1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * intel_pstate.c: Native P state management for Intel processors 4 * 5 * (C) Copyright 2012 Intel Corporation 6 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com> 7 */ 8 9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 10 11 #include <linux/kernel.h> 12 #include <linux/kernel_stat.h> 13 #include <linux/module.h> 14 #include <linux/ktime.h> 15 #include <linux/hrtimer.h> 16 #include <linux/tick.h> 17 #include <linux/slab.h> 18 #include <linux/sched/cpufreq.h> 19 #include <linux/list.h> 20 #include <linux/cpu.h> 21 #include <linux/cpufreq.h> 22 #include <linux/sysfs.h> 23 #include <linux/types.h> 24 #include <linux/fs.h> 25 #include <linux/acpi.h> 26 #include <linux/vmalloc.h> 27 #include <linux/pm_qos.h> 28 #include <trace/events/power.h> 29 30 #include <asm/div64.h> 31 #include <asm/msr.h> 32 #include <asm/cpu_device_id.h> 33 #include <asm/cpufeature.h> 34 #include <asm/intel-family.h> 35 #include "../drivers/thermal/intel/thermal_interrupt.h" 36 37 #define INTEL_PSTATE_SAMPLING_INTERVAL (10 * NSEC_PER_MSEC) 38 39 #define INTEL_CPUFREQ_TRANSITION_LATENCY 20000 40 #define INTEL_CPUFREQ_TRANSITION_DELAY_HWP 5000 41 #define INTEL_CPUFREQ_TRANSITION_DELAY 500 42 43 #ifdef CONFIG_ACPI 44 #include <acpi/processor.h> 45 #include <acpi/cppc_acpi.h> 46 #endif 47 48 #define FRAC_BITS 8 49 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS) 50 #define fp_toint(X) ((X) >> FRAC_BITS) 51 52 #define ONE_EIGHTH_FP ((int64_t)1 << (FRAC_BITS - 3)) 53 54 #define EXT_BITS 6 55 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS) 56 #define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS) 57 #define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS) 58 59 static inline int32_t mul_fp(int32_t x, int32_t y) 60 { 61 return ((int64_t)x * (int64_t)y) >> FRAC_BITS; 62 } 63 64 static inline int32_t div_fp(s64 x, s64 y) 65 { 66 return div64_s64((int64_t)x << FRAC_BITS, y); 67 } 68 69 static inline int ceiling_fp(int32_t x) 70 { 71 int mask, ret; 72 73 ret = fp_toint(x); 74 mask = (1 << FRAC_BITS) - 1; 75 if (x & mask) 76 ret += 1; 77 return ret; 78 } 79 80 static inline u64 mul_ext_fp(u64 x, u64 y) 81 { 82 return (x * y) >> EXT_FRAC_BITS; 83 } 84 85 static inline u64 div_ext_fp(u64 x, u64 y) 86 { 87 return div64_u64(x << EXT_FRAC_BITS, y); 88 } 89 90 /** 91 * struct sample - Store performance sample 92 * @core_avg_perf: Ratio of APERF/MPERF which is the actual average 93 * performance during last sample period 94 * @busy_scaled: Scaled busy value which is used to calculate next 95 * P state. This can be different than core_avg_perf 96 * to account for cpu idle period 97 * @aperf: Difference of actual performance frequency clock count 98 * read from APERF MSR between last and current sample 99 * @mperf: Difference of maximum performance frequency clock count 100 * read from MPERF MSR between last and current sample 101 * @tsc: Difference of time stamp counter between last and 102 * current sample 103 * @time: Current time from scheduler 104 * 105 * This structure is used in the cpudata structure to store performance sample 106 * data for choosing next P State. 107 */ 108 struct sample { 109 int32_t core_avg_perf; 110 int32_t busy_scaled; 111 u64 aperf; 112 u64 mperf; 113 u64 tsc; 114 u64 time; 115 }; 116 117 /** 118 * struct pstate_data - Store P state data 119 * @current_pstate: Current requested P state 120 * @min_pstate: Min P state possible for this platform 121 * @max_pstate: Max P state possible for this platform 122 * @max_pstate_physical:This is physical Max P state for a processor 123 * This can be higher than the max_pstate which can 124 * be limited by platform thermal design power limits 125 * @perf_ctl_scaling: PERF_CTL P-state to frequency scaling factor 126 * @scaling: Scaling factor between performance and frequency 127 * @turbo_pstate: Max Turbo P state possible for this platform 128 * @min_freq: @min_pstate frequency in cpufreq units 129 * @max_freq: @max_pstate frequency in cpufreq units 130 * @turbo_freq: @turbo_pstate frequency in cpufreq units 131 * 132 * Stores the per cpu model P state limits and current P state. 133 */ 134 struct pstate_data { 135 int current_pstate; 136 int min_pstate; 137 int max_pstate; 138 int max_pstate_physical; 139 int perf_ctl_scaling; 140 int scaling; 141 int turbo_pstate; 142 unsigned int min_freq; 143 unsigned int max_freq; 144 unsigned int turbo_freq; 145 }; 146 147 /** 148 * struct vid_data - Stores voltage information data 149 * @min: VID data for this platform corresponding to 150 * the lowest P state 151 * @max: VID data corresponding to the highest P State. 152 * @turbo: VID data for turbo P state 153 * @ratio: Ratio of (vid max - vid min) / 154 * (max P state - Min P State) 155 * 156 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling) 157 * This data is used in Atom platforms, where in addition to target P state, 158 * the voltage data needs to be specified to select next P State. 159 */ 160 struct vid_data { 161 int min; 162 int max; 163 int turbo; 164 int32_t ratio; 165 }; 166 167 /** 168 * struct global_params - Global parameters, mostly tunable via sysfs. 169 * @no_turbo: Whether or not to use turbo P-states. 170 * @turbo_disabled: Whether or not turbo P-states are available at all, 171 * based on the MSR_IA32_MISC_ENABLE value and whether or 172 * not the maximum reported turbo P-state is different from 173 * the maximum reported non-turbo one. 174 * @turbo_disabled_mf: The @turbo_disabled value reflected by cpuinfo.max_freq. 175 * @min_perf_pct: Minimum capacity limit in percent of the maximum turbo 176 * P-state capacity. 177 * @max_perf_pct: Maximum capacity limit in percent of the maximum turbo 178 * P-state capacity. 179 */ 180 struct global_params { 181 bool no_turbo; 182 bool turbo_disabled; 183 bool turbo_disabled_mf; 184 int max_perf_pct; 185 int min_perf_pct; 186 }; 187 188 /** 189 * struct cpudata - Per CPU instance data storage 190 * @cpu: CPU number for this instance data 191 * @policy: CPUFreq policy value 192 * @update_util: CPUFreq utility callback information 193 * @update_util_set: CPUFreq utility callback is set 194 * @iowait_boost: iowait-related boost fraction 195 * @last_update: Time of the last update. 196 * @pstate: Stores P state limits for this CPU 197 * @vid: Stores VID limits for this CPU 198 * @last_sample_time: Last Sample time 199 * @aperf_mperf_shift: APERF vs MPERF counting frequency difference 200 * @prev_aperf: Last APERF value read from APERF MSR 201 * @prev_mperf: Last MPERF value read from MPERF MSR 202 * @prev_tsc: Last timestamp counter (TSC) value 203 * @prev_cummulative_iowait: IO Wait time difference from last and 204 * current sample 205 * @sample: Storage for storing last Sample data 206 * @min_perf_ratio: Minimum capacity in terms of PERF or HWP ratios 207 * @max_perf_ratio: Maximum capacity in terms of PERF or HWP ratios 208 * @acpi_perf_data: Stores ACPI perf information read from _PSS 209 * @valid_pss_table: Set to true for valid ACPI _PSS entries found 210 * @epp_powersave: Last saved HWP energy performance preference 211 * (EPP) or energy performance bias (EPB), 212 * when policy switched to performance 213 * @epp_policy: Last saved policy used to set EPP/EPB 214 * @epp_default: Power on default HWP energy performance 215 * preference/bias 216 * @epp_cached Cached HWP energy-performance preference value 217 * @hwp_req_cached: Cached value of the last HWP Request MSR 218 * @hwp_cap_cached: Cached value of the last HWP Capabilities MSR 219 * @last_io_update: Last time when IO wake flag was set 220 * @sched_flags: Store scheduler flags for possible cross CPU update 221 * @hwp_boost_min: Last HWP boosted min performance 222 * @suspended: Whether or not the driver has been suspended. 223 * @hwp_notify_work: workqueue for HWP notifications. 224 * 225 * This structure stores per CPU instance data for all CPUs. 226 */ 227 struct cpudata { 228 int cpu; 229 230 unsigned int policy; 231 struct update_util_data update_util; 232 bool update_util_set; 233 234 struct pstate_data pstate; 235 struct vid_data vid; 236 237 u64 last_update; 238 u64 last_sample_time; 239 u64 aperf_mperf_shift; 240 u64 prev_aperf; 241 u64 prev_mperf; 242 u64 prev_tsc; 243 u64 prev_cummulative_iowait; 244 struct sample sample; 245 int32_t min_perf_ratio; 246 int32_t max_perf_ratio; 247 #ifdef CONFIG_ACPI 248 struct acpi_processor_performance acpi_perf_data; 249 bool valid_pss_table; 250 #endif 251 unsigned int iowait_boost; 252 s16 epp_powersave; 253 s16 epp_policy; 254 s16 epp_default; 255 s16 epp_cached; 256 u64 hwp_req_cached; 257 u64 hwp_cap_cached; 258 u64 last_io_update; 259 unsigned int sched_flags; 260 u32 hwp_boost_min; 261 bool suspended; 262 struct delayed_work hwp_notify_work; 263 }; 264 265 static struct cpudata **all_cpu_data; 266 267 /** 268 * struct pstate_funcs - Per CPU model specific callbacks 269 * @get_max: Callback to get maximum non turbo effective P state 270 * @get_max_physical: Callback to get maximum non turbo physical P state 271 * @get_min: Callback to get minimum P state 272 * @get_turbo: Callback to get turbo P state 273 * @get_scaling: Callback to get frequency scaling factor 274 * @get_cpu_scaling: Get frequency scaling factor for a given cpu 275 * @get_aperf_mperf_shift: Callback to get the APERF vs MPERF frequency difference 276 * @get_val: Callback to convert P state to actual MSR write value 277 * @get_vid: Callback to get VID data for Atom platforms 278 * 279 * Core and Atom CPU models have different way to get P State limits. This 280 * structure is used to store those callbacks. 281 */ 282 struct pstate_funcs { 283 int (*get_max)(void); 284 int (*get_max_physical)(void); 285 int (*get_min)(void); 286 int (*get_turbo)(void); 287 int (*get_scaling)(void); 288 int (*get_cpu_scaling)(int cpu); 289 int (*get_aperf_mperf_shift)(void); 290 u64 (*get_val)(struct cpudata*, int pstate); 291 void (*get_vid)(struct cpudata *); 292 }; 293 294 static struct pstate_funcs pstate_funcs __read_mostly; 295 296 static int hwp_active __read_mostly; 297 static int hwp_mode_bdw __read_mostly; 298 static bool per_cpu_limits __read_mostly; 299 static bool hwp_boost __read_mostly; 300 301 static struct cpufreq_driver *intel_pstate_driver __read_mostly; 302 303 #ifdef CONFIG_ACPI 304 static bool acpi_ppc; 305 #endif 306 307 static struct global_params global; 308 309 static DEFINE_MUTEX(intel_pstate_driver_lock); 310 static DEFINE_MUTEX(intel_pstate_limits_lock); 311 312 #ifdef CONFIG_ACPI 313 314 static bool intel_pstate_acpi_pm_profile_server(void) 315 { 316 if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER || 317 acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER) 318 return true; 319 320 return false; 321 } 322 323 static bool intel_pstate_get_ppc_enable_status(void) 324 { 325 if (intel_pstate_acpi_pm_profile_server()) 326 return true; 327 328 return acpi_ppc; 329 } 330 331 #ifdef CONFIG_ACPI_CPPC_LIB 332 333 /* The work item is needed to avoid CPU hotplug locking issues */ 334 static void intel_pstste_sched_itmt_work_fn(struct work_struct *work) 335 { 336 sched_set_itmt_support(); 337 } 338 339 static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn); 340 341 #define CPPC_MAX_PERF U8_MAX 342 343 static void intel_pstate_set_itmt_prio(int cpu) 344 { 345 struct cppc_perf_caps cppc_perf; 346 static u32 max_highest_perf = 0, min_highest_perf = U32_MAX; 347 int ret; 348 349 ret = cppc_get_perf_caps(cpu, &cppc_perf); 350 if (ret) 351 return; 352 353 /* 354 * On some systems with overclocking enabled, CPPC.highest_perf is hardcoded to 0xff. 355 * In this case we can't use CPPC.highest_perf to enable ITMT. 356 * In this case we can look at MSR_HWP_CAPABILITIES bits [8:0] to decide. 357 */ 358 if (cppc_perf.highest_perf == CPPC_MAX_PERF) 359 cppc_perf.highest_perf = HWP_HIGHEST_PERF(READ_ONCE(all_cpu_data[cpu]->hwp_cap_cached)); 360 361 /* 362 * The priorities can be set regardless of whether or not 363 * sched_set_itmt_support(true) has been called and it is valid to 364 * update them at any time after it has been called. 365 */ 366 sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu); 367 368 if (max_highest_perf <= min_highest_perf) { 369 if (cppc_perf.highest_perf > max_highest_perf) 370 max_highest_perf = cppc_perf.highest_perf; 371 372 if (cppc_perf.highest_perf < min_highest_perf) 373 min_highest_perf = cppc_perf.highest_perf; 374 375 if (max_highest_perf > min_highest_perf) { 376 /* 377 * This code can be run during CPU online under the 378 * CPU hotplug locks, so sched_set_itmt_support() 379 * cannot be called from here. Queue up a work item 380 * to invoke it. 381 */ 382 schedule_work(&sched_itmt_work); 383 } 384 } 385 } 386 387 static int intel_pstate_get_cppc_guaranteed(int cpu) 388 { 389 struct cppc_perf_caps cppc_perf; 390 int ret; 391 392 ret = cppc_get_perf_caps(cpu, &cppc_perf); 393 if (ret) 394 return ret; 395 396 if (cppc_perf.guaranteed_perf) 397 return cppc_perf.guaranteed_perf; 398 399 return cppc_perf.nominal_perf; 400 } 401 402 static u32 intel_pstate_cppc_nominal(int cpu) 403 { 404 u64 nominal_perf; 405 406 if (cppc_get_nominal_perf(cpu, &nominal_perf)) 407 return 0; 408 409 return nominal_perf; 410 } 411 #else /* CONFIG_ACPI_CPPC_LIB */ 412 static inline void intel_pstate_set_itmt_prio(int cpu) 413 { 414 } 415 #endif /* CONFIG_ACPI_CPPC_LIB */ 416 417 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy) 418 { 419 struct cpudata *cpu; 420 int ret; 421 int i; 422 423 if (hwp_active) { 424 intel_pstate_set_itmt_prio(policy->cpu); 425 return; 426 } 427 428 if (!intel_pstate_get_ppc_enable_status()) 429 return; 430 431 cpu = all_cpu_data[policy->cpu]; 432 433 ret = acpi_processor_register_performance(&cpu->acpi_perf_data, 434 policy->cpu); 435 if (ret) 436 return; 437 438 /* 439 * Check if the control value in _PSS is for PERF_CTL MSR, which should 440 * guarantee that the states returned by it map to the states in our 441 * list directly. 442 */ 443 if (cpu->acpi_perf_data.control_register.space_id != 444 ACPI_ADR_SPACE_FIXED_HARDWARE) 445 goto err; 446 447 /* 448 * If there is only one entry _PSS, simply ignore _PSS and continue as 449 * usual without taking _PSS into account 450 */ 451 if (cpu->acpi_perf_data.state_count < 2) 452 goto err; 453 454 pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu); 455 for (i = 0; i < cpu->acpi_perf_data.state_count; i++) { 456 pr_debug(" %cP%d: %u MHz, %u mW, 0x%x\n", 457 (i == cpu->acpi_perf_data.state ? '*' : ' '), i, 458 (u32) cpu->acpi_perf_data.states[i].core_frequency, 459 (u32) cpu->acpi_perf_data.states[i].power, 460 (u32) cpu->acpi_perf_data.states[i].control); 461 } 462 463 /* 464 * The _PSS table doesn't contain whole turbo frequency range. 465 * This just contains +1 MHZ above the max non turbo frequency, 466 * with control value corresponding to max turbo ratio. But 467 * when cpufreq set policy is called, it will call with this 468 * max frequency, which will cause a reduced performance as 469 * this driver uses real max turbo frequency as the max 470 * frequency. So correct this frequency in _PSS table to 471 * correct max turbo frequency based on the turbo state. 472 * Also need to convert to MHz as _PSS freq is in MHz. 473 */ 474 if (!global.turbo_disabled) 475 cpu->acpi_perf_data.states[0].core_frequency = 476 policy->cpuinfo.max_freq / 1000; 477 cpu->valid_pss_table = true; 478 pr_debug("_PPC limits will be enforced\n"); 479 480 return; 481 482 err: 483 cpu->valid_pss_table = false; 484 acpi_processor_unregister_performance(policy->cpu); 485 } 486 487 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy) 488 { 489 struct cpudata *cpu; 490 491 cpu = all_cpu_data[policy->cpu]; 492 if (!cpu->valid_pss_table) 493 return; 494 495 acpi_processor_unregister_performance(policy->cpu); 496 } 497 #else /* CONFIG_ACPI */ 498 static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy) 499 { 500 } 501 502 static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy) 503 { 504 } 505 506 static inline bool intel_pstate_acpi_pm_profile_server(void) 507 { 508 return false; 509 } 510 #endif /* CONFIG_ACPI */ 511 512 #ifndef CONFIG_ACPI_CPPC_LIB 513 static inline int intel_pstate_get_cppc_guaranteed(int cpu) 514 { 515 return -ENOTSUPP; 516 } 517 #endif /* CONFIG_ACPI_CPPC_LIB */ 518 519 /** 520 * intel_pstate_hybrid_hwp_adjust - Calibrate HWP performance levels. 521 * @cpu: Target CPU. 522 * 523 * On hybrid processors, HWP may expose more performance levels than there are 524 * P-states accessible through the PERF_CTL interface. If that happens, the 525 * scaling factor between HWP performance levels and CPU frequency will be less 526 * than the scaling factor between P-state values and CPU frequency. 527 * 528 * In that case, adjust the CPU parameters used in computations accordingly. 529 */ 530 static void intel_pstate_hybrid_hwp_adjust(struct cpudata *cpu) 531 { 532 int perf_ctl_max_phys = cpu->pstate.max_pstate_physical; 533 int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling; 534 int perf_ctl_turbo = pstate_funcs.get_turbo(); 535 int turbo_freq = perf_ctl_turbo * perf_ctl_scaling; 536 int scaling = cpu->pstate.scaling; 537 538 pr_debug("CPU%d: perf_ctl_max_phys = %d\n", cpu->cpu, perf_ctl_max_phys); 539 pr_debug("CPU%d: perf_ctl_max = %d\n", cpu->cpu, pstate_funcs.get_max()); 540 pr_debug("CPU%d: perf_ctl_turbo = %d\n", cpu->cpu, perf_ctl_turbo); 541 pr_debug("CPU%d: perf_ctl_scaling = %d\n", cpu->cpu, perf_ctl_scaling); 542 pr_debug("CPU%d: HWP_CAP guaranteed = %d\n", cpu->cpu, cpu->pstate.max_pstate); 543 pr_debug("CPU%d: HWP_CAP highest = %d\n", cpu->cpu, cpu->pstate.turbo_pstate); 544 pr_debug("CPU%d: HWP-to-frequency scaling factor: %d\n", cpu->cpu, scaling); 545 546 /* 547 * If the product of the HWP performance scaling factor and the HWP_CAP 548 * highest performance is greater than the maximum turbo frequency 549 * corresponding to the pstate_funcs.get_turbo() return value, the 550 * scaling factor is too high, so recompute it to make the HWP_CAP 551 * highest performance correspond to the maximum turbo frequency. 552 */ 553 cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * scaling; 554 if (turbo_freq < cpu->pstate.turbo_freq) { 555 cpu->pstate.turbo_freq = turbo_freq; 556 scaling = DIV_ROUND_UP(turbo_freq, cpu->pstate.turbo_pstate); 557 cpu->pstate.scaling = scaling; 558 559 pr_debug("CPU%d: refined HWP-to-frequency scaling factor: %d\n", 560 cpu->cpu, scaling); 561 } 562 563 cpu->pstate.max_freq = rounddown(cpu->pstate.max_pstate * scaling, 564 perf_ctl_scaling); 565 566 cpu->pstate.max_pstate_physical = 567 DIV_ROUND_UP(perf_ctl_max_phys * perf_ctl_scaling, 568 scaling); 569 570 cpu->pstate.min_freq = cpu->pstate.min_pstate * perf_ctl_scaling; 571 /* 572 * Cast the min P-state value retrieved via pstate_funcs.get_min() to 573 * the effective range of HWP performance levels. 574 */ 575 cpu->pstate.min_pstate = DIV_ROUND_UP(cpu->pstate.min_freq, scaling); 576 } 577 578 static inline void update_turbo_state(void) 579 { 580 u64 misc_en; 581 struct cpudata *cpu; 582 583 cpu = all_cpu_data[0]; 584 rdmsrl(MSR_IA32_MISC_ENABLE, misc_en); 585 global.turbo_disabled = 586 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE || 587 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate); 588 } 589 590 static int min_perf_pct_min(void) 591 { 592 struct cpudata *cpu = all_cpu_data[0]; 593 int turbo_pstate = cpu->pstate.turbo_pstate; 594 595 return turbo_pstate ? 596 (cpu->pstate.min_pstate * 100 / turbo_pstate) : 0; 597 } 598 599 static s16 intel_pstate_get_epb(struct cpudata *cpu_data) 600 { 601 u64 epb; 602 int ret; 603 604 if (!boot_cpu_has(X86_FEATURE_EPB)) 605 return -ENXIO; 606 607 ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb); 608 if (ret) 609 return (s16)ret; 610 611 return (s16)(epb & 0x0f); 612 } 613 614 static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data) 615 { 616 s16 epp; 617 618 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) { 619 /* 620 * When hwp_req_data is 0, means that caller didn't read 621 * MSR_HWP_REQUEST, so need to read and get EPP. 622 */ 623 if (!hwp_req_data) { 624 epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, 625 &hwp_req_data); 626 if (epp) 627 return epp; 628 } 629 epp = (hwp_req_data >> 24) & 0xff; 630 } else { 631 /* When there is no EPP present, HWP uses EPB settings */ 632 epp = intel_pstate_get_epb(cpu_data); 633 } 634 635 return epp; 636 } 637 638 static int intel_pstate_set_epb(int cpu, s16 pref) 639 { 640 u64 epb; 641 int ret; 642 643 if (!boot_cpu_has(X86_FEATURE_EPB)) 644 return -ENXIO; 645 646 ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb); 647 if (ret) 648 return ret; 649 650 epb = (epb & ~0x0f) | pref; 651 wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb); 652 653 return 0; 654 } 655 656 /* 657 * EPP/EPB display strings corresponding to EPP index in the 658 * energy_perf_strings[] 659 * index String 660 *------------------------------------- 661 * 0 default 662 * 1 performance 663 * 2 balance_performance 664 * 3 balance_power 665 * 4 power 666 */ 667 668 enum energy_perf_value_index { 669 EPP_INDEX_DEFAULT = 0, 670 EPP_INDEX_PERFORMANCE, 671 EPP_INDEX_BALANCE_PERFORMANCE, 672 EPP_INDEX_BALANCE_POWERSAVE, 673 EPP_INDEX_POWERSAVE, 674 }; 675 676 static const char * const energy_perf_strings[] = { 677 [EPP_INDEX_DEFAULT] = "default", 678 [EPP_INDEX_PERFORMANCE] = "performance", 679 [EPP_INDEX_BALANCE_PERFORMANCE] = "balance_performance", 680 [EPP_INDEX_BALANCE_POWERSAVE] = "balance_power", 681 [EPP_INDEX_POWERSAVE] = "power", 682 NULL 683 }; 684 static unsigned int epp_values[] = { 685 [EPP_INDEX_DEFAULT] = 0, /* Unused index */ 686 [EPP_INDEX_PERFORMANCE] = HWP_EPP_PERFORMANCE, 687 [EPP_INDEX_BALANCE_PERFORMANCE] = HWP_EPP_BALANCE_PERFORMANCE, 688 [EPP_INDEX_BALANCE_POWERSAVE] = HWP_EPP_BALANCE_POWERSAVE, 689 [EPP_INDEX_POWERSAVE] = HWP_EPP_POWERSAVE, 690 }; 691 692 static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data, int *raw_epp) 693 { 694 s16 epp; 695 int index = -EINVAL; 696 697 *raw_epp = 0; 698 epp = intel_pstate_get_epp(cpu_data, 0); 699 if (epp < 0) 700 return epp; 701 702 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) { 703 if (epp == epp_values[EPP_INDEX_PERFORMANCE]) 704 return EPP_INDEX_PERFORMANCE; 705 if (epp == epp_values[EPP_INDEX_BALANCE_PERFORMANCE]) 706 return EPP_INDEX_BALANCE_PERFORMANCE; 707 if (epp == epp_values[EPP_INDEX_BALANCE_POWERSAVE]) 708 return EPP_INDEX_BALANCE_POWERSAVE; 709 if (epp == epp_values[EPP_INDEX_POWERSAVE]) 710 return EPP_INDEX_POWERSAVE; 711 *raw_epp = epp; 712 return 0; 713 } else if (boot_cpu_has(X86_FEATURE_EPB)) { 714 /* 715 * Range: 716 * 0x00-0x03 : Performance 717 * 0x04-0x07 : Balance performance 718 * 0x08-0x0B : Balance power 719 * 0x0C-0x0F : Power 720 * The EPB is a 4 bit value, but our ranges restrict the 721 * value which can be set. Here only using top two bits 722 * effectively. 723 */ 724 index = (epp >> 2) + 1; 725 } 726 727 return index; 728 } 729 730 static int intel_pstate_set_epp(struct cpudata *cpu, u32 epp) 731 { 732 int ret; 733 734 /* 735 * Use the cached HWP Request MSR value, because in the active mode the 736 * register itself may be updated by intel_pstate_hwp_boost_up() or 737 * intel_pstate_hwp_boost_down() at any time. 738 */ 739 u64 value = READ_ONCE(cpu->hwp_req_cached); 740 741 value &= ~GENMASK_ULL(31, 24); 742 value |= (u64)epp << 24; 743 /* 744 * The only other updater of hwp_req_cached in the active mode, 745 * intel_pstate_hwp_set(), is called under the same lock as this 746 * function, so it cannot run in parallel with the update below. 747 */ 748 WRITE_ONCE(cpu->hwp_req_cached, value); 749 ret = wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value); 750 if (!ret) 751 cpu->epp_cached = epp; 752 753 return ret; 754 } 755 756 static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data, 757 int pref_index, bool use_raw, 758 u32 raw_epp) 759 { 760 int epp = -EINVAL; 761 int ret; 762 763 if (!pref_index) 764 epp = cpu_data->epp_default; 765 766 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) { 767 if (use_raw) 768 epp = raw_epp; 769 else if (epp == -EINVAL) 770 epp = epp_values[pref_index]; 771 772 /* 773 * To avoid confusion, refuse to set EPP to any values different 774 * from 0 (performance) if the current policy is "performance", 775 * because those values would be overridden. 776 */ 777 if (epp > 0 && cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) 778 return -EBUSY; 779 780 ret = intel_pstate_set_epp(cpu_data, epp); 781 } else { 782 if (epp == -EINVAL) 783 epp = (pref_index - 1) << 2; 784 ret = intel_pstate_set_epb(cpu_data->cpu, epp); 785 } 786 787 return ret; 788 } 789 790 static ssize_t show_energy_performance_available_preferences( 791 struct cpufreq_policy *policy, char *buf) 792 { 793 int i = 0; 794 int ret = 0; 795 796 while (energy_perf_strings[i] != NULL) 797 ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]); 798 799 ret += sprintf(&buf[ret], "\n"); 800 801 return ret; 802 } 803 804 cpufreq_freq_attr_ro(energy_performance_available_preferences); 805 806 static struct cpufreq_driver intel_pstate; 807 808 static ssize_t store_energy_performance_preference( 809 struct cpufreq_policy *policy, const char *buf, size_t count) 810 { 811 struct cpudata *cpu = all_cpu_data[policy->cpu]; 812 char str_preference[21]; 813 bool raw = false; 814 ssize_t ret; 815 u32 epp = 0; 816 817 ret = sscanf(buf, "%20s", str_preference); 818 if (ret != 1) 819 return -EINVAL; 820 821 ret = match_string(energy_perf_strings, -1, str_preference); 822 if (ret < 0) { 823 if (!boot_cpu_has(X86_FEATURE_HWP_EPP)) 824 return ret; 825 826 ret = kstrtouint(buf, 10, &epp); 827 if (ret) 828 return ret; 829 830 if (epp > 255) 831 return -EINVAL; 832 833 raw = true; 834 } 835 836 /* 837 * This function runs with the policy R/W semaphore held, which 838 * guarantees that the driver pointer will not change while it is 839 * running. 840 */ 841 if (!intel_pstate_driver) 842 return -EAGAIN; 843 844 mutex_lock(&intel_pstate_limits_lock); 845 846 if (intel_pstate_driver == &intel_pstate) { 847 ret = intel_pstate_set_energy_pref_index(cpu, ret, raw, epp); 848 } else { 849 /* 850 * In the passive mode the governor needs to be stopped on the 851 * target CPU before the EPP update and restarted after it, 852 * which is super-heavy-weight, so make sure it is worth doing 853 * upfront. 854 */ 855 if (!raw) 856 epp = ret ? epp_values[ret] : cpu->epp_default; 857 858 if (cpu->epp_cached != epp) { 859 int err; 860 861 cpufreq_stop_governor(policy); 862 ret = intel_pstate_set_epp(cpu, epp); 863 err = cpufreq_start_governor(policy); 864 if (!ret) 865 ret = err; 866 } 867 } 868 869 mutex_unlock(&intel_pstate_limits_lock); 870 871 return ret ?: count; 872 } 873 874 static ssize_t show_energy_performance_preference( 875 struct cpufreq_policy *policy, char *buf) 876 { 877 struct cpudata *cpu_data = all_cpu_data[policy->cpu]; 878 int preference, raw_epp; 879 880 preference = intel_pstate_get_energy_pref_index(cpu_data, &raw_epp); 881 if (preference < 0) 882 return preference; 883 884 if (raw_epp) 885 return sprintf(buf, "%d\n", raw_epp); 886 else 887 return sprintf(buf, "%s\n", energy_perf_strings[preference]); 888 } 889 890 cpufreq_freq_attr_rw(energy_performance_preference); 891 892 static ssize_t show_base_frequency(struct cpufreq_policy *policy, char *buf) 893 { 894 struct cpudata *cpu = all_cpu_data[policy->cpu]; 895 int ratio, freq; 896 897 ratio = intel_pstate_get_cppc_guaranteed(policy->cpu); 898 if (ratio <= 0) { 899 u64 cap; 900 901 rdmsrl_on_cpu(policy->cpu, MSR_HWP_CAPABILITIES, &cap); 902 ratio = HWP_GUARANTEED_PERF(cap); 903 } 904 905 freq = ratio * cpu->pstate.scaling; 906 if (cpu->pstate.scaling != cpu->pstate.perf_ctl_scaling) 907 freq = rounddown(freq, cpu->pstate.perf_ctl_scaling); 908 909 return sprintf(buf, "%d\n", freq); 910 } 911 912 cpufreq_freq_attr_ro(base_frequency); 913 914 static struct freq_attr *hwp_cpufreq_attrs[] = { 915 &energy_performance_preference, 916 &energy_performance_available_preferences, 917 &base_frequency, 918 NULL, 919 }; 920 921 static void __intel_pstate_get_hwp_cap(struct cpudata *cpu) 922 { 923 u64 cap; 924 925 rdmsrl_on_cpu(cpu->cpu, MSR_HWP_CAPABILITIES, &cap); 926 WRITE_ONCE(cpu->hwp_cap_cached, cap); 927 cpu->pstate.max_pstate = HWP_GUARANTEED_PERF(cap); 928 cpu->pstate.turbo_pstate = HWP_HIGHEST_PERF(cap); 929 } 930 931 static void intel_pstate_get_hwp_cap(struct cpudata *cpu) 932 { 933 int scaling = cpu->pstate.scaling; 934 935 __intel_pstate_get_hwp_cap(cpu); 936 937 cpu->pstate.max_freq = cpu->pstate.max_pstate * scaling; 938 cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * scaling; 939 if (scaling != cpu->pstate.perf_ctl_scaling) { 940 int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling; 941 942 cpu->pstate.max_freq = rounddown(cpu->pstate.max_freq, 943 perf_ctl_scaling); 944 cpu->pstate.turbo_freq = rounddown(cpu->pstate.turbo_freq, 945 perf_ctl_scaling); 946 } 947 } 948 949 static void intel_pstate_hwp_set(unsigned int cpu) 950 { 951 struct cpudata *cpu_data = all_cpu_data[cpu]; 952 int max, min; 953 u64 value; 954 s16 epp; 955 956 max = cpu_data->max_perf_ratio; 957 min = cpu_data->min_perf_ratio; 958 959 if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) 960 min = max; 961 962 rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value); 963 964 value &= ~HWP_MIN_PERF(~0L); 965 value |= HWP_MIN_PERF(min); 966 967 value &= ~HWP_MAX_PERF(~0L); 968 value |= HWP_MAX_PERF(max); 969 970 if (cpu_data->epp_policy == cpu_data->policy) 971 goto skip_epp; 972 973 cpu_data->epp_policy = cpu_data->policy; 974 975 if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) { 976 epp = intel_pstate_get_epp(cpu_data, value); 977 cpu_data->epp_powersave = epp; 978 /* If EPP read was failed, then don't try to write */ 979 if (epp < 0) 980 goto skip_epp; 981 982 epp = 0; 983 } else { 984 /* skip setting EPP, when saved value is invalid */ 985 if (cpu_data->epp_powersave < 0) 986 goto skip_epp; 987 988 /* 989 * No need to restore EPP when it is not zero. This 990 * means: 991 * - Policy is not changed 992 * - user has manually changed 993 * - Error reading EPB 994 */ 995 epp = intel_pstate_get_epp(cpu_data, value); 996 if (epp) 997 goto skip_epp; 998 999 epp = cpu_data->epp_powersave; 1000 } 1001 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) { 1002 value &= ~GENMASK_ULL(31, 24); 1003 value |= (u64)epp << 24; 1004 } else { 1005 intel_pstate_set_epb(cpu, epp); 1006 } 1007 skip_epp: 1008 WRITE_ONCE(cpu_data->hwp_req_cached, value); 1009 wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value); 1010 } 1011 1012 static void intel_pstate_disable_hwp_interrupt(struct cpudata *cpudata); 1013 1014 static void intel_pstate_hwp_offline(struct cpudata *cpu) 1015 { 1016 u64 value = READ_ONCE(cpu->hwp_req_cached); 1017 int min_perf; 1018 1019 intel_pstate_disable_hwp_interrupt(cpu); 1020 1021 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) { 1022 /* 1023 * In case the EPP has been set to "performance" by the 1024 * active mode "performance" scaling algorithm, replace that 1025 * temporary value with the cached EPP one. 1026 */ 1027 value &= ~GENMASK_ULL(31, 24); 1028 value |= HWP_ENERGY_PERF_PREFERENCE(cpu->epp_cached); 1029 /* 1030 * However, make sure that EPP will be set to "performance" when 1031 * the CPU is brought back online again and the "performance" 1032 * scaling algorithm is still in effect. 1033 */ 1034 cpu->epp_policy = CPUFREQ_POLICY_UNKNOWN; 1035 } 1036 1037 /* 1038 * Clear the desired perf field in the cached HWP request value to 1039 * prevent nonzero desired values from being leaked into the active 1040 * mode. 1041 */ 1042 value &= ~HWP_DESIRED_PERF(~0L); 1043 WRITE_ONCE(cpu->hwp_req_cached, value); 1044 1045 value &= ~GENMASK_ULL(31, 0); 1046 min_perf = HWP_LOWEST_PERF(READ_ONCE(cpu->hwp_cap_cached)); 1047 1048 /* Set hwp_max = hwp_min */ 1049 value |= HWP_MAX_PERF(min_perf); 1050 value |= HWP_MIN_PERF(min_perf); 1051 1052 /* Set EPP to min */ 1053 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) 1054 value |= HWP_ENERGY_PERF_PREFERENCE(HWP_EPP_POWERSAVE); 1055 1056 wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value); 1057 } 1058 1059 #define POWER_CTL_EE_ENABLE 1 1060 #define POWER_CTL_EE_DISABLE 2 1061 1062 static int power_ctl_ee_state; 1063 1064 static void set_power_ctl_ee_state(bool input) 1065 { 1066 u64 power_ctl; 1067 1068 mutex_lock(&intel_pstate_driver_lock); 1069 rdmsrl(MSR_IA32_POWER_CTL, power_ctl); 1070 if (input) { 1071 power_ctl &= ~BIT(MSR_IA32_POWER_CTL_BIT_EE); 1072 power_ctl_ee_state = POWER_CTL_EE_ENABLE; 1073 } else { 1074 power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE); 1075 power_ctl_ee_state = POWER_CTL_EE_DISABLE; 1076 } 1077 wrmsrl(MSR_IA32_POWER_CTL, power_ctl); 1078 mutex_unlock(&intel_pstate_driver_lock); 1079 } 1080 1081 static void intel_pstate_hwp_enable(struct cpudata *cpudata); 1082 1083 static void intel_pstate_hwp_reenable(struct cpudata *cpu) 1084 { 1085 intel_pstate_hwp_enable(cpu); 1086 wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, READ_ONCE(cpu->hwp_req_cached)); 1087 } 1088 1089 static int intel_pstate_suspend(struct cpufreq_policy *policy) 1090 { 1091 struct cpudata *cpu = all_cpu_data[policy->cpu]; 1092 1093 pr_debug("CPU %d suspending\n", cpu->cpu); 1094 1095 cpu->suspended = true; 1096 1097 /* disable HWP interrupt and cancel any pending work */ 1098 intel_pstate_disable_hwp_interrupt(cpu); 1099 1100 return 0; 1101 } 1102 1103 static int intel_pstate_resume(struct cpufreq_policy *policy) 1104 { 1105 struct cpudata *cpu = all_cpu_data[policy->cpu]; 1106 1107 pr_debug("CPU %d resuming\n", cpu->cpu); 1108 1109 /* Only restore if the system default is changed */ 1110 if (power_ctl_ee_state == POWER_CTL_EE_ENABLE) 1111 set_power_ctl_ee_state(true); 1112 else if (power_ctl_ee_state == POWER_CTL_EE_DISABLE) 1113 set_power_ctl_ee_state(false); 1114 1115 if (cpu->suspended && hwp_active) { 1116 mutex_lock(&intel_pstate_limits_lock); 1117 1118 /* Re-enable HWP, because "online" has not done that. */ 1119 intel_pstate_hwp_reenable(cpu); 1120 1121 mutex_unlock(&intel_pstate_limits_lock); 1122 } 1123 1124 cpu->suspended = false; 1125 1126 return 0; 1127 } 1128 1129 static void intel_pstate_update_policies(void) 1130 { 1131 int cpu; 1132 1133 for_each_possible_cpu(cpu) 1134 cpufreq_update_policy(cpu); 1135 } 1136 1137 static void __intel_pstate_update_max_freq(struct cpudata *cpudata, 1138 struct cpufreq_policy *policy) 1139 { 1140 policy->cpuinfo.max_freq = global.turbo_disabled_mf ? 1141 cpudata->pstate.max_freq : cpudata->pstate.turbo_freq; 1142 refresh_frequency_limits(policy); 1143 } 1144 1145 static void intel_pstate_update_max_freq(unsigned int cpu) 1146 { 1147 struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu); 1148 1149 if (!policy) 1150 return; 1151 1152 __intel_pstate_update_max_freq(all_cpu_data[cpu], policy); 1153 1154 cpufreq_cpu_release(policy); 1155 } 1156 1157 static void intel_pstate_update_limits(unsigned int cpu) 1158 { 1159 mutex_lock(&intel_pstate_driver_lock); 1160 1161 update_turbo_state(); 1162 /* 1163 * If turbo has been turned on or off globally, policy limits for 1164 * all CPUs need to be updated to reflect that. 1165 */ 1166 if (global.turbo_disabled_mf != global.turbo_disabled) { 1167 global.turbo_disabled_mf = global.turbo_disabled; 1168 arch_set_max_freq_ratio(global.turbo_disabled); 1169 for_each_possible_cpu(cpu) 1170 intel_pstate_update_max_freq(cpu); 1171 } else { 1172 cpufreq_update_policy(cpu); 1173 } 1174 1175 mutex_unlock(&intel_pstate_driver_lock); 1176 } 1177 1178 /************************** sysfs begin ************************/ 1179 #define show_one(file_name, object) \ 1180 static ssize_t show_##file_name \ 1181 (struct kobject *kobj, struct kobj_attribute *attr, char *buf) \ 1182 { \ 1183 return sprintf(buf, "%u\n", global.object); \ 1184 } 1185 1186 static ssize_t intel_pstate_show_status(char *buf); 1187 static int intel_pstate_update_status(const char *buf, size_t size); 1188 1189 static ssize_t show_status(struct kobject *kobj, 1190 struct kobj_attribute *attr, char *buf) 1191 { 1192 ssize_t ret; 1193 1194 mutex_lock(&intel_pstate_driver_lock); 1195 ret = intel_pstate_show_status(buf); 1196 mutex_unlock(&intel_pstate_driver_lock); 1197 1198 return ret; 1199 } 1200 1201 static ssize_t store_status(struct kobject *a, struct kobj_attribute *b, 1202 const char *buf, size_t count) 1203 { 1204 char *p = memchr(buf, '\n', count); 1205 int ret; 1206 1207 mutex_lock(&intel_pstate_driver_lock); 1208 ret = intel_pstate_update_status(buf, p ? p - buf : count); 1209 mutex_unlock(&intel_pstate_driver_lock); 1210 1211 return ret < 0 ? ret : count; 1212 } 1213 1214 static ssize_t show_turbo_pct(struct kobject *kobj, 1215 struct kobj_attribute *attr, char *buf) 1216 { 1217 struct cpudata *cpu; 1218 int total, no_turbo, turbo_pct; 1219 uint32_t turbo_fp; 1220 1221 mutex_lock(&intel_pstate_driver_lock); 1222 1223 if (!intel_pstate_driver) { 1224 mutex_unlock(&intel_pstate_driver_lock); 1225 return -EAGAIN; 1226 } 1227 1228 cpu = all_cpu_data[0]; 1229 1230 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1; 1231 no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1; 1232 turbo_fp = div_fp(no_turbo, total); 1233 turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100))); 1234 1235 mutex_unlock(&intel_pstate_driver_lock); 1236 1237 return sprintf(buf, "%u\n", turbo_pct); 1238 } 1239 1240 static ssize_t show_num_pstates(struct kobject *kobj, 1241 struct kobj_attribute *attr, char *buf) 1242 { 1243 struct cpudata *cpu; 1244 int total; 1245 1246 mutex_lock(&intel_pstate_driver_lock); 1247 1248 if (!intel_pstate_driver) { 1249 mutex_unlock(&intel_pstate_driver_lock); 1250 return -EAGAIN; 1251 } 1252 1253 cpu = all_cpu_data[0]; 1254 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1; 1255 1256 mutex_unlock(&intel_pstate_driver_lock); 1257 1258 return sprintf(buf, "%u\n", total); 1259 } 1260 1261 static ssize_t show_no_turbo(struct kobject *kobj, 1262 struct kobj_attribute *attr, char *buf) 1263 { 1264 ssize_t ret; 1265 1266 mutex_lock(&intel_pstate_driver_lock); 1267 1268 if (!intel_pstate_driver) { 1269 mutex_unlock(&intel_pstate_driver_lock); 1270 return -EAGAIN; 1271 } 1272 1273 update_turbo_state(); 1274 if (global.turbo_disabled) 1275 ret = sprintf(buf, "%u\n", global.turbo_disabled); 1276 else 1277 ret = sprintf(buf, "%u\n", global.no_turbo); 1278 1279 mutex_unlock(&intel_pstate_driver_lock); 1280 1281 return ret; 1282 } 1283 1284 static ssize_t store_no_turbo(struct kobject *a, struct kobj_attribute *b, 1285 const char *buf, size_t count) 1286 { 1287 unsigned int input; 1288 int ret; 1289 1290 ret = sscanf(buf, "%u", &input); 1291 if (ret != 1) 1292 return -EINVAL; 1293 1294 mutex_lock(&intel_pstate_driver_lock); 1295 1296 if (!intel_pstate_driver) { 1297 mutex_unlock(&intel_pstate_driver_lock); 1298 return -EAGAIN; 1299 } 1300 1301 mutex_lock(&intel_pstate_limits_lock); 1302 1303 update_turbo_state(); 1304 if (global.turbo_disabled) { 1305 pr_notice_once("Turbo disabled by BIOS or unavailable on processor\n"); 1306 mutex_unlock(&intel_pstate_limits_lock); 1307 mutex_unlock(&intel_pstate_driver_lock); 1308 return -EPERM; 1309 } 1310 1311 global.no_turbo = clamp_t(int, input, 0, 1); 1312 1313 if (global.no_turbo) { 1314 struct cpudata *cpu = all_cpu_data[0]; 1315 int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate; 1316 1317 /* Squash the global minimum into the permitted range. */ 1318 if (global.min_perf_pct > pct) 1319 global.min_perf_pct = pct; 1320 } 1321 1322 mutex_unlock(&intel_pstate_limits_lock); 1323 1324 intel_pstate_update_policies(); 1325 1326 mutex_unlock(&intel_pstate_driver_lock); 1327 1328 return count; 1329 } 1330 1331 static void update_qos_request(enum freq_qos_req_type type) 1332 { 1333 struct freq_qos_request *req; 1334 struct cpufreq_policy *policy; 1335 int i; 1336 1337 for_each_possible_cpu(i) { 1338 struct cpudata *cpu = all_cpu_data[i]; 1339 unsigned int freq, perf_pct; 1340 1341 policy = cpufreq_cpu_get(i); 1342 if (!policy) 1343 continue; 1344 1345 req = policy->driver_data; 1346 cpufreq_cpu_put(policy); 1347 1348 if (!req) 1349 continue; 1350 1351 if (hwp_active) 1352 intel_pstate_get_hwp_cap(cpu); 1353 1354 if (type == FREQ_QOS_MIN) { 1355 perf_pct = global.min_perf_pct; 1356 } else { 1357 req++; 1358 perf_pct = global.max_perf_pct; 1359 } 1360 1361 freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * perf_pct, 100); 1362 1363 if (freq_qos_update_request(req, freq) < 0) 1364 pr_warn("Failed to update freq constraint: CPU%d\n", i); 1365 } 1366 } 1367 1368 static ssize_t store_max_perf_pct(struct kobject *a, struct kobj_attribute *b, 1369 const char *buf, size_t count) 1370 { 1371 unsigned int input; 1372 int ret; 1373 1374 ret = sscanf(buf, "%u", &input); 1375 if (ret != 1) 1376 return -EINVAL; 1377 1378 mutex_lock(&intel_pstate_driver_lock); 1379 1380 if (!intel_pstate_driver) { 1381 mutex_unlock(&intel_pstate_driver_lock); 1382 return -EAGAIN; 1383 } 1384 1385 mutex_lock(&intel_pstate_limits_lock); 1386 1387 global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100); 1388 1389 mutex_unlock(&intel_pstate_limits_lock); 1390 1391 if (intel_pstate_driver == &intel_pstate) 1392 intel_pstate_update_policies(); 1393 else 1394 update_qos_request(FREQ_QOS_MAX); 1395 1396 mutex_unlock(&intel_pstate_driver_lock); 1397 1398 return count; 1399 } 1400 1401 static ssize_t store_min_perf_pct(struct kobject *a, struct kobj_attribute *b, 1402 const char *buf, size_t count) 1403 { 1404 unsigned int input; 1405 int ret; 1406 1407 ret = sscanf(buf, "%u", &input); 1408 if (ret != 1) 1409 return -EINVAL; 1410 1411 mutex_lock(&intel_pstate_driver_lock); 1412 1413 if (!intel_pstate_driver) { 1414 mutex_unlock(&intel_pstate_driver_lock); 1415 return -EAGAIN; 1416 } 1417 1418 mutex_lock(&intel_pstate_limits_lock); 1419 1420 global.min_perf_pct = clamp_t(int, input, 1421 min_perf_pct_min(), global.max_perf_pct); 1422 1423 mutex_unlock(&intel_pstate_limits_lock); 1424 1425 if (intel_pstate_driver == &intel_pstate) 1426 intel_pstate_update_policies(); 1427 else 1428 update_qos_request(FREQ_QOS_MIN); 1429 1430 mutex_unlock(&intel_pstate_driver_lock); 1431 1432 return count; 1433 } 1434 1435 static ssize_t show_hwp_dynamic_boost(struct kobject *kobj, 1436 struct kobj_attribute *attr, char *buf) 1437 { 1438 return sprintf(buf, "%u\n", hwp_boost); 1439 } 1440 1441 static ssize_t store_hwp_dynamic_boost(struct kobject *a, 1442 struct kobj_attribute *b, 1443 const char *buf, size_t count) 1444 { 1445 unsigned int input; 1446 int ret; 1447 1448 ret = kstrtouint(buf, 10, &input); 1449 if (ret) 1450 return ret; 1451 1452 mutex_lock(&intel_pstate_driver_lock); 1453 hwp_boost = !!input; 1454 intel_pstate_update_policies(); 1455 mutex_unlock(&intel_pstate_driver_lock); 1456 1457 return count; 1458 } 1459 1460 static ssize_t show_energy_efficiency(struct kobject *kobj, struct kobj_attribute *attr, 1461 char *buf) 1462 { 1463 u64 power_ctl; 1464 int enable; 1465 1466 rdmsrl(MSR_IA32_POWER_CTL, power_ctl); 1467 enable = !!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE)); 1468 return sprintf(buf, "%d\n", !enable); 1469 } 1470 1471 static ssize_t store_energy_efficiency(struct kobject *a, struct kobj_attribute *b, 1472 const char *buf, size_t count) 1473 { 1474 bool input; 1475 int ret; 1476 1477 ret = kstrtobool(buf, &input); 1478 if (ret) 1479 return ret; 1480 1481 set_power_ctl_ee_state(input); 1482 1483 return count; 1484 } 1485 1486 show_one(max_perf_pct, max_perf_pct); 1487 show_one(min_perf_pct, min_perf_pct); 1488 1489 define_one_global_rw(status); 1490 define_one_global_rw(no_turbo); 1491 define_one_global_rw(max_perf_pct); 1492 define_one_global_rw(min_perf_pct); 1493 define_one_global_ro(turbo_pct); 1494 define_one_global_ro(num_pstates); 1495 define_one_global_rw(hwp_dynamic_boost); 1496 define_one_global_rw(energy_efficiency); 1497 1498 static struct attribute *intel_pstate_attributes[] = { 1499 &status.attr, 1500 &no_turbo.attr, 1501 NULL 1502 }; 1503 1504 static const struct attribute_group intel_pstate_attr_group = { 1505 .attrs = intel_pstate_attributes, 1506 }; 1507 1508 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[]; 1509 1510 static struct kobject *intel_pstate_kobject; 1511 1512 static void __init intel_pstate_sysfs_expose_params(void) 1513 { 1514 int rc; 1515 1516 intel_pstate_kobject = kobject_create_and_add("intel_pstate", 1517 &cpu_subsys.dev_root->kobj); 1518 if (WARN_ON(!intel_pstate_kobject)) 1519 return; 1520 1521 rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group); 1522 if (WARN_ON(rc)) 1523 return; 1524 1525 if (!boot_cpu_has(X86_FEATURE_HYBRID_CPU)) { 1526 rc = sysfs_create_file(intel_pstate_kobject, &turbo_pct.attr); 1527 WARN_ON(rc); 1528 1529 rc = sysfs_create_file(intel_pstate_kobject, &num_pstates.attr); 1530 WARN_ON(rc); 1531 } 1532 1533 /* 1534 * If per cpu limits are enforced there are no global limits, so 1535 * return without creating max/min_perf_pct attributes 1536 */ 1537 if (per_cpu_limits) 1538 return; 1539 1540 rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr); 1541 WARN_ON(rc); 1542 1543 rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr); 1544 WARN_ON(rc); 1545 1546 if (x86_match_cpu(intel_pstate_cpu_ee_disable_ids)) { 1547 rc = sysfs_create_file(intel_pstate_kobject, &energy_efficiency.attr); 1548 WARN_ON(rc); 1549 } 1550 } 1551 1552 static void __init intel_pstate_sysfs_remove(void) 1553 { 1554 if (!intel_pstate_kobject) 1555 return; 1556 1557 sysfs_remove_group(intel_pstate_kobject, &intel_pstate_attr_group); 1558 1559 if (!boot_cpu_has(X86_FEATURE_HYBRID_CPU)) { 1560 sysfs_remove_file(intel_pstate_kobject, &num_pstates.attr); 1561 sysfs_remove_file(intel_pstate_kobject, &turbo_pct.attr); 1562 } 1563 1564 if (!per_cpu_limits) { 1565 sysfs_remove_file(intel_pstate_kobject, &max_perf_pct.attr); 1566 sysfs_remove_file(intel_pstate_kobject, &min_perf_pct.attr); 1567 1568 if (x86_match_cpu(intel_pstate_cpu_ee_disable_ids)) 1569 sysfs_remove_file(intel_pstate_kobject, &energy_efficiency.attr); 1570 } 1571 1572 kobject_put(intel_pstate_kobject); 1573 } 1574 1575 static void intel_pstate_sysfs_expose_hwp_dynamic_boost(void) 1576 { 1577 int rc; 1578 1579 if (!hwp_active) 1580 return; 1581 1582 rc = sysfs_create_file(intel_pstate_kobject, &hwp_dynamic_boost.attr); 1583 WARN_ON_ONCE(rc); 1584 } 1585 1586 static void intel_pstate_sysfs_hide_hwp_dynamic_boost(void) 1587 { 1588 if (!hwp_active) 1589 return; 1590 1591 sysfs_remove_file(intel_pstate_kobject, &hwp_dynamic_boost.attr); 1592 } 1593 1594 /************************** sysfs end ************************/ 1595 1596 static void intel_pstate_notify_work(struct work_struct *work) 1597 { 1598 struct cpudata *cpudata = 1599 container_of(to_delayed_work(work), struct cpudata, hwp_notify_work); 1600 struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpudata->cpu); 1601 1602 if (policy) { 1603 intel_pstate_get_hwp_cap(cpudata); 1604 __intel_pstate_update_max_freq(cpudata, policy); 1605 1606 cpufreq_cpu_release(policy); 1607 } 1608 1609 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_STATUS, 0); 1610 } 1611 1612 static DEFINE_SPINLOCK(hwp_notify_lock); 1613 static cpumask_t hwp_intr_enable_mask; 1614 1615 void notify_hwp_interrupt(void) 1616 { 1617 unsigned int this_cpu = smp_processor_id(); 1618 struct cpudata *cpudata; 1619 unsigned long flags; 1620 u64 value; 1621 1622 if (!READ_ONCE(hwp_active) || !boot_cpu_has(X86_FEATURE_HWP_NOTIFY)) 1623 return; 1624 1625 rdmsrl_safe(MSR_HWP_STATUS, &value); 1626 if (!(value & 0x01)) 1627 return; 1628 1629 spin_lock_irqsave(&hwp_notify_lock, flags); 1630 1631 if (!cpumask_test_cpu(this_cpu, &hwp_intr_enable_mask)) 1632 goto ack_intr; 1633 1634 /* 1635 * Currently we never free all_cpu_data. And we can't reach here 1636 * without this allocated. But for safety for future changes, added 1637 * check. 1638 */ 1639 if (unlikely(!READ_ONCE(all_cpu_data))) 1640 goto ack_intr; 1641 1642 /* 1643 * The free is done during cleanup, when cpufreq registry is failed. 1644 * We wouldn't be here if it fails on init or switch status. But for 1645 * future changes, added check. 1646 */ 1647 cpudata = READ_ONCE(all_cpu_data[this_cpu]); 1648 if (unlikely(!cpudata)) 1649 goto ack_intr; 1650 1651 schedule_delayed_work(&cpudata->hwp_notify_work, msecs_to_jiffies(10)); 1652 1653 spin_unlock_irqrestore(&hwp_notify_lock, flags); 1654 1655 return; 1656 1657 ack_intr: 1658 wrmsrl_safe(MSR_HWP_STATUS, 0); 1659 spin_unlock_irqrestore(&hwp_notify_lock, flags); 1660 } 1661 1662 static void intel_pstate_disable_hwp_interrupt(struct cpudata *cpudata) 1663 { 1664 unsigned long flags; 1665 1666 if (!boot_cpu_has(X86_FEATURE_HWP_NOTIFY)) 1667 return; 1668 1669 /* wrmsrl_on_cpu has to be outside spinlock as this can result in IPC */ 1670 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00); 1671 1672 spin_lock_irqsave(&hwp_notify_lock, flags); 1673 if (cpumask_test_and_clear_cpu(cpudata->cpu, &hwp_intr_enable_mask)) 1674 cancel_delayed_work(&cpudata->hwp_notify_work); 1675 spin_unlock_irqrestore(&hwp_notify_lock, flags); 1676 } 1677 1678 static void intel_pstate_enable_hwp_interrupt(struct cpudata *cpudata) 1679 { 1680 /* Enable HWP notification interrupt for guaranteed performance change */ 1681 if (boot_cpu_has(X86_FEATURE_HWP_NOTIFY)) { 1682 unsigned long flags; 1683 1684 spin_lock_irqsave(&hwp_notify_lock, flags); 1685 INIT_DELAYED_WORK(&cpudata->hwp_notify_work, intel_pstate_notify_work); 1686 cpumask_set_cpu(cpudata->cpu, &hwp_intr_enable_mask); 1687 spin_unlock_irqrestore(&hwp_notify_lock, flags); 1688 1689 /* wrmsrl_on_cpu has to be outside spinlock as this can result in IPC */ 1690 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x01); 1691 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_STATUS, 0); 1692 } 1693 } 1694 1695 static void intel_pstate_hwp_enable(struct cpudata *cpudata) 1696 { 1697 /* First disable HWP notification interrupt till we activate again */ 1698 if (boot_cpu_has(X86_FEATURE_HWP_NOTIFY)) 1699 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00); 1700 1701 wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1); 1702 1703 intel_pstate_enable_hwp_interrupt(cpudata); 1704 1705 if (cpudata->epp_default >= 0) 1706 return; 1707 1708 if (epp_values[EPP_INDEX_BALANCE_PERFORMANCE] == HWP_EPP_BALANCE_PERFORMANCE) { 1709 cpudata->epp_default = intel_pstate_get_epp(cpudata, 0); 1710 } else { 1711 cpudata->epp_default = epp_values[EPP_INDEX_BALANCE_PERFORMANCE]; 1712 intel_pstate_set_epp(cpudata, cpudata->epp_default); 1713 } 1714 } 1715 1716 static int atom_get_min_pstate(void) 1717 { 1718 u64 value; 1719 1720 rdmsrl(MSR_ATOM_CORE_RATIOS, value); 1721 return (value >> 8) & 0x7F; 1722 } 1723 1724 static int atom_get_max_pstate(void) 1725 { 1726 u64 value; 1727 1728 rdmsrl(MSR_ATOM_CORE_RATIOS, value); 1729 return (value >> 16) & 0x7F; 1730 } 1731 1732 static int atom_get_turbo_pstate(void) 1733 { 1734 u64 value; 1735 1736 rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value); 1737 return value & 0x7F; 1738 } 1739 1740 static u64 atom_get_val(struct cpudata *cpudata, int pstate) 1741 { 1742 u64 val; 1743 int32_t vid_fp; 1744 u32 vid; 1745 1746 val = (u64)pstate << 8; 1747 if (global.no_turbo && !global.turbo_disabled) 1748 val |= (u64)1 << 32; 1749 1750 vid_fp = cpudata->vid.min + mul_fp( 1751 int_tofp(pstate - cpudata->pstate.min_pstate), 1752 cpudata->vid.ratio); 1753 1754 vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max); 1755 vid = ceiling_fp(vid_fp); 1756 1757 if (pstate > cpudata->pstate.max_pstate) 1758 vid = cpudata->vid.turbo; 1759 1760 return val | vid; 1761 } 1762 1763 static int silvermont_get_scaling(void) 1764 { 1765 u64 value; 1766 int i; 1767 /* Defined in Table 35-6 from SDM (Sept 2015) */ 1768 static int silvermont_freq_table[] = { 1769 83300, 100000, 133300, 116700, 80000}; 1770 1771 rdmsrl(MSR_FSB_FREQ, value); 1772 i = value & 0x7; 1773 WARN_ON(i > 4); 1774 1775 return silvermont_freq_table[i]; 1776 } 1777 1778 static int airmont_get_scaling(void) 1779 { 1780 u64 value; 1781 int i; 1782 /* Defined in Table 35-10 from SDM (Sept 2015) */ 1783 static int airmont_freq_table[] = { 1784 83300, 100000, 133300, 116700, 80000, 1785 93300, 90000, 88900, 87500}; 1786 1787 rdmsrl(MSR_FSB_FREQ, value); 1788 i = value & 0xF; 1789 WARN_ON(i > 8); 1790 1791 return airmont_freq_table[i]; 1792 } 1793 1794 static void atom_get_vid(struct cpudata *cpudata) 1795 { 1796 u64 value; 1797 1798 rdmsrl(MSR_ATOM_CORE_VIDS, value); 1799 cpudata->vid.min = int_tofp((value >> 8) & 0x7f); 1800 cpudata->vid.max = int_tofp((value >> 16) & 0x7f); 1801 cpudata->vid.ratio = div_fp( 1802 cpudata->vid.max - cpudata->vid.min, 1803 int_tofp(cpudata->pstate.max_pstate - 1804 cpudata->pstate.min_pstate)); 1805 1806 rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value); 1807 cpudata->vid.turbo = value & 0x7f; 1808 } 1809 1810 static int core_get_min_pstate(void) 1811 { 1812 u64 value; 1813 1814 rdmsrl(MSR_PLATFORM_INFO, value); 1815 return (value >> 40) & 0xFF; 1816 } 1817 1818 static int core_get_max_pstate_physical(void) 1819 { 1820 u64 value; 1821 1822 rdmsrl(MSR_PLATFORM_INFO, value); 1823 return (value >> 8) & 0xFF; 1824 } 1825 1826 static int core_get_tdp_ratio(u64 plat_info) 1827 { 1828 /* Check how many TDP levels present */ 1829 if (plat_info & 0x600000000) { 1830 u64 tdp_ctrl; 1831 u64 tdp_ratio; 1832 int tdp_msr; 1833 int err; 1834 1835 /* Get the TDP level (0, 1, 2) to get ratios */ 1836 err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl); 1837 if (err) 1838 return err; 1839 1840 /* TDP MSR are continuous starting at 0x648 */ 1841 tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03); 1842 err = rdmsrl_safe(tdp_msr, &tdp_ratio); 1843 if (err) 1844 return err; 1845 1846 /* For level 1 and 2, bits[23:16] contain the ratio */ 1847 if (tdp_ctrl & 0x03) 1848 tdp_ratio >>= 16; 1849 1850 tdp_ratio &= 0xff; /* ratios are only 8 bits long */ 1851 pr_debug("tdp_ratio %x\n", (int)tdp_ratio); 1852 1853 return (int)tdp_ratio; 1854 } 1855 1856 return -ENXIO; 1857 } 1858 1859 static int core_get_max_pstate(void) 1860 { 1861 u64 tar; 1862 u64 plat_info; 1863 int max_pstate; 1864 int tdp_ratio; 1865 int err; 1866 1867 rdmsrl(MSR_PLATFORM_INFO, plat_info); 1868 max_pstate = (plat_info >> 8) & 0xFF; 1869 1870 tdp_ratio = core_get_tdp_ratio(plat_info); 1871 if (tdp_ratio <= 0) 1872 return max_pstate; 1873 1874 if (hwp_active) { 1875 /* Turbo activation ratio is not used on HWP platforms */ 1876 return tdp_ratio; 1877 } 1878 1879 err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar); 1880 if (!err) { 1881 int tar_levels; 1882 1883 /* Do some sanity checking for safety */ 1884 tar_levels = tar & 0xff; 1885 if (tdp_ratio - 1 == tar_levels) { 1886 max_pstate = tar_levels; 1887 pr_debug("max_pstate=TAC %x\n", max_pstate); 1888 } 1889 } 1890 1891 return max_pstate; 1892 } 1893 1894 static int core_get_turbo_pstate(void) 1895 { 1896 u64 value; 1897 int nont, ret; 1898 1899 rdmsrl(MSR_TURBO_RATIO_LIMIT, value); 1900 nont = core_get_max_pstate(); 1901 ret = (value) & 255; 1902 if (ret <= nont) 1903 ret = nont; 1904 return ret; 1905 } 1906 1907 static inline int core_get_scaling(void) 1908 { 1909 return 100000; 1910 } 1911 1912 static u64 core_get_val(struct cpudata *cpudata, int pstate) 1913 { 1914 u64 val; 1915 1916 val = (u64)pstate << 8; 1917 if (global.no_turbo && !global.turbo_disabled) 1918 val |= (u64)1 << 32; 1919 1920 return val; 1921 } 1922 1923 static int knl_get_aperf_mperf_shift(void) 1924 { 1925 return 10; 1926 } 1927 1928 static int knl_get_turbo_pstate(void) 1929 { 1930 u64 value; 1931 int nont, ret; 1932 1933 rdmsrl(MSR_TURBO_RATIO_LIMIT, value); 1934 nont = core_get_max_pstate(); 1935 ret = (((value) >> 8) & 0xFF); 1936 if (ret <= nont) 1937 ret = nont; 1938 return ret; 1939 } 1940 1941 #ifdef CONFIG_ACPI_CPPC_LIB 1942 static u32 hybrid_ref_perf; 1943 1944 static int hybrid_get_cpu_scaling(int cpu) 1945 { 1946 return DIV_ROUND_UP(core_get_scaling() * hybrid_ref_perf, 1947 intel_pstate_cppc_nominal(cpu)); 1948 } 1949 1950 static void intel_pstate_cppc_set_cpu_scaling(void) 1951 { 1952 u32 min_nominal_perf = U32_MAX; 1953 int cpu; 1954 1955 for_each_present_cpu(cpu) { 1956 u32 nominal_perf = intel_pstate_cppc_nominal(cpu); 1957 1958 if (nominal_perf && nominal_perf < min_nominal_perf) 1959 min_nominal_perf = nominal_perf; 1960 } 1961 1962 if (min_nominal_perf < U32_MAX) { 1963 hybrid_ref_perf = min_nominal_perf; 1964 pstate_funcs.get_cpu_scaling = hybrid_get_cpu_scaling; 1965 } 1966 } 1967 #else 1968 static inline void intel_pstate_cppc_set_cpu_scaling(void) 1969 { 1970 } 1971 #endif /* CONFIG_ACPI_CPPC_LIB */ 1972 1973 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate) 1974 { 1975 trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu); 1976 cpu->pstate.current_pstate = pstate; 1977 /* 1978 * Generally, there is no guarantee that this code will always run on 1979 * the CPU being updated, so force the register update to run on the 1980 * right CPU. 1981 */ 1982 wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL, 1983 pstate_funcs.get_val(cpu, pstate)); 1984 } 1985 1986 static void intel_pstate_set_min_pstate(struct cpudata *cpu) 1987 { 1988 intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate); 1989 } 1990 1991 static void intel_pstate_max_within_limits(struct cpudata *cpu) 1992 { 1993 int pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio); 1994 1995 update_turbo_state(); 1996 intel_pstate_set_pstate(cpu, pstate); 1997 } 1998 1999 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu) 2000 { 2001 int perf_ctl_max_phys = pstate_funcs.get_max_physical(); 2002 int perf_ctl_scaling = pstate_funcs.get_scaling(); 2003 2004 cpu->pstate.min_pstate = pstate_funcs.get_min(); 2005 cpu->pstate.max_pstate_physical = perf_ctl_max_phys; 2006 cpu->pstate.perf_ctl_scaling = perf_ctl_scaling; 2007 2008 if (hwp_active && !hwp_mode_bdw) { 2009 __intel_pstate_get_hwp_cap(cpu); 2010 2011 if (pstate_funcs.get_cpu_scaling) { 2012 cpu->pstate.scaling = pstate_funcs.get_cpu_scaling(cpu->cpu); 2013 if (cpu->pstate.scaling != perf_ctl_scaling) 2014 intel_pstate_hybrid_hwp_adjust(cpu); 2015 } else { 2016 cpu->pstate.scaling = perf_ctl_scaling; 2017 } 2018 } else { 2019 cpu->pstate.scaling = perf_ctl_scaling; 2020 cpu->pstate.max_pstate = pstate_funcs.get_max(); 2021 cpu->pstate.turbo_pstate = pstate_funcs.get_turbo(); 2022 } 2023 2024 if (cpu->pstate.scaling == perf_ctl_scaling) { 2025 cpu->pstate.min_freq = cpu->pstate.min_pstate * perf_ctl_scaling; 2026 cpu->pstate.max_freq = cpu->pstate.max_pstate * perf_ctl_scaling; 2027 cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * perf_ctl_scaling; 2028 } 2029 2030 if (pstate_funcs.get_aperf_mperf_shift) 2031 cpu->aperf_mperf_shift = pstate_funcs.get_aperf_mperf_shift(); 2032 2033 if (pstate_funcs.get_vid) 2034 pstate_funcs.get_vid(cpu); 2035 2036 intel_pstate_set_min_pstate(cpu); 2037 } 2038 2039 /* 2040 * Long hold time will keep high perf limits for long time, 2041 * which negatively impacts perf/watt for some workloads, 2042 * like specpower. 3ms is based on experiements on some 2043 * workoads. 2044 */ 2045 static int hwp_boost_hold_time_ns = 3 * NSEC_PER_MSEC; 2046 2047 static inline void intel_pstate_hwp_boost_up(struct cpudata *cpu) 2048 { 2049 u64 hwp_req = READ_ONCE(cpu->hwp_req_cached); 2050 u64 hwp_cap = READ_ONCE(cpu->hwp_cap_cached); 2051 u32 max_limit = (hwp_req & 0xff00) >> 8; 2052 u32 min_limit = (hwp_req & 0xff); 2053 u32 boost_level1; 2054 2055 /* 2056 * Cases to consider (User changes via sysfs or boot time): 2057 * If, P0 (Turbo max) = P1 (Guaranteed max) = min: 2058 * No boost, return. 2059 * If, P0 (Turbo max) > P1 (Guaranteed max) = min: 2060 * Should result in one level boost only for P0. 2061 * If, P0 (Turbo max) = P1 (Guaranteed max) > min: 2062 * Should result in two level boost: 2063 * (min + p1)/2 and P1. 2064 * If, P0 (Turbo max) > P1 (Guaranteed max) > min: 2065 * Should result in three level boost: 2066 * (min + p1)/2, P1 and P0. 2067 */ 2068 2069 /* If max and min are equal or already at max, nothing to boost */ 2070 if (max_limit == min_limit || cpu->hwp_boost_min >= max_limit) 2071 return; 2072 2073 if (!cpu->hwp_boost_min) 2074 cpu->hwp_boost_min = min_limit; 2075 2076 /* level at half way mark between min and guranteed */ 2077 boost_level1 = (HWP_GUARANTEED_PERF(hwp_cap) + min_limit) >> 1; 2078 2079 if (cpu->hwp_boost_min < boost_level1) 2080 cpu->hwp_boost_min = boost_level1; 2081 else if (cpu->hwp_boost_min < HWP_GUARANTEED_PERF(hwp_cap)) 2082 cpu->hwp_boost_min = HWP_GUARANTEED_PERF(hwp_cap); 2083 else if (cpu->hwp_boost_min == HWP_GUARANTEED_PERF(hwp_cap) && 2084 max_limit != HWP_GUARANTEED_PERF(hwp_cap)) 2085 cpu->hwp_boost_min = max_limit; 2086 else 2087 return; 2088 2089 hwp_req = (hwp_req & ~GENMASK_ULL(7, 0)) | cpu->hwp_boost_min; 2090 wrmsrl(MSR_HWP_REQUEST, hwp_req); 2091 cpu->last_update = cpu->sample.time; 2092 } 2093 2094 static inline void intel_pstate_hwp_boost_down(struct cpudata *cpu) 2095 { 2096 if (cpu->hwp_boost_min) { 2097 bool expired; 2098 2099 /* Check if we are idle for hold time to boost down */ 2100 expired = time_after64(cpu->sample.time, cpu->last_update + 2101 hwp_boost_hold_time_ns); 2102 if (expired) { 2103 wrmsrl(MSR_HWP_REQUEST, cpu->hwp_req_cached); 2104 cpu->hwp_boost_min = 0; 2105 } 2106 } 2107 cpu->last_update = cpu->sample.time; 2108 } 2109 2110 static inline void intel_pstate_update_util_hwp_local(struct cpudata *cpu, 2111 u64 time) 2112 { 2113 cpu->sample.time = time; 2114 2115 if (cpu->sched_flags & SCHED_CPUFREQ_IOWAIT) { 2116 bool do_io = false; 2117 2118 cpu->sched_flags = 0; 2119 /* 2120 * Set iowait_boost flag and update time. Since IO WAIT flag 2121 * is set all the time, we can't just conclude that there is 2122 * some IO bound activity is scheduled on this CPU with just 2123 * one occurrence. If we receive at least two in two 2124 * consecutive ticks, then we treat as boost candidate. 2125 */ 2126 if (time_before64(time, cpu->last_io_update + 2 * TICK_NSEC)) 2127 do_io = true; 2128 2129 cpu->last_io_update = time; 2130 2131 if (do_io) 2132 intel_pstate_hwp_boost_up(cpu); 2133 2134 } else { 2135 intel_pstate_hwp_boost_down(cpu); 2136 } 2137 } 2138 2139 static inline void intel_pstate_update_util_hwp(struct update_util_data *data, 2140 u64 time, unsigned int flags) 2141 { 2142 struct cpudata *cpu = container_of(data, struct cpudata, update_util); 2143 2144 cpu->sched_flags |= flags; 2145 2146 if (smp_processor_id() == cpu->cpu) 2147 intel_pstate_update_util_hwp_local(cpu, time); 2148 } 2149 2150 static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu) 2151 { 2152 struct sample *sample = &cpu->sample; 2153 2154 sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf); 2155 } 2156 2157 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time) 2158 { 2159 u64 aperf, mperf; 2160 unsigned long flags; 2161 u64 tsc; 2162 2163 local_irq_save(flags); 2164 rdmsrl(MSR_IA32_APERF, aperf); 2165 rdmsrl(MSR_IA32_MPERF, mperf); 2166 tsc = rdtsc(); 2167 if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) { 2168 local_irq_restore(flags); 2169 return false; 2170 } 2171 local_irq_restore(flags); 2172 2173 cpu->last_sample_time = cpu->sample.time; 2174 cpu->sample.time = time; 2175 cpu->sample.aperf = aperf; 2176 cpu->sample.mperf = mperf; 2177 cpu->sample.tsc = tsc; 2178 cpu->sample.aperf -= cpu->prev_aperf; 2179 cpu->sample.mperf -= cpu->prev_mperf; 2180 cpu->sample.tsc -= cpu->prev_tsc; 2181 2182 cpu->prev_aperf = aperf; 2183 cpu->prev_mperf = mperf; 2184 cpu->prev_tsc = tsc; 2185 /* 2186 * First time this function is invoked in a given cycle, all of the 2187 * previous sample data fields are equal to zero or stale and they must 2188 * be populated with meaningful numbers for things to work, so assume 2189 * that sample.time will always be reset before setting the utilization 2190 * update hook and make the caller skip the sample then. 2191 */ 2192 if (cpu->last_sample_time) { 2193 intel_pstate_calc_avg_perf(cpu); 2194 return true; 2195 } 2196 return false; 2197 } 2198 2199 static inline int32_t get_avg_frequency(struct cpudata *cpu) 2200 { 2201 return mul_ext_fp(cpu->sample.core_avg_perf, cpu_khz); 2202 } 2203 2204 static inline int32_t get_avg_pstate(struct cpudata *cpu) 2205 { 2206 return mul_ext_fp(cpu->pstate.max_pstate_physical, 2207 cpu->sample.core_avg_perf); 2208 } 2209 2210 static inline int32_t get_target_pstate(struct cpudata *cpu) 2211 { 2212 struct sample *sample = &cpu->sample; 2213 int32_t busy_frac; 2214 int target, avg_pstate; 2215 2216 busy_frac = div_fp(sample->mperf << cpu->aperf_mperf_shift, 2217 sample->tsc); 2218 2219 if (busy_frac < cpu->iowait_boost) 2220 busy_frac = cpu->iowait_boost; 2221 2222 sample->busy_scaled = busy_frac * 100; 2223 2224 target = global.no_turbo || global.turbo_disabled ? 2225 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate; 2226 target += target >> 2; 2227 target = mul_fp(target, busy_frac); 2228 if (target < cpu->pstate.min_pstate) 2229 target = cpu->pstate.min_pstate; 2230 2231 /* 2232 * If the average P-state during the previous cycle was higher than the 2233 * current target, add 50% of the difference to the target to reduce 2234 * possible performance oscillations and offset possible performance 2235 * loss related to moving the workload from one CPU to another within 2236 * a package/module. 2237 */ 2238 avg_pstate = get_avg_pstate(cpu); 2239 if (avg_pstate > target) 2240 target += (avg_pstate - target) >> 1; 2241 2242 return target; 2243 } 2244 2245 static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate) 2246 { 2247 int min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio); 2248 int max_pstate = max(min_pstate, cpu->max_perf_ratio); 2249 2250 return clamp_t(int, pstate, min_pstate, max_pstate); 2251 } 2252 2253 static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate) 2254 { 2255 if (pstate == cpu->pstate.current_pstate) 2256 return; 2257 2258 cpu->pstate.current_pstate = pstate; 2259 wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate)); 2260 } 2261 2262 static void intel_pstate_adjust_pstate(struct cpudata *cpu) 2263 { 2264 int from = cpu->pstate.current_pstate; 2265 struct sample *sample; 2266 int target_pstate; 2267 2268 update_turbo_state(); 2269 2270 target_pstate = get_target_pstate(cpu); 2271 target_pstate = intel_pstate_prepare_request(cpu, target_pstate); 2272 trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu); 2273 intel_pstate_update_pstate(cpu, target_pstate); 2274 2275 sample = &cpu->sample; 2276 trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf), 2277 fp_toint(sample->busy_scaled), 2278 from, 2279 cpu->pstate.current_pstate, 2280 sample->mperf, 2281 sample->aperf, 2282 sample->tsc, 2283 get_avg_frequency(cpu), 2284 fp_toint(cpu->iowait_boost * 100)); 2285 } 2286 2287 static void intel_pstate_update_util(struct update_util_data *data, u64 time, 2288 unsigned int flags) 2289 { 2290 struct cpudata *cpu = container_of(data, struct cpudata, update_util); 2291 u64 delta_ns; 2292 2293 /* Don't allow remote callbacks */ 2294 if (smp_processor_id() != cpu->cpu) 2295 return; 2296 2297 delta_ns = time - cpu->last_update; 2298 if (flags & SCHED_CPUFREQ_IOWAIT) { 2299 /* Start over if the CPU may have been idle. */ 2300 if (delta_ns > TICK_NSEC) { 2301 cpu->iowait_boost = ONE_EIGHTH_FP; 2302 } else if (cpu->iowait_boost >= ONE_EIGHTH_FP) { 2303 cpu->iowait_boost <<= 1; 2304 if (cpu->iowait_boost > int_tofp(1)) 2305 cpu->iowait_boost = int_tofp(1); 2306 } else { 2307 cpu->iowait_boost = ONE_EIGHTH_FP; 2308 } 2309 } else if (cpu->iowait_boost) { 2310 /* Clear iowait_boost if the CPU may have been idle. */ 2311 if (delta_ns > TICK_NSEC) 2312 cpu->iowait_boost = 0; 2313 else 2314 cpu->iowait_boost >>= 1; 2315 } 2316 cpu->last_update = time; 2317 delta_ns = time - cpu->sample.time; 2318 if ((s64)delta_ns < INTEL_PSTATE_SAMPLING_INTERVAL) 2319 return; 2320 2321 if (intel_pstate_sample(cpu, time)) 2322 intel_pstate_adjust_pstate(cpu); 2323 } 2324 2325 static struct pstate_funcs core_funcs = { 2326 .get_max = core_get_max_pstate, 2327 .get_max_physical = core_get_max_pstate_physical, 2328 .get_min = core_get_min_pstate, 2329 .get_turbo = core_get_turbo_pstate, 2330 .get_scaling = core_get_scaling, 2331 .get_val = core_get_val, 2332 }; 2333 2334 static const struct pstate_funcs silvermont_funcs = { 2335 .get_max = atom_get_max_pstate, 2336 .get_max_physical = atom_get_max_pstate, 2337 .get_min = atom_get_min_pstate, 2338 .get_turbo = atom_get_turbo_pstate, 2339 .get_val = atom_get_val, 2340 .get_scaling = silvermont_get_scaling, 2341 .get_vid = atom_get_vid, 2342 }; 2343 2344 static const struct pstate_funcs airmont_funcs = { 2345 .get_max = atom_get_max_pstate, 2346 .get_max_physical = atom_get_max_pstate, 2347 .get_min = atom_get_min_pstate, 2348 .get_turbo = atom_get_turbo_pstate, 2349 .get_val = atom_get_val, 2350 .get_scaling = airmont_get_scaling, 2351 .get_vid = atom_get_vid, 2352 }; 2353 2354 static const struct pstate_funcs knl_funcs = { 2355 .get_max = core_get_max_pstate, 2356 .get_max_physical = core_get_max_pstate_physical, 2357 .get_min = core_get_min_pstate, 2358 .get_turbo = knl_get_turbo_pstate, 2359 .get_aperf_mperf_shift = knl_get_aperf_mperf_shift, 2360 .get_scaling = core_get_scaling, 2361 .get_val = core_get_val, 2362 }; 2363 2364 #define X86_MATCH(model, policy) \ 2365 X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6, INTEL_FAM6_##model, \ 2366 X86_FEATURE_APERFMPERF, &policy) 2367 2368 static const struct x86_cpu_id intel_pstate_cpu_ids[] = { 2369 X86_MATCH(SANDYBRIDGE, core_funcs), 2370 X86_MATCH(SANDYBRIDGE_X, core_funcs), 2371 X86_MATCH(ATOM_SILVERMONT, silvermont_funcs), 2372 X86_MATCH(IVYBRIDGE, core_funcs), 2373 X86_MATCH(HASWELL, core_funcs), 2374 X86_MATCH(BROADWELL, core_funcs), 2375 X86_MATCH(IVYBRIDGE_X, core_funcs), 2376 X86_MATCH(HASWELL_X, core_funcs), 2377 X86_MATCH(HASWELL_L, core_funcs), 2378 X86_MATCH(HASWELL_G, core_funcs), 2379 X86_MATCH(BROADWELL_G, core_funcs), 2380 X86_MATCH(ATOM_AIRMONT, airmont_funcs), 2381 X86_MATCH(SKYLAKE_L, core_funcs), 2382 X86_MATCH(BROADWELL_X, core_funcs), 2383 X86_MATCH(SKYLAKE, core_funcs), 2384 X86_MATCH(BROADWELL_D, core_funcs), 2385 X86_MATCH(XEON_PHI_KNL, knl_funcs), 2386 X86_MATCH(XEON_PHI_KNM, knl_funcs), 2387 X86_MATCH(ATOM_GOLDMONT, core_funcs), 2388 X86_MATCH(ATOM_GOLDMONT_PLUS, core_funcs), 2389 X86_MATCH(SKYLAKE_X, core_funcs), 2390 X86_MATCH(COMETLAKE, core_funcs), 2391 X86_MATCH(ICELAKE_X, core_funcs), 2392 {} 2393 }; 2394 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids); 2395 2396 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = { 2397 X86_MATCH(BROADWELL_D, core_funcs), 2398 X86_MATCH(BROADWELL_X, core_funcs), 2399 X86_MATCH(SKYLAKE_X, core_funcs), 2400 X86_MATCH(ICELAKE_X, core_funcs), 2401 {} 2402 }; 2403 2404 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = { 2405 X86_MATCH(KABYLAKE, core_funcs), 2406 {} 2407 }; 2408 2409 static const struct x86_cpu_id intel_pstate_hwp_boost_ids[] = { 2410 X86_MATCH(SKYLAKE_X, core_funcs), 2411 X86_MATCH(SKYLAKE, core_funcs), 2412 {} 2413 }; 2414 2415 static int intel_pstate_init_cpu(unsigned int cpunum) 2416 { 2417 struct cpudata *cpu; 2418 2419 cpu = all_cpu_data[cpunum]; 2420 2421 if (!cpu) { 2422 cpu = kzalloc(sizeof(*cpu), GFP_KERNEL); 2423 if (!cpu) 2424 return -ENOMEM; 2425 2426 WRITE_ONCE(all_cpu_data[cpunum], cpu); 2427 2428 cpu->cpu = cpunum; 2429 2430 cpu->epp_default = -EINVAL; 2431 2432 if (hwp_active) { 2433 const struct x86_cpu_id *id; 2434 2435 intel_pstate_hwp_enable(cpu); 2436 2437 id = x86_match_cpu(intel_pstate_hwp_boost_ids); 2438 if (id && intel_pstate_acpi_pm_profile_server()) 2439 hwp_boost = true; 2440 } 2441 } else if (hwp_active) { 2442 /* 2443 * Re-enable HWP in case this happens after a resume from ACPI 2444 * S3 if the CPU was offline during the whole system/resume 2445 * cycle. 2446 */ 2447 intel_pstate_hwp_reenable(cpu); 2448 } 2449 2450 cpu->epp_powersave = -EINVAL; 2451 cpu->epp_policy = 0; 2452 2453 intel_pstate_get_cpu_pstates(cpu); 2454 2455 pr_debug("controlling: cpu %d\n", cpunum); 2456 2457 return 0; 2458 } 2459 2460 static void intel_pstate_set_update_util_hook(unsigned int cpu_num) 2461 { 2462 struct cpudata *cpu = all_cpu_data[cpu_num]; 2463 2464 if (hwp_active && !hwp_boost) 2465 return; 2466 2467 if (cpu->update_util_set) 2468 return; 2469 2470 /* Prevent intel_pstate_update_util() from using stale data. */ 2471 cpu->sample.time = 0; 2472 cpufreq_add_update_util_hook(cpu_num, &cpu->update_util, 2473 (hwp_active ? 2474 intel_pstate_update_util_hwp : 2475 intel_pstate_update_util)); 2476 cpu->update_util_set = true; 2477 } 2478 2479 static void intel_pstate_clear_update_util_hook(unsigned int cpu) 2480 { 2481 struct cpudata *cpu_data = all_cpu_data[cpu]; 2482 2483 if (!cpu_data->update_util_set) 2484 return; 2485 2486 cpufreq_remove_update_util_hook(cpu); 2487 cpu_data->update_util_set = false; 2488 synchronize_rcu(); 2489 } 2490 2491 static int intel_pstate_get_max_freq(struct cpudata *cpu) 2492 { 2493 return global.turbo_disabled || global.no_turbo ? 2494 cpu->pstate.max_freq : cpu->pstate.turbo_freq; 2495 } 2496 2497 static void intel_pstate_update_perf_limits(struct cpudata *cpu, 2498 unsigned int policy_min, 2499 unsigned int policy_max) 2500 { 2501 int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling; 2502 int32_t max_policy_perf, min_policy_perf; 2503 2504 max_policy_perf = policy_max / perf_ctl_scaling; 2505 if (policy_max == policy_min) { 2506 min_policy_perf = max_policy_perf; 2507 } else { 2508 min_policy_perf = policy_min / perf_ctl_scaling; 2509 min_policy_perf = clamp_t(int32_t, min_policy_perf, 2510 0, max_policy_perf); 2511 } 2512 2513 /* 2514 * HWP needs some special consideration, because HWP_REQUEST uses 2515 * abstract values to represent performance rather than pure ratios. 2516 */ 2517 if (hwp_active && cpu->pstate.scaling != perf_ctl_scaling) { 2518 int scaling = cpu->pstate.scaling; 2519 int freq; 2520 2521 freq = max_policy_perf * perf_ctl_scaling; 2522 max_policy_perf = DIV_ROUND_UP(freq, scaling); 2523 freq = min_policy_perf * perf_ctl_scaling; 2524 min_policy_perf = DIV_ROUND_UP(freq, scaling); 2525 } 2526 2527 pr_debug("cpu:%d min_policy_perf:%d max_policy_perf:%d\n", 2528 cpu->cpu, min_policy_perf, max_policy_perf); 2529 2530 /* Normalize user input to [min_perf, max_perf] */ 2531 if (per_cpu_limits) { 2532 cpu->min_perf_ratio = min_policy_perf; 2533 cpu->max_perf_ratio = max_policy_perf; 2534 } else { 2535 int turbo_max = cpu->pstate.turbo_pstate; 2536 int32_t global_min, global_max; 2537 2538 /* Global limits are in percent of the maximum turbo P-state. */ 2539 global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100); 2540 global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100); 2541 global_min = clamp_t(int32_t, global_min, 0, global_max); 2542 2543 pr_debug("cpu:%d global_min:%d global_max:%d\n", cpu->cpu, 2544 global_min, global_max); 2545 2546 cpu->min_perf_ratio = max(min_policy_perf, global_min); 2547 cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf); 2548 cpu->max_perf_ratio = min(max_policy_perf, global_max); 2549 cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio); 2550 2551 /* Make sure min_perf <= max_perf */ 2552 cpu->min_perf_ratio = min(cpu->min_perf_ratio, 2553 cpu->max_perf_ratio); 2554 2555 } 2556 pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", cpu->cpu, 2557 cpu->max_perf_ratio, 2558 cpu->min_perf_ratio); 2559 } 2560 2561 static int intel_pstate_set_policy(struct cpufreq_policy *policy) 2562 { 2563 struct cpudata *cpu; 2564 2565 if (!policy->cpuinfo.max_freq) 2566 return -ENODEV; 2567 2568 pr_debug("set_policy cpuinfo.max %u policy->max %u\n", 2569 policy->cpuinfo.max_freq, policy->max); 2570 2571 cpu = all_cpu_data[policy->cpu]; 2572 cpu->policy = policy->policy; 2573 2574 mutex_lock(&intel_pstate_limits_lock); 2575 2576 intel_pstate_update_perf_limits(cpu, policy->min, policy->max); 2577 2578 if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) { 2579 /* 2580 * NOHZ_FULL CPUs need this as the governor callback may not 2581 * be invoked on them. 2582 */ 2583 intel_pstate_clear_update_util_hook(policy->cpu); 2584 intel_pstate_max_within_limits(cpu); 2585 } else { 2586 intel_pstate_set_update_util_hook(policy->cpu); 2587 } 2588 2589 if (hwp_active) { 2590 /* 2591 * When hwp_boost was active before and dynamically it 2592 * was turned off, in that case we need to clear the 2593 * update util hook. 2594 */ 2595 if (!hwp_boost) 2596 intel_pstate_clear_update_util_hook(policy->cpu); 2597 intel_pstate_hwp_set(policy->cpu); 2598 } 2599 2600 mutex_unlock(&intel_pstate_limits_lock); 2601 2602 return 0; 2603 } 2604 2605 static void intel_pstate_adjust_policy_max(struct cpudata *cpu, 2606 struct cpufreq_policy_data *policy) 2607 { 2608 if (!hwp_active && 2609 cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate && 2610 policy->max < policy->cpuinfo.max_freq && 2611 policy->max > cpu->pstate.max_freq) { 2612 pr_debug("policy->max > max non turbo frequency\n"); 2613 policy->max = policy->cpuinfo.max_freq; 2614 } 2615 } 2616 2617 static void intel_pstate_verify_cpu_policy(struct cpudata *cpu, 2618 struct cpufreq_policy_data *policy) 2619 { 2620 int max_freq; 2621 2622 update_turbo_state(); 2623 if (hwp_active) { 2624 intel_pstate_get_hwp_cap(cpu); 2625 max_freq = global.no_turbo || global.turbo_disabled ? 2626 cpu->pstate.max_freq : cpu->pstate.turbo_freq; 2627 } else { 2628 max_freq = intel_pstate_get_max_freq(cpu); 2629 } 2630 cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq, max_freq); 2631 2632 intel_pstate_adjust_policy_max(cpu, policy); 2633 } 2634 2635 static int intel_pstate_verify_policy(struct cpufreq_policy_data *policy) 2636 { 2637 intel_pstate_verify_cpu_policy(all_cpu_data[policy->cpu], policy); 2638 2639 return 0; 2640 } 2641 2642 static int intel_cpufreq_cpu_offline(struct cpufreq_policy *policy) 2643 { 2644 struct cpudata *cpu = all_cpu_data[policy->cpu]; 2645 2646 pr_debug("CPU %d going offline\n", cpu->cpu); 2647 2648 if (cpu->suspended) 2649 return 0; 2650 2651 /* 2652 * If the CPU is an SMT thread and it goes offline with the performance 2653 * settings different from the minimum, it will prevent its sibling 2654 * from getting to lower performance levels, so force the minimum 2655 * performance on CPU offline to prevent that from happening. 2656 */ 2657 if (hwp_active) 2658 intel_pstate_hwp_offline(cpu); 2659 else 2660 intel_pstate_set_min_pstate(cpu); 2661 2662 intel_pstate_exit_perf_limits(policy); 2663 2664 return 0; 2665 } 2666 2667 static int intel_pstate_cpu_online(struct cpufreq_policy *policy) 2668 { 2669 struct cpudata *cpu = all_cpu_data[policy->cpu]; 2670 2671 pr_debug("CPU %d going online\n", cpu->cpu); 2672 2673 intel_pstate_init_acpi_perf_limits(policy); 2674 2675 if (hwp_active) { 2676 /* 2677 * Re-enable HWP and clear the "suspended" flag to let "resume" 2678 * know that it need not do that. 2679 */ 2680 intel_pstate_hwp_reenable(cpu); 2681 cpu->suspended = false; 2682 } 2683 2684 return 0; 2685 } 2686 2687 static int intel_pstate_cpu_offline(struct cpufreq_policy *policy) 2688 { 2689 intel_pstate_clear_update_util_hook(policy->cpu); 2690 2691 return intel_cpufreq_cpu_offline(policy); 2692 } 2693 2694 static int intel_pstate_cpu_exit(struct cpufreq_policy *policy) 2695 { 2696 pr_debug("CPU %d exiting\n", policy->cpu); 2697 2698 policy->fast_switch_possible = false; 2699 2700 return 0; 2701 } 2702 2703 static int __intel_pstate_cpu_init(struct cpufreq_policy *policy) 2704 { 2705 struct cpudata *cpu; 2706 int rc; 2707 2708 rc = intel_pstate_init_cpu(policy->cpu); 2709 if (rc) 2710 return rc; 2711 2712 cpu = all_cpu_data[policy->cpu]; 2713 2714 cpu->max_perf_ratio = 0xFF; 2715 cpu->min_perf_ratio = 0; 2716 2717 /* cpuinfo and default policy values */ 2718 policy->cpuinfo.min_freq = cpu->pstate.min_freq; 2719 update_turbo_state(); 2720 global.turbo_disabled_mf = global.turbo_disabled; 2721 policy->cpuinfo.max_freq = global.turbo_disabled ? 2722 cpu->pstate.max_freq : cpu->pstate.turbo_freq; 2723 2724 policy->min = policy->cpuinfo.min_freq; 2725 policy->max = policy->cpuinfo.max_freq; 2726 2727 intel_pstate_init_acpi_perf_limits(policy); 2728 2729 policy->fast_switch_possible = true; 2730 2731 return 0; 2732 } 2733 2734 static int intel_pstate_cpu_init(struct cpufreq_policy *policy) 2735 { 2736 int ret = __intel_pstate_cpu_init(policy); 2737 2738 if (ret) 2739 return ret; 2740 2741 /* 2742 * Set the policy to powersave to provide a valid fallback value in case 2743 * the default cpufreq governor is neither powersave nor performance. 2744 */ 2745 policy->policy = CPUFREQ_POLICY_POWERSAVE; 2746 2747 if (hwp_active) { 2748 struct cpudata *cpu = all_cpu_data[policy->cpu]; 2749 2750 cpu->epp_cached = intel_pstate_get_epp(cpu, 0); 2751 } 2752 2753 return 0; 2754 } 2755 2756 static struct cpufreq_driver intel_pstate = { 2757 .flags = CPUFREQ_CONST_LOOPS, 2758 .verify = intel_pstate_verify_policy, 2759 .setpolicy = intel_pstate_set_policy, 2760 .suspend = intel_pstate_suspend, 2761 .resume = intel_pstate_resume, 2762 .init = intel_pstate_cpu_init, 2763 .exit = intel_pstate_cpu_exit, 2764 .offline = intel_pstate_cpu_offline, 2765 .online = intel_pstate_cpu_online, 2766 .update_limits = intel_pstate_update_limits, 2767 .name = "intel_pstate", 2768 }; 2769 2770 static int intel_cpufreq_verify_policy(struct cpufreq_policy_data *policy) 2771 { 2772 struct cpudata *cpu = all_cpu_data[policy->cpu]; 2773 2774 intel_pstate_verify_cpu_policy(cpu, policy); 2775 intel_pstate_update_perf_limits(cpu, policy->min, policy->max); 2776 2777 return 0; 2778 } 2779 2780 /* Use of trace in passive mode: 2781 * 2782 * In passive mode the trace core_busy field (also known as the 2783 * performance field, and lablelled as such on the graphs; also known as 2784 * core_avg_perf) is not needed and so is re-assigned to indicate if the 2785 * driver call was via the normal or fast switch path. Various graphs 2786 * output from the intel_pstate_tracer.py utility that include core_busy 2787 * (or performance or core_avg_perf) have a fixed y-axis from 0 to 100%, 2788 * so we use 10 to indicate the normal path through the driver, and 2789 * 90 to indicate the fast switch path through the driver. 2790 * The scaled_busy field is not used, and is set to 0. 2791 */ 2792 2793 #define INTEL_PSTATE_TRACE_TARGET 10 2794 #define INTEL_PSTATE_TRACE_FAST_SWITCH 90 2795 2796 static void intel_cpufreq_trace(struct cpudata *cpu, unsigned int trace_type, int old_pstate) 2797 { 2798 struct sample *sample; 2799 2800 if (!trace_pstate_sample_enabled()) 2801 return; 2802 2803 if (!intel_pstate_sample(cpu, ktime_get())) 2804 return; 2805 2806 sample = &cpu->sample; 2807 trace_pstate_sample(trace_type, 2808 0, 2809 old_pstate, 2810 cpu->pstate.current_pstate, 2811 sample->mperf, 2812 sample->aperf, 2813 sample->tsc, 2814 get_avg_frequency(cpu), 2815 fp_toint(cpu->iowait_boost * 100)); 2816 } 2817 2818 static void intel_cpufreq_hwp_update(struct cpudata *cpu, u32 min, u32 max, 2819 u32 desired, bool fast_switch) 2820 { 2821 u64 prev = READ_ONCE(cpu->hwp_req_cached), value = prev; 2822 2823 value &= ~HWP_MIN_PERF(~0L); 2824 value |= HWP_MIN_PERF(min); 2825 2826 value &= ~HWP_MAX_PERF(~0L); 2827 value |= HWP_MAX_PERF(max); 2828 2829 value &= ~HWP_DESIRED_PERF(~0L); 2830 value |= HWP_DESIRED_PERF(desired); 2831 2832 if (value == prev) 2833 return; 2834 2835 WRITE_ONCE(cpu->hwp_req_cached, value); 2836 if (fast_switch) 2837 wrmsrl(MSR_HWP_REQUEST, value); 2838 else 2839 wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value); 2840 } 2841 2842 static void intel_cpufreq_perf_ctl_update(struct cpudata *cpu, 2843 u32 target_pstate, bool fast_switch) 2844 { 2845 if (fast_switch) 2846 wrmsrl(MSR_IA32_PERF_CTL, 2847 pstate_funcs.get_val(cpu, target_pstate)); 2848 else 2849 wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL, 2850 pstate_funcs.get_val(cpu, target_pstate)); 2851 } 2852 2853 static int intel_cpufreq_update_pstate(struct cpufreq_policy *policy, 2854 int target_pstate, bool fast_switch) 2855 { 2856 struct cpudata *cpu = all_cpu_data[policy->cpu]; 2857 int old_pstate = cpu->pstate.current_pstate; 2858 2859 target_pstate = intel_pstate_prepare_request(cpu, target_pstate); 2860 if (hwp_active) { 2861 int max_pstate = policy->strict_target ? 2862 target_pstate : cpu->max_perf_ratio; 2863 2864 intel_cpufreq_hwp_update(cpu, target_pstate, max_pstate, 0, 2865 fast_switch); 2866 } else if (target_pstate != old_pstate) { 2867 intel_cpufreq_perf_ctl_update(cpu, target_pstate, fast_switch); 2868 } 2869 2870 cpu->pstate.current_pstate = target_pstate; 2871 2872 intel_cpufreq_trace(cpu, fast_switch ? INTEL_PSTATE_TRACE_FAST_SWITCH : 2873 INTEL_PSTATE_TRACE_TARGET, old_pstate); 2874 2875 return target_pstate; 2876 } 2877 2878 static int intel_cpufreq_target(struct cpufreq_policy *policy, 2879 unsigned int target_freq, 2880 unsigned int relation) 2881 { 2882 struct cpudata *cpu = all_cpu_data[policy->cpu]; 2883 struct cpufreq_freqs freqs; 2884 int target_pstate; 2885 2886 update_turbo_state(); 2887 2888 freqs.old = policy->cur; 2889 freqs.new = target_freq; 2890 2891 cpufreq_freq_transition_begin(policy, &freqs); 2892 2893 switch (relation) { 2894 case CPUFREQ_RELATION_L: 2895 target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling); 2896 break; 2897 case CPUFREQ_RELATION_H: 2898 target_pstate = freqs.new / cpu->pstate.scaling; 2899 break; 2900 default: 2901 target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling); 2902 break; 2903 } 2904 2905 target_pstate = intel_cpufreq_update_pstate(policy, target_pstate, false); 2906 2907 freqs.new = target_pstate * cpu->pstate.scaling; 2908 2909 cpufreq_freq_transition_end(policy, &freqs, false); 2910 2911 return 0; 2912 } 2913 2914 static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy, 2915 unsigned int target_freq) 2916 { 2917 struct cpudata *cpu = all_cpu_data[policy->cpu]; 2918 int target_pstate; 2919 2920 update_turbo_state(); 2921 2922 target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling); 2923 2924 target_pstate = intel_cpufreq_update_pstate(policy, target_pstate, true); 2925 2926 return target_pstate * cpu->pstate.scaling; 2927 } 2928 2929 static void intel_cpufreq_adjust_perf(unsigned int cpunum, 2930 unsigned long min_perf, 2931 unsigned long target_perf, 2932 unsigned long capacity) 2933 { 2934 struct cpudata *cpu = all_cpu_data[cpunum]; 2935 u64 hwp_cap = READ_ONCE(cpu->hwp_cap_cached); 2936 int old_pstate = cpu->pstate.current_pstate; 2937 int cap_pstate, min_pstate, max_pstate, target_pstate; 2938 2939 update_turbo_state(); 2940 cap_pstate = global.turbo_disabled ? HWP_GUARANTEED_PERF(hwp_cap) : 2941 HWP_HIGHEST_PERF(hwp_cap); 2942 2943 /* Optimization: Avoid unnecessary divisions. */ 2944 2945 target_pstate = cap_pstate; 2946 if (target_perf < capacity) 2947 target_pstate = DIV_ROUND_UP(cap_pstate * target_perf, capacity); 2948 2949 min_pstate = cap_pstate; 2950 if (min_perf < capacity) 2951 min_pstate = DIV_ROUND_UP(cap_pstate * min_perf, capacity); 2952 2953 if (min_pstate < cpu->pstate.min_pstate) 2954 min_pstate = cpu->pstate.min_pstate; 2955 2956 if (min_pstate < cpu->min_perf_ratio) 2957 min_pstate = cpu->min_perf_ratio; 2958 2959 max_pstate = min(cap_pstate, cpu->max_perf_ratio); 2960 if (max_pstate < min_pstate) 2961 max_pstate = min_pstate; 2962 2963 target_pstate = clamp_t(int, target_pstate, min_pstate, max_pstate); 2964 2965 intel_cpufreq_hwp_update(cpu, min_pstate, max_pstate, target_pstate, true); 2966 2967 cpu->pstate.current_pstate = target_pstate; 2968 intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_FAST_SWITCH, old_pstate); 2969 } 2970 2971 static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy) 2972 { 2973 struct freq_qos_request *req; 2974 struct cpudata *cpu; 2975 struct device *dev; 2976 int ret, freq; 2977 2978 dev = get_cpu_device(policy->cpu); 2979 if (!dev) 2980 return -ENODEV; 2981 2982 ret = __intel_pstate_cpu_init(policy); 2983 if (ret) 2984 return ret; 2985 2986 policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY; 2987 /* This reflects the intel_pstate_get_cpu_pstates() setting. */ 2988 policy->cur = policy->cpuinfo.min_freq; 2989 2990 req = kcalloc(2, sizeof(*req), GFP_KERNEL); 2991 if (!req) { 2992 ret = -ENOMEM; 2993 goto pstate_exit; 2994 } 2995 2996 cpu = all_cpu_data[policy->cpu]; 2997 2998 if (hwp_active) { 2999 u64 value; 3000 3001 policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY_HWP; 3002 3003 intel_pstate_get_hwp_cap(cpu); 3004 3005 rdmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, &value); 3006 WRITE_ONCE(cpu->hwp_req_cached, value); 3007 3008 cpu->epp_cached = intel_pstate_get_epp(cpu, value); 3009 } else { 3010 policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY; 3011 } 3012 3013 freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * global.min_perf_pct, 100); 3014 3015 ret = freq_qos_add_request(&policy->constraints, req, FREQ_QOS_MIN, 3016 freq); 3017 if (ret < 0) { 3018 dev_err(dev, "Failed to add min-freq constraint (%d)\n", ret); 3019 goto free_req; 3020 } 3021 3022 freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * global.max_perf_pct, 100); 3023 3024 ret = freq_qos_add_request(&policy->constraints, req + 1, FREQ_QOS_MAX, 3025 freq); 3026 if (ret < 0) { 3027 dev_err(dev, "Failed to add max-freq constraint (%d)\n", ret); 3028 goto remove_min_req; 3029 } 3030 3031 policy->driver_data = req; 3032 3033 return 0; 3034 3035 remove_min_req: 3036 freq_qos_remove_request(req); 3037 free_req: 3038 kfree(req); 3039 pstate_exit: 3040 intel_pstate_exit_perf_limits(policy); 3041 3042 return ret; 3043 } 3044 3045 static int intel_cpufreq_cpu_exit(struct cpufreq_policy *policy) 3046 { 3047 struct freq_qos_request *req; 3048 3049 req = policy->driver_data; 3050 3051 freq_qos_remove_request(req + 1); 3052 freq_qos_remove_request(req); 3053 kfree(req); 3054 3055 return intel_pstate_cpu_exit(policy); 3056 } 3057 3058 static int intel_cpufreq_suspend(struct cpufreq_policy *policy) 3059 { 3060 intel_pstate_suspend(policy); 3061 3062 if (hwp_active) { 3063 struct cpudata *cpu = all_cpu_data[policy->cpu]; 3064 u64 value = READ_ONCE(cpu->hwp_req_cached); 3065 3066 /* 3067 * Clear the desired perf field in MSR_HWP_REQUEST in case 3068 * intel_cpufreq_adjust_perf() is in use and the last value 3069 * written by it may not be suitable. 3070 */ 3071 value &= ~HWP_DESIRED_PERF(~0L); 3072 wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value); 3073 WRITE_ONCE(cpu->hwp_req_cached, value); 3074 } 3075 3076 return 0; 3077 } 3078 3079 static struct cpufreq_driver intel_cpufreq = { 3080 .flags = CPUFREQ_CONST_LOOPS, 3081 .verify = intel_cpufreq_verify_policy, 3082 .target = intel_cpufreq_target, 3083 .fast_switch = intel_cpufreq_fast_switch, 3084 .init = intel_cpufreq_cpu_init, 3085 .exit = intel_cpufreq_cpu_exit, 3086 .offline = intel_cpufreq_cpu_offline, 3087 .online = intel_pstate_cpu_online, 3088 .suspend = intel_cpufreq_suspend, 3089 .resume = intel_pstate_resume, 3090 .update_limits = intel_pstate_update_limits, 3091 .name = "intel_cpufreq", 3092 }; 3093 3094 static struct cpufreq_driver *default_driver; 3095 3096 static void intel_pstate_driver_cleanup(void) 3097 { 3098 unsigned int cpu; 3099 3100 cpus_read_lock(); 3101 for_each_online_cpu(cpu) { 3102 if (all_cpu_data[cpu]) { 3103 if (intel_pstate_driver == &intel_pstate) 3104 intel_pstate_clear_update_util_hook(cpu); 3105 3106 spin_lock(&hwp_notify_lock); 3107 kfree(all_cpu_data[cpu]); 3108 WRITE_ONCE(all_cpu_data[cpu], NULL); 3109 spin_unlock(&hwp_notify_lock); 3110 } 3111 } 3112 cpus_read_unlock(); 3113 3114 intel_pstate_driver = NULL; 3115 } 3116 3117 static int intel_pstate_register_driver(struct cpufreq_driver *driver) 3118 { 3119 int ret; 3120 3121 if (driver == &intel_pstate) 3122 intel_pstate_sysfs_expose_hwp_dynamic_boost(); 3123 3124 memset(&global, 0, sizeof(global)); 3125 global.max_perf_pct = 100; 3126 3127 intel_pstate_driver = driver; 3128 ret = cpufreq_register_driver(intel_pstate_driver); 3129 if (ret) { 3130 intel_pstate_driver_cleanup(); 3131 return ret; 3132 } 3133 3134 global.min_perf_pct = min_perf_pct_min(); 3135 3136 return 0; 3137 } 3138 3139 static ssize_t intel_pstate_show_status(char *buf) 3140 { 3141 if (!intel_pstate_driver) 3142 return sprintf(buf, "off\n"); 3143 3144 return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ? 3145 "active" : "passive"); 3146 } 3147 3148 static int intel_pstate_update_status(const char *buf, size_t size) 3149 { 3150 if (size == 3 && !strncmp(buf, "off", size)) { 3151 if (!intel_pstate_driver) 3152 return -EINVAL; 3153 3154 if (hwp_active) 3155 return -EBUSY; 3156 3157 cpufreq_unregister_driver(intel_pstate_driver); 3158 intel_pstate_driver_cleanup(); 3159 return 0; 3160 } 3161 3162 if (size == 6 && !strncmp(buf, "active", size)) { 3163 if (intel_pstate_driver) { 3164 if (intel_pstate_driver == &intel_pstate) 3165 return 0; 3166 3167 cpufreq_unregister_driver(intel_pstate_driver); 3168 } 3169 3170 return intel_pstate_register_driver(&intel_pstate); 3171 } 3172 3173 if (size == 7 && !strncmp(buf, "passive", size)) { 3174 if (intel_pstate_driver) { 3175 if (intel_pstate_driver == &intel_cpufreq) 3176 return 0; 3177 3178 cpufreq_unregister_driver(intel_pstate_driver); 3179 intel_pstate_sysfs_hide_hwp_dynamic_boost(); 3180 } 3181 3182 return intel_pstate_register_driver(&intel_cpufreq); 3183 } 3184 3185 return -EINVAL; 3186 } 3187 3188 static int no_load __initdata; 3189 static int no_hwp __initdata; 3190 static int hwp_only __initdata; 3191 static unsigned int force_load __initdata; 3192 3193 static int __init intel_pstate_msrs_not_valid(void) 3194 { 3195 if (!pstate_funcs.get_max() || 3196 !pstate_funcs.get_min() || 3197 !pstate_funcs.get_turbo()) 3198 return -ENODEV; 3199 3200 return 0; 3201 } 3202 3203 static void __init copy_cpu_funcs(struct pstate_funcs *funcs) 3204 { 3205 pstate_funcs.get_max = funcs->get_max; 3206 pstate_funcs.get_max_physical = funcs->get_max_physical; 3207 pstate_funcs.get_min = funcs->get_min; 3208 pstate_funcs.get_turbo = funcs->get_turbo; 3209 pstate_funcs.get_scaling = funcs->get_scaling; 3210 pstate_funcs.get_val = funcs->get_val; 3211 pstate_funcs.get_vid = funcs->get_vid; 3212 pstate_funcs.get_aperf_mperf_shift = funcs->get_aperf_mperf_shift; 3213 } 3214 3215 #ifdef CONFIG_ACPI 3216 3217 static bool __init intel_pstate_no_acpi_pss(void) 3218 { 3219 int i; 3220 3221 for_each_possible_cpu(i) { 3222 acpi_status status; 3223 union acpi_object *pss; 3224 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL }; 3225 struct acpi_processor *pr = per_cpu(processors, i); 3226 3227 if (!pr) 3228 continue; 3229 3230 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer); 3231 if (ACPI_FAILURE(status)) 3232 continue; 3233 3234 pss = buffer.pointer; 3235 if (pss && pss->type == ACPI_TYPE_PACKAGE) { 3236 kfree(pss); 3237 return false; 3238 } 3239 3240 kfree(pss); 3241 } 3242 3243 pr_debug("ACPI _PSS not found\n"); 3244 return true; 3245 } 3246 3247 static bool __init intel_pstate_no_acpi_pcch(void) 3248 { 3249 acpi_status status; 3250 acpi_handle handle; 3251 3252 status = acpi_get_handle(NULL, "\\_SB", &handle); 3253 if (ACPI_FAILURE(status)) 3254 goto not_found; 3255 3256 if (acpi_has_method(handle, "PCCH")) 3257 return false; 3258 3259 not_found: 3260 pr_debug("ACPI PCCH not found\n"); 3261 return true; 3262 } 3263 3264 static bool __init intel_pstate_has_acpi_ppc(void) 3265 { 3266 int i; 3267 3268 for_each_possible_cpu(i) { 3269 struct acpi_processor *pr = per_cpu(processors, i); 3270 3271 if (!pr) 3272 continue; 3273 if (acpi_has_method(pr->handle, "_PPC")) 3274 return true; 3275 } 3276 pr_debug("ACPI _PPC not found\n"); 3277 return false; 3278 } 3279 3280 enum { 3281 PSS, 3282 PPC, 3283 }; 3284 3285 /* Hardware vendor-specific info that has its own power management modes */ 3286 static struct acpi_platform_list plat_info[] __initdata = { 3287 {"HP ", "ProLiant", 0, ACPI_SIG_FADT, all_versions, NULL, PSS}, 3288 {"ORACLE", "X4-2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 3289 {"ORACLE", "X4-2L ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 3290 {"ORACLE", "X4-2B ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 3291 {"ORACLE", "X3-2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 3292 {"ORACLE", "X3-2L ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 3293 {"ORACLE", "X3-2B ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 3294 {"ORACLE", "X4470M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 3295 {"ORACLE", "X4270M3 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 3296 {"ORACLE", "X4270M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 3297 {"ORACLE", "X4170M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 3298 {"ORACLE", "X4170 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 3299 {"ORACLE", "X4275 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 3300 {"ORACLE", "X6-2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 3301 {"ORACLE", "Sudbury ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 3302 { } /* End */ 3303 }; 3304 3305 #define BITMASK_OOB (BIT(8) | BIT(18)) 3306 3307 static bool __init intel_pstate_platform_pwr_mgmt_exists(void) 3308 { 3309 const struct x86_cpu_id *id; 3310 u64 misc_pwr; 3311 int idx; 3312 3313 id = x86_match_cpu(intel_pstate_cpu_oob_ids); 3314 if (id) { 3315 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr); 3316 if (misc_pwr & BITMASK_OOB) { 3317 pr_debug("Bit 8 or 18 in the MISC_PWR_MGMT MSR set\n"); 3318 pr_debug("P states are controlled in Out of Band mode by the firmware/hardware\n"); 3319 return true; 3320 } 3321 } 3322 3323 idx = acpi_match_platform_list(plat_info); 3324 if (idx < 0) 3325 return false; 3326 3327 switch (plat_info[idx].data) { 3328 case PSS: 3329 if (!intel_pstate_no_acpi_pss()) 3330 return false; 3331 3332 return intel_pstate_no_acpi_pcch(); 3333 case PPC: 3334 return intel_pstate_has_acpi_ppc() && !force_load; 3335 } 3336 3337 return false; 3338 } 3339 3340 static void intel_pstate_request_control_from_smm(void) 3341 { 3342 /* 3343 * It may be unsafe to request P-states control from SMM if _PPC support 3344 * has not been enabled. 3345 */ 3346 if (acpi_ppc) 3347 acpi_processor_pstate_control(); 3348 } 3349 #else /* CONFIG_ACPI not enabled */ 3350 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; } 3351 static inline bool intel_pstate_has_acpi_ppc(void) { return false; } 3352 static inline void intel_pstate_request_control_from_smm(void) {} 3353 #endif /* CONFIG_ACPI */ 3354 3355 #define INTEL_PSTATE_HWP_BROADWELL 0x01 3356 3357 #define X86_MATCH_HWP(model, hwp_mode) \ 3358 X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6, INTEL_FAM6_##model, \ 3359 X86_FEATURE_HWP, hwp_mode) 3360 3361 static const struct x86_cpu_id hwp_support_ids[] __initconst = { 3362 X86_MATCH_HWP(BROADWELL_X, INTEL_PSTATE_HWP_BROADWELL), 3363 X86_MATCH_HWP(BROADWELL_D, INTEL_PSTATE_HWP_BROADWELL), 3364 X86_MATCH_HWP(ANY, 0), 3365 {} 3366 }; 3367 3368 static bool intel_pstate_hwp_is_enabled(void) 3369 { 3370 u64 value; 3371 3372 rdmsrl(MSR_PM_ENABLE, value); 3373 return !!(value & 0x1); 3374 } 3375 3376 static const struct x86_cpu_id intel_epp_balance_perf[] = { 3377 /* 3378 * Set EPP value as 102, this is the max suggested EPP 3379 * which can result in one core turbo frequency for 3380 * AlderLake Mobile CPUs. 3381 */ 3382 X86_MATCH_INTEL_FAM6_MODEL(ALDERLAKE_L, 102), 3383 {} 3384 }; 3385 3386 static int __init intel_pstate_init(void) 3387 { 3388 static struct cpudata **_all_cpu_data; 3389 const struct x86_cpu_id *id; 3390 int rc; 3391 3392 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) 3393 return -ENODEV; 3394 3395 id = x86_match_cpu(hwp_support_ids); 3396 if (id) { 3397 bool hwp_forced = intel_pstate_hwp_is_enabled(); 3398 3399 if (hwp_forced) 3400 pr_info("HWP enabled by BIOS\n"); 3401 else if (no_load) 3402 return -ENODEV; 3403 3404 copy_cpu_funcs(&core_funcs); 3405 /* 3406 * Avoid enabling HWP for processors without EPP support, 3407 * because that means incomplete HWP implementation which is a 3408 * corner case and supporting it is generally problematic. 3409 * 3410 * If HWP is enabled already, though, there is no choice but to 3411 * deal with it. 3412 */ 3413 if ((!no_hwp && boot_cpu_has(X86_FEATURE_HWP_EPP)) || hwp_forced) { 3414 WRITE_ONCE(hwp_active, 1); 3415 hwp_mode_bdw = id->driver_data; 3416 intel_pstate.attr = hwp_cpufreq_attrs; 3417 intel_cpufreq.attr = hwp_cpufreq_attrs; 3418 intel_cpufreq.flags |= CPUFREQ_NEED_UPDATE_LIMITS; 3419 intel_cpufreq.adjust_perf = intel_cpufreq_adjust_perf; 3420 if (!default_driver) 3421 default_driver = &intel_pstate; 3422 3423 if (boot_cpu_has(X86_FEATURE_HYBRID_CPU)) 3424 intel_pstate_cppc_set_cpu_scaling(); 3425 3426 goto hwp_cpu_matched; 3427 } 3428 pr_info("HWP not enabled\n"); 3429 } else { 3430 if (no_load) 3431 return -ENODEV; 3432 3433 id = x86_match_cpu(intel_pstate_cpu_ids); 3434 if (!id) { 3435 pr_info("CPU model not supported\n"); 3436 return -ENODEV; 3437 } 3438 3439 copy_cpu_funcs((struct pstate_funcs *)id->driver_data); 3440 } 3441 3442 if (intel_pstate_msrs_not_valid()) { 3443 pr_info("Invalid MSRs\n"); 3444 return -ENODEV; 3445 } 3446 /* Without HWP start in the passive mode. */ 3447 if (!default_driver) 3448 default_driver = &intel_cpufreq; 3449 3450 hwp_cpu_matched: 3451 /* 3452 * The Intel pstate driver will be ignored if the platform 3453 * firmware has its own power management modes. 3454 */ 3455 if (intel_pstate_platform_pwr_mgmt_exists()) { 3456 pr_info("P-states controlled by the platform\n"); 3457 return -ENODEV; 3458 } 3459 3460 if (!hwp_active && hwp_only) 3461 return -ENOTSUPP; 3462 3463 pr_info("Intel P-state driver initializing\n"); 3464 3465 _all_cpu_data = vzalloc(array_size(sizeof(void *), num_possible_cpus())); 3466 if (!_all_cpu_data) 3467 return -ENOMEM; 3468 3469 WRITE_ONCE(all_cpu_data, _all_cpu_data); 3470 3471 intel_pstate_request_control_from_smm(); 3472 3473 intel_pstate_sysfs_expose_params(); 3474 3475 if (hwp_active) { 3476 const struct x86_cpu_id *id = x86_match_cpu(intel_epp_balance_perf); 3477 3478 if (id) 3479 epp_values[EPP_INDEX_BALANCE_PERFORMANCE] = id->driver_data; 3480 } 3481 3482 mutex_lock(&intel_pstate_driver_lock); 3483 rc = intel_pstate_register_driver(default_driver); 3484 mutex_unlock(&intel_pstate_driver_lock); 3485 if (rc) { 3486 intel_pstate_sysfs_remove(); 3487 return rc; 3488 } 3489 3490 if (hwp_active) { 3491 const struct x86_cpu_id *id; 3492 3493 id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids); 3494 if (id) { 3495 set_power_ctl_ee_state(false); 3496 pr_info("Disabling energy efficiency optimization\n"); 3497 } 3498 3499 pr_info("HWP enabled\n"); 3500 } else if (boot_cpu_has(X86_FEATURE_HYBRID_CPU)) { 3501 pr_warn("Problematic setup: Hybrid processor with disabled HWP\n"); 3502 } 3503 3504 return 0; 3505 } 3506 device_initcall(intel_pstate_init); 3507 3508 static int __init intel_pstate_setup(char *str) 3509 { 3510 if (!str) 3511 return -EINVAL; 3512 3513 if (!strcmp(str, "disable")) 3514 no_load = 1; 3515 else if (!strcmp(str, "active")) 3516 default_driver = &intel_pstate; 3517 else if (!strcmp(str, "passive")) 3518 default_driver = &intel_cpufreq; 3519 3520 if (!strcmp(str, "no_hwp")) 3521 no_hwp = 1; 3522 3523 if (!strcmp(str, "force")) 3524 force_load = 1; 3525 if (!strcmp(str, "hwp_only")) 3526 hwp_only = 1; 3527 if (!strcmp(str, "per_cpu_perf_limits")) 3528 per_cpu_limits = true; 3529 3530 #ifdef CONFIG_ACPI 3531 if (!strcmp(str, "support_acpi_ppc")) 3532 acpi_ppc = true; 3533 #endif 3534 3535 return 0; 3536 } 3537 early_param("intel_pstate", intel_pstate_setup); 3538 3539 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>"); 3540 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors"); 3541 MODULE_LICENSE("GPL"); 3542