1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * intel_pstate.c: Native P state management for Intel processors 4 * 5 * (C) Copyright 2012 Intel Corporation 6 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com> 7 */ 8 9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 10 11 #include <linux/kernel.h> 12 #include <linux/kernel_stat.h> 13 #include <linux/module.h> 14 #include <linux/ktime.h> 15 #include <linux/hrtimer.h> 16 #include <linux/tick.h> 17 #include <linux/slab.h> 18 #include <linux/sched/cpufreq.h> 19 #include <linux/list.h> 20 #include <linux/cpu.h> 21 #include <linux/cpufreq.h> 22 #include <linux/sysfs.h> 23 #include <linux/types.h> 24 #include <linux/fs.h> 25 #include <linux/acpi.h> 26 #include <linux/vmalloc.h> 27 #include <linux/pm_qos.h> 28 #include <trace/events/power.h> 29 30 #include <asm/div64.h> 31 #include <asm/msr.h> 32 #include <asm/cpu_device_id.h> 33 #include <asm/cpufeature.h> 34 #include <asm/intel-family.h> 35 36 #define INTEL_PSTATE_SAMPLING_INTERVAL (10 * NSEC_PER_MSEC) 37 38 #define INTEL_CPUFREQ_TRANSITION_LATENCY 20000 39 #define INTEL_CPUFREQ_TRANSITION_DELAY 500 40 41 #ifdef CONFIG_ACPI 42 #include <acpi/processor.h> 43 #include <acpi/cppc_acpi.h> 44 #endif 45 46 #define FRAC_BITS 8 47 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS) 48 #define fp_toint(X) ((X) >> FRAC_BITS) 49 50 #define ONE_EIGHTH_FP ((int64_t)1 << (FRAC_BITS - 3)) 51 52 #define EXT_BITS 6 53 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS) 54 #define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS) 55 #define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS) 56 57 static inline int32_t mul_fp(int32_t x, int32_t y) 58 { 59 return ((int64_t)x * (int64_t)y) >> FRAC_BITS; 60 } 61 62 static inline int32_t div_fp(s64 x, s64 y) 63 { 64 return div64_s64((int64_t)x << FRAC_BITS, y); 65 } 66 67 static inline int ceiling_fp(int32_t x) 68 { 69 int mask, ret; 70 71 ret = fp_toint(x); 72 mask = (1 << FRAC_BITS) - 1; 73 if (x & mask) 74 ret += 1; 75 return ret; 76 } 77 78 static inline int32_t percent_fp(int percent) 79 { 80 return div_fp(percent, 100); 81 } 82 83 static inline u64 mul_ext_fp(u64 x, u64 y) 84 { 85 return (x * y) >> EXT_FRAC_BITS; 86 } 87 88 static inline u64 div_ext_fp(u64 x, u64 y) 89 { 90 return div64_u64(x << EXT_FRAC_BITS, y); 91 } 92 93 static inline int32_t percent_ext_fp(int percent) 94 { 95 return div_ext_fp(percent, 100); 96 } 97 98 /** 99 * struct sample - Store performance sample 100 * @core_avg_perf: Ratio of APERF/MPERF which is the actual average 101 * performance during last sample period 102 * @busy_scaled: Scaled busy value which is used to calculate next 103 * P state. This can be different than core_avg_perf 104 * to account for cpu idle period 105 * @aperf: Difference of actual performance frequency clock count 106 * read from APERF MSR between last and current sample 107 * @mperf: Difference of maximum performance frequency clock count 108 * read from MPERF MSR between last and current sample 109 * @tsc: Difference of time stamp counter between last and 110 * current sample 111 * @time: Current time from scheduler 112 * 113 * This structure is used in the cpudata structure to store performance sample 114 * data for choosing next P State. 115 */ 116 struct sample { 117 int32_t core_avg_perf; 118 int32_t busy_scaled; 119 u64 aperf; 120 u64 mperf; 121 u64 tsc; 122 u64 time; 123 }; 124 125 /** 126 * struct pstate_data - Store P state data 127 * @current_pstate: Current requested P state 128 * @min_pstate: Min P state possible for this platform 129 * @max_pstate: Max P state possible for this platform 130 * @max_pstate_physical:This is physical Max P state for a processor 131 * This can be higher than the max_pstate which can 132 * be limited by platform thermal design power limits 133 * @scaling: Scaling factor to convert frequency to cpufreq 134 * frequency units 135 * @turbo_pstate: Max Turbo P state possible for this platform 136 * @max_freq: @max_pstate frequency in cpufreq units 137 * @turbo_freq: @turbo_pstate frequency in cpufreq units 138 * 139 * Stores the per cpu model P state limits and current P state. 140 */ 141 struct pstate_data { 142 int current_pstate; 143 int min_pstate; 144 int max_pstate; 145 int max_pstate_physical; 146 int scaling; 147 int turbo_pstate; 148 unsigned int max_freq; 149 unsigned int turbo_freq; 150 }; 151 152 /** 153 * struct vid_data - Stores voltage information data 154 * @min: VID data for this platform corresponding to 155 * the lowest P state 156 * @max: VID data corresponding to the highest P State. 157 * @turbo: VID data for turbo P state 158 * @ratio: Ratio of (vid max - vid min) / 159 * (max P state - Min P State) 160 * 161 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling) 162 * This data is used in Atom platforms, where in addition to target P state, 163 * the voltage data needs to be specified to select next P State. 164 */ 165 struct vid_data { 166 int min; 167 int max; 168 int turbo; 169 int32_t ratio; 170 }; 171 172 /** 173 * struct global_params - Global parameters, mostly tunable via sysfs. 174 * @no_turbo: Whether or not to use turbo P-states. 175 * @turbo_disabled: Whether or not turbo P-states are available at all, 176 * based on the MSR_IA32_MISC_ENABLE value and whether or 177 * not the maximum reported turbo P-state is different from 178 * the maximum reported non-turbo one. 179 * @turbo_disabled_mf: The @turbo_disabled value reflected by cpuinfo.max_freq. 180 * @min_perf_pct: Minimum capacity limit in percent of the maximum turbo 181 * P-state capacity. 182 * @max_perf_pct: Maximum capacity limit in percent of the maximum turbo 183 * P-state capacity. 184 */ 185 struct global_params { 186 bool no_turbo; 187 bool turbo_disabled; 188 bool turbo_disabled_mf; 189 int max_perf_pct; 190 int min_perf_pct; 191 }; 192 193 /** 194 * struct cpudata - Per CPU instance data storage 195 * @cpu: CPU number for this instance data 196 * @policy: CPUFreq policy value 197 * @update_util: CPUFreq utility callback information 198 * @update_util_set: CPUFreq utility callback is set 199 * @iowait_boost: iowait-related boost fraction 200 * @last_update: Time of the last update. 201 * @pstate: Stores P state limits for this CPU 202 * @vid: Stores VID limits for this CPU 203 * @last_sample_time: Last Sample time 204 * @aperf_mperf_shift: APERF vs MPERF counting frequency difference 205 * @prev_aperf: Last APERF value read from APERF MSR 206 * @prev_mperf: Last MPERF value read from MPERF MSR 207 * @prev_tsc: Last timestamp counter (TSC) value 208 * @prev_cummulative_iowait: IO Wait time difference from last and 209 * current sample 210 * @sample: Storage for storing last Sample data 211 * @min_perf_ratio: Minimum capacity in terms of PERF or HWP ratios 212 * @max_perf_ratio: Maximum capacity in terms of PERF or HWP ratios 213 * @acpi_perf_data: Stores ACPI perf information read from _PSS 214 * @valid_pss_table: Set to true for valid ACPI _PSS entries found 215 * @epp_powersave: Last saved HWP energy performance preference 216 * (EPP) or energy performance bias (EPB), 217 * when policy switched to performance 218 * @epp_policy: Last saved policy used to set EPP/EPB 219 * @epp_default: Power on default HWP energy performance 220 * preference/bias 221 * @epp_saved: Saved EPP/EPB during system suspend or CPU offline 222 * operation 223 * @hwp_req_cached: Cached value of the last HWP Request MSR 224 * @hwp_cap_cached: Cached value of the last HWP Capabilities MSR 225 * @last_io_update: Last time when IO wake flag was set 226 * @sched_flags: Store scheduler flags for possible cross CPU update 227 * @hwp_boost_min: Last HWP boosted min performance 228 * 229 * This structure stores per CPU instance data for all CPUs. 230 */ 231 struct cpudata { 232 int cpu; 233 234 unsigned int policy; 235 struct update_util_data update_util; 236 bool update_util_set; 237 238 struct pstate_data pstate; 239 struct vid_data vid; 240 241 u64 last_update; 242 u64 last_sample_time; 243 u64 aperf_mperf_shift; 244 u64 prev_aperf; 245 u64 prev_mperf; 246 u64 prev_tsc; 247 u64 prev_cummulative_iowait; 248 struct sample sample; 249 int32_t min_perf_ratio; 250 int32_t max_perf_ratio; 251 #ifdef CONFIG_ACPI 252 struct acpi_processor_performance acpi_perf_data; 253 bool valid_pss_table; 254 #endif 255 unsigned int iowait_boost; 256 s16 epp_powersave; 257 s16 epp_policy; 258 s16 epp_default; 259 s16 epp_saved; 260 u64 hwp_req_cached; 261 u64 hwp_cap_cached; 262 u64 last_io_update; 263 unsigned int sched_flags; 264 u32 hwp_boost_min; 265 }; 266 267 static struct cpudata **all_cpu_data; 268 269 /** 270 * struct pstate_funcs - Per CPU model specific callbacks 271 * @get_max: Callback to get maximum non turbo effective P state 272 * @get_max_physical: Callback to get maximum non turbo physical P state 273 * @get_min: Callback to get minimum P state 274 * @get_turbo: Callback to get turbo P state 275 * @get_scaling: Callback to get frequency scaling factor 276 * @get_aperf_mperf_shift: Callback to get the APERF vs MPERF frequency difference 277 * @get_val: Callback to convert P state to actual MSR write value 278 * @get_vid: Callback to get VID data for Atom platforms 279 * 280 * Core and Atom CPU models have different way to get P State limits. This 281 * structure is used to store those callbacks. 282 */ 283 struct pstate_funcs { 284 int (*get_max)(void); 285 int (*get_max_physical)(void); 286 int (*get_min)(void); 287 int (*get_turbo)(void); 288 int (*get_scaling)(void); 289 int (*get_aperf_mperf_shift)(void); 290 u64 (*get_val)(struct cpudata*, int pstate); 291 void (*get_vid)(struct cpudata *); 292 }; 293 294 static struct pstate_funcs pstate_funcs __read_mostly; 295 296 static int hwp_active __read_mostly; 297 static int hwp_mode_bdw __read_mostly; 298 static bool per_cpu_limits __read_mostly; 299 static bool hwp_boost __read_mostly; 300 301 static struct cpufreq_driver *intel_pstate_driver __read_mostly; 302 303 #ifdef CONFIG_ACPI 304 static bool acpi_ppc; 305 #endif 306 307 static struct global_params global; 308 309 static DEFINE_MUTEX(intel_pstate_driver_lock); 310 static DEFINE_MUTEX(intel_pstate_limits_lock); 311 312 #ifdef CONFIG_ACPI 313 314 static bool intel_pstate_acpi_pm_profile_server(void) 315 { 316 if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER || 317 acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER) 318 return true; 319 320 return false; 321 } 322 323 static bool intel_pstate_get_ppc_enable_status(void) 324 { 325 if (intel_pstate_acpi_pm_profile_server()) 326 return true; 327 328 return acpi_ppc; 329 } 330 331 #ifdef CONFIG_ACPI_CPPC_LIB 332 333 /* The work item is needed to avoid CPU hotplug locking issues */ 334 static void intel_pstste_sched_itmt_work_fn(struct work_struct *work) 335 { 336 sched_set_itmt_support(); 337 } 338 339 static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn); 340 341 static void intel_pstate_set_itmt_prio(int cpu) 342 { 343 struct cppc_perf_caps cppc_perf; 344 static u32 max_highest_perf = 0, min_highest_perf = U32_MAX; 345 int ret; 346 347 ret = cppc_get_perf_caps(cpu, &cppc_perf); 348 if (ret) 349 return; 350 351 /* 352 * The priorities can be set regardless of whether or not 353 * sched_set_itmt_support(true) has been called and it is valid to 354 * update them at any time after it has been called. 355 */ 356 sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu); 357 358 if (max_highest_perf <= min_highest_perf) { 359 if (cppc_perf.highest_perf > max_highest_perf) 360 max_highest_perf = cppc_perf.highest_perf; 361 362 if (cppc_perf.highest_perf < min_highest_perf) 363 min_highest_perf = cppc_perf.highest_perf; 364 365 if (max_highest_perf > min_highest_perf) { 366 /* 367 * This code can be run during CPU online under the 368 * CPU hotplug locks, so sched_set_itmt_support() 369 * cannot be called from here. Queue up a work item 370 * to invoke it. 371 */ 372 schedule_work(&sched_itmt_work); 373 } 374 } 375 } 376 377 static int intel_pstate_get_cppc_guranteed(int cpu) 378 { 379 struct cppc_perf_caps cppc_perf; 380 int ret; 381 382 ret = cppc_get_perf_caps(cpu, &cppc_perf); 383 if (ret) 384 return ret; 385 386 if (cppc_perf.guaranteed_perf) 387 return cppc_perf.guaranteed_perf; 388 389 return cppc_perf.nominal_perf; 390 } 391 392 #else /* CONFIG_ACPI_CPPC_LIB */ 393 static void intel_pstate_set_itmt_prio(int cpu) 394 { 395 } 396 #endif /* CONFIG_ACPI_CPPC_LIB */ 397 398 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy) 399 { 400 struct cpudata *cpu; 401 int ret; 402 int i; 403 404 if (hwp_active) { 405 intel_pstate_set_itmt_prio(policy->cpu); 406 return; 407 } 408 409 if (!intel_pstate_get_ppc_enable_status()) 410 return; 411 412 cpu = all_cpu_data[policy->cpu]; 413 414 ret = acpi_processor_register_performance(&cpu->acpi_perf_data, 415 policy->cpu); 416 if (ret) 417 return; 418 419 /* 420 * Check if the control value in _PSS is for PERF_CTL MSR, which should 421 * guarantee that the states returned by it map to the states in our 422 * list directly. 423 */ 424 if (cpu->acpi_perf_data.control_register.space_id != 425 ACPI_ADR_SPACE_FIXED_HARDWARE) 426 goto err; 427 428 /* 429 * If there is only one entry _PSS, simply ignore _PSS and continue as 430 * usual without taking _PSS into account 431 */ 432 if (cpu->acpi_perf_data.state_count < 2) 433 goto err; 434 435 pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu); 436 for (i = 0; i < cpu->acpi_perf_data.state_count; i++) { 437 pr_debug(" %cP%d: %u MHz, %u mW, 0x%x\n", 438 (i == cpu->acpi_perf_data.state ? '*' : ' '), i, 439 (u32) cpu->acpi_perf_data.states[i].core_frequency, 440 (u32) cpu->acpi_perf_data.states[i].power, 441 (u32) cpu->acpi_perf_data.states[i].control); 442 } 443 444 /* 445 * The _PSS table doesn't contain whole turbo frequency range. 446 * This just contains +1 MHZ above the max non turbo frequency, 447 * with control value corresponding to max turbo ratio. But 448 * when cpufreq set policy is called, it will call with this 449 * max frequency, which will cause a reduced performance as 450 * this driver uses real max turbo frequency as the max 451 * frequency. So correct this frequency in _PSS table to 452 * correct max turbo frequency based on the turbo state. 453 * Also need to convert to MHz as _PSS freq is in MHz. 454 */ 455 if (!global.turbo_disabled) 456 cpu->acpi_perf_data.states[0].core_frequency = 457 policy->cpuinfo.max_freq / 1000; 458 cpu->valid_pss_table = true; 459 pr_debug("_PPC limits will be enforced\n"); 460 461 return; 462 463 err: 464 cpu->valid_pss_table = false; 465 acpi_processor_unregister_performance(policy->cpu); 466 } 467 468 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy) 469 { 470 struct cpudata *cpu; 471 472 cpu = all_cpu_data[policy->cpu]; 473 if (!cpu->valid_pss_table) 474 return; 475 476 acpi_processor_unregister_performance(policy->cpu); 477 } 478 #else /* CONFIG_ACPI */ 479 static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy) 480 { 481 } 482 483 static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy) 484 { 485 } 486 487 static inline bool intel_pstate_acpi_pm_profile_server(void) 488 { 489 return false; 490 } 491 #endif /* CONFIG_ACPI */ 492 493 #ifndef CONFIG_ACPI_CPPC_LIB 494 static int intel_pstate_get_cppc_guranteed(int cpu) 495 { 496 return -ENOTSUPP; 497 } 498 #endif /* CONFIG_ACPI_CPPC_LIB */ 499 500 static inline void update_turbo_state(void) 501 { 502 u64 misc_en; 503 struct cpudata *cpu; 504 505 cpu = all_cpu_data[0]; 506 rdmsrl(MSR_IA32_MISC_ENABLE, misc_en); 507 global.turbo_disabled = 508 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE || 509 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate); 510 } 511 512 static int min_perf_pct_min(void) 513 { 514 struct cpudata *cpu = all_cpu_data[0]; 515 int turbo_pstate = cpu->pstate.turbo_pstate; 516 517 return turbo_pstate ? 518 (cpu->pstate.min_pstate * 100 / turbo_pstate) : 0; 519 } 520 521 static s16 intel_pstate_get_epb(struct cpudata *cpu_data) 522 { 523 u64 epb; 524 int ret; 525 526 if (!boot_cpu_has(X86_FEATURE_EPB)) 527 return -ENXIO; 528 529 ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb); 530 if (ret) 531 return (s16)ret; 532 533 return (s16)(epb & 0x0f); 534 } 535 536 static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data) 537 { 538 s16 epp; 539 540 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) { 541 /* 542 * When hwp_req_data is 0, means that caller didn't read 543 * MSR_HWP_REQUEST, so need to read and get EPP. 544 */ 545 if (!hwp_req_data) { 546 epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, 547 &hwp_req_data); 548 if (epp) 549 return epp; 550 } 551 epp = (hwp_req_data >> 24) & 0xff; 552 } else { 553 /* When there is no EPP present, HWP uses EPB settings */ 554 epp = intel_pstate_get_epb(cpu_data); 555 } 556 557 return epp; 558 } 559 560 static int intel_pstate_set_epb(int cpu, s16 pref) 561 { 562 u64 epb; 563 int ret; 564 565 if (!boot_cpu_has(X86_FEATURE_EPB)) 566 return -ENXIO; 567 568 ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb); 569 if (ret) 570 return ret; 571 572 epb = (epb & ~0x0f) | pref; 573 wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb); 574 575 return 0; 576 } 577 578 /* 579 * EPP/EPB display strings corresponding to EPP index in the 580 * energy_perf_strings[] 581 * index String 582 *------------------------------------- 583 * 0 default 584 * 1 performance 585 * 2 balance_performance 586 * 3 balance_power 587 * 4 power 588 */ 589 static const char * const energy_perf_strings[] = { 590 "default", 591 "performance", 592 "balance_performance", 593 "balance_power", 594 "power", 595 NULL 596 }; 597 static const unsigned int epp_values[] = { 598 HWP_EPP_PERFORMANCE, 599 HWP_EPP_BALANCE_PERFORMANCE, 600 HWP_EPP_BALANCE_POWERSAVE, 601 HWP_EPP_POWERSAVE 602 }; 603 604 static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data, int *raw_epp) 605 { 606 s16 epp; 607 int index = -EINVAL; 608 609 *raw_epp = 0; 610 epp = intel_pstate_get_epp(cpu_data, 0); 611 if (epp < 0) 612 return epp; 613 614 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) { 615 if (epp == HWP_EPP_PERFORMANCE) 616 return 1; 617 if (epp == HWP_EPP_BALANCE_PERFORMANCE) 618 return 2; 619 if (epp == HWP_EPP_BALANCE_POWERSAVE) 620 return 3; 621 if (epp == HWP_EPP_POWERSAVE) 622 return 4; 623 *raw_epp = epp; 624 return 0; 625 } else if (boot_cpu_has(X86_FEATURE_EPB)) { 626 /* 627 * Range: 628 * 0x00-0x03 : Performance 629 * 0x04-0x07 : Balance performance 630 * 0x08-0x0B : Balance power 631 * 0x0C-0x0F : Power 632 * The EPB is a 4 bit value, but our ranges restrict the 633 * value which can be set. Here only using top two bits 634 * effectively. 635 */ 636 index = (epp >> 2) + 1; 637 } 638 639 return index; 640 } 641 642 static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data, 643 int pref_index, bool use_raw, 644 u32 raw_epp) 645 { 646 int epp = -EINVAL; 647 int ret; 648 649 if (!pref_index) 650 epp = cpu_data->epp_default; 651 652 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) { 653 /* 654 * Use the cached HWP Request MSR value, because the register 655 * itself may be updated by intel_pstate_hwp_boost_up() or 656 * intel_pstate_hwp_boost_down() at any time. 657 */ 658 u64 value = READ_ONCE(cpu_data->hwp_req_cached); 659 660 value &= ~GENMASK_ULL(31, 24); 661 662 if (use_raw) 663 epp = raw_epp; 664 else if (epp == -EINVAL) 665 epp = epp_values[pref_index - 1]; 666 667 value |= (u64)epp << 24; 668 /* 669 * The only other updater of hwp_req_cached in the active mode, 670 * intel_pstate_hwp_set(), is called under the same lock as this 671 * function, so it cannot run in parallel with the update below. 672 */ 673 WRITE_ONCE(cpu_data->hwp_req_cached, value); 674 ret = wrmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, value); 675 } else { 676 if (epp == -EINVAL) 677 epp = (pref_index - 1) << 2; 678 ret = intel_pstate_set_epb(cpu_data->cpu, epp); 679 } 680 681 return ret; 682 } 683 684 static ssize_t show_energy_performance_available_preferences( 685 struct cpufreq_policy *policy, char *buf) 686 { 687 int i = 0; 688 int ret = 0; 689 690 while (energy_perf_strings[i] != NULL) 691 ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]); 692 693 ret += sprintf(&buf[ret], "\n"); 694 695 return ret; 696 } 697 698 cpufreq_freq_attr_ro(energy_performance_available_preferences); 699 700 static ssize_t store_energy_performance_preference( 701 struct cpufreq_policy *policy, const char *buf, size_t count) 702 { 703 struct cpudata *cpu_data = all_cpu_data[policy->cpu]; 704 char str_preference[21]; 705 bool raw = false; 706 ssize_t ret; 707 u32 epp = 0; 708 709 ret = sscanf(buf, "%20s", str_preference); 710 if (ret != 1) 711 return -EINVAL; 712 713 ret = match_string(energy_perf_strings, -1, str_preference); 714 if (ret < 0) { 715 if (!boot_cpu_has(X86_FEATURE_HWP_EPP)) 716 return ret; 717 718 ret = kstrtouint(buf, 10, &epp); 719 if (ret) 720 return ret; 721 722 if (epp > 255) 723 return -EINVAL; 724 725 raw = true; 726 } 727 728 mutex_lock(&intel_pstate_limits_lock); 729 730 ret = intel_pstate_set_energy_pref_index(cpu_data, ret, raw, epp); 731 if (!ret) 732 ret = count; 733 734 mutex_unlock(&intel_pstate_limits_lock); 735 736 return ret; 737 } 738 739 static ssize_t show_energy_performance_preference( 740 struct cpufreq_policy *policy, char *buf) 741 { 742 struct cpudata *cpu_data = all_cpu_data[policy->cpu]; 743 int preference, raw_epp; 744 745 preference = intel_pstate_get_energy_pref_index(cpu_data, &raw_epp); 746 if (preference < 0) 747 return preference; 748 749 if (raw_epp) 750 return sprintf(buf, "%d\n", raw_epp); 751 else 752 return sprintf(buf, "%s\n", energy_perf_strings[preference]); 753 } 754 755 cpufreq_freq_attr_rw(energy_performance_preference); 756 757 static ssize_t show_base_frequency(struct cpufreq_policy *policy, char *buf) 758 { 759 struct cpudata *cpu; 760 u64 cap; 761 int ratio; 762 763 ratio = intel_pstate_get_cppc_guranteed(policy->cpu); 764 if (ratio <= 0) { 765 rdmsrl_on_cpu(policy->cpu, MSR_HWP_CAPABILITIES, &cap); 766 ratio = HWP_GUARANTEED_PERF(cap); 767 } 768 769 cpu = all_cpu_data[policy->cpu]; 770 771 return sprintf(buf, "%d\n", ratio * cpu->pstate.scaling); 772 } 773 774 cpufreq_freq_attr_ro(base_frequency); 775 776 static struct freq_attr *hwp_cpufreq_attrs[] = { 777 &energy_performance_preference, 778 &energy_performance_available_preferences, 779 &base_frequency, 780 NULL, 781 }; 782 783 static void intel_pstate_get_hwp_max(unsigned int cpu, int *phy_max, 784 int *current_max) 785 { 786 u64 cap; 787 788 rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap); 789 WRITE_ONCE(all_cpu_data[cpu]->hwp_cap_cached, cap); 790 if (global.no_turbo) 791 *current_max = HWP_GUARANTEED_PERF(cap); 792 else 793 *current_max = HWP_HIGHEST_PERF(cap); 794 795 *phy_max = HWP_HIGHEST_PERF(cap); 796 } 797 798 static void intel_pstate_hwp_set(unsigned int cpu) 799 { 800 struct cpudata *cpu_data = all_cpu_data[cpu]; 801 int max, min; 802 u64 value; 803 s16 epp; 804 805 max = cpu_data->max_perf_ratio; 806 min = cpu_data->min_perf_ratio; 807 808 if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) 809 min = max; 810 811 rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value); 812 813 value &= ~HWP_MIN_PERF(~0L); 814 value |= HWP_MIN_PERF(min); 815 816 value &= ~HWP_MAX_PERF(~0L); 817 value |= HWP_MAX_PERF(max); 818 819 if (cpu_data->epp_policy == cpu_data->policy) 820 goto skip_epp; 821 822 cpu_data->epp_policy = cpu_data->policy; 823 824 if (cpu_data->epp_saved >= 0) { 825 epp = cpu_data->epp_saved; 826 cpu_data->epp_saved = -EINVAL; 827 goto update_epp; 828 } 829 830 if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) { 831 epp = intel_pstate_get_epp(cpu_data, value); 832 cpu_data->epp_powersave = epp; 833 /* If EPP read was failed, then don't try to write */ 834 if (epp < 0) 835 goto skip_epp; 836 837 epp = 0; 838 } else { 839 /* skip setting EPP, when saved value is invalid */ 840 if (cpu_data->epp_powersave < 0) 841 goto skip_epp; 842 843 /* 844 * No need to restore EPP when it is not zero. This 845 * means: 846 * - Policy is not changed 847 * - user has manually changed 848 * - Error reading EPB 849 */ 850 epp = intel_pstate_get_epp(cpu_data, value); 851 if (epp) 852 goto skip_epp; 853 854 epp = cpu_data->epp_powersave; 855 } 856 update_epp: 857 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) { 858 value &= ~GENMASK_ULL(31, 24); 859 value |= (u64)epp << 24; 860 } else { 861 intel_pstate_set_epb(cpu, epp); 862 } 863 skip_epp: 864 WRITE_ONCE(cpu_data->hwp_req_cached, value); 865 wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value); 866 } 867 868 static void intel_pstate_hwp_force_min_perf(int cpu) 869 { 870 u64 value; 871 int min_perf; 872 873 value = all_cpu_data[cpu]->hwp_req_cached; 874 value &= ~GENMASK_ULL(31, 0); 875 min_perf = HWP_LOWEST_PERF(all_cpu_data[cpu]->hwp_cap_cached); 876 877 /* Set hwp_max = hwp_min */ 878 value |= HWP_MAX_PERF(min_perf); 879 value |= HWP_MIN_PERF(min_perf); 880 881 /* Set EPP to min */ 882 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) 883 value |= HWP_ENERGY_PERF_PREFERENCE(HWP_EPP_POWERSAVE); 884 885 wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value); 886 } 887 888 static int intel_pstate_hwp_save_state(struct cpufreq_policy *policy) 889 { 890 struct cpudata *cpu_data = all_cpu_data[policy->cpu]; 891 892 if (!hwp_active) 893 return 0; 894 895 cpu_data->epp_saved = intel_pstate_get_epp(cpu_data, 0); 896 897 return 0; 898 } 899 900 #define POWER_CTL_EE_ENABLE 1 901 #define POWER_CTL_EE_DISABLE 2 902 903 static int power_ctl_ee_state; 904 905 static void set_power_ctl_ee_state(bool input) 906 { 907 u64 power_ctl; 908 909 mutex_lock(&intel_pstate_driver_lock); 910 rdmsrl(MSR_IA32_POWER_CTL, power_ctl); 911 if (input) { 912 power_ctl &= ~BIT(MSR_IA32_POWER_CTL_BIT_EE); 913 power_ctl_ee_state = POWER_CTL_EE_ENABLE; 914 } else { 915 power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE); 916 power_ctl_ee_state = POWER_CTL_EE_DISABLE; 917 } 918 wrmsrl(MSR_IA32_POWER_CTL, power_ctl); 919 mutex_unlock(&intel_pstate_driver_lock); 920 } 921 922 static void intel_pstate_hwp_enable(struct cpudata *cpudata); 923 924 static int intel_pstate_resume(struct cpufreq_policy *policy) 925 { 926 927 /* Only restore if the system default is changed */ 928 if (power_ctl_ee_state == POWER_CTL_EE_ENABLE) 929 set_power_ctl_ee_state(true); 930 else if (power_ctl_ee_state == POWER_CTL_EE_DISABLE) 931 set_power_ctl_ee_state(false); 932 933 if (!hwp_active) 934 return 0; 935 936 mutex_lock(&intel_pstate_limits_lock); 937 938 if (policy->cpu == 0) 939 intel_pstate_hwp_enable(all_cpu_data[policy->cpu]); 940 941 all_cpu_data[policy->cpu]->epp_policy = 0; 942 intel_pstate_hwp_set(policy->cpu); 943 944 mutex_unlock(&intel_pstate_limits_lock); 945 946 return 0; 947 } 948 949 static void intel_pstate_update_policies(void) 950 { 951 int cpu; 952 953 for_each_possible_cpu(cpu) 954 cpufreq_update_policy(cpu); 955 } 956 957 static void intel_pstate_update_max_freq(unsigned int cpu) 958 { 959 struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu); 960 struct cpudata *cpudata; 961 962 if (!policy) 963 return; 964 965 cpudata = all_cpu_data[cpu]; 966 policy->cpuinfo.max_freq = global.turbo_disabled_mf ? 967 cpudata->pstate.max_freq : cpudata->pstate.turbo_freq; 968 969 refresh_frequency_limits(policy); 970 971 cpufreq_cpu_release(policy); 972 } 973 974 static void intel_pstate_update_limits(unsigned int cpu) 975 { 976 mutex_lock(&intel_pstate_driver_lock); 977 978 update_turbo_state(); 979 /* 980 * If turbo has been turned on or off globally, policy limits for 981 * all CPUs need to be updated to reflect that. 982 */ 983 if (global.turbo_disabled_mf != global.turbo_disabled) { 984 global.turbo_disabled_mf = global.turbo_disabled; 985 arch_set_max_freq_ratio(global.turbo_disabled); 986 for_each_possible_cpu(cpu) 987 intel_pstate_update_max_freq(cpu); 988 } else { 989 cpufreq_update_policy(cpu); 990 } 991 992 mutex_unlock(&intel_pstate_driver_lock); 993 } 994 995 /************************** sysfs begin ************************/ 996 #define show_one(file_name, object) \ 997 static ssize_t show_##file_name \ 998 (struct kobject *kobj, struct kobj_attribute *attr, char *buf) \ 999 { \ 1000 return sprintf(buf, "%u\n", global.object); \ 1001 } 1002 1003 static ssize_t intel_pstate_show_status(char *buf); 1004 static int intel_pstate_update_status(const char *buf, size_t size); 1005 1006 static ssize_t show_status(struct kobject *kobj, 1007 struct kobj_attribute *attr, char *buf) 1008 { 1009 ssize_t ret; 1010 1011 mutex_lock(&intel_pstate_driver_lock); 1012 ret = intel_pstate_show_status(buf); 1013 mutex_unlock(&intel_pstate_driver_lock); 1014 1015 return ret; 1016 } 1017 1018 static ssize_t store_status(struct kobject *a, struct kobj_attribute *b, 1019 const char *buf, size_t count) 1020 { 1021 char *p = memchr(buf, '\n', count); 1022 int ret; 1023 1024 mutex_lock(&intel_pstate_driver_lock); 1025 ret = intel_pstate_update_status(buf, p ? p - buf : count); 1026 mutex_unlock(&intel_pstate_driver_lock); 1027 1028 return ret < 0 ? ret : count; 1029 } 1030 1031 static ssize_t show_turbo_pct(struct kobject *kobj, 1032 struct kobj_attribute *attr, char *buf) 1033 { 1034 struct cpudata *cpu; 1035 int total, no_turbo, turbo_pct; 1036 uint32_t turbo_fp; 1037 1038 mutex_lock(&intel_pstate_driver_lock); 1039 1040 if (!intel_pstate_driver) { 1041 mutex_unlock(&intel_pstate_driver_lock); 1042 return -EAGAIN; 1043 } 1044 1045 cpu = all_cpu_data[0]; 1046 1047 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1; 1048 no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1; 1049 turbo_fp = div_fp(no_turbo, total); 1050 turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100))); 1051 1052 mutex_unlock(&intel_pstate_driver_lock); 1053 1054 return sprintf(buf, "%u\n", turbo_pct); 1055 } 1056 1057 static ssize_t show_num_pstates(struct kobject *kobj, 1058 struct kobj_attribute *attr, char *buf) 1059 { 1060 struct cpudata *cpu; 1061 int total; 1062 1063 mutex_lock(&intel_pstate_driver_lock); 1064 1065 if (!intel_pstate_driver) { 1066 mutex_unlock(&intel_pstate_driver_lock); 1067 return -EAGAIN; 1068 } 1069 1070 cpu = all_cpu_data[0]; 1071 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1; 1072 1073 mutex_unlock(&intel_pstate_driver_lock); 1074 1075 return sprintf(buf, "%u\n", total); 1076 } 1077 1078 static ssize_t show_no_turbo(struct kobject *kobj, 1079 struct kobj_attribute *attr, char *buf) 1080 { 1081 ssize_t ret; 1082 1083 mutex_lock(&intel_pstate_driver_lock); 1084 1085 if (!intel_pstate_driver) { 1086 mutex_unlock(&intel_pstate_driver_lock); 1087 return -EAGAIN; 1088 } 1089 1090 update_turbo_state(); 1091 if (global.turbo_disabled) 1092 ret = sprintf(buf, "%u\n", global.turbo_disabled); 1093 else 1094 ret = sprintf(buf, "%u\n", global.no_turbo); 1095 1096 mutex_unlock(&intel_pstate_driver_lock); 1097 1098 return ret; 1099 } 1100 1101 static ssize_t store_no_turbo(struct kobject *a, struct kobj_attribute *b, 1102 const char *buf, size_t count) 1103 { 1104 unsigned int input; 1105 int ret; 1106 1107 ret = sscanf(buf, "%u", &input); 1108 if (ret != 1) 1109 return -EINVAL; 1110 1111 mutex_lock(&intel_pstate_driver_lock); 1112 1113 if (!intel_pstate_driver) { 1114 mutex_unlock(&intel_pstate_driver_lock); 1115 return -EAGAIN; 1116 } 1117 1118 mutex_lock(&intel_pstate_limits_lock); 1119 1120 update_turbo_state(); 1121 if (global.turbo_disabled) { 1122 pr_notice_once("Turbo disabled by BIOS or unavailable on processor\n"); 1123 mutex_unlock(&intel_pstate_limits_lock); 1124 mutex_unlock(&intel_pstate_driver_lock); 1125 return -EPERM; 1126 } 1127 1128 global.no_turbo = clamp_t(int, input, 0, 1); 1129 1130 if (global.no_turbo) { 1131 struct cpudata *cpu = all_cpu_data[0]; 1132 int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate; 1133 1134 /* Squash the global minimum into the permitted range. */ 1135 if (global.min_perf_pct > pct) 1136 global.min_perf_pct = pct; 1137 } 1138 1139 mutex_unlock(&intel_pstate_limits_lock); 1140 1141 intel_pstate_update_policies(); 1142 1143 mutex_unlock(&intel_pstate_driver_lock); 1144 1145 return count; 1146 } 1147 1148 static struct cpufreq_driver intel_pstate; 1149 1150 static void update_qos_request(enum freq_qos_req_type type) 1151 { 1152 int max_state, turbo_max, freq, i, perf_pct; 1153 struct freq_qos_request *req; 1154 struct cpufreq_policy *policy; 1155 1156 for_each_possible_cpu(i) { 1157 struct cpudata *cpu = all_cpu_data[i]; 1158 1159 policy = cpufreq_cpu_get(i); 1160 if (!policy) 1161 continue; 1162 1163 req = policy->driver_data; 1164 cpufreq_cpu_put(policy); 1165 1166 if (!req) 1167 continue; 1168 1169 if (hwp_active) 1170 intel_pstate_get_hwp_max(i, &turbo_max, &max_state); 1171 else 1172 turbo_max = cpu->pstate.turbo_pstate; 1173 1174 if (type == FREQ_QOS_MIN) { 1175 perf_pct = global.min_perf_pct; 1176 } else { 1177 req++; 1178 perf_pct = global.max_perf_pct; 1179 } 1180 1181 freq = DIV_ROUND_UP(turbo_max * perf_pct, 100); 1182 freq *= cpu->pstate.scaling; 1183 1184 if (freq_qos_update_request(req, freq) < 0) 1185 pr_warn("Failed to update freq constraint: CPU%d\n", i); 1186 } 1187 } 1188 1189 static ssize_t store_max_perf_pct(struct kobject *a, struct kobj_attribute *b, 1190 const char *buf, size_t count) 1191 { 1192 unsigned int input; 1193 int ret; 1194 1195 ret = sscanf(buf, "%u", &input); 1196 if (ret != 1) 1197 return -EINVAL; 1198 1199 mutex_lock(&intel_pstate_driver_lock); 1200 1201 if (!intel_pstate_driver) { 1202 mutex_unlock(&intel_pstate_driver_lock); 1203 return -EAGAIN; 1204 } 1205 1206 mutex_lock(&intel_pstate_limits_lock); 1207 1208 global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100); 1209 1210 mutex_unlock(&intel_pstate_limits_lock); 1211 1212 if (intel_pstate_driver == &intel_pstate) 1213 intel_pstate_update_policies(); 1214 else 1215 update_qos_request(FREQ_QOS_MAX); 1216 1217 mutex_unlock(&intel_pstate_driver_lock); 1218 1219 return count; 1220 } 1221 1222 static ssize_t store_min_perf_pct(struct kobject *a, struct kobj_attribute *b, 1223 const char *buf, size_t count) 1224 { 1225 unsigned int input; 1226 int ret; 1227 1228 ret = sscanf(buf, "%u", &input); 1229 if (ret != 1) 1230 return -EINVAL; 1231 1232 mutex_lock(&intel_pstate_driver_lock); 1233 1234 if (!intel_pstate_driver) { 1235 mutex_unlock(&intel_pstate_driver_lock); 1236 return -EAGAIN; 1237 } 1238 1239 mutex_lock(&intel_pstate_limits_lock); 1240 1241 global.min_perf_pct = clamp_t(int, input, 1242 min_perf_pct_min(), global.max_perf_pct); 1243 1244 mutex_unlock(&intel_pstate_limits_lock); 1245 1246 if (intel_pstate_driver == &intel_pstate) 1247 intel_pstate_update_policies(); 1248 else 1249 update_qos_request(FREQ_QOS_MIN); 1250 1251 mutex_unlock(&intel_pstate_driver_lock); 1252 1253 return count; 1254 } 1255 1256 static ssize_t show_hwp_dynamic_boost(struct kobject *kobj, 1257 struct kobj_attribute *attr, char *buf) 1258 { 1259 return sprintf(buf, "%u\n", hwp_boost); 1260 } 1261 1262 static ssize_t store_hwp_dynamic_boost(struct kobject *a, 1263 struct kobj_attribute *b, 1264 const char *buf, size_t count) 1265 { 1266 unsigned int input; 1267 int ret; 1268 1269 ret = kstrtouint(buf, 10, &input); 1270 if (ret) 1271 return ret; 1272 1273 mutex_lock(&intel_pstate_driver_lock); 1274 hwp_boost = !!input; 1275 intel_pstate_update_policies(); 1276 mutex_unlock(&intel_pstate_driver_lock); 1277 1278 return count; 1279 } 1280 1281 static ssize_t show_energy_efficiency(struct kobject *kobj, struct kobj_attribute *attr, 1282 char *buf) 1283 { 1284 u64 power_ctl; 1285 int enable; 1286 1287 rdmsrl(MSR_IA32_POWER_CTL, power_ctl); 1288 enable = !!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE)); 1289 return sprintf(buf, "%d\n", !enable); 1290 } 1291 1292 static ssize_t store_energy_efficiency(struct kobject *a, struct kobj_attribute *b, 1293 const char *buf, size_t count) 1294 { 1295 bool input; 1296 int ret; 1297 1298 ret = kstrtobool(buf, &input); 1299 if (ret) 1300 return ret; 1301 1302 set_power_ctl_ee_state(input); 1303 1304 return count; 1305 } 1306 1307 show_one(max_perf_pct, max_perf_pct); 1308 show_one(min_perf_pct, min_perf_pct); 1309 1310 define_one_global_rw(status); 1311 define_one_global_rw(no_turbo); 1312 define_one_global_rw(max_perf_pct); 1313 define_one_global_rw(min_perf_pct); 1314 define_one_global_ro(turbo_pct); 1315 define_one_global_ro(num_pstates); 1316 define_one_global_rw(hwp_dynamic_boost); 1317 define_one_global_rw(energy_efficiency); 1318 1319 static struct attribute *intel_pstate_attributes[] = { 1320 &status.attr, 1321 &no_turbo.attr, 1322 &turbo_pct.attr, 1323 &num_pstates.attr, 1324 NULL 1325 }; 1326 1327 static const struct attribute_group intel_pstate_attr_group = { 1328 .attrs = intel_pstate_attributes, 1329 }; 1330 1331 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[]; 1332 1333 static void __init intel_pstate_sysfs_expose_params(void) 1334 { 1335 struct kobject *intel_pstate_kobject; 1336 int rc; 1337 1338 intel_pstate_kobject = kobject_create_and_add("intel_pstate", 1339 &cpu_subsys.dev_root->kobj); 1340 if (WARN_ON(!intel_pstate_kobject)) 1341 return; 1342 1343 rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group); 1344 if (WARN_ON(rc)) 1345 return; 1346 1347 /* 1348 * If per cpu limits are enforced there are no global limits, so 1349 * return without creating max/min_perf_pct attributes 1350 */ 1351 if (per_cpu_limits) 1352 return; 1353 1354 rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr); 1355 WARN_ON(rc); 1356 1357 rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr); 1358 WARN_ON(rc); 1359 1360 if (hwp_active) { 1361 rc = sysfs_create_file(intel_pstate_kobject, 1362 &hwp_dynamic_boost.attr); 1363 WARN_ON(rc); 1364 } 1365 1366 if (x86_match_cpu(intel_pstate_cpu_ee_disable_ids)) { 1367 rc = sysfs_create_file(intel_pstate_kobject, &energy_efficiency.attr); 1368 WARN_ON(rc); 1369 } 1370 } 1371 /************************** sysfs end ************************/ 1372 1373 static void intel_pstate_hwp_enable(struct cpudata *cpudata) 1374 { 1375 /* First disable HWP notification interrupt as we don't process them */ 1376 if (boot_cpu_has(X86_FEATURE_HWP_NOTIFY)) 1377 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00); 1378 1379 wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1); 1380 cpudata->epp_policy = 0; 1381 if (cpudata->epp_default == -EINVAL) 1382 cpudata->epp_default = intel_pstate_get_epp(cpudata, 0); 1383 } 1384 1385 static int atom_get_min_pstate(void) 1386 { 1387 u64 value; 1388 1389 rdmsrl(MSR_ATOM_CORE_RATIOS, value); 1390 return (value >> 8) & 0x7F; 1391 } 1392 1393 static int atom_get_max_pstate(void) 1394 { 1395 u64 value; 1396 1397 rdmsrl(MSR_ATOM_CORE_RATIOS, value); 1398 return (value >> 16) & 0x7F; 1399 } 1400 1401 static int atom_get_turbo_pstate(void) 1402 { 1403 u64 value; 1404 1405 rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value); 1406 return value & 0x7F; 1407 } 1408 1409 static u64 atom_get_val(struct cpudata *cpudata, int pstate) 1410 { 1411 u64 val; 1412 int32_t vid_fp; 1413 u32 vid; 1414 1415 val = (u64)pstate << 8; 1416 if (global.no_turbo && !global.turbo_disabled) 1417 val |= (u64)1 << 32; 1418 1419 vid_fp = cpudata->vid.min + mul_fp( 1420 int_tofp(pstate - cpudata->pstate.min_pstate), 1421 cpudata->vid.ratio); 1422 1423 vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max); 1424 vid = ceiling_fp(vid_fp); 1425 1426 if (pstate > cpudata->pstate.max_pstate) 1427 vid = cpudata->vid.turbo; 1428 1429 return val | vid; 1430 } 1431 1432 static int silvermont_get_scaling(void) 1433 { 1434 u64 value; 1435 int i; 1436 /* Defined in Table 35-6 from SDM (Sept 2015) */ 1437 static int silvermont_freq_table[] = { 1438 83300, 100000, 133300, 116700, 80000}; 1439 1440 rdmsrl(MSR_FSB_FREQ, value); 1441 i = value & 0x7; 1442 WARN_ON(i > 4); 1443 1444 return silvermont_freq_table[i]; 1445 } 1446 1447 static int airmont_get_scaling(void) 1448 { 1449 u64 value; 1450 int i; 1451 /* Defined in Table 35-10 from SDM (Sept 2015) */ 1452 static int airmont_freq_table[] = { 1453 83300, 100000, 133300, 116700, 80000, 1454 93300, 90000, 88900, 87500}; 1455 1456 rdmsrl(MSR_FSB_FREQ, value); 1457 i = value & 0xF; 1458 WARN_ON(i > 8); 1459 1460 return airmont_freq_table[i]; 1461 } 1462 1463 static void atom_get_vid(struct cpudata *cpudata) 1464 { 1465 u64 value; 1466 1467 rdmsrl(MSR_ATOM_CORE_VIDS, value); 1468 cpudata->vid.min = int_tofp((value >> 8) & 0x7f); 1469 cpudata->vid.max = int_tofp((value >> 16) & 0x7f); 1470 cpudata->vid.ratio = div_fp( 1471 cpudata->vid.max - cpudata->vid.min, 1472 int_tofp(cpudata->pstate.max_pstate - 1473 cpudata->pstate.min_pstate)); 1474 1475 rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value); 1476 cpudata->vid.turbo = value & 0x7f; 1477 } 1478 1479 static int core_get_min_pstate(void) 1480 { 1481 u64 value; 1482 1483 rdmsrl(MSR_PLATFORM_INFO, value); 1484 return (value >> 40) & 0xFF; 1485 } 1486 1487 static int core_get_max_pstate_physical(void) 1488 { 1489 u64 value; 1490 1491 rdmsrl(MSR_PLATFORM_INFO, value); 1492 return (value >> 8) & 0xFF; 1493 } 1494 1495 static int core_get_tdp_ratio(u64 plat_info) 1496 { 1497 /* Check how many TDP levels present */ 1498 if (plat_info & 0x600000000) { 1499 u64 tdp_ctrl; 1500 u64 tdp_ratio; 1501 int tdp_msr; 1502 int err; 1503 1504 /* Get the TDP level (0, 1, 2) to get ratios */ 1505 err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl); 1506 if (err) 1507 return err; 1508 1509 /* TDP MSR are continuous starting at 0x648 */ 1510 tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03); 1511 err = rdmsrl_safe(tdp_msr, &tdp_ratio); 1512 if (err) 1513 return err; 1514 1515 /* For level 1 and 2, bits[23:16] contain the ratio */ 1516 if (tdp_ctrl & 0x03) 1517 tdp_ratio >>= 16; 1518 1519 tdp_ratio &= 0xff; /* ratios are only 8 bits long */ 1520 pr_debug("tdp_ratio %x\n", (int)tdp_ratio); 1521 1522 return (int)tdp_ratio; 1523 } 1524 1525 return -ENXIO; 1526 } 1527 1528 static int core_get_max_pstate(void) 1529 { 1530 u64 tar; 1531 u64 plat_info; 1532 int max_pstate; 1533 int tdp_ratio; 1534 int err; 1535 1536 rdmsrl(MSR_PLATFORM_INFO, plat_info); 1537 max_pstate = (plat_info >> 8) & 0xFF; 1538 1539 tdp_ratio = core_get_tdp_ratio(plat_info); 1540 if (tdp_ratio <= 0) 1541 return max_pstate; 1542 1543 if (hwp_active) { 1544 /* Turbo activation ratio is not used on HWP platforms */ 1545 return tdp_ratio; 1546 } 1547 1548 err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar); 1549 if (!err) { 1550 int tar_levels; 1551 1552 /* Do some sanity checking for safety */ 1553 tar_levels = tar & 0xff; 1554 if (tdp_ratio - 1 == tar_levels) { 1555 max_pstate = tar_levels; 1556 pr_debug("max_pstate=TAC %x\n", max_pstate); 1557 } 1558 } 1559 1560 return max_pstate; 1561 } 1562 1563 static int core_get_turbo_pstate(void) 1564 { 1565 u64 value; 1566 int nont, ret; 1567 1568 rdmsrl(MSR_TURBO_RATIO_LIMIT, value); 1569 nont = core_get_max_pstate(); 1570 ret = (value) & 255; 1571 if (ret <= nont) 1572 ret = nont; 1573 return ret; 1574 } 1575 1576 static inline int core_get_scaling(void) 1577 { 1578 return 100000; 1579 } 1580 1581 static u64 core_get_val(struct cpudata *cpudata, int pstate) 1582 { 1583 u64 val; 1584 1585 val = (u64)pstate << 8; 1586 if (global.no_turbo && !global.turbo_disabled) 1587 val |= (u64)1 << 32; 1588 1589 return val; 1590 } 1591 1592 static int knl_get_aperf_mperf_shift(void) 1593 { 1594 return 10; 1595 } 1596 1597 static int knl_get_turbo_pstate(void) 1598 { 1599 u64 value; 1600 int nont, ret; 1601 1602 rdmsrl(MSR_TURBO_RATIO_LIMIT, value); 1603 nont = core_get_max_pstate(); 1604 ret = (((value) >> 8) & 0xFF); 1605 if (ret <= nont) 1606 ret = nont; 1607 return ret; 1608 } 1609 1610 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate) 1611 { 1612 trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu); 1613 cpu->pstate.current_pstate = pstate; 1614 /* 1615 * Generally, there is no guarantee that this code will always run on 1616 * the CPU being updated, so force the register update to run on the 1617 * right CPU. 1618 */ 1619 wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL, 1620 pstate_funcs.get_val(cpu, pstate)); 1621 } 1622 1623 static void intel_pstate_set_min_pstate(struct cpudata *cpu) 1624 { 1625 intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate); 1626 } 1627 1628 static void intel_pstate_max_within_limits(struct cpudata *cpu) 1629 { 1630 int pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio); 1631 1632 update_turbo_state(); 1633 intel_pstate_set_pstate(cpu, pstate); 1634 } 1635 1636 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu) 1637 { 1638 cpu->pstate.min_pstate = pstate_funcs.get_min(); 1639 cpu->pstate.max_pstate = pstate_funcs.get_max(); 1640 cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical(); 1641 cpu->pstate.turbo_pstate = pstate_funcs.get_turbo(); 1642 cpu->pstate.scaling = pstate_funcs.get_scaling(); 1643 cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling; 1644 1645 if (hwp_active && !hwp_mode_bdw) { 1646 unsigned int phy_max, current_max; 1647 1648 intel_pstate_get_hwp_max(cpu->cpu, &phy_max, ¤t_max); 1649 cpu->pstate.turbo_freq = phy_max * cpu->pstate.scaling; 1650 cpu->pstate.turbo_pstate = phy_max; 1651 } else { 1652 cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling; 1653 } 1654 1655 if (pstate_funcs.get_aperf_mperf_shift) 1656 cpu->aperf_mperf_shift = pstate_funcs.get_aperf_mperf_shift(); 1657 1658 if (pstate_funcs.get_vid) 1659 pstate_funcs.get_vid(cpu); 1660 1661 intel_pstate_set_min_pstate(cpu); 1662 } 1663 1664 /* 1665 * Long hold time will keep high perf limits for long time, 1666 * which negatively impacts perf/watt for some workloads, 1667 * like specpower. 3ms is based on experiements on some 1668 * workoads. 1669 */ 1670 static int hwp_boost_hold_time_ns = 3 * NSEC_PER_MSEC; 1671 1672 static inline void intel_pstate_hwp_boost_up(struct cpudata *cpu) 1673 { 1674 u64 hwp_req = READ_ONCE(cpu->hwp_req_cached); 1675 u32 max_limit = (hwp_req & 0xff00) >> 8; 1676 u32 min_limit = (hwp_req & 0xff); 1677 u32 boost_level1; 1678 1679 /* 1680 * Cases to consider (User changes via sysfs or boot time): 1681 * If, P0 (Turbo max) = P1 (Guaranteed max) = min: 1682 * No boost, return. 1683 * If, P0 (Turbo max) > P1 (Guaranteed max) = min: 1684 * Should result in one level boost only for P0. 1685 * If, P0 (Turbo max) = P1 (Guaranteed max) > min: 1686 * Should result in two level boost: 1687 * (min + p1)/2 and P1. 1688 * If, P0 (Turbo max) > P1 (Guaranteed max) > min: 1689 * Should result in three level boost: 1690 * (min + p1)/2, P1 and P0. 1691 */ 1692 1693 /* If max and min are equal or already at max, nothing to boost */ 1694 if (max_limit == min_limit || cpu->hwp_boost_min >= max_limit) 1695 return; 1696 1697 if (!cpu->hwp_boost_min) 1698 cpu->hwp_boost_min = min_limit; 1699 1700 /* level at half way mark between min and guranteed */ 1701 boost_level1 = (HWP_GUARANTEED_PERF(cpu->hwp_cap_cached) + min_limit) >> 1; 1702 1703 if (cpu->hwp_boost_min < boost_level1) 1704 cpu->hwp_boost_min = boost_level1; 1705 else if (cpu->hwp_boost_min < HWP_GUARANTEED_PERF(cpu->hwp_cap_cached)) 1706 cpu->hwp_boost_min = HWP_GUARANTEED_PERF(cpu->hwp_cap_cached); 1707 else if (cpu->hwp_boost_min == HWP_GUARANTEED_PERF(cpu->hwp_cap_cached) && 1708 max_limit != HWP_GUARANTEED_PERF(cpu->hwp_cap_cached)) 1709 cpu->hwp_boost_min = max_limit; 1710 else 1711 return; 1712 1713 hwp_req = (hwp_req & ~GENMASK_ULL(7, 0)) | cpu->hwp_boost_min; 1714 wrmsrl(MSR_HWP_REQUEST, hwp_req); 1715 cpu->last_update = cpu->sample.time; 1716 } 1717 1718 static inline void intel_pstate_hwp_boost_down(struct cpudata *cpu) 1719 { 1720 if (cpu->hwp_boost_min) { 1721 bool expired; 1722 1723 /* Check if we are idle for hold time to boost down */ 1724 expired = time_after64(cpu->sample.time, cpu->last_update + 1725 hwp_boost_hold_time_ns); 1726 if (expired) { 1727 wrmsrl(MSR_HWP_REQUEST, cpu->hwp_req_cached); 1728 cpu->hwp_boost_min = 0; 1729 } 1730 } 1731 cpu->last_update = cpu->sample.time; 1732 } 1733 1734 static inline void intel_pstate_update_util_hwp_local(struct cpudata *cpu, 1735 u64 time) 1736 { 1737 cpu->sample.time = time; 1738 1739 if (cpu->sched_flags & SCHED_CPUFREQ_IOWAIT) { 1740 bool do_io = false; 1741 1742 cpu->sched_flags = 0; 1743 /* 1744 * Set iowait_boost flag and update time. Since IO WAIT flag 1745 * is set all the time, we can't just conclude that there is 1746 * some IO bound activity is scheduled on this CPU with just 1747 * one occurrence. If we receive at least two in two 1748 * consecutive ticks, then we treat as boost candidate. 1749 */ 1750 if (time_before64(time, cpu->last_io_update + 2 * TICK_NSEC)) 1751 do_io = true; 1752 1753 cpu->last_io_update = time; 1754 1755 if (do_io) 1756 intel_pstate_hwp_boost_up(cpu); 1757 1758 } else { 1759 intel_pstate_hwp_boost_down(cpu); 1760 } 1761 } 1762 1763 static inline void intel_pstate_update_util_hwp(struct update_util_data *data, 1764 u64 time, unsigned int flags) 1765 { 1766 struct cpudata *cpu = container_of(data, struct cpudata, update_util); 1767 1768 cpu->sched_flags |= flags; 1769 1770 if (smp_processor_id() == cpu->cpu) 1771 intel_pstate_update_util_hwp_local(cpu, time); 1772 } 1773 1774 static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu) 1775 { 1776 struct sample *sample = &cpu->sample; 1777 1778 sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf); 1779 } 1780 1781 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time) 1782 { 1783 u64 aperf, mperf; 1784 unsigned long flags; 1785 u64 tsc; 1786 1787 local_irq_save(flags); 1788 rdmsrl(MSR_IA32_APERF, aperf); 1789 rdmsrl(MSR_IA32_MPERF, mperf); 1790 tsc = rdtsc(); 1791 if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) { 1792 local_irq_restore(flags); 1793 return false; 1794 } 1795 local_irq_restore(flags); 1796 1797 cpu->last_sample_time = cpu->sample.time; 1798 cpu->sample.time = time; 1799 cpu->sample.aperf = aperf; 1800 cpu->sample.mperf = mperf; 1801 cpu->sample.tsc = tsc; 1802 cpu->sample.aperf -= cpu->prev_aperf; 1803 cpu->sample.mperf -= cpu->prev_mperf; 1804 cpu->sample.tsc -= cpu->prev_tsc; 1805 1806 cpu->prev_aperf = aperf; 1807 cpu->prev_mperf = mperf; 1808 cpu->prev_tsc = tsc; 1809 /* 1810 * First time this function is invoked in a given cycle, all of the 1811 * previous sample data fields are equal to zero or stale and they must 1812 * be populated with meaningful numbers for things to work, so assume 1813 * that sample.time will always be reset before setting the utilization 1814 * update hook and make the caller skip the sample then. 1815 */ 1816 if (cpu->last_sample_time) { 1817 intel_pstate_calc_avg_perf(cpu); 1818 return true; 1819 } 1820 return false; 1821 } 1822 1823 static inline int32_t get_avg_frequency(struct cpudata *cpu) 1824 { 1825 return mul_ext_fp(cpu->sample.core_avg_perf, cpu_khz); 1826 } 1827 1828 static inline int32_t get_avg_pstate(struct cpudata *cpu) 1829 { 1830 return mul_ext_fp(cpu->pstate.max_pstate_physical, 1831 cpu->sample.core_avg_perf); 1832 } 1833 1834 static inline int32_t get_target_pstate(struct cpudata *cpu) 1835 { 1836 struct sample *sample = &cpu->sample; 1837 int32_t busy_frac; 1838 int target, avg_pstate; 1839 1840 busy_frac = div_fp(sample->mperf << cpu->aperf_mperf_shift, 1841 sample->tsc); 1842 1843 if (busy_frac < cpu->iowait_boost) 1844 busy_frac = cpu->iowait_boost; 1845 1846 sample->busy_scaled = busy_frac * 100; 1847 1848 target = global.no_turbo || global.turbo_disabled ? 1849 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate; 1850 target += target >> 2; 1851 target = mul_fp(target, busy_frac); 1852 if (target < cpu->pstate.min_pstate) 1853 target = cpu->pstate.min_pstate; 1854 1855 /* 1856 * If the average P-state during the previous cycle was higher than the 1857 * current target, add 50% of the difference to the target to reduce 1858 * possible performance oscillations and offset possible performance 1859 * loss related to moving the workload from one CPU to another within 1860 * a package/module. 1861 */ 1862 avg_pstate = get_avg_pstate(cpu); 1863 if (avg_pstate > target) 1864 target += (avg_pstate - target) >> 1; 1865 1866 return target; 1867 } 1868 1869 static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate) 1870 { 1871 int min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio); 1872 int max_pstate = max(min_pstate, cpu->max_perf_ratio); 1873 1874 return clamp_t(int, pstate, min_pstate, max_pstate); 1875 } 1876 1877 static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate) 1878 { 1879 if (pstate == cpu->pstate.current_pstate) 1880 return; 1881 1882 cpu->pstate.current_pstate = pstate; 1883 wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate)); 1884 } 1885 1886 static void intel_pstate_adjust_pstate(struct cpudata *cpu) 1887 { 1888 int from = cpu->pstate.current_pstate; 1889 struct sample *sample; 1890 int target_pstate; 1891 1892 update_turbo_state(); 1893 1894 target_pstate = get_target_pstate(cpu); 1895 target_pstate = intel_pstate_prepare_request(cpu, target_pstate); 1896 trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu); 1897 intel_pstate_update_pstate(cpu, target_pstate); 1898 1899 sample = &cpu->sample; 1900 trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf), 1901 fp_toint(sample->busy_scaled), 1902 from, 1903 cpu->pstate.current_pstate, 1904 sample->mperf, 1905 sample->aperf, 1906 sample->tsc, 1907 get_avg_frequency(cpu), 1908 fp_toint(cpu->iowait_boost * 100)); 1909 } 1910 1911 static void intel_pstate_update_util(struct update_util_data *data, u64 time, 1912 unsigned int flags) 1913 { 1914 struct cpudata *cpu = container_of(data, struct cpudata, update_util); 1915 u64 delta_ns; 1916 1917 /* Don't allow remote callbacks */ 1918 if (smp_processor_id() != cpu->cpu) 1919 return; 1920 1921 delta_ns = time - cpu->last_update; 1922 if (flags & SCHED_CPUFREQ_IOWAIT) { 1923 /* Start over if the CPU may have been idle. */ 1924 if (delta_ns > TICK_NSEC) { 1925 cpu->iowait_boost = ONE_EIGHTH_FP; 1926 } else if (cpu->iowait_boost >= ONE_EIGHTH_FP) { 1927 cpu->iowait_boost <<= 1; 1928 if (cpu->iowait_boost > int_tofp(1)) 1929 cpu->iowait_boost = int_tofp(1); 1930 } else { 1931 cpu->iowait_boost = ONE_EIGHTH_FP; 1932 } 1933 } else if (cpu->iowait_boost) { 1934 /* Clear iowait_boost if the CPU may have been idle. */ 1935 if (delta_ns > TICK_NSEC) 1936 cpu->iowait_boost = 0; 1937 else 1938 cpu->iowait_boost >>= 1; 1939 } 1940 cpu->last_update = time; 1941 delta_ns = time - cpu->sample.time; 1942 if ((s64)delta_ns < INTEL_PSTATE_SAMPLING_INTERVAL) 1943 return; 1944 1945 if (intel_pstate_sample(cpu, time)) 1946 intel_pstate_adjust_pstate(cpu); 1947 } 1948 1949 static struct pstate_funcs core_funcs = { 1950 .get_max = core_get_max_pstate, 1951 .get_max_physical = core_get_max_pstate_physical, 1952 .get_min = core_get_min_pstate, 1953 .get_turbo = core_get_turbo_pstate, 1954 .get_scaling = core_get_scaling, 1955 .get_val = core_get_val, 1956 }; 1957 1958 static const struct pstate_funcs silvermont_funcs = { 1959 .get_max = atom_get_max_pstate, 1960 .get_max_physical = atom_get_max_pstate, 1961 .get_min = atom_get_min_pstate, 1962 .get_turbo = atom_get_turbo_pstate, 1963 .get_val = atom_get_val, 1964 .get_scaling = silvermont_get_scaling, 1965 .get_vid = atom_get_vid, 1966 }; 1967 1968 static const struct pstate_funcs airmont_funcs = { 1969 .get_max = atom_get_max_pstate, 1970 .get_max_physical = atom_get_max_pstate, 1971 .get_min = atom_get_min_pstate, 1972 .get_turbo = atom_get_turbo_pstate, 1973 .get_val = atom_get_val, 1974 .get_scaling = airmont_get_scaling, 1975 .get_vid = atom_get_vid, 1976 }; 1977 1978 static const struct pstate_funcs knl_funcs = { 1979 .get_max = core_get_max_pstate, 1980 .get_max_physical = core_get_max_pstate_physical, 1981 .get_min = core_get_min_pstate, 1982 .get_turbo = knl_get_turbo_pstate, 1983 .get_aperf_mperf_shift = knl_get_aperf_mperf_shift, 1984 .get_scaling = core_get_scaling, 1985 .get_val = core_get_val, 1986 }; 1987 1988 #define X86_MATCH(model, policy) \ 1989 X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6, INTEL_FAM6_##model, \ 1990 X86_FEATURE_APERFMPERF, &policy) 1991 1992 static const struct x86_cpu_id intel_pstate_cpu_ids[] = { 1993 X86_MATCH(SANDYBRIDGE, core_funcs), 1994 X86_MATCH(SANDYBRIDGE_X, core_funcs), 1995 X86_MATCH(ATOM_SILVERMONT, silvermont_funcs), 1996 X86_MATCH(IVYBRIDGE, core_funcs), 1997 X86_MATCH(HASWELL, core_funcs), 1998 X86_MATCH(BROADWELL, core_funcs), 1999 X86_MATCH(IVYBRIDGE_X, core_funcs), 2000 X86_MATCH(HASWELL_X, core_funcs), 2001 X86_MATCH(HASWELL_L, core_funcs), 2002 X86_MATCH(HASWELL_G, core_funcs), 2003 X86_MATCH(BROADWELL_G, core_funcs), 2004 X86_MATCH(ATOM_AIRMONT, airmont_funcs), 2005 X86_MATCH(SKYLAKE_L, core_funcs), 2006 X86_MATCH(BROADWELL_X, core_funcs), 2007 X86_MATCH(SKYLAKE, core_funcs), 2008 X86_MATCH(BROADWELL_D, core_funcs), 2009 X86_MATCH(XEON_PHI_KNL, knl_funcs), 2010 X86_MATCH(XEON_PHI_KNM, knl_funcs), 2011 X86_MATCH(ATOM_GOLDMONT, core_funcs), 2012 X86_MATCH(ATOM_GOLDMONT_PLUS, core_funcs), 2013 X86_MATCH(SKYLAKE_X, core_funcs), 2014 {} 2015 }; 2016 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids); 2017 2018 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = { 2019 X86_MATCH(BROADWELL_D, core_funcs), 2020 X86_MATCH(BROADWELL_X, core_funcs), 2021 X86_MATCH(SKYLAKE_X, core_funcs), 2022 {} 2023 }; 2024 2025 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = { 2026 X86_MATCH(KABYLAKE, core_funcs), 2027 {} 2028 }; 2029 2030 static const struct x86_cpu_id intel_pstate_hwp_boost_ids[] = { 2031 X86_MATCH(SKYLAKE_X, core_funcs), 2032 X86_MATCH(SKYLAKE, core_funcs), 2033 {} 2034 }; 2035 2036 static int intel_pstate_init_cpu(unsigned int cpunum) 2037 { 2038 struct cpudata *cpu; 2039 2040 cpu = all_cpu_data[cpunum]; 2041 2042 if (!cpu) { 2043 cpu = kzalloc(sizeof(*cpu), GFP_KERNEL); 2044 if (!cpu) 2045 return -ENOMEM; 2046 2047 all_cpu_data[cpunum] = cpu; 2048 2049 cpu->epp_default = -EINVAL; 2050 cpu->epp_powersave = -EINVAL; 2051 cpu->epp_saved = -EINVAL; 2052 } 2053 2054 cpu = all_cpu_data[cpunum]; 2055 2056 cpu->cpu = cpunum; 2057 2058 if (hwp_active) { 2059 const struct x86_cpu_id *id; 2060 2061 intel_pstate_hwp_enable(cpu); 2062 2063 id = x86_match_cpu(intel_pstate_hwp_boost_ids); 2064 if (id && intel_pstate_acpi_pm_profile_server()) 2065 hwp_boost = true; 2066 } 2067 2068 intel_pstate_get_cpu_pstates(cpu); 2069 2070 pr_debug("controlling: cpu %d\n", cpunum); 2071 2072 return 0; 2073 } 2074 2075 static void intel_pstate_set_update_util_hook(unsigned int cpu_num) 2076 { 2077 struct cpudata *cpu = all_cpu_data[cpu_num]; 2078 2079 if (hwp_active && !hwp_boost) 2080 return; 2081 2082 if (cpu->update_util_set) 2083 return; 2084 2085 /* Prevent intel_pstate_update_util() from using stale data. */ 2086 cpu->sample.time = 0; 2087 cpufreq_add_update_util_hook(cpu_num, &cpu->update_util, 2088 (hwp_active ? 2089 intel_pstate_update_util_hwp : 2090 intel_pstate_update_util)); 2091 cpu->update_util_set = true; 2092 } 2093 2094 static void intel_pstate_clear_update_util_hook(unsigned int cpu) 2095 { 2096 struct cpudata *cpu_data = all_cpu_data[cpu]; 2097 2098 if (!cpu_data->update_util_set) 2099 return; 2100 2101 cpufreq_remove_update_util_hook(cpu); 2102 cpu_data->update_util_set = false; 2103 synchronize_rcu(); 2104 } 2105 2106 static int intel_pstate_get_max_freq(struct cpudata *cpu) 2107 { 2108 return global.turbo_disabled || global.no_turbo ? 2109 cpu->pstate.max_freq : cpu->pstate.turbo_freq; 2110 } 2111 2112 static void intel_pstate_update_perf_limits(struct cpudata *cpu, 2113 unsigned int policy_min, 2114 unsigned int policy_max) 2115 { 2116 int max_freq = intel_pstate_get_max_freq(cpu); 2117 int32_t max_policy_perf, min_policy_perf; 2118 int max_state, turbo_max; 2119 2120 /* 2121 * HWP needs some special consideration, because on BDX the 2122 * HWP_REQUEST uses abstract value to represent performance 2123 * rather than pure ratios. 2124 */ 2125 if (hwp_active) { 2126 intel_pstate_get_hwp_max(cpu->cpu, &turbo_max, &max_state); 2127 } else { 2128 max_state = global.no_turbo || global.turbo_disabled ? 2129 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate; 2130 turbo_max = cpu->pstate.turbo_pstate; 2131 } 2132 2133 max_policy_perf = max_state * policy_max / max_freq; 2134 if (policy_max == policy_min) { 2135 min_policy_perf = max_policy_perf; 2136 } else { 2137 min_policy_perf = max_state * policy_min / max_freq; 2138 min_policy_perf = clamp_t(int32_t, min_policy_perf, 2139 0, max_policy_perf); 2140 } 2141 2142 pr_debug("cpu:%d max_state %d min_policy_perf:%d max_policy_perf:%d\n", 2143 cpu->cpu, max_state, min_policy_perf, max_policy_perf); 2144 2145 /* Normalize user input to [min_perf, max_perf] */ 2146 if (per_cpu_limits) { 2147 cpu->min_perf_ratio = min_policy_perf; 2148 cpu->max_perf_ratio = max_policy_perf; 2149 } else { 2150 int32_t global_min, global_max; 2151 2152 /* Global limits are in percent of the maximum turbo P-state. */ 2153 global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100); 2154 global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100); 2155 global_min = clamp_t(int32_t, global_min, 0, global_max); 2156 2157 pr_debug("cpu:%d global_min:%d global_max:%d\n", cpu->cpu, 2158 global_min, global_max); 2159 2160 cpu->min_perf_ratio = max(min_policy_perf, global_min); 2161 cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf); 2162 cpu->max_perf_ratio = min(max_policy_perf, global_max); 2163 cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio); 2164 2165 /* Make sure min_perf <= max_perf */ 2166 cpu->min_perf_ratio = min(cpu->min_perf_ratio, 2167 cpu->max_perf_ratio); 2168 2169 } 2170 pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", cpu->cpu, 2171 cpu->max_perf_ratio, 2172 cpu->min_perf_ratio); 2173 } 2174 2175 static int intel_pstate_set_policy(struct cpufreq_policy *policy) 2176 { 2177 struct cpudata *cpu; 2178 2179 if (!policy->cpuinfo.max_freq) 2180 return -ENODEV; 2181 2182 pr_debug("set_policy cpuinfo.max %u policy->max %u\n", 2183 policy->cpuinfo.max_freq, policy->max); 2184 2185 cpu = all_cpu_data[policy->cpu]; 2186 cpu->policy = policy->policy; 2187 2188 mutex_lock(&intel_pstate_limits_lock); 2189 2190 intel_pstate_update_perf_limits(cpu, policy->min, policy->max); 2191 2192 if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) { 2193 /* 2194 * NOHZ_FULL CPUs need this as the governor callback may not 2195 * be invoked on them. 2196 */ 2197 intel_pstate_clear_update_util_hook(policy->cpu); 2198 intel_pstate_max_within_limits(cpu); 2199 } else { 2200 intel_pstate_set_update_util_hook(policy->cpu); 2201 } 2202 2203 if (hwp_active) { 2204 /* 2205 * When hwp_boost was active before and dynamically it 2206 * was turned off, in that case we need to clear the 2207 * update util hook. 2208 */ 2209 if (!hwp_boost) 2210 intel_pstate_clear_update_util_hook(policy->cpu); 2211 intel_pstate_hwp_set(policy->cpu); 2212 } 2213 2214 mutex_unlock(&intel_pstate_limits_lock); 2215 2216 return 0; 2217 } 2218 2219 static void intel_pstate_adjust_policy_max(struct cpudata *cpu, 2220 struct cpufreq_policy_data *policy) 2221 { 2222 if (!hwp_active && 2223 cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate && 2224 policy->max < policy->cpuinfo.max_freq && 2225 policy->max > cpu->pstate.max_freq) { 2226 pr_debug("policy->max > max non turbo frequency\n"); 2227 policy->max = policy->cpuinfo.max_freq; 2228 } 2229 } 2230 2231 static void intel_pstate_verify_cpu_policy(struct cpudata *cpu, 2232 struct cpufreq_policy_data *policy) 2233 { 2234 update_turbo_state(); 2235 cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq, 2236 intel_pstate_get_max_freq(cpu)); 2237 2238 intel_pstate_adjust_policy_max(cpu, policy); 2239 } 2240 2241 static int intel_pstate_verify_policy(struct cpufreq_policy_data *policy) 2242 { 2243 intel_pstate_verify_cpu_policy(all_cpu_data[policy->cpu], policy); 2244 2245 return 0; 2246 } 2247 2248 static void intel_cpufreq_stop_cpu(struct cpufreq_policy *policy) 2249 { 2250 intel_pstate_set_min_pstate(all_cpu_data[policy->cpu]); 2251 } 2252 2253 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy) 2254 { 2255 pr_debug("CPU %d exiting\n", policy->cpu); 2256 2257 intel_pstate_clear_update_util_hook(policy->cpu); 2258 if (hwp_active) { 2259 intel_pstate_hwp_save_state(policy); 2260 intel_pstate_hwp_force_min_perf(policy->cpu); 2261 } else { 2262 intel_cpufreq_stop_cpu(policy); 2263 } 2264 } 2265 2266 static int intel_pstate_cpu_exit(struct cpufreq_policy *policy) 2267 { 2268 intel_pstate_exit_perf_limits(policy); 2269 2270 policy->fast_switch_possible = false; 2271 2272 return 0; 2273 } 2274 2275 static int __intel_pstate_cpu_init(struct cpufreq_policy *policy) 2276 { 2277 struct cpudata *cpu; 2278 int rc; 2279 2280 rc = intel_pstate_init_cpu(policy->cpu); 2281 if (rc) 2282 return rc; 2283 2284 cpu = all_cpu_data[policy->cpu]; 2285 2286 cpu->max_perf_ratio = 0xFF; 2287 cpu->min_perf_ratio = 0; 2288 2289 policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling; 2290 policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling; 2291 2292 /* cpuinfo and default policy values */ 2293 policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling; 2294 update_turbo_state(); 2295 global.turbo_disabled_mf = global.turbo_disabled; 2296 policy->cpuinfo.max_freq = global.turbo_disabled ? 2297 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate; 2298 policy->cpuinfo.max_freq *= cpu->pstate.scaling; 2299 2300 if (hwp_active) { 2301 unsigned int max_freq; 2302 2303 max_freq = global.turbo_disabled ? 2304 cpu->pstate.max_freq : cpu->pstate.turbo_freq; 2305 if (max_freq < policy->cpuinfo.max_freq) 2306 policy->cpuinfo.max_freq = max_freq; 2307 } 2308 2309 intel_pstate_init_acpi_perf_limits(policy); 2310 2311 policy->fast_switch_possible = true; 2312 2313 return 0; 2314 } 2315 2316 static int intel_pstate_cpu_init(struct cpufreq_policy *policy) 2317 { 2318 int ret = __intel_pstate_cpu_init(policy); 2319 2320 if (ret) 2321 return ret; 2322 2323 /* 2324 * Set the policy to powersave to provide a valid fallback value in case 2325 * the default cpufreq governor is neither powersave nor performance. 2326 */ 2327 policy->policy = CPUFREQ_POLICY_POWERSAVE; 2328 2329 return 0; 2330 } 2331 2332 static struct cpufreq_driver intel_pstate = { 2333 .flags = CPUFREQ_CONST_LOOPS, 2334 .verify = intel_pstate_verify_policy, 2335 .setpolicy = intel_pstate_set_policy, 2336 .suspend = intel_pstate_hwp_save_state, 2337 .resume = intel_pstate_resume, 2338 .init = intel_pstate_cpu_init, 2339 .exit = intel_pstate_cpu_exit, 2340 .stop_cpu = intel_pstate_stop_cpu, 2341 .update_limits = intel_pstate_update_limits, 2342 .name = "intel_pstate", 2343 }; 2344 2345 static int intel_cpufreq_verify_policy(struct cpufreq_policy_data *policy) 2346 { 2347 struct cpudata *cpu = all_cpu_data[policy->cpu]; 2348 2349 intel_pstate_verify_cpu_policy(cpu, policy); 2350 intel_pstate_update_perf_limits(cpu, policy->min, policy->max); 2351 2352 return 0; 2353 } 2354 2355 /* Use of trace in passive mode: 2356 * 2357 * In passive mode the trace core_busy field (also known as the 2358 * performance field, and lablelled as such on the graphs; also known as 2359 * core_avg_perf) is not needed and so is re-assigned to indicate if the 2360 * driver call was via the normal or fast switch path. Various graphs 2361 * output from the intel_pstate_tracer.py utility that include core_busy 2362 * (or performance or core_avg_perf) have a fixed y-axis from 0 to 100%, 2363 * so we use 10 to indicate the the normal path through the driver, and 2364 * 90 to indicate the fast switch path through the driver. 2365 * The scaled_busy field is not used, and is set to 0. 2366 */ 2367 2368 #define INTEL_PSTATE_TRACE_TARGET 10 2369 #define INTEL_PSTATE_TRACE_FAST_SWITCH 90 2370 2371 static void intel_cpufreq_trace(struct cpudata *cpu, unsigned int trace_type, int old_pstate) 2372 { 2373 struct sample *sample; 2374 2375 if (!trace_pstate_sample_enabled()) 2376 return; 2377 2378 if (!intel_pstate_sample(cpu, ktime_get())) 2379 return; 2380 2381 sample = &cpu->sample; 2382 trace_pstate_sample(trace_type, 2383 0, 2384 old_pstate, 2385 cpu->pstate.current_pstate, 2386 sample->mperf, 2387 sample->aperf, 2388 sample->tsc, 2389 get_avg_frequency(cpu), 2390 fp_toint(cpu->iowait_boost * 100)); 2391 } 2392 2393 static int intel_cpufreq_target(struct cpufreq_policy *policy, 2394 unsigned int target_freq, 2395 unsigned int relation) 2396 { 2397 struct cpudata *cpu = all_cpu_data[policy->cpu]; 2398 struct cpufreq_freqs freqs; 2399 int target_pstate, old_pstate; 2400 2401 update_turbo_state(); 2402 2403 freqs.old = policy->cur; 2404 freqs.new = target_freq; 2405 2406 cpufreq_freq_transition_begin(policy, &freqs); 2407 switch (relation) { 2408 case CPUFREQ_RELATION_L: 2409 target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling); 2410 break; 2411 case CPUFREQ_RELATION_H: 2412 target_pstate = freqs.new / cpu->pstate.scaling; 2413 break; 2414 default: 2415 target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling); 2416 break; 2417 } 2418 target_pstate = intel_pstate_prepare_request(cpu, target_pstate); 2419 old_pstate = cpu->pstate.current_pstate; 2420 if (target_pstate != cpu->pstate.current_pstate) { 2421 cpu->pstate.current_pstate = target_pstate; 2422 wrmsrl_on_cpu(policy->cpu, MSR_IA32_PERF_CTL, 2423 pstate_funcs.get_val(cpu, target_pstate)); 2424 } 2425 freqs.new = target_pstate * cpu->pstate.scaling; 2426 intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_TARGET, old_pstate); 2427 cpufreq_freq_transition_end(policy, &freqs, false); 2428 2429 return 0; 2430 } 2431 2432 static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy, 2433 unsigned int target_freq) 2434 { 2435 struct cpudata *cpu = all_cpu_data[policy->cpu]; 2436 int target_pstate, old_pstate; 2437 2438 update_turbo_state(); 2439 2440 target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling); 2441 target_pstate = intel_pstate_prepare_request(cpu, target_pstate); 2442 old_pstate = cpu->pstate.current_pstate; 2443 intel_pstate_update_pstate(cpu, target_pstate); 2444 intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_FAST_SWITCH, old_pstate); 2445 return target_pstate * cpu->pstate.scaling; 2446 } 2447 2448 static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy) 2449 { 2450 int max_state, turbo_max, min_freq, max_freq, ret; 2451 struct freq_qos_request *req; 2452 struct cpudata *cpu; 2453 struct device *dev; 2454 2455 dev = get_cpu_device(policy->cpu); 2456 if (!dev) 2457 return -ENODEV; 2458 2459 ret = __intel_pstate_cpu_init(policy); 2460 if (ret) 2461 return ret; 2462 2463 policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY; 2464 policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY; 2465 /* This reflects the intel_pstate_get_cpu_pstates() setting. */ 2466 policy->cur = policy->cpuinfo.min_freq; 2467 2468 req = kcalloc(2, sizeof(*req), GFP_KERNEL); 2469 if (!req) { 2470 ret = -ENOMEM; 2471 goto pstate_exit; 2472 } 2473 2474 cpu = all_cpu_data[policy->cpu]; 2475 2476 if (hwp_active) 2477 intel_pstate_get_hwp_max(policy->cpu, &turbo_max, &max_state); 2478 else 2479 turbo_max = cpu->pstate.turbo_pstate; 2480 2481 min_freq = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100); 2482 min_freq *= cpu->pstate.scaling; 2483 max_freq = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100); 2484 max_freq *= cpu->pstate.scaling; 2485 2486 ret = freq_qos_add_request(&policy->constraints, req, FREQ_QOS_MIN, 2487 min_freq); 2488 if (ret < 0) { 2489 dev_err(dev, "Failed to add min-freq constraint (%d)\n", ret); 2490 goto free_req; 2491 } 2492 2493 ret = freq_qos_add_request(&policy->constraints, req + 1, FREQ_QOS_MAX, 2494 max_freq); 2495 if (ret < 0) { 2496 dev_err(dev, "Failed to add max-freq constraint (%d)\n", ret); 2497 goto remove_min_req; 2498 } 2499 2500 policy->driver_data = req; 2501 2502 return 0; 2503 2504 remove_min_req: 2505 freq_qos_remove_request(req); 2506 free_req: 2507 kfree(req); 2508 pstate_exit: 2509 intel_pstate_exit_perf_limits(policy); 2510 2511 return ret; 2512 } 2513 2514 static int intel_cpufreq_cpu_exit(struct cpufreq_policy *policy) 2515 { 2516 struct freq_qos_request *req; 2517 2518 req = policy->driver_data; 2519 2520 freq_qos_remove_request(req + 1); 2521 freq_qos_remove_request(req); 2522 kfree(req); 2523 2524 return intel_pstate_cpu_exit(policy); 2525 } 2526 2527 static struct cpufreq_driver intel_cpufreq = { 2528 .flags = CPUFREQ_CONST_LOOPS, 2529 .verify = intel_cpufreq_verify_policy, 2530 .target = intel_cpufreq_target, 2531 .fast_switch = intel_cpufreq_fast_switch, 2532 .init = intel_cpufreq_cpu_init, 2533 .exit = intel_cpufreq_cpu_exit, 2534 .stop_cpu = intel_cpufreq_stop_cpu, 2535 .update_limits = intel_pstate_update_limits, 2536 .name = "intel_cpufreq", 2537 }; 2538 2539 static struct cpufreq_driver *default_driver; 2540 2541 static void intel_pstate_driver_cleanup(void) 2542 { 2543 unsigned int cpu; 2544 2545 get_online_cpus(); 2546 for_each_online_cpu(cpu) { 2547 if (all_cpu_data[cpu]) { 2548 if (intel_pstate_driver == &intel_pstate) 2549 intel_pstate_clear_update_util_hook(cpu); 2550 2551 kfree(all_cpu_data[cpu]); 2552 all_cpu_data[cpu] = NULL; 2553 } 2554 } 2555 put_online_cpus(); 2556 intel_pstate_driver = NULL; 2557 } 2558 2559 static int intel_pstate_register_driver(struct cpufreq_driver *driver) 2560 { 2561 int ret; 2562 2563 memset(&global, 0, sizeof(global)); 2564 global.max_perf_pct = 100; 2565 2566 intel_pstate_driver = driver; 2567 ret = cpufreq_register_driver(intel_pstate_driver); 2568 if (ret) { 2569 intel_pstate_driver_cleanup(); 2570 return ret; 2571 } 2572 2573 global.min_perf_pct = min_perf_pct_min(); 2574 2575 return 0; 2576 } 2577 2578 static int intel_pstate_unregister_driver(void) 2579 { 2580 if (hwp_active) 2581 return -EBUSY; 2582 2583 cpufreq_unregister_driver(intel_pstate_driver); 2584 intel_pstate_driver_cleanup(); 2585 2586 return 0; 2587 } 2588 2589 static ssize_t intel_pstate_show_status(char *buf) 2590 { 2591 if (!intel_pstate_driver) 2592 return sprintf(buf, "off\n"); 2593 2594 return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ? 2595 "active" : "passive"); 2596 } 2597 2598 static int intel_pstate_update_status(const char *buf, size_t size) 2599 { 2600 int ret; 2601 2602 if (size == 3 && !strncmp(buf, "off", size)) 2603 return intel_pstate_driver ? 2604 intel_pstate_unregister_driver() : -EINVAL; 2605 2606 if (size == 6 && !strncmp(buf, "active", size)) { 2607 if (intel_pstate_driver) { 2608 if (intel_pstate_driver == &intel_pstate) 2609 return 0; 2610 2611 ret = intel_pstate_unregister_driver(); 2612 if (ret) 2613 return ret; 2614 } 2615 2616 return intel_pstate_register_driver(&intel_pstate); 2617 } 2618 2619 if (size == 7 && !strncmp(buf, "passive", size)) { 2620 if (intel_pstate_driver) { 2621 if (intel_pstate_driver == &intel_cpufreq) 2622 return 0; 2623 2624 ret = intel_pstate_unregister_driver(); 2625 if (ret) 2626 return ret; 2627 } 2628 2629 return intel_pstate_register_driver(&intel_cpufreq); 2630 } 2631 2632 return -EINVAL; 2633 } 2634 2635 static int no_load __initdata; 2636 static int no_hwp __initdata; 2637 static int hwp_only __initdata; 2638 static unsigned int force_load __initdata; 2639 2640 static int __init intel_pstate_msrs_not_valid(void) 2641 { 2642 if (!pstate_funcs.get_max() || 2643 !pstate_funcs.get_min() || 2644 !pstate_funcs.get_turbo()) 2645 return -ENODEV; 2646 2647 return 0; 2648 } 2649 2650 static void __init copy_cpu_funcs(struct pstate_funcs *funcs) 2651 { 2652 pstate_funcs.get_max = funcs->get_max; 2653 pstate_funcs.get_max_physical = funcs->get_max_physical; 2654 pstate_funcs.get_min = funcs->get_min; 2655 pstate_funcs.get_turbo = funcs->get_turbo; 2656 pstate_funcs.get_scaling = funcs->get_scaling; 2657 pstate_funcs.get_val = funcs->get_val; 2658 pstate_funcs.get_vid = funcs->get_vid; 2659 pstate_funcs.get_aperf_mperf_shift = funcs->get_aperf_mperf_shift; 2660 } 2661 2662 #ifdef CONFIG_ACPI 2663 2664 static bool __init intel_pstate_no_acpi_pss(void) 2665 { 2666 int i; 2667 2668 for_each_possible_cpu(i) { 2669 acpi_status status; 2670 union acpi_object *pss; 2671 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL }; 2672 struct acpi_processor *pr = per_cpu(processors, i); 2673 2674 if (!pr) 2675 continue; 2676 2677 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer); 2678 if (ACPI_FAILURE(status)) 2679 continue; 2680 2681 pss = buffer.pointer; 2682 if (pss && pss->type == ACPI_TYPE_PACKAGE) { 2683 kfree(pss); 2684 return false; 2685 } 2686 2687 kfree(pss); 2688 } 2689 2690 pr_debug("ACPI _PSS not found\n"); 2691 return true; 2692 } 2693 2694 static bool __init intel_pstate_no_acpi_pcch(void) 2695 { 2696 acpi_status status; 2697 acpi_handle handle; 2698 2699 status = acpi_get_handle(NULL, "\\_SB", &handle); 2700 if (ACPI_FAILURE(status)) 2701 goto not_found; 2702 2703 if (acpi_has_method(handle, "PCCH")) 2704 return false; 2705 2706 not_found: 2707 pr_debug("ACPI PCCH not found\n"); 2708 return true; 2709 } 2710 2711 static bool __init intel_pstate_has_acpi_ppc(void) 2712 { 2713 int i; 2714 2715 for_each_possible_cpu(i) { 2716 struct acpi_processor *pr = per_cpu(processors, i); 2717 2718 if (!pr) 2719 continue; 2720 if (acpi_has_method(pr->handle, "_PPC")) 2721 return true; 2722 } 2723 pr_debug("ACPI _PPC not found\n"); 2724 return false; 2725 } 2726 2727 enum { 2728 PSS, 2729 PPC, 2730 }; 2731 2732 /* Hardware vendor-specific info that has its own power management modes */ 2733 static struct acpi_platform_list plat_info[] __initdata = { 2734 {"HP ", "ProLiant", 0, ACPI_SIG_FADT, all_versions, NULL, PSS}, 2735 {"ORACLE", "X4-2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 2736 {"ORACLE", "X4-2L ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 2737 {"ORACLE", "X4-2B ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 2738 {"ORACLE", "X3-2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 2739 {"ORACLE", "X3-2L ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 2740 {"ORACLE", "X3-2B ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 2741 {"ORACLE", "X4470M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 2742 {"ORACLE", "X4270M3 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 2743 {"ORACLE", "X4270M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 2744 {"ORACLE", "X4170M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 2745 {"ORACLE", "X4170 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 2746 {"ORACLE", "X4275 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 2747 {"ORACLE", "X6-2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 2748 {"ORACLE", "Sudbury ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 2749 { } /* End */ 2750 }; 2751 2752 #define BITMASK_OOB (BIT(8) | BIT(18)) 2753 2754 static bool __init intel_pstate_platform_pwr_mgmt_exists(void) 2755 { 2756 const struct x86_cpu_id *id; 2757 u64 misc_pwr; 2758 int idx; 2759 2760 id = x86_match_cpu(intel_pstate_cpu_oob_ids); 2761 if (id) { 2762 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr); 2763 if (misc_pwr & BITMASK_OOB) { 2764 pr_debug("Bit 8 or 18 in the MISC_PWR_MGMT MSR set\n"); 2765 pr_debug("P states are controlled in Out of Band mode by the firmware/hardware\n"); 2766 return true; 2767 } 2768 } 2769 2770 idx = acpi_match_platform_list(plat_info); 2771 if (idx < 0) 2772 return false; 2773 2774 switch (plat_info[idx].data) { 2775 case PSS: 2776 if (!intel_pstate_no_acpi_pss()) 2777 return false; 2778 2779 return intel_pstate_no_acpi_pcch(); 2780 case PPC: 2781 return intel_pstate_has_acpi_ppc() && !force_load; 2782 } 2783 2784 return false; 2785 } 2786 2787 static void intel_pstate_request_control_from_smm(void) 2788 { 2789 /* 2790 * It may be unsafe to request P-states control from SMM if _PPC support 2791 * has not been enabled. 2792 */ 2793 if (acpi_ppc) 2794 acpi_processor_pstate_control(); 2795 } 2796 #else /* CONFIG_ACPI not enabled */ 2797 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; } 2798 static inline bool intel_pstate_has_acpi_ppc(void) { return false; } 2799 static inline void intel_pstate_request_control_from_smm(void) {} 2800 #endif /* CONFIG_ACPI */ 2801 2802 #define INTEL_PSTATE_HWP_BROADWELL 0x01 2803 2804 #define X86_MATCH_HWP(model, hwp_mode) \ 2805 X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6, INTEL_FAM6_##model, \ 2806 X86_FEATURE_HWP, hwp_mode) 2807 2808 static const struct x86_cpu_id hwp_support_ids[] __initconst = { 2809 X86_MATCH_HWP(BROADWELL_X, INTEL_PSTATE_HWP_BROADWELL), 2810 X86_MATCH_HWP(BROADWELL_D, INTEL_PSTATE_HWP_BROADWELL), 2811 X86_MATCH_HWP(ANY, 0), 2812 {} 2813 }; 2814 2815 static int __init intel_pstate_init(void) 2816 { 2817 const struct x86_cpu_id *id; 2818 int rc; 2819 2820 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) 2821 return -ENODEV; 2822 2823 if (no_load) 2824 return -ENODEV; 2825 2826 id = x86_match_cpu(hwp_support_ids); 2827 if (id) { 2828 copy_cpu_funcs(&core_funcs); 2829 /* 2830 * Avoid enabling HWP for processors without EPP support, 2831 * because that means incomplete HWP implementation which is a 2832 * corner case and supporting it is generally problematic. 2833 */ 2834 if (!no_hwp && boot_cpu_has(X86_FEATURE_HWP_EPP)) { 2835 hwp_active++; 2836 hwp_mode_bdw = id->driver_data; 2837 intel_pstate.attr = hwp_cpufreq_attrs; 2838 default_driver = &intel_pstate; 2839 goto hwp_cpu_matched; 2840 } 2841 } else { 2842 id = x86_match_cpu(intel_pstate_cpu_ids); 2843 if (!id) { 2844 pr_info("CPU model not supported\n"); 2845 return -ENODEV; 2846 } 2847 2848 copy_cpu_funcs((struct pstate_funcs *)id->driver_data); 2849 } 2850 2851 if (intel_pstate_msrs_not_valid()) { 2852 pr_info("Invalid MSRs\n"); 2853 return -ENODEV; 2854 } 2855 /* Without HWP start in the passive mode. */ 2856 if (!default_driver) 2857 default_driver = &intel_cpufreq; 2858 2859 hwp_cpu_matched: 2860 /* 2861 * The Intel pstate driver will be ignored if the platform 2862 * firmware has its own power management modes. 2863 */ 2864 if (intel_pstate_platform_pwr_mgmt_exists()) { 2865 pr_info("P-states controlled by the platform\n"); 2866 return -ENODEV; 2867 } 2868 2869 if (!hwp_active && hwp_only) 2870 return -ENOTSUPP; 2871 2872 pr_info("Intel P-state driver initializing\n"); 2873 2874 all_cpu_data = vzalloc(array_size(sizeof(void *), num_possible_cpus())); 2875 if (!all_cpu_data) 2876 return -ENOMEM; 2877 2878 intel_pstate_request_control_from_smm(); 2879 2880 intel_pstate_sysfs_expose_params(); 2881 2882 mutex_lock(&intel_pstate_driver_lock); 2883 rc = intel_pstate_register_driver(default_driver); 2884 mutex_unlock(&intel_pstate_driver_lock); 2885 if (rc) 2886 return rc; 2887 2888 if (hwp_active) { 2889 const struct x86_cpu_id *id; 2890 2891 id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids); 2892 if (id) { 2893 set_power_ctl_ee_state(false); 2894 pr_info("Disabling energy efficiency optimization\n"); 2895 } 2896 2897 pr_info("HWP enabled\n"); 2898 } 2899 2900 return 0; 2901 } 2902 device_initcall(intel_pstate_init); 2903 2904 static int __init intel_pstate_setup(char *str) 2905 { 2906 if (!str) 2907 return -EINVAL; 2908 2909 if (!strcmp(str, "disable")) { 2910 no_load = 1; 2911 } else if (!strcmp(str, "active")) { 2912 default_driver = &intel_pstate; 2913 } else if (!strcmp(str, "passive")) { 2914 default_driver = &intel_cpufreq; 2915 no_hwp = 1; 2916 } 2917 if (!strcmp(str, "no_hwp")) { 2918 pr_info("HWP disabled\n"); 2919 no_hwp = 1; 2920 } 2921 if (!strcmp(str, "force")) 2922 force_load = 1; 2923 if (!strcmp(str, "hwp_only")) 2924 hwp_only = 1; 2925 if (!strcmp(str, "per_cpu_perf_limits")) 2926 per_cpu_limits = true; 2927 2928 #ifdef CONFIG_ACPI 2929 if (!strcmp(str, "support_acpi_ppc")) 2930 acpi_ppc = true; 2931 #endif 2932 2933 return 0; 2934 } 2935 early_param("intel_pstate", intel_pstate_setup); 2936 2937 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>"); 2938 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors"); 2939 MODULE_LICENSE("GPL"); 2940