
206 	}
207 }
208 
209 /************************** debugfs begin ************************/
210 static int pid_param_set(void *data, u64 val)
211 {
212 	*(u32 *)data = val;
213 	intel_pstate_reset_all_pid();
214 	return 0;
215 }
216 static int pid_param_get(void *data, u64 *val)
217 {
218 	*val = *(u32 *)data;
219 	return 0;
220 }
221 DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get,
222 			pid_param_set, "%llu\n");
223 
224 struct pid_param {
225 	char *name;
226 	void *value;
227 };
228 
229 static struct pid_param pid_files[] = {
230 	{"sample_rate_ms", &default_policy.sample_rate_ms},
231 	{"d_gain_pct", &default_policy.d_gain_pct},
232 	{"i_gain_pct", &default_policy.i_gain_pct},
233 	{"deadband", &default_policy.deadband},
234 	{"setpoint", &default_policy.setpoint},
235 	{"p_gain_pct", &default_policy.p_gain_pct},
236 	{NULL, NULL}
237 };
238 
239 static struct dentry *debugfs_parent;
240 static void intel_pstate_debug_expose_params(void)
241 {
242 	int i = 0;
243 
244 	debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
245 	if (IS_ERR_OR_NULL(debugfs_parent))
246 		return;
247 	while (pid_files[i].name) {
248 		debugfs_create_file(pid_files[i].name, 0660,
249 				debugfs_parent, pid_files[i].value,
250 				&fops_pid_param);
251 		i++;
252 	}
253 }
254 
255 /************************** debugfs end ************************/
256 
257 /************************** sysfs begin ************************/
258 #define show_one(file_name, object)					\
259 	static ssize_t show_##file_name					\
260 	(struct kobject *kobj, struct attribute *attr, char *buf)	\
261 	{								\
262 		return sprintf(buf, "%u\n", limits.object);		\
263 	}
264 
265 static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
266 				const char *buf, size_t count)
267 {
268 	unsigned int input;
269 	int ret;
270 	ret = sscanf(buf, "%u", &input);
271 	if (ret != 1)
272 		return -EINVAL;
273 	limits.no_turbo = clamp_t(int, input, 0 , 1);
274 
275 	return count;
276 }
277 
278 static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
279 				const char *buf, size_t count)
280 {
281 	unsigned int input;
282 	int ret;
283 	ret = sscanf(buf, "%u", &input);
284 	if (ret != 1)
285 		return -EINVAL;
286 
287 	limits.max_sysfs_pct = clamp_t(int, input, 0 , 100);
288 	limits.max_perf_pct = min(limits.max_policy_pct, limits.max_sysfs_pct);
289 	limits.max_perf = div_fp(int_tofp(limits.max_perf_pct), int_tofp(100));
290 	return count;
291 }
292 
293 static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
294 				const char *buf, size_t count)
295 {
296 	unsigned int input;
297 	int ret;
298 	ret = sscanf(buf, "%u", &input);
299 	if (ret != 1)
300 		return -EINVAL;
301 	limits.min_perf_pct = clamp_t(int, input, 0 , 100);
302 	limits.min_perf = div_fp(int_tofp(limits.min_perf_pct), int_tofp(100));
303 
304 	return count;
305 }
306 
307 show_one(no_turbo, no_turbo);
308 show_one(max_perf_pct, max_perf_pct);
309 show_one(min_perf_pct, min_perf_pct);
310 
311 define_one_global_rw(no_turbo);
312 define_one_global_rw(max_perf_pct);
313 define_one_global_rw(min_perf_pct);
314 
315 static struct attribute *intel_pstate_attributes[] = {
316 	&no_turbo.attr,
317 	&max_perf_pct.attr,
318 	&min_perf_pct.attr,
319 	NULL
320 };
321 
322 static struct attribute_group intel_pstate_attr_group = {
323 	.attrs = intel_pstate_attributes,
324 };
325 static struct kobject *intel_pstate_kobject;
326 
327 static void intel_pstate_sysfs_expose_params(void)
328 {
329 	int rc;
330 
331 	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
332 						&cpu_subsys.dev_root->kobj);
333 	BUG_ON(!intel_pstate_kobject);
334 	rc = sysfs_create_group(intel_pstate_kobject,
335 				&intel_pstate_attr_group);
336 	BUG_ON(rc);
337 }
338 
339 /************************** sysfs end ************************/
340 
341 static int intel_pstate_min_pstate(void)
342 {
343 	u64 value;
344 	rdmsrl(MSR_PLATFORM_INFO, value);
345 	return (value >> 40) & 0xFF;
346 }
347 
348 static int intel_pstate_max_pstate(void)
349 {
350 	u64 value;
351 	rdmsrl(MSR_PLATFORM_INFO, value);
352 	return (value >> 8) & 0xFF;
353 }
354 
355 static int intel_pstate_turbo_pstate(void)
356 {
357 	u64 value;
358 	int nont, ret;
359 	rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
360 	nont = intel_pstate_max_pstate();
361 	ret = ((value) & 255);
362 	if (ret <= nont)
363 		ret = nont;
364 	return ret;
365 }
366 
367 static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
368 {
369 	int max_perf = cpu->pstate.turbo_pstate;
370 	int min_perf;
371 	if (limits.no_turbo)
372 		max_perf = cpu->pstate.max_pstate;
373 
374 	max_perf = fp_toint(mul_fp(int_tofp(max_perf), limits.max_perf));
375 	*max = clamp_t(int, max_perf,
376 			cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
377 
378 	min_perf = fp_toint(mul_fp(int_tofp(max_perf), limits.min_perf));
379 	*min = clamp_t(int, min_perf,
380 			cpu->pstate.min_pstate, max_perf);
381 }
382 
383 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
384 {
385 	int max_perf, min_perf;
386 
387 	intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
388 
389 	pstate = clamp_t(int, pstate, min_perf, max_perf);
390 
391 	if (pstate == cpu->pstate.current_pstate)
392 		return;
393 
394 	trace_cpu_frequency(pstate * 100000, cpu->cpu);
395 
396 	cpu->pstate.current_pstate = pstate;
397 	if (limits.no_turbo)
398 		wrmsrl(MSR_IA32_PERF_CTL, BIT(32) | (pstate << 8));
399 	else
400 		wrmsrl(MSR_IA32_PERF_CTL, pstate << 8);
401 
402 }
403 
404 static inline void intel_pstate_pstate_increase(struct cpudata *cpu, int steps)
405 {
406 	int target;
407 	target = cpu->pstate.current_pstate + steps;
408 
409 	intel_pstate_set_pstate(cpu, target);
410 }
411 
412 static inline void intel_pstate_pstate_decrease(struct cpudata *cpu, int steps)
413 {
414 	int target;
415 	target = cpu->pstate.current_pstate - steps;
416 	intel_pstate_set_pstate(cpu, target);
417 }
418 
419 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
420 {
421 	sprintf(cpu->name, "Intel 2nd generation core");
422 
423 	cpu->pstate.min_pstate = intel_pstate_min_pstate();
424 	cpu->pstate.max_pstate = intel_pstate_max_pstate();
425 	cpu->pstate.turbo_pstate = intel_pstate_turbo_pstate();
426 
427 	/*
428 	 * goto max pstate so we don't slow up boot if we are built-in if we are
429 	 * a module we will take care of it during normal operation
430 	 */
431 	intel_pstate_set_pstate(cpu, cpu->pstate.max_pstate);
432 }
433 
434 static inline void intel_pstate_calc_busy(struct cpudata *cpu,
435 					struct sample *sample)
436 {
437 	u64 core_pct;
438 	core_pct = div64_u64(sample->aperf * 100, sample->mperf);
439 	sample->freq = cpu->pstate.max_pstate * core_pct * 1000;
440 
441 	sample->core_pct_busy = core_pct;
442 }
443 
444 static inline void intel_pstate_sample(struct cpudata *cpu)
445 {
446 	u64 aperf, mperf;
447 
448 	rdmsrl(MSR_IA32_APERF, aperf);
449 	rdmsrl(MSR_IA32_MPERF, mperf);
450 	cpu->sample_ptr = (cpu->sample_ptr + 1) % SAMPLE_COUNT;
451 	cpu->samples[cpu->sample_ptr].aperf = aperf;
452 	cpu->samples[cpu->sample_ptr].mperf = mperf;
453 	cpu->samples[cpu->sample_ptr].aperf -= cpu->prev_aperf;
454 	cpu->samples[cpu->sample_ptr].mperf -= cpu->prev_mperf;
455 
456 	intel_pstate_calc_busy(cpu, &cpu->samples[cpu->sample_ptr]);
457 
458 	cpu->prev_aperf = aperf;
459 	cpu->prev_mperf = mperf;
460 }
461 
462 static inline void intel_pstate_set_sample_time(struct cpudata *cpu)
463 {
464 	int sample_time, delay;
465 
466 	sample_time = cpu->pstate_policy->sample_rate_ms;
467 	delay = msecs_to_jiffies(sample_time);
468 	mod_timer_pinned(&cpu->timer, jiffies + delay);
469 }
470 
471 static inline int intel_pstate_get_scaled_busy(struct cpudata *cpu)
472 {
473 	int32_t busy_scaled;
474 	int32_t core_busy, max_pstate, current_pstate;
475 
476 	core_busy = int_tofp(cpu->samples[cpu->sample_ptr].core_pct_busy);
477 	max_pstate = int_tofp(cpu->pstate.max_pstate);
478 	current_pstate = int_tofp(cpu->pstate.current_pstate);
479 	busy_scaled = mul_fp(core_busy, div_fp(max_pstate, current_pstate));
480 
481 	return fp_toint(busy_scaled);
482 }
483 
484 static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
485 {
486 	int busy_scaled;
487 	struct _pid *pid;
488 	signed int ctl = 0;
489 	int steps;
490 
491 	pid = &cpu->pid;
492 	busy_scaled = intel_pstate_get_scaled_busy(cpu);
493 
494 	ctl = pid_calc(pid, busy_scaled);
495 
496 	steps = abs(ctl);
497 	if (ctl < 0)
498 		intel_pstate_pstate_increase(cpu, steps);
499 	else
500 		intel_pstate_pstate_decrease(cpu, steps);
501 }
502 
503 static void intel_pstate_timer_func(unsigned long __data)
504 {
505 	struct cpudata *cpu = (struct cpudata *) __data;
506 
507 	intel_pstate_sample(cpu);
508 	intel_pstate_adjust_busy_pstate(cpu);
509 
510 	if (cpu->pstate.current_pstate == cpu->pstate.min_pstate) {
511 		cpu->min_pstate_count++;
512 		if (!(cpu->min_pstate_count % 5)) {
513 			intel_pstate_set_pstate(cpu, cpu->pstate.max_pstate);
514 		}
515 	} else
516 		cpu->min_pstate_count = 0;
517 
518 	intel_pstate_set_sample_time(cpu);
519 }
520 
521 #define ICPU(model, policy) \
522 	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_ANY, (unsigned long)&policy }
523 
524 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
525 	ICPU(0x2a, default_policy),
526 	ICPU(0x2d, default_policy),
527 	ICPU(0x3a, default_policy),
528 	ICPU(0x3c, default_policy),
529 	ICPU(0x3e, default_policy),
530 	ICPU(0x3f, default_policy),
531 	ICPU(0x45, default_policy),
532 	ICPU(0x46, default_policy),
533 	{}
534 };
535 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
536 
537 static int intel_pstate_init_cpu(unsigned int cpunum)
538 {
539 
540 	const struct x86_cpu_id *id;
541 	struct cpudata *cpu;
542 
543 	id = x86_match_cpu(intel_pstate_cpu_ids);
544 	if (!id)
545 		return -ENODEV;
546 
547 	all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata), GFP_KERNEL);
548 	if (!all_cpu_data[cpunum])
549 		return -ENOMEM;
550 
551 	cpu = all_cpu_data[cpunum];
552 
553 	intel_pstate_get_cpu_pstates(cpu);
554 
555 	cpu->cpu = cpunum;
556 	cpu->pstate_policy =
557 		(struct pstate_adjust_policy *)id->driver_data;
558 	init_timer_deferrable(&cpu->timer);
559 	cpu->timer.function = intel_pstate_timer_func;
560 	cpu->timer.data =
561 		(unsigned long)cpu;
562 	cpu->timer.expires = jiffies + HZ/100;
563 	intel_pstate_busy_pid_reset(cpu);
564 	intel_pstate_sample(cpu);
565 	intel_pstate_set_pstate(cpu, cpu->pstate.max_pstate);
566 
567 	add_timer_on(&cpu->timer, cpunum);
568 
569 	pr_info("Intel pstate controlling: cpu %d\n", cpunum);
570 
571 	return 0;
572 }
573 
574 static unsigned int intel_pstate_get(unsigned int cpu_num)
575 {
576 	struct sample *sample;
577 	struct cpudata *cpu;
578 
579 	cpu = all_cpu_data[cpu_num];
580 	if (!cpu)
581 		return 0;
582 	sample = &cpu->samples[cpu->sample_ptr];
583 	return sample->freq;
584 }
585 
586 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
587 {
588 	struct cpudata *cpu;
589 
590 	cpu = all_cpu_data[policy->cpu];
591 
592 	if (!policy->cpuinfo.max_freq)
593 		return -ENODEV;
594 
595 	if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) {
596 		limits.min_perf_pct = 100;
597 		limits.min_perf = int_tofp(1);
598 		limits.max_perf_pct = 100;
599 		limits.max_perf = int_tofp(1);
600 		limits.no_turbo = 0;
601 		return 0;
602 	}
603 	limits.min_perf_pct = (policy->min * 100) / policy->cpuinfo.max_freq;
604 	limits.min_perf_pct = clamp_t(int, limits.min_perf_pct, 0 , 100);
605 	limits.min_perf = div_fp(int_tofp(limits.min_perf_pct), int_tofp(100));
606 
607 	limits.max_policy_pct = policy->max * 100 / policy->cpuinfo.max_freq;
608 	limits.max_policy_pct = clamp_t(int, limits.max_policy_pct, 0 , 100);
609 	limits.max_perf_pct = min(limits.max_policy_pct, limits.max_sysfs_pct);
610 	limits.max_perf = div_fp(int_tofp(limits.max_perf_pct), int_tofp(100));
611 
612 	return 0;
613 }
614 
615 static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
616 {
617 	cpufreq_verify_within_limits(policy,
618 				policy->cpuinfo.min_freq,
619 				policy->cpuinfo.max_freq);
620 
621 	if ((policy->policy != CPUFREQ_POLICY_POWERSAVE) &&
622 		(policy->policy != CPUFREQ_POLICY_PERFORMANCE))
623 		return -EINVAL;
624 
625 	return 0;
626 }
627 
628 static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
629 {
630 	int cpu = policy->cpu;
631 
632 	del_timer(&all_cpu_data[cpu]->timer);
633 	kfree(all_cpu_data[cpu]);
634 	all_cpu_data[cpu] = NULL;
635 	return 0;
636 }
637 
638 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
639 {
640 	int rc, min_pstate, max_pstate;
641 	struct cpudata *cpu;
642 
643 	rc = intel_pstate_init_cpu(policy->cpu);
644 	if (rc)
645 		return rc;
646 
647 	cpu = all_cpu_data[policy->cpu];
648 
649 	if (!limits.no_turbo &&
650 		limits.min_perf_pct == 100 && limits.max_perf_pct == 100)
651 		policy->policy = CPUFREQ_POLICY_PERFORMANCE;
652 	else
653 		policy->policy = CPUFREQ_POLICY_POWERSAVE;
654 
655 	intel_pstate_get_min_max(cpu, &min_pstate, &max_pstate);
656 	policy->min = min_pstate * 100000;
657 	policy->max = max_pstate * 100000;
658 
659 	/* cpuinfo and default policy values */
660 	policy->cpuinfo.min_freq = cpu->pstate.min_pstate * 100000;
661 	policy->cpuinfo.max_freq = cpu->pstate.turbo_pstate * 100000;
662 	policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
663 	cpumask_set_cpu(policy->cpu, policy->cpus);
664 
665 	return 0;
666 }
667 
668 static struct cpufreq_driver intel_pstate_driver = {
669 	.flags		= CPUFREQ_CONST_LOOPS,
670 	.verify		= intel_pstate_verify_policy,
671 	.setpolicy	= intel_pstate_set_policy,
672 	.get		= intel_pstate_get,
673 	.init		= intel_pstate_cpu_init,
674 	.exit		= intel_pstate_cpu_exit,
675 	.name		= "intel_pstate",
676 };
677 
678 static int __initdata no_load;
679 
680 static int intel_pstate_msrs_not_valid(void)
681 {
682 	/* Check that all the msr's we are using are valid. */
683 	u64 aperf, mperf, tmp;
684 
685 	rdmsrl(MSR_IA32_APERF, aperf);
686 	rdmsrl(MSR_IA32_MPERF, mperf);
687 
688 	if (!intel_pstate_min_pstate() ||
689 		!intel_pstate_max_pstate() ||
690 		!intel_pstate_turbo_pstate())
691 		return -ENODEV;
692 
693 	rdmsrl(MSR_IA32_APERF, tmp);
694 	if (!(tmp - aperf))
695 		return -ENODEV;
696 
697 	rdmsrl(MSR_IA32_MPERF, tmp);
698 	if (!(tmp - mperf))
699 		return -ENODEV;
700 
701 	return 0;
702 }
703 static int __init intel_pstate_init(void)
704 {
705 	int cpu, rc = 0;
706 	const struct x86_cpu_id *id;
707 
708 	if (no_load)
709 		return -ENODEV;
710 
711 	id = x86_match_cpu(intel_pstate_cpu_ids);
712 	if (!id)
713 		return -ENODEV;
714 
715 	if (intel_pstate_msrs_not_valid())
716 		return -ENODEV;
717 
718 	pr_info("Intel P-state driver initializing.\n");
719 
720 	all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
721 	if (!all_cpu_data)
722 		return -ENOMEM;
723 
724 	rc = cpufreq_register_driver(&intel_pstate_driver);
725 	if (rc)
726 		goto out;
727 
728 	intel_pstate_debug_expose_params();
729 	intel_pstate_sysfs_expose_params();
730 	return rc;
731 out:
732 	get_online_cpus();
733 	for_each_online_cpu(cpu) {
734 		if (all_cpu_data[cpu]) {
735 			del_timer_sync(&all_cpu_data[cpu]->timer);
736 			kfree(all_cpu_data[cpu]);
737 		}
738 	}
739 
740 	put_online_cpus();
741 	vfree(all_cpu_data);
742 	return -ENODEV;
743 }
744 device_initcall(intel_pstate_init);
745 
746 static int __init intel_pstate_setup(char *str)
747 {
748 	if (!str)
749 		return -EINVAL;
750 
751 	if (!strcmp(str, "disable"))
752 		no_load = 1;
753 	return 0;
754 }
755 early_param("intel_pstate", intel_pstate_setup);
756 
757 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
758 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
759 MODULE_LICENSE("GPL");
760