1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * intel_pstate.c: Native P state management for Intel processors
4  *
5  * (C) Copyright 2012 Intel Corporation
6  * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
7  */
8 
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 
11 #include <linux/kernel.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/module.h>
14 #include <linux/ktime.h>
15 #include <linux/hrtimer.h>
16 #include <linux/tick.h>
17 #include <linux/slab.h>
18 #include <linux/sched/cpufreq.h>
19 #include <linux/list.h>
20 #include <linux/cpu.h>
21 #include <linux/cpufreq.h>
22 #include <linux/sysfs.h>
23 #include <linux/types.h>
24 #include <linux/fs.h>
25 #include <linux/acpi.h>
26 #include <linux/vmalloc.h>
27 #include <linux/pm_qos.h>
28 #include <trace/events/power.h>
29 
30 #include <asm/div64.h>
31 #include <asm/msr.h>
32 #include <asm/cpu_device_id.h>
33 #include <asm/cpufeature.h>
34 #include <asm/intel-family.h>
35 #include "../drivers/thermal/intel/thermal_interrupt.h"
36 
37 #define INTEL_PSTATE_SAMPLING_INTERVAL	(10 * NSEC_PER_MSEC)
38 
39 #define INTEL_CPUFREQ_TRANSITION_LATENCY	20000
40 #define INTEL_CPUFREQ_TRANSITION_DELAY_HWP	5000
41 #define INTEL_CPUFREQ_TRANSITION_DELAY		500
42 
43 #ifdef CONFIG_ACPI
44 #include <acpi/processor.h>
45 #include <acpi/cppc_acpi.h>
46 #endif
47 
48 #define FRAC_BITS 8
49 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
50 #define fp_toint(X) ((X) >> FRAC_BITS)
51 
52 #define ONE_EIGHTH_FP ((int64_t)1 << (FRAC_BITS - 3))
53 
54 #define EXT_BITS 6
55 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
56 #define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
57 #define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
58 
59 static inline int32_t mul_fp(int32_t x, int32_t y)
60 {
61 	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
62 }
63 
64 static inline int32_t div_fp(s64 x, s64 y)
65 {
66 	return div64_s64((int64_t)x << FRAC_BITS, y);
67 }
68 
69 static inline int ceiling_fp(int32_t x)
70 {
71 	int mask, ret;
72 
73 	ret = fp_toint(x);
74 	mask = (1 << FRAC_BITS) - 1;
75 	if (x & mask)
76 		ret += 1;
77 	return ret;
78 }
79 
80 static inline u64 mul_ext_fp(u64 x, u64 y)
81 {
82 	return (x * y) >> EXT_FRAC_BITS;
83 }
84 
85 static inline u64 div_ext_fp(u64 x, u64 y)
86 {
87 	return div64_u64(x << EXT_FRAC_BITS, y);
88 }
89 
90 /**
91  * struct sample -	Store performance sample
92  * @core_avg_perf:	Ratio of APERF/MPERF which is the actual average
93  *			performance during last sample period
94  * @busy_scaled:	Scaled busy value which is used to calculate next
95  *			P state. This can be different than core_avg_perf
96  *			to account for cpu idle period
97  * @aperf:		Difference of actual performance frequency clock count
98  *			read from APERF MSR between last and current sample
99  * @mperf:		Difference of maximum performance frequency clock count
100  *			read from MPERF MSR between last and current sample
101  * @tsc:		Difference of time stamp counter between last and
102  *			current sample
103  * @time:		Current time from scheduler
104  *
105  * This structure is used in the cpudata structure to store performance sample
106  * data for choosing next P State.
107  */
108 struct sample {
109 	int32_t core_avg_perf;
110 	int32_t busy_scaled;
111 	u64 aperf;
112 	u64 mperf;
113 	u64 tsc;
114 	u64 time;
115 };
116 
117 /**
118  * struct pstate_data - Store P state data
119  * @current_pstate:	Current requested P state
120  * @min_pstate:		Min P state possible for this platform
121  * @max_pstate:		Max P state possible for this platform
122  * @max_pstate_physical:This is physical Max P state for a processor
123  *			This can be higher than the max_pstate which can
124  *			be limited by platform thermal design power limits
125  * @perf_ctl_scaling:	PERF_CTL P-state to frequency scaling factor
126  * @scaling:		Scaling factor between performance and frequency
127  * @turbo_pstate:	Max Turbo P state possible for this platform
128  * @min_freq:		@min_pstate frequency in cpufreq units
129  * @max_freq:		@max_pstate frequency in cpufreq units
130  * @turbo_freq:		@turbo_pstate frequency in cpufreq units
131  *
132  * Stores the per cpu model P state limits and current P state.
133  */
134 struct pstate_data {
135 	int	current_pstate;
136 	int	min_pstate;
137 	int	max_pstate;
138 	int	max_pstate_physical;
139 	int	perf_ctl_scaling;
140 	int	scaling;
141 	int	turbo_pstate;
142 	unsigned int min_freq;
143 	unsigned int max_freq;
144 	unsigned int turbo_freq;
145 };
146 
147 /**
148  * struct vid_data -	Stores voltage information data
149  * @min:		VID data for this platform corresponding to
150  *			the lowest P state
151  * @max:		VID data corresponding to the highest P State.
152  * @turbo:		VID data for turbo P state
153  * @ratio:		Ratio of (vid max - vid min) /
154  *			(max P state - Min P State)
155  *
156  * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
157  * This data is used in Atom platforms, where in addition to target P state,
158  * the voltage data needs to be specified to select next P State.
159  */
160 struct vid_data {
161 	int min;
162 	int max;
163 	int turbo;
164 	int32_t ratio;
165 };
166 
167 /**
168  * struct global_params - Global parameters, mostly tunable via sysfs.
169  * @no_turbo:		Whether or not to use turbo P-states.
170  * @turbo_disabled:	Whether or not turbo P-states are available at all,
171  *			based on the MSR_IA32_MISC_ENABLE value and whether or
172  *			not the maximum reported turbo P-state is different from
173  *			the maximum reported non-turbo one.
174  * @turbo_disabled_mf:	The @turbo_disabled value reflected by cpuinfo.max_freq.
175  * @min_perf_pct:	Minimum capacity limit in percent of the maximum turbo
176  *			P-state capacity.
177  * @max_perf_pct:	Maximum capacity limit in percent of the maximum turbo
178  *			P-state capacity.
179  */
180 struct global_params {
181 	bool no_turbo;
182 	bool turbo_disabled;
183 	bool turbo_disabled_mf;
184 	int max_perf_pct;
185 	int min_perf_pct;
186 };
187 
188 /**
189  * struct cpudata -	Per CPU instance data storage
190  * @cpu:		CPU number for this instance data
191  * @policy:		CPUFreq policy value
192  * @update_util:	CPUFreq utility callback information
193  * @update_util_set:	CPUFreq utility callback is set
194  * @iowait_boost:	iowait-related boost fraction
195  * @last_update:	Time of the last update.
196  * @pstate:		Stores P state limits for this CPU
197  * @vid:		Stores VID limits for this CPU
198  * @last_sample_time:	Last Sample time
199  * @aperf_mperf_shift:	APERF vs MPERF counting frequency difference
200  * @prev_aperf:		Last APERF value read from APERF MSR
201  * @prev_mperf:		Last MPERF value read from MPERF MSR
202  * @prev_tsc:		Last timestamp counter (TSC) value
203  * @prev_cummulative_iowait: IO Wait time difference from last and
204  *			current sample
205  * @sample:		Storage for storing last Sample data
206  * @min_perf_ratio:	Minimum capacity in terms of PERF or HWP ratios
207  * @max_perf_ratio:	Maximum capacity in terms of PERF or HWP ratios
208  * @acpi_perf_data:	Stores ACPI perf information read from _PSS
209  * @valid_pss_table:	Set to true for valid ACPI _PSS entries found
210  * @epp_powersave:	Last saved HWP energy performance preference
211  *			(EPP) or energy performance bias (EPB),
212  *			when policy switched to performance
213  * @epp_policy:		Last saved policy used to set EPP/EPB
214  * @epp_default:	Power on default HWP energy performance
215  *			preference/bias
216  * @epp_cached		Cached HWP energy-performance preference value
217  * @hwp_req_cached:	Cached value of the last HWP Request MSR
218  * @hwp_cap_cached:	Cached value of the last HWP Capabilities MSR
219  * @last_io_update:	Last time when IO wake flag was set
220  * @sched_flags:	Store scheduler flags for possible cross CPU update
221  * @hwp_boost_min:	Last HWP boosted min performance
222  * @suspended:		Whether or not the driver has been suspended.
223  * @hwp_notify_work:	workqueue for HWP notifications.
224  *
225  * This structure stores per CPU instance data for all CPUs.
226  */
227 struct cpudata {
228 	int cpu;
229 
230 	unsigned int policy;
231 	struct update_util_data update_util;
232 	bool   update_util_set;
233 
234 	struct pstate_data pstate;
235 	struct vid_data vid;
236 
237 	u64	last_update;
238 	u64	last_sample_time;
239 	u64	aperf_mperf_shift;
240 	u64	prev_aperf;
241 	u64	prev_mperf;
242 	u64	prev_tsc;
243 	u64	prev_cummulative_iowait;
244 	struct sample sample;
245 	int32_t	min_perf_ratio;
246 	int32_t	max_perf_ratio;
247 #ifdef CONFIG_ACPI
248 	struct acpi_processor_performance acpi_perf_data;
249 	bool valid_pss_table;
250 #endif
251 	unsigned int iowait_boost;
252 	s16 epp_powersave;
253 	s16 epp_policy;
254 	s16 epp_default;
255 	s16 epp_cached;
256 	u64 hwp_req_cached;
257 	u64 hwp_cap_cached;
258 	u64 last_io_update;
259 	unsigned int sched_flags;
260 	u32 hwp_boost_min;
261 	bool suspended;
262 	struct delayed_work hwp_notify_work;
263 };
264 
265 static struct cpudata **all_cpu_data;
266 
267 /**
268  * struct pstate_funcs - Per CPU model specific callbacks
269  * @get_max:		Callback to get maximum non turbo effective P state
270  * @get_max_physical:	Callback to get maximum non turbo physical P state
271  * @get_min:		Callback to get minimum P state
272  * @get_turbo:		Callback to get turbo P state
273  * @get_scaling:	Callback to get frequency scaling factor
274  * @get_cpu_scaling:	Get frequency scaling factor for a given cpu
275  * @get_aperf_mperf_shift: Callback to get the APERF vs MPERF frequency difference
276  * @get_val:		Callback to convert P state to actual MSR write value
277  * @get_vid:		Callback to get VID data for Atom platforms
278  *
279  * Core and Atom CPU models have different way to get P State limits. This
280  * structure is used to store those callbacks.
281  */
282 struct pstate_funcs {
283 	int (*get_max)(void);
284 	int (*get_max_physical)(void);
285 	int (*get_min)(void);
286 	int (*get_turbo)(void);
287 	int (*get_scaling)(void);
288 	int (*get_cpu_scaling)(int cpu);
289 	int (*get_aperf_mperf_shift)(void);
290 	u64 (*get_val)(struct cpudata*, int pstate);
291 	void (*get_vid)(struct cpudata *);
292 };
293 
294 static struct pstate_funcs pstate_funcs __read_mostly;
295 
296 static int hwp_active __read_mostly;
297 static int hwp_mode_bdw __read_mostly;
298 static bool per_cpu_limits __read_mostly;
299 static bool hwp_boost __read_mostly;
300 
301 static struct cpufreq_driver *intel_pstate_driver __read_mostly;
302 
303 #ifdef CONFIG_ACPI
304 static bool acpi_ppc;
305 #endif
306 
307 static struct global_params global;
308 
309 static DEFINE_MUTEX(intel_pstate_driver_lock);
310 static DEFINE_MUTEX(intel_pstate_limits_lock);
311 
312 #ifdef CONFIG_ACPI
313 
314 static bool intel_pstate_acpi_pm_profile_server(void)
315 {
316 	if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
317 	    acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
318 		return true;
319 
320 	return false;
321 }
322 
323 static bool intel_pstate_get_ppc_enable_status(void)
324 {
325 	if (intel_pstate_acpi_pm_profile_server())
326 		return true;
327 
328 	return acpi_ppc;
329 }
330 
331 #ifdef CONFIG_ACPI_CPPC_LIB
332 
333 /* The work item is needed to avoid CPU hotplug locking issues */
334 static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
335 {
336 	sched_set_itmt_support();
337 }
338 
339 static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);
340 
341 #define CPPC_MAX_PERF	U8_MAX
342 
343 static void intel_pstate_set_itmt_prio(int cpu)
344 {
345 	struct cppc_perf_caps cppc_perf;
346 	static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
347 	int ret;
348 
349 	ret = cppc_get_perf_caps(cpu, &cppc_perf);
350 	if (ret)
351 		return;
352 
353 	/*
354 	 * On some systems with overclocking enabled, CPPC.highest_perf is hardcoded to 0xff.
355 	 * In this case we can't use CPPC.highest_perf to enable ITMT.
356 	 * In this case we can look at MSR_HWP_CAPABILITIES bits [8:0] to decide.
357 	 */
358 	if (cppc_perf.highest_perf == CPPC_MAX_PERF)
359 		cppc_perf.highest_perf = HWP_HIGHEST_PERF(READ_ONCE(all_cpu_data[cpu]->hwp_cap_cached));
360 
361 	/*
362 	 * The priorities can be set regardless of whether or not
363 	 * sched_set_itmt_support(true) has been called and it is valid to
364 	 * update them at any time after it has been called.
365 	 */
366 	sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);
367 
368 	if (max_highest_perf <= min_highest_perf) {
369 		if (cppc_perf.highest_perf > max_highest_perf)
370 			max_highest_perf = cppc_perf.highest_perf;
371 
372 		if (cppc_perf.highest_perf < min_highest_perf)
373 			min_highest_perf = cppc_perf.highest_perf;
374 
375 		if (max_highest_perf > min_highest_perf) {
376 			/*
377 			 * This code can be run during CPU online under the
378 			 * CPU hotplug locks, so sched_set_itmt_support()
379 			 * cannot be called from here.  Queue up a work item
380 			 * to invoke it.
381 			 */
382 			schedule_work(&sched_itmt_work);
383 		}
384 	}
385 }
386 
387 static int intel_pstate_get_cppc_guaranteed(int cpu)
388 {
389 	struct cppc_perf_caps cppc_perf;
390 	int ret;
391 
392 	ret = cppc_get_perf_caps(cpu, &cppc_perf);
393 	if (ret)
394 		return ret;
395 
396 	if (cppc_perf.guaranteed_perf)
397 		return cppc_perf.guaranteed_perf;
398 
399 	return cppc_perf.nominal_perf;
400 }
401 
402 static u32 intel_pstate_cppc_nominal(int cpu)
403 {
404 	u64 nominal_perf;
405 
406 	if (cppc_get_nominal_perf(cpu, &nominal_perf))
407 		return 0;
408 
409 	return nominal_perf;
410 }
411 #else /* CONFIG_ACPI_CPPC_LIB */
412 static inline void intel_pstate_set_itmt_prio(int cpu)
413 {
414 }
415 #endif /* CONFIG_ACPI_CPPC_LIB */
416 
417 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
418 {
419 	struct cpudata *cpu;
420 	int ret;
421 	int i;
422 
423 	if (hwp_active) {
424 		intel_pstate_set_itmt_prio(policy->cpu);
425 		return;
426 	}
427 
428 	if (!intel_pstate_get_ppc_enable_status())
429 		return;
430 
431 	cpu = all_cpu_data[policy->cpu];
432 
433 	ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
434 						  policy->cpu);
435 	if (ret)
436 		return;
437 
438 	/*
439 	 * Check if the control value in _PSS is for PERF_CTL MSR, which should
440 	 * guarantee that the states returned by it map to the states in our
441 	 * list directly.
442 	 */
443 	if (cpu->acpi_perf_data.control_register.space_id !=
444 						ACPI_ADR_SPACE_FIXED_HARDWARE)
445 		goto err;
446 
447 	/*
448 	 * If there is only one entry _PSS, simply ignore _PSS and continue as
449 	 * usual without taking _PSS into account
450 	 */
451 	if (cpu->acpi_perf_data.state_count < 2)
452 		goto err;
453 
454 	pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
455 	for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
456 		pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
457 			 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
458 			 (u32) cpu->acpi_perf_data.states[i].core_frequency,
459 			 (u32) cpu->acpi_perf_data.states[i].power,
460 			 (u32) cpu->acpi_perf_data.states[i].control);
461 	}
462 
463 	/*
464 	 * The _PSS table doesn't contain whole turbo frequency range.
465 	 * This just contains +1 MHZ above the max non turbo frequency,
466 	 * with control value corresponding to max turbo ratio. But
467 	 * when cpufreq set policy is called, it will call with this
468 	 * max frequency, which will cause a reduced performance as
469 	 * this driver uses real max turbo frequency as the max
470 	 * frequency. So correct this frequency in _PSS table to
471 	 * correct max turbo frequency based on the turbo state.
472 	 * Also need to convert to MHz as _PSS freq is in MHz.
473 	 */
474 	if (!global.turbo_disabled)
475 		cpu->acpi_perf_data.states[0].core_frequency =
476 					policy->cpuinfo.max_freq / 1000;
477 	cpu->valid_pss_table = true;
478 	pr_debug("_PPC limits will be enforced\n");
479 
480 	return;
481 
482  err:
483 	cpu->valid_pss_table = false;
484 	acpi_processor_unregister_performance(policy->cpu);
485 }
486 
487 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
488 {
489 	struct cpudata *cpu;
490 
491 	cpu = all_cpu_data[policy->cpu];
492 	if (!cpu->valid_pss_table)
493 		return;
494 
495 	acpi_processor_unregister_performance(policy->cpu);
496 }
497 #else /* CONFIG_ACPI */
498 static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
499 {
500 }
501 
502 static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
503 {
504 }
505 
506 static inline bool intel_pstate_acpi_pm_profile_server(void)
507 {
508 	return false;
509 }
510 #endif /* CONFIG_ACPI */
511 
512 #ifndef CONFIG_ACPI_CPPC_LIB
513 static inline int intel_pstate_get_cppc_guaranteed(int cpu)
514 {
515 	return -ENOTSUPP;
516 }
517 #endif /* CONFIG_ACPI_CPPC_LIB */
518 
519 /**
520  * intel_pstate_hybrid_hwp_adjust - Calibrate HWP performance levels.
521  * @cpu: Target CPU.
522  *
523  * On hybrid processors, HWP may expose more performance levels than there are
524  * P-states accessible through the PERF_CTL interface.  If that happens, the
525  * scaling factor between HWP performance levels and CPU frequency will be less
526  * than the scaling factor between P-state values and CPU frequency.
527  *
528  * In that case, adjust the CPU parameters used in computations accordingly.
529  */
530 static void intel_pstate_hybrid_hwp_adjust(struct cpudata *cpu)
531 {
532 	int perf_ctl_max_phys = cpu->pstate.max_pstate_physical;
533 	int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling;
534 	int perf_ctl_turbo = pstate_funcs.get_turbo();
535 	int turbo_freq = perf_ctl_turbo * perf_ctl_scaling;
536 	int scaling = cpu->pstate.scaling;
537 
538 	pr_debug("CPU%d: perf_ctl_max_phys = %d\n", cpu->cpu, perf_ctl_max_phys);
539 	pr_debug("CPU%d: perf_ctl_max = %d\n", cpu->cpu, pstate_funcs.get_max());
540 	pr_debug("CPU%d: perf_ctl_turbo = %d\n", cpu->cpu, perf_ctl_turbo);
541 	pr_debug("CPU%d: perf_ctl_scaling = %d\n", cpu->cpu, perf_ctl_scaling);
542 	pr_debug("CPU%d: HWP_CAP guaranteed = %d\n", cpu->cpu, cpu->pstate.max_pstate);
543 	pr_debug("CPU%d: HWP_CAP highest = %d\n", cpu->cpu, cpu->pstate.turbo_pstate);
544 	pr_debug("CPU%d: HWP-to-frequency scaling factor: %d\n", cpu->cpu, scaling);
545 
546 	/*
547 	 * If the product of the HWP performance scaling factor and the HWP_CAP
548 	 * highest performance is greater than the maximum turbo frequency
549 	 * corresponding to the pstate_funcs.get_turbo() return value, the
550 	 * scaling factor is too high, so recompute it to make the HWP_CAP
551 	 * highest performance correspond to the maximum turbo frequency.
552 	 */
553 	cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * scaling;
554 	if (turbo_freq < cpu->pstate.turbo_freq) {
555 		cpu->pstate.turbo_freq = turbo_freq;
556 		scaling = DIV_ROUND_UP(turbo_freq, cpu->pstate.turbo_pstate);
557 		cpu->pstate.scaling = scaling;
558 
559 		pr_debug("CPU%d: refined HWP-to-frequency scaling factor: %d\n",
560 			 cpu->cpu, scaling);
561 	}
562 
563 	cpu->pstate.max_freq = rounddown(cpu->pstate.max_pstate * scaling,
564 					 perf_ctl_scaling);
565 
566 	cpu->pstate.max_pstate_physical =
567 			DIV_ROUND_UP(perf_ctl_max_phys * perf_ctl_scaling,
568 				     scaling);
569 
570 	cpu->pstate.min_freq = cpu->pstate.min_pstate * perf_ctl_scaling;
571 	/*
572 	 * Cast the min P-state value retrieved via pstate_funcs.get_min() to
573 	 * the effective range of HWP performance levels.
574 	 */
575 	cpu->pstate.min_pstate = DIV_ROUND_UP(cpu->pstate.min_freq, scaling);
576 }
577 
578 static inline void update_turbo_state(void)
579 {
580 	u64 misc_en;
581 	struct cpudata *cpu;
582 
583 	cpu = all_cpu_data[0];
584 	rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
585 	global.turbo_disabled =
586 		(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
587 		 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
588 }
589 
590 static int min_perf_pct_min(void)
591 {
592 	struct cpudata *cpu = all_cpu_data[0];
593 	int turbo_pstate = cpu->pstate.turbo_pstate;
594 
595 	return turbo_pstate ?
596 		(cpu->pstate.min_pstate * 100 / turbo_pstate) : 0;
597 }
598 
599 static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
600 {
601 	u64 epb;
602 	int ret;
603 
604 	if (!boot_cpu_has(X86_FEATURE_EPB))
605 		return -ENXIO;
606 
607 	ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
608 	if (ret)
609 		return (s16)ret;
610 
611 	return (s16)(epb & 0x0f);
612 }
613 
614 static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
615 {
616 	s16 epp;
617 
618 	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
619 		/*
620 		 * When hwp_req_data is 0, means that caller didn't read
621 		 * MSR_HWP_REQUEST, so need to read and get EPP.
622 		 */
623 		if (!hwp_req_data) {
624 			epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
625 					    &hwp_req_data);
626 			if (epp)
627 				return epp;
628 		}
629 		epp = (hwp_req_data >> 24) & 0xff;
630 	} else {
631 		/* When there is no EPP present, HWP uses EPB settings */
632 		epp = intel_pstate_get_epb(cpu_data);
633 	}
634 
635 	return epp;
636 }
637 
638 static int intel_pstate_set_epb(int cpu, s16 pref)
639 {
640 	u64 epb;
641 	int ret;
642 
643 	if (!boot_cpu_has(X86_FEATURE_EPB))
644 		return -ENXIO;
645 
646 	ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
647 	if (ret)
648 		return ret;
649 
650 	epb = (epb & ~0x0f) | pref;
651 	wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
652 
653 	return 0;
654 }
655 
656 /*
657  * EPP/EPB display strings corresponding to EPP index in the
658  * energy_perf_strings[]
659  *	index		String
660  *-------------------------------------
661  *	0		default
662  *	1		performance
663  *	2		balance_performance
664  *	3		balance_power
665  *	4		power
666  */
667 
668 enum energy_perf_value_index {
669 	EPP_INDEX_DEFAULT = 0,
670 	EPP_INDEX_PERFORMANCE,
671 	EPP_INDEX_BALANCE_PERFORMANCE,
672 	EPP_INDEX_BALANCE_POWERSAVE,
673 	EPP_INDEX_POWERSAVE,
674 };
675 
676 static const char * const energy_perf_strings[] = {
677 	[EPP_INDEX_DEFAULT] = "default",
678 	[EPP_INDEX_PERFORMANCE] = "performance",
679 	[EPP_INDEX_BALANCE_PERFORMANCE] = "balance_performance",
680 	[EPP_INDEX_BALANCE_POWERSAVE] = "balance_power",
681 	[EPP_INDEX_POWERSAVE] = "power",
682 	NULL
683 };
684 static unsigned int epp_values[] = {
685 	[EPP_INDEX_DEFAULT] = 0, /* Unused index */
686 	[EPP_INDEX_PERFORMANCE] = HWP_EPP_PERFORMANCE,
687 	[EPP_INDEX_BALANCE_PERFORMANCE] = HWP_EPP_BALANCE_PERFORMANCE,
688 	[EPP_INDEX_BALANCE_POWERSAVE] = HWP_EPP_BALANCE_POWERSAVE,
689 	[EPP_INDEX_POWERSAVE] = HWP_EPP_POWERSAVE,
690 };
691 
692 static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data, int *raw_epp)
693 {
694 	s16 epp;
695 	int index = -EINVAL;
696 
697 	*raw_epp = 0;
698 	epp = intel_pstate_get_epp(cpu_data, 0);
699 	if (epp < 0)
700 		return epp;
701 
702 	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
703 		if (epp == epp_values[EPP_INDEX_PERFORMANCE])
704 			return EPP_INDEX_PERFORMANCE;
705 		if (epp == epp_values[EPP_INDEX_BALANCE_PERFORMANCE])
706 			return EPP_INDEX_BALANCE_PERFORMANCE;
707 		if (epp == epp_values[EPP_INDEX_BALANCE_POWERSAVE])
708 			return EPP_INDEX_BALANCE_POWERSAVE;
709 		if (epp == epp_values[EPP_INDEX_POWERSAVE])
710 			return EPP_INDEX_POWERSAVE;
711 		*raw_epp = epp;
712 		return 0;
713 	} else if (boot_cpu_has(X86_FEATURE_EPB)) {
714 		/*
715 		 * Range:
716 		 *	0x00-0x03	:	Performance
717 		 *	0x04-0x07	:	Balance performance
718 		 *	0x08-0x0B	:	Balance power
719 		 *	0x0C-0x0F	:	Power
720 		 * The EPB is a 4 bit value, but our ranges restrict the
721 		 * value which can be set. Here only using top two bits
722 		 * effectively.
723 		 */
724 		index = (epp >> 2) + 1;
725 	}
726 
727 	return index;
728 }
729 
730 static int intel_pstate_set_epp(struct cpudata *cpu, u32 epp)
731 {
732 	int ret;
733 
734 	/*
735 	 * Use the cached HWP Request MSR value, because in the active mode the
736 	 * register itself may be updated by intel_pstate_hwp_boost_up() or
737 	 * intel_pstate_hwp_boost_down() at any time.
738 	 */
739 	u64 value = READ_ONCE(cpu->hwp_req_cached);
740 
741 	value &= ~GENMASK_ULL(31, 24);
742 	value |= (u64)epp << 24;
743 	/*
744 	 * The only other updater of hwp_req_cached in the active mode,
745 	 * intel_pstate_hwp_set(), is called under the same lock as this
746 	 * function, so it cannot run in parallel with the update below.
747 	 */
748 	WRITE_ONCE(cpu->hwp_req_cached, value);
749 	ret = wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
750 	if (!ret)
751 		cpu->epp_cached = epp;
752 
753 	return ret;
754 }
755 
756 static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
757 					      int pref_index, bool use_raw,
758 					      u32 raw_epp)
759 {
760 	int epp = -EINVAL;
761 	int ret;
762 
763 	if (!pref_index)
764 		epp = cpu_data->epp_default;
765 
766 	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
767 		if (use_raw)
768 			epp = raw_epp;
769 		else if (epp == -EINVAL)
770 			epp = epp_values[pref_index];
771 
772 		/*
773 		 * To avoid confusion, refuse to set EPP to any values different
774 		 * from 0 (performance) if the current policy is "performance",
775 		 * because those values would be overridden.
776 		 */
777 		if (epp > 0 && cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
778 			return -EBUSY;
779 
780 		ret = intel_pstate_set_epp(cpu_data, epp);
781 	} else {
782 		if (epp == -EINVAL)
783 			epp = (pref_index - 1) << 2;
784 		ret = intel_pstate_set_epb(cpu_data->cpu, epp);
785 	}
786 
787 	return ret;
788 }
789 
790 static ssize_t show_energy_performance_available_preferences(
791 				struct cpufreq_policy *policy, char *buf)
792 {
793 	int i = 0;
794 	int ret = 0;
795 
796 	while (energy_perf_strings[i] != NULL)
797 		ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);
798 
799 	ret += sprintf(&buf[ret], "\n");
800 
801 	return ret;
802 }
803 
804 cpufreq_freq_attr_ro(energy_performance_available_preferences);
805 
806 static struct cpufreq_driver intel_pstate;
807 
808 static ssize_t store_energy_performance_preference(
809 		struct cpufreq_policy *policy, const char *buf, size_t count)
810 {
811 	struct cpudata *cpu = all_cpu_data[policy->cpu];
812 	char str_preference[21];
813 	bool raw = false;
814 	ssize_t ret;
815 	u32 epp = 0;
816 
817 	ret = sscanf(buf, "%20s", str_preference);
818 	if (ret != 1)
819 		return -EINVAL;
820 
821 	ret = match_string(energy_perf_strings, -1, str_preference);
822 	if (ret < 0) {
823 		if (!boot_cpu_has(X86_FEATURE_HWP_EPP))
824 			return ret;
825 
826 		ret = kstrtouint(buf, 10, &epp);
827 		if (ret)
828 			return ret;
829 
830 		if (epp > 255)
831 			return -EINVAL;
832 
833 		raw = true;
834 	}
835 
836 	/*
837 	 * This function runs with the policy R/W semaphore held, which
838 	 * guarantees that the driver pointer will not change while it is
839 	 * running.
840 	 */
841 	if (!intel_pstate_driver)
842 		return -EAGAIN;
843 
844 	mutex_lock(&intel_pstate_limits_lock);
845 
846 	if (intel_pstate_driver == &intel_pstate) {
847 		ret = intel_pstate_set_energy_pref_index(cpu, ret, raw, epp);
848 	} else {
849 		/*
850 		 * In the passive mode the governor needs to be stopped on the
851 		 * target CPU before the EPP update and restarted after it,
852 		 * which is super-heavy-weight, so make sure it is worth doing
853 		 * upfront.
854 		 */
855 		if (!raw)
856 			epp = ret ? epp_values[ret] : cpu->epp_default;
857 
858 		if (cpu->epp_cached != epp) {
859 			int err;
860 
861 			cpufreq_stop_governor(policy);
862 			ret = intel_pstate_set_epp(cpu, epp);
863 			err = cpufreq_start_governor(policy);
864 			if (!ret)
865 				ret = err;
866 		}
867 	}
868 
869 	mutex_unlock(&intel_pstate_limits_lock);
870 
871 	return ret ?: count;
872 }
873 
874 static ssize_t show_energy_performance_preference(
875 				struct cpufreq_policy *policy, char *buf)
876 {
877 	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
878 	int preference, raw_epp;
879 
880 	preference = intel_pstate_get_energy_pref_index(cpu_data, &raw_epp);
881 	if (preference < 0)
882 		return preference;
883 
884 	if (raw_epp)
885 		return  sprintf(buf, "%d\n", raw_epp);
886 	else
887 		return  sprintf(buf, "%s\n", energy_perf_strings[preference]);
888 }
889 
890 cpufreq_freq_attr_rw(energy_performance_preference);
891 
892 static ssize_t show_base_frequency(struct cpufreq_policy *policy, char *buf)
893 {
894 	struct cpudata *cpu = all_cpu_data[policy->cpu];
895 	int ratio, freq;
896 
897 	ratio = intel_pstate_get_cppc_guaranteed(policy->cpu);
898 	if (ratio <= 0) {
899 		u64 cap;
900 
901 		rdmsrl_on_cpu(policy->cpu, MSR_HWP_CAPABILITIES, &cap);
902 		ratio = HWP_GUARANTEED_PERF(cap);
903 	}
904 
905 	freq = ratio * cpu->pstate.scaling;
906 	if (cpu->pstate.scaling != cpu->pstate.perf_ctl_scaling)
907 		freq = rounddown(freq, cpu->pstate.perf_ctl_scaling);
908 
909 	return sprintf(buf, "%d\n", freq);
910 }
911 
912 cpufreq_freq_attr_ro(base_frequency);
913 
914 static struct freq_attr *hwp_cpufreq_attrs[] = {
915 	&energy_performance_preference,
916 	&energy_performance_available_preferences,
917 	&base_frequency,
918 	NULL,
919 };
920 
921 static void __intel_pstate_get_hwp_cap(struct cpudata *cpu)
922 {
923 	u64 cap;
924 
925 	rdmsrl_on_cpu(cpu->cpu, MSR_HWP_CAPABILITIES, &cap);
926 	WRITE_ONCE(cpu->hwp_cap_cached, cap);
927 	cpu->pstate.max_pstate = HWP_GUARANTEED_PERF(cap);
928 	cpu->pstate.turbo_pstate = HWP_HIGHEST_PERF(cap);
929 }
930 
931 static void intel_pstate_get_hwp_cap(struct cpudata *cpu)
932 {
933 	int scaling = cpu->pstate.scaling;
934 
935 	__intel_pstate_get_hwp_cap(cpu);
936 
937 	cpu->pstate.max_freq = cpu->pstate.max_pstate * scaling;
938 	cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * scaling;
939 	if (scaling != cpu->pstate.perf_ctl_scaling) {
940 		int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling;
941 
942 		cpu->pstate.max_freq = rounddown(cpu->pstate.max_freq,
943 						 perf_ctl_scaling);
944 		cpu->pstate.turbo_freq = rounddown(cpu->pstate.turbo_freq,
945 						   perf_ctl_scaling);
946 	}
947 }
948 
949 static void intel_pstate_hwp_set(unsigned int cpu)
950 {
951 	struct cpudata *cpu_data = all_cpu_data[cpu];
952 	int max, min;
953 	u64 value;
954 	s16 epp;
955 
956 	max = cpu_data->max_perf_ratio;
957 	min = cpu_data->min_perf_ratio;
958 
959 	if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
960 		min = max;
961 
962 	rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
963 
964 	value &= ~HWP_MIN_PERF(~0L);
965 	value |= HWP_MIN_PERF(min);
966 
967 	value &= ~HWP_MAX_PERF(~0L);
968 	value |= HWP_MAX_PERF(max);
969 
970 	if (cpu_data->epp_policy == cpu_data->policy)
971 		goto skip_epp;
972 
973 	cpu_data->epp_policy = cpu_data->policy;
974 
975 	if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
976 		epp = intel_pstate_get_epp(cpu_data, value);
977 		cpu_data->epp_powersave = epp;
978 		/* If EPP read was failed, then don't try to write */
979 		if (epp < 0)
980 			goto skip_epp;
981 
982 		epp = 0;
983 	} else {
984 		/* skip setting EPP, when saved value is invalid */
985 		if (cpu_data->epp_powersave < 0)
986 			goto skip_epp;
987 
988 		/*
989 		 * No need to restore EPP when it is not zero. This
990 		 * means:
991 		 *  - Policy is not changed
992 		 *  - user has manually changed
993 		 *  - Error reading EPB
994 		 */
995 		epp = intel_pstate_get_epp(cpu_data, value);
996 		if (epp)
997 			goto skip_epp;
998 
999 		epp = cpu_data->epp_powersave;
1000 	}
1001 	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
1002 		value &= ~GENMASK_ULL(31, 24);
1003 		value |= (u64)epp << 24;
1004 	} else {
1005 		intel_pstate_set_epb(cpu, epp);
1006 	}
1007 skip_epp:
1008 	WRITE_ONCE(cpu_data->hwp_req_cached, value);
1009 	wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
1010 }
1011 
1012 static void intel_pstate_disable_hwp_interrupt(struct cpudata *cpudata);
1013 
1014 static void intel_pstate_hwp_offline(struct cpudata *cpu)
1015 {
1016 	u64 value = READ_ONCE(cpu->hwp_req_cached);
1017 	int min_perf;
1018 
1019 	intel_pstate_disable_hwp_interrupt(cpu);
1020 
1021 	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
1022 		/*
1023 		 * In case the EPP has been set to "performance" by the
1024 		 * active mode "performance" scaling algorithm, replace that
1025 		 * temporary value with the cached EPP one.
1026 		 */
1027 		value &= ~GENMASK_ULL(31, 24);
1028 		value |= HWP_ENERGY_PERF_PREFERENCE(cpu->epp_cached);
1029 		/*
1030 		 * However, make sure that EPP will be set to "performance" when
1031 		 * the CPU is brought back online again and the "performance"
1032 		 * scaling algorithm is still in effect.
1033 		 */
1034 		cpu->epp_policy = CPUFREQ_POLICY_UNKNOWN;
1035 	}
1036 
1037 	/*
1038 	 * Clear the desired perf field in the cached HWP request value to
1039 	 * prevent nonzero desired values from being leaked into the active
1040 	 * mode.
1041 	 */
1042 	value &= ~HWP_DESIRED_PERF(~0L);
1043 	WRITE_ONCE(cpu->hwp_req_cached, value);
1044 
1045 	value &= ~GENMASK_ULL(31, 0);
1046 	min_perf = HWP_LOWEST_PERF(READ_ONCE(cpu->hwp_cap_cached));
1047 
1048 	/* Set hwp_max = hwp_min */
1049 	value |= HWP_MAX_PERF(min_perf);
1050 	value |= HWP_MIN_PERF(min_perf);
1051 
1052 	/* Set EPP to min */
1053 	if (boot_cpu_has(X86_FEATURE_HWP_EPP))
1054 		value |= HWP_ENERGY_PERF_PREFERENCE(HWP_EPP_POWERSAVE);
1055 
1056 	wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
1057 }
1058 
1059 #define POWER_CTL_EE_ENABLE	1
1060 #define POWER_CTL_EE_DISABLE	2
1061 
1062 static int power_ctl_ee_state;
1063 
1064 static void set_power_ctl_ee_state(bool input)
1065 {
1066 	u64 power_ctl;
1067 
1068 	mutex_lock(&intel_pstate_driver_lock);
1069 	rdmsrl(MSR_IA32_POWER_CTL, power_ctl);
1070 	if (input) {
1071 		power_ctl &= ~BIT(MSR_IA32_POWER_CTL_BIT_EE);
1072 		power_ctl_ee_state = POWER_CTL_EE_ENABLE;
1073 	} else {
1074 		power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
1075 		power_ctl_ee_state = POWER_CTL_EE_DISABLE;
1076 	}
1077 	wrmsrl(MSR_IA32_POWER_CTL, power_ctl);
1078 	mutex_unlock(&intel_pstate_driver_lock);
1079 }
1080 
1081 static void intel_pstate_hwp_enable(struct cpudata *cpudata);
1082 
1083 static void intel_pstate_hwp_reenable(struct cpudata *cpu)
1084 {
1085 	intel_pstate_hwp_enable(cpu);
1086 	wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, READ_ONCE(cpu->hwp_req_cached));
1087 }
1088 
1089 static int intel_pstate_suspend(struct cpufreq_policy *policy)
1090 {
1091 	struct cpudata *cpu = all_cpu_data[policy->cpu];
1092 
1093 	pr_debug("CPU %d suspending\n", cpu->cpu);
1094 
1095 	cpu->suspended = true;
1096 
1097 	/* disable HWP interrupt and cancel any pending work */
1098 	intel_pstate_disable_hwp_interrupt(cpu);
1099 
1100 	return 0;
1101 }
1102 
1103 static int intel_pstate_resume(struct cpufreq_policy *policy)
1104 {
1105 	struct cpudata *cpu = all_cpu_data[policy->cpu];
1106 
1107 	pr_debug("CPU %d resuming\n", cpu->cpu);
1108 
1109 	/* Only restore if the system default is changed */
1110 	if (power_ctl_ee_state == POWER_CTL_EE_ENABLE)
1111 		set_power_ctl_ee_state(true);
1112 	else if (power_ctl_ee_state == POWER_CTL_EE_DISABLE)
1113 		set_power_ctl_ee_state(false);
1114 
1115 	if (cpu->suspended && hwp_active) {
1116 		mutex_lock(&intel_pstate_limits_lock);
1117 
1118 		/* Re-enable HWP, because "online" has not done that. */
1119 		intel_pstate_hwp_reenable(cpu);
1120 
1121 		mutex_unlock(&intel_pstate_limits_lock);
1122 	}
1123 
1124 	cpu->suspended = false;
1125 
1126 	return 0;
1127 }
1128 
1129 static void intel_pstate_update_policies(void)
1130 {
1131 	int cpu;
1132 
1133 	for_each_possible_cpu(cpu)
1134 		cpufreq_update_policy(cpu);
1135 }
1136 
1137 static void __intel_pstate_update_max_freq(struct cpudata *cpudata,
1138 					   struct cpufreq_policy *policy)
1139 {
1140 	policy->cpuinfo.max_freq = global.turbo_disabled_mf ?
1141 			cpudata->pstate.max_freq : cpudata->pstate.turbo_freq;
1142 	refresh_frequency_limits(policy);
1143 }
1144 
1145 static void intel_pstate_update_max_freq(unsigned int cpu)
1146 {
1147 	struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
1148 
1149 	if (!policy)
1150 		return;
1151 
1152 	__intel_pstate_update_max_freq(all_cpu_data[cpu], policy);
1153 
1154 	cpufreq_cpu_release(policy);
1155 }
1156 
1157 static void intel_pstate_update_limits(unsigned int cpu)
1158 {
1159 	mutex_lock(&intel_pstate_driver_lock);
1160 
1161 	update_turbo_state();
1162 	/*
1163 	 * If turbo has been turned on or off globally, policy limits for
1164 	 * all CPUs need to be updated to reflect that.
1165 	 */
1166 	if (global.turbo_disabled_mf != global.turbo_disabled) {
1167 		global.turbo_disabled_mf = global.turbo_disabled;
1168 		arch_set_max_freq_ratio(global.turbo_disabled);
1169 		for_each_possible_cpu(cpu)
1170 			intel_pstate_update_max_freq(cpu);
1171 	} else {
1172 		cpufreq_update_policy(cpu);
1173 	}
1174 
1175 	mutex_unlock(&intel_pstate_driver_lock);
1176 }
1177 
1178 /************************** sysfs begin ************************/
1179 #define show_one(file_name, object)					\
1180 	static ssize_t show_##file_name					\
1181 	(struct kobject *kobj, struct kobj_attribute *attr, char *buf)	\
1182 	{								\
1183 		return sprintf(buf, "%u\n", global.object);		\
1184 	}
1185 
1186 static ssize_t intel_pstate_show_status(char *buf);
1187 static int intel_pstate_update_status(const char *buf, size_t size);
1188 
1189 static ssize_t show_status(struct kobject *kobj,
1190 			   struct kobj_attribute *attr, char *buf)
1191 {
1192 	ssize_t ret;
1193 
1194 	mutex_lock(&intel_pstate_driver_lock);
1195 	ret = intel_pstate_show_status(buf);
1196 	mutex_unlock(&intel_pstate_driver_lock);
1197 
1198 	return ret;
1199 }
1200 
1201 static ssize_t store_status(struct kobject *a, struct kobj_attribute *b,
1202 			    const char *buf, size_t count)
1203 {
1204 	char *p = memchr(buf, '\n', count);
1205 	int ret;
1206 
1207 	mutex_lock(&intel_pstate_driver_lock);
1208 	ret = intel_pstate_update_status(buf, p ? p - buf : count);
1209 	mutex_unlock(&intel_pstate_driver_lock);
1210 
1211 	return ret < 0 ? ret : count;
1212 }
1213 
1214 static ssize_t show_turbo_pct(struct kobject *kobj,
1215 				struct kobj_attribute *attr, char *buf)
1216 {
1217 	struct cpudata *cpu;
1218 	int total, no_turbo, turbo_pct;
1219 	uint32_t turbo_fp;
1220 
1221 	mutex_lock(&intel_pstate_driver_lock);
1222 
1223 	if (!intel_pstate_driver) {
1224 		mutex_unlock(&intel_pstate_driver_lock);
1225 		return -EAGAIN;
1226 	}
1227 
1228 	cpu = all_cpu_data[0];
1229 
1230 	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1231 	no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
1232 	turbo_fp = div_fp(no_turbo, total);
1233 	turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
1234 
1235 	mutex_unlock(&intel_pstate_driver_lock);
1236 
1237 	return sprintf(buf, "%u\n", turbo_pct);
1238 }
1239 
1240 static ssize_t show_num_pstates(struct kobject *kobj,
1241 				struct kobj_attribute *attr, char *buf)
1242 {
1243 	struct cpudata *cpu;
1244 	int total;
1245 
1246 	mutex_lock(&intel_pstate_driver_lock);
1247 
1248 	if (!intel_pstate_driver) {
1249 		mutex_unlock(&intel_pstate_driver_lock);
1250 		return -EAGAIN;
1251 	}
1252 
1253 	cpu = all_cpu_data[0];
1254 	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1255 
1256 	mutex_unlock(&intel_pstate_driver_lock);
1257 
1258 	return sprintf(buf, "%u\n", total);
1259 }
1260 
1261 static ssize_t show_no_turbo(struct kobject *kobj,
1262 			     struct kobj_attribute *attr, char *buf)
1263 {
1264 	ssize_t ret;
1265 
1266 	mutex_lock(&intel_pstate_driver_lock);
1267 
1268 	if (!intel_pstate_driver) {
1269 		mutex_unlock(&intel_pstate_driver_lock);
1270 		return -EAGAIN;
1271 	}
1272 
1273 	update_turbo_state();
1274 	if (global.turbo_disabled)
1275 		ret = sprintf(buf, "%u\n", global.turbo_disabled);
1276 	else
1277 		ret = sprintf(buf, "%u\n", global.no_turbo);
1278 
1279 	mutex_unlock(&intel_pstate_driver_lock);
1280 
1281 	return ret;
1282 }
1283 
1284 static ssize_t store_no_turbo(struct kobject *a, struct kobj_attribute *b,
1285 			      const char *buf, size_t count)
1286 {
1287 	unsigned int input;
1288 	int ret;
1289 
1290 	ret = sscanf(buf, "%u", &input);
1291 	if (ret != 1)
1292 		return -EINVAL;
1293 
1294 	mutex_lock(&intel_pstate_driver_lock);
1295 
1296 	if (!intel_pstate_driver) {
1297 		mutex_unlock(&intel_pstate_driver_lock);
1298 		return -EAGAIN;
1299 	}
1300 
1301 	mutex_lock(&intel_pstate_limits_lock);
1302 
1303 	update_turbo_state();
1304 	if (global.turbo_disabled) {
1305 		pr_notice_once("Turbo disabled by BIOS or unavailable on processor\n");
1306 		mutex_unlock(&intel_pstate_limits_lock);
1307 		mutex_unlock(&intel_pstate_driver_lock);
1308 		return -EPERM;
1309 	}
1310 
1311 	global.no_turbo = clamp_t(int, input, 0, 1);
1312 
1313 	if (global.no_turbo) {
1314 		struct cpudata *cpu = all_cpu_data[0];
1315 		int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;
1316 
1317 		/* Squash the global minimum into the permitted range. */
1318 		if (global.min_perf_pct > pct)
1319 			global.min_perf_pct = pct;
1320 	}
1321 
1322 	mutex_unlock(&intel_pstate_limits_lock);
1323 
1324 	intel_pstate_update_policies();
1325 
1326 	mutex_unlock(&intel_pstate_driver_lock);
1327 
1328 	return count;
1329 }
1330 
1331 static void update_qos_request(enum freq_qos_req_type type)
1332 {
1333 	struct freq_qos_request *req;
1334 	struct cpufreq_policy *policy;
1335 	int i;
1336 
1337 	for_each_possible_cpu(i) {
1338 		struct cpudata *cpu = all_cpu_data[i];
1339 		unsigned int freq, perf_pct;
1340 
1341 		policy = cpufreq_cpu_get(i);
1342 		if (!policy)
1343 			continue;
1344 
1345 		req = policy->driver_data;
1346 		cpufreq_cpu_put(policy);
1347 
1348 		if (!req)
1349 			continue;
1350 
1351 		if (hwp_active)
1352 			intel_pstate_get_hwp_cap(cpu);
1353 
1354 		if (type == FREQ_QOS_MIN) {
1355 			perf_pct = global.min_perf_pct;
1356 		} else {
1357 			req++;
1358 			perf_pct = global.max_perf_pct;
1359 		}
1360 
1361 		freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * perf_pct, 100);
1362 
1363 		if (freq_qos_update_request(req, freq) < 0)
1364 			pr_warn("Failed to update freq constraint: CPU%d\n", i);
1365 	}
1366 }
1367 
1368 static ssize_t store_max_perf_pct(struct kobject *a, struct kobj_attribute *b,
1369 				  const char *buf, size_t count)
1370 {
1371 	unsigned int input;
1372 	int ret;
1373 
1374 	ret = sscanf(buf, "%u", &input);
1375 	if (ret != 1)
1376 		return -EINVAL;
1377 
1378 	mutex_lock(&intel_pstate_driver_lock);
1379 
1380 	if (!intel_pstate_driver) {
1381 		mutex_unlock(&intel_pstate_driver_lock);
1382 		return -EAGAIN;
1383 	}
1384 
1385 	mutex_lock(&intel_pstate_limits_lock);
1386 
1387 	global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
1388 
1389 	mutex_unlock(&intel_pstate_limits_lock);
1390 
1391 	if (intel_pstate_driver == &intel_pstate)
1392 		intel_pstate_update_policies();
1393 	else
1394 		update_qos_request(FREQ_QOS_MAX);
1395 
1396 	mutex_unlock(&intel_pstate_driver_lock);
1397 
1398 	return count;
1399 }
1400 
1401 static ssize_t store_min_perf_pct(struct kobject *a, struct kobj_attribute *b,
1402 				  const char *buf, size_t count)
1403 {
1404 	unsigned int input;
1405 	int ret;
1406 
1407 	ret = sscanf(buf, "%u", &input);
1408 	if (ret != 1)
1409 		return -EINVAL;
1410 
1411 	mutex_lock(&intel_pstate_driver_lock);
1412 
1413 	if (!intel_pstate_driver) {
1414 		mutex_unlock(&intel_pstate_driver_lock);
1415 		return -EAGAIN;
1416 	}
1417 
1418 	mutex_lock(&intel_pstate_limits_lock);
1419 
1420 	global.min_perf_pct = clamp_t(int, input,
1421 				      min_perf_pct_min(), global.max_perf_pct);
1422 
1423 	mutex_unlock(&intel_pstate_limits_lock);
1424 
1425 	if (intel_pstate_driver == &intel_pstate)
1426 		intel_pstate_update_policies();
1427 	else
1428 		update_qos_request(FREQ_QOS_MIN);
1429 
1430 	mutex_unlock(&intel_pstate_driver_lock);
1431 
1432 	return count;
1433 }
1434 
1435 static ssize_t show_hwp_dynamic_boost(struct kobject *kobj,
1436 				struct kobj_attribute *attr, char *buf)
1437 {
1438 	return sprintf(buf, "%u\n", hwp_boost);
1439 }
1440 
1441 static ssize_t store_hwp_dynamic_boost(struct kobject *a,
1442 				       struct kobj_attribute *b,
1443 				       const char *buf, size_t count)
1444 {
1445 	unsigned int input;
1446 	int ret;
1447 
1448 	ret = kstrtouint(buf, 10, &input);
1449 	if (ret)
1450 		return ret;
1451 
1452 	mutex_lock(&intel_pstate_driver_lock);
1453 	hwp_boost = !!input;
1454 	intel_pstate_update_policies();
1455 	mutex_unlock(&intel_pstate_driver_lock);
1456 
1457 	return count;
1458 }
1459 
1460 static ssize_t show_energy_efficiency(struct kobject *kobj, struct kobj_attribute *attr,
1461 				      char *buf)
1462 {
1463 	u64 power_ctl;
1464 	int enable;
1465 
1466 	rdmsrl(MSR_IA32_POWER_CTL, power_ctl);
1467 	enable = !!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE));
1468 	return sprintf(buf, "%d\n", !enable);
1469 }
1470 
1471 static ssize_t store_energy_efficiency(struct kobject *a, struct kobj_attribute *b,
1472 				       const char *buf, size_t count)
1473 {
1474 	bool input;
1475 	int ret;
1476 
1477 	ret = kstrtobool(buf, &input);
1478 	if (ret)
1479 		return ret;
1480 
1481 	set_power_ctl_ee_state(input);
1482 
1483 	return count;
1484 }
1485 
1486 show_one(max_perf_pct, max_perf_pct);
1487 show_one(min_perf_pct, min_perf_pct);
1488 
1489 define_one_global_rw(status);
1490 define_one_global_rw(no_turbo);
1491 define_one_global_rw(max_perf_pct);
1492 define_one_global_rw(min_perf_pct);
1493 define_one_global_ro(turbo_pct);
1494 define_one_global_ro(num_pstates);
1495 define_one_global_rw(hwp_dynamic_boost);
1496 define_one_global_rw(energy_efficiency);
1497 
1498 static struct attribute *intel_pstate_attributes[] = {
1499 	&status.attr,
1500 	&no_turbo.attr,
1501 	NULL
1502 };
1503 
1504 static const struct attribute_group intel_pstate_attr_group = {
1505 	.attrs = intel_pstate_attributes,
1506 };
1507 
1508 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[];
1509 
1510 static struct kobject *intel_pstate_kobject;
1511 
1512 static void __init intel_pstate_sysfs_expose_params(void)
1513 {
1514 	int rc;
1515 
1516 	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
1517 						&cpu_subsys.dev_root->kobj);
1518 	if (WARN_ON(!intel_pstate_kobject))
1519 		return;
1520 
1521 	rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1522 	if (WARN_ON(rc))
1523 		return;
1524 
1525 	if (!boot_cpu_has(X86_FEATURE_HYBRID_CPU)) {
1526 		rc = sysfs_create_file(intel_pstate_kobject, &turbo_pct.attr);
1527 		WARN_ON(rc);
1528 
1529 		rc = sysfs_create_file(intel_pstate_kobject, &num_pstates.attr);
1530 		WARN_ON(rc);
1531 	}
1532 
1533 	/*
1534 	 * If per cpu limits are enforced there are no global limits, so
1535 	 * return without creating max/min_perf_pct attributes
1536 	 */
1537 	if (per_cpu_limits)
1538 		return;
1539 
1540 	rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
1541 	WARN_ON(rc);
1542 
1543 	rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
1544 	WARN_ON(rc);
1545 
1546 	if (x86_match_cpu(intel_pstate_cpu_ee_disable_ids)) {
1547 		rc = sysfs_create_file(intel_pstate_kobject, &energy_efficiency.attr);
1548 		WARN_ON(rc);
1549 	}
1550 }
1551 
1552 static void __init intel_pstate_sysfs_remove(void)
1553 {
1554 	if (!intel_pstate_kobject)
1555 		return;
1556 
1557 	sysfs_remove_group(intel_pstate_kobject, &intel_pstate_attr_group);
1558 
1559 	if (!boot_cpu_has(X86_FEATURE_HYBRID_CPU)) {
1560 		sysfs_remove_file(intel_pstate_kobject, &num_pstates.attr);
1561 		sysfs_remove_file(intel_pstate_kobject, &turbo_pct.attr);
1562 	}
1563 
1564 	if (!per_cpu_limits) {
1565 		sysfs_remove_file(intel_pstate_kobject, &max_perf_pct.attr);
1566 		sysfs_remove_file(intel_pstate_kobject, &min_perf_pct.attr);
1567 
1568 		if (x86_match_cpu(intel_pstate_cpu_ee_disable_ids))
1569 			sysfs_remove_file(intel_pstate_kobject, &energy_efficiency.attr);
1570 	}
1571 
1572 	kobject_put(intel_pstate_kobject);
1573 }
1574 
1575 static void intel_pstate_sysfs_expose_hwp_dynamic_boost(void)
1576 {
1577 	int rc;
1578 
1579 	if (!hwp_active)
1580 		return;
1581 
1582 	rc = sysfs_create_file(intel_pstate_kobject, &hwp_dynamic_boost.attr);
1583 	WARN_ON_ONCE(rc);
1584 }
1585 
1586 static void intel_pstate_sysfs_hide_hwp_dynamic_boost(void)
1587 {
1588 	if (!hwp_active)
1589 		return;
1590 
1591 	sysfs_remove_file(intel_pstate_kobject, &hwp_dynamic_boost.attr);
1592 }
1593 
1594 /************************** sysfs end ************************/
1595 
1596 static void intel_pstate_notify_work(struct work_struct *work)
1597 {
1598 	struct cpudata *cpudata =
1599 		container_of(to_delayed_work(work), struct cpudata, hwp_notify_work);
1600 	struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpudata->cpu);
1601 
1602 	if (policy) {
1603 		intel_pstate_get_hwp_cap(cpudata);
1604 		__intel_pstate_update_max_freq(cpudata, policy);
1605 
1606 		cpufreq_cpu_release(policy);
1607 	}
1608 
1609 	wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_STATUS, 0);
1610 }
1611 
1612 static DEFINE_SPINLOCK(hwp_notify_lock);
1613 static cpumask_t hwp_intr_enable_mask;
1614 
1615 void notify_hwp_interrupt(void)
1616 {
1617 	unsigned int this_cpu = smp_processor_id();
1618 	struct cpudata *cpudata;
1619 	unsigned long flags;
1620 	u64 value;
1621 
1622 	if (!READ_ONCE(hwp_active) || !boot_cpu_has(X86_FEATURE_HWP_NOTIFY))
1623 		return;
1624 
1625 	rdmsrl_safe(MSR_HWP_STATUS, &value);
1626 	if (!(value & 0x01))
1627 		return;
1628 
1629 	spin_lock_irqsave(&hwp_notify_lock, flags);
1630 
1631 	if (!cpumask_test_cpu(this_cpu, &hwp_intr_enable_mask))
1632 		goto ack_intr;
1633 
1634 	/*
1635 	 * Currently we never free all_cpu_data. And we can't reach here
1636 	 * without this allocated. But for safety for future changes, added
1637 	 * check.
1638 	 */
1639 	if (unlikely(!READ_ONCE(all_cpu_data)))
1640 		goto ack_intr;
1641 
1642 	/*
1643 	 * The free is done during cleanup, when cpufreq registry is failed.
1644 	 * We wouldn't be here if it fails on init or switch status. But for
1645 	 * future changes, added check.
1646 	 */
1647 	cpudata = READ_ONCE(all_cpu_data[this_cpu]);
1648 	if (unlikely(!cpudata))
1649 		goto ack_intr;
1650 
1651 	schedule_delayed_work(&cpudata->hwp_notify_work, msecs_to_jiffies(10));
1652 
1653 	spin_unlock_irqrestore(&hwp_notify_lock, flags);
1654 
1655 	return;
1656 
1657 ack_intr:
1658 	wrmsrl_safe(MSR_HWP_STATUS, 0);
1659 	spin_unlock_irqrestore(&hwp_notify_lock, flags);
1660 }
1661 
1662 static void intel_pstate_disable_hwp_interrupt(struct cpudata *cpudata)
1663 {
1664 	unsigned long flags;
1665 
1666 	if (!boot_cpu_has(X86_FEATURE_HWP_NOTIFY))
1667 		return;
1668 
1669 	/* wrmsrl_on_cpu has to be outside spinlock as this can result in IPC */
1670 	wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1671 
1672 	spin_lock_irqsave(&hwp_notify_lock, flags);
1673 	if (cpumask_test_and_clear_cpu(cpudata->cpu, &hwp_intr_enable_mask))
1674 		cancel_delayed_work(&cpudata->hwp_notify_work);
1675 	spin_unlock_irqrestore(&hwp_notify_lock, flags);
1676 }
1677 
1678 static void intel_pstate_enable_hwp_interrupt(struct cpudata *cpudata)
1679 {
1680 	/* Enable HWP notification interrupt for guaranteed performance change */
1681 	if (boot_cpu_has(X86_FEATURE_HWP_NOTIFY)) {
1682 		unsigned long flags;
1683 
1684 		spin_lock_irqsave(&hwp_notify_lock, flags);
1685 		INIT_DELAYED_WORK(&cpudata->hwp_notify_work, intel_pstate_notify_work);
1686 		cpumask_set_cpu(cpudata->cpu, &hwp_intr_enable_mask);
1687 		spin_unlock_irqrestore(&hwp_notify_lock, flags);
1688 
1689 		/* wrmsrl_on_cpu has to be outside spinlock as this can result in IPC */
1690 		wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x01);
1691 		wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_STATUS, 0);
1692 	}
1693 }
1694 
1695 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
1696 {
1697 	/* First disable HWP notification interrupt till we activate again */
1698 	if (boot_cpu_has(X86_FEATURE_HWP_NOTIFY))
1699 		wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1700 
1701 	wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1702 
1703 	intel_pstate_enable_hwp_interrupt(cpudata);
1704 
1705 	if (cpudata->epp_default >= 0)
1706 		return;
1707 
1708 	if (epp_values[EPP_INDEX_BALANCE_PERFORMANCE] == HWP_EPP_BALANCE_PERFORMANCE) {
1709 		cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
1710 	} else {
1711 		cpudata->epp_default = epp_values[EPP_INDEX_BALANCE_PERFORMANCE];
1712 		intel_pstate_set_epp(cpudata, cpudata->epp_default);
1713 	}
1714 }
1715 
1716 static int atom_get_min_pstate(void)
1717 {
1718 	u64 value;
1719 
1720 	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1721 	return (value >> 8) & 0x7F;
1722 }
1723 
1724 static int atom_get_max_pstate(void)
1725 {
1726 	u64 value;
1727 
1728 	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1729 	return (value >> 16) & 0x7F;
1730 }
1731 
1732 static int atom_get_turbo_pstate(void)
1733 {
1734 	u64 value;
1735 
1736 	rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
1737 	return value & 0x7F;
1738 }
1739 
1740 static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1741 {
1742 	u64 val;
1743 	int32_t vid_fp;
1744 	u32 vid;
1745 
1746 	val = (u64)pstate << 8;
1747 	if (global.no_turbo && !global.turbo_disabled)
1748 		val |= (u64)1 << 32;
1749 
1750 	vid_fp = cpudata->vid.min + mul_fp(
1751 		int_tofp(pstate - cpudata->pstate.min_pstate),
1752 		cpudata->vid.ratio);
1753 
1754 	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1755 	vid = ceiling_fp(vid_fp);
1756 
1757 	if (pstate > cpudata->pstate.max_pstate)
1758 		vid = cpudata->vid.turbo;
1759 
1760 	return val | vid;
1761 }
1762 
1763 static int silvermont_get_scaling(void)
1764 {
1765 	u64 value;
1766 	int i;
1767 	/* Defined in Table 35-6 from SDM (Sept 2015) */
1768 	static int silvermont_freq_table[] = {
1769 		83300, 100000, 133300, 116700, 80000};
1770 
1771 	rdmsrl(MSR_FSB_FREQ, value);
1772 	i = value & 0x7;
1773 	WARN_ON(i > 4);
1774 
1775 	return silvermont_freq_table[i];
1776 }
1777 
1778 static int airmont_get_scaling(void)
1779 {
1780 	u64 value;
1781 	int i;
1782 	/* Defined in Table 35-10 from SDM (Sept 2015) */
1783 	static int airmont_freq_table[] = {
1784 		83300, 100000, 133300, 116700, 80000,
1785 		93300, 90000, 88900, 87500};
1786 
1787 	rdmsrl(MSR_FSB_FREQ, value);
1788 	i = value & 0xF;
1789 	WARN_ON(i > 8);
1790 
1791 	return airmont_freq_table[i];
1792 }
1793 
1794 static void atom_get_vid(struct cpudata *cpudata)
1795 {
1796 	u64 value;
1797 
1798 	rdmsrl(MSR_ATOM_CORE_VIDS, value);
1799 	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
1800 	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1801 	cpudata->vid.ratio = div_fp(
1802 		cpudata->vid.max - cpudata->vid.min,
1803 		int_tofp(cpudata->pstate.max_pstate -
1804 			cpudata->pstate.min_pstate));
1805 
1806 	rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1807 	cpudata->vid.turbo = value & 0x7f;
1808 }
1809 
1810 static int core_get_min_pstate(void)
1811 {
1812 	u64 value;
1813 
1814 	rdmsrl(MSR_PLATFORM_INFO, value);
1815 	return (value >> 40) & 0xFF;
1816 }
1817 
1818 static int core_get_max_pstate_physical(void)
1819 {
1820 	u64 value;
1821 
1822 	rdmsrl(MSR_PLATFORM_INFO, value);
1823 	return (value >> 8) & 0xFF;
1824 }
1825 
1826 static int core_get_tdp_ratio(u64 plat_info)
1827 {
1828 	/* Check how many TDP levels present */
1829 	if (plat_info & 0x600000000) {
1830 		u64 tdp_ctrl;
1831 		u64 tdp_ratio;
1832 		int tdp_msr;
1833 		int err;
1834 
1835 		/* Get the TDP level (0, 1, 2) to get ratios */
1836 		err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
1837 		if (err)
1838 			return err;
1839 
1840 		/* TDP MSR are continuous starting at 0x648 */
1841 		tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
1842 		err = rdmsrl_safe(tdp_msr, &tdp_ratio);
1843 		if (err)
1844 			return err;
1845 
1846 		/* For level 1 and 2, bits[23:16] contain the ratio */
1847 		if (tdp_ctrl & 0x03)
1848 			tdp_ratio >>= 16;
1849 
1850 		tdp_ratio &= 0xff; /* ratios are only 8 bits long */
1851 		pr_debug("tdp_ratio %x\n", (int)tdp_ratio);
1852 
1853 		return (int)tdp_ratio;
1854 	}
1855 
1856 	return -ENXIO;
1857 }
1858 
1859 static int core_get_max_pstate(void)
1860 {
1861 	u64 tar;
1862 	u64 plat_info;
1863 	int max_pstate;
1864 	int tdp_ratio;
1865 	int err;
1866 
1867 	rdmsrl(MSR_PLATFORM_INFO, plat_info);
1868 	max_pstate = (plat_info >> 8) & 0xFF;
1869 
1870 	tdp_ratio = core_get_tdp_ratio(plat_info);
1871 	if (tdp_ratio <= 0)
1872 		return max_pstate;
1873 
1874 	if (hwp_active) {
1875 		/* Turbo activation ratio is not used on HWP platforms */
1876 		return tdp_ratio;
1877 	}
1878 
1879 	err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
1880 	if (!err) {
1881 		int tar_levels;
1882 
1883 		/* Do some sanity checking for safety */
1884 		tar_levels = tar & 0xff;
1885 		if (tdp_ratio - 1 == tar_levels) {
1886 			max_pstate = tar_levels;
1887 			pr_debug("max_pstate=TAC %x\n", max_pstate);
1888 		}
1889 	}
1890 
1891 	return max_pstate;
1892 }
1893 
1894 static int core_get_turbo_pstate(void)
1895 {
1896 	u64 value;
1897 	int nont, ret;
1898 
1899 	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1900 	nont = core_get_max_pstate();
1901 	ret = (value) & 255;
1902 	if (ret <= nont)
1903 		ret = nont;
1904 	return ret;
1905 }
1906 
1907 static inline int core_get_scaling(void)
1908 {
1909 	return 100000;
1910 }
1911 
1912 static u64 core_get_val(struct cpudata *cpudata, int pstate)
1913 {
1914 	u64 val;
1915 
1916 	val = (u64)pstate << 8;
1917 	if (global.no_turbo && !global.turbo_disabled)
1918 		val |= (u64)1 << 32;
1919 
1920 	return val;
1921 }
1922 
1923 static int knl_get_aperf_mperf_shift(void)
1924 {
1925 	return 10;
1926 }
1927 
1928 static int knl_get_turbo_pstate(void)
1929 {
1930 	u64 value;
1931 	int nont, ret;
1932 
1933 	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1934 	nont = core_get_max_pstate();
1935 	ret = (((value) >> 8) & 0xFF);
1936 	if (ret <= nont)
1937 		ret = nont;
1938 	return ret;
1939 }
1940 
1941 #ifdef CONFIG_ACPI_CPPC_LIB
1942 static u32 hybrid_ref_perf;
1943 
1944 static int hybrid_get_cpu_scaling(int cpu)
1945 {
1946 	return DIV_ROUND_UP(core_get_scaling() * hybrid_ref_perf,
1947 			    intel_pstate_cppc_nominal(cpu));
1948 }
1949 
1950 static void intel_pstate_cppc_set_cpu_scaling(void)
1951 {
1952 	u32 min_nominal_perf = U32_MAX;
1953 	int cpu;
1954 
1955 	for_each_present_cpu(cpu) {
1956 		u32 nominal_perf = intel_pstate_cppc_nominal(cpu);
1957 
1958 		if (nominal_perf && nominal_perf < min_nominal_perf)
1959 			min_nominal_perf = nominal_perf;
1960 	}
1961 
1962 	if (min_nominal_perf < U32_MAX) {
1963 		hybrid_ref_perf = min_nominal_perf;
1964 		pstate_funcs.get_cpu_scaling = hybrid_get_cpu_scaling;
1965 	}
1966 }
1967 #else
1968 static inline void intel_pstate_cppc_set_cpu_scaling(void)
1969 {
1970 }
1971 #endif /* CONFIG_ACPI_CPPC_LIB */
1972 
1973 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1974 {
1975 	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1976 	cpu->pstate.current_pstate = pstate;
1977 	/*
1978 	 * Generally, there is no guarantee that this code will always run on
1979 	 * the CPU being updated, so force the register update to run on the
1980 	 * right CPU.
1981 	 */
1982 	wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1983 		      pstate_funcs.get_val(cpu, pstate));
1984 }
1985 
1986 static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1987 {
1988 	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
1989 }
1990 
1991 static void intel_pstate_max_within_limits(struct cpudata *cpu)
1992 {
1993 	int pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio);
1994 
1995 	update_turbo_state();
1996 	intel_pstate_set_pstate(cpu, pstate);
1997 }
1998 
1999 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
2000 {
2001 	int perf_ctl_max_phys = pstate_funcs.get_max_physical();
2002 	int perf_ctl_scaling = pstate_funcs.get_scaling();
2003 
2004 	cpu->pstate.min_pstate = pstate_funcs.get_min();
2005 	cpu->pstate.max_pstate_physical = perf_ctl_max_phys;
2006 	cpu->pstate.perf_ctl_scaling = perf_ctl_scaling;
2007 
2008 	if (hwp_active && !hwp_mode_bdw) {
2009 		__intel_pstate_get_hwp_cap(cpu);
2010 
2011 		if (pstate_funcs.get_cpu_scaling) {
2012 			cpu->pstate.scaling = pstate_funcs.get_cpu_scaling(cpu->cpu);
2013 			if (cpu->pstate.scaling != perf_ctl_scaling)
2014 				intel_pstate_hybrid_hwp_adjust(cpu);
2015 		} else {
2016 			cpu->pstate.scaling = perf_ctl_scaling;
2017 		}
2018 	} else {
2019 		cpu->pstate.scaling = perf_ctl_scaling;
2020 		cpu->pstate.max_pstate = pstate_funcs.get_max();
2021 		cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
2022 	}
2023 
2024 	if (cpu->pstate.scaling == perf_ctl_scaling) {
2025 		cpu->pstate.min_freq = cpu->pstate.min_pstate * perf_ctl_scaling;
2026 		cpu->pstate.max_freq = cpu->pstate.max_pstate * perf_ctl_scaling;
2027 		cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * perf_ctl_scaling;
2028 	}
2029 
2030 	if (pstate_funcs.get_aperf_mperf_shift)
2031 		cpu->aperf_mperf_shift = pstate_funcs.get_aperf_mperf_shift();
2032 
2033 	if (pstate_funcs.get_vid)
2034 		pstate_funcs.get_vid(cpu);
2035 
2036 	intel_pstate_set_min_pstate(cpu);
2037 }
2038 
2039 /*
2040  * Long hold time will keep high perf limits for long time,
2041  * which negatively impacts perf/watt for some workloads,
2042  * like specpower. 3ms is based on experiements on some
2043  * workoads.
2044  */
2045 static int hwp_boost_hold_time_ns = 3 * NSEC_PER_MSEC;
2046 
2047 static inline void intel_pstate_hwp_boost_up(struct cpudata *cpu)
2048 {
2049 	u64 hwp_req = READ_ONCE(cpu->hwp_req_cached);
2050 	u64 hwp_cap = READ_ONCE(cpu->hwp_cap_cached);
2051 	u32 max_limit = (hwp_req & 0xff00) >> 8;
2052 	u32 min_limit = (hwp_req & 0xff);
2053 	u32 boost_level1;
2054 
2055 	/*
2056 	 * Cases to consider (User changes via sysfs or boot time):
2057 	 * If, P0 (Turbo max) = P1 (Guaranteed max) = min:
2058 	 *	No boost, return.
2059 	 * If, P0 (Turbo max) > P1 (Guaranteed max) = min:
2060 	 *     Should result in one level boost only for P0.
2061 	 * If, P0 (Turbo max) = P1 (Guaranteed max) > min:
2062 	 *     Should result in two level boost:
2063 	 *         (min + p1)/2 and P1.
2064 	 * If, P0 (Turbo max) > P1 (Guaranteed max) > min:
2065 	 *     Should result in three level boost:
2066 	 *        (min + p1)/2, P1 and P0.
2067 	 */
2068 
2069 	/* If max and min are equal or already at max, nothing to boost */
2070 	if (max_limit == min_limit || cpu->hwp_boost_min >= max_limit)
2071 		return;
2072 
2073 	if (!cpu->hwp_boost_min)
2074 		cpu->hwp_boost_min = min_limit;
2075 
2076 	/* level at half way mark between min and guranteed */
2077 	boost_level1 = (HWP_GUARANTEED_PERF(hwp_cap) + min_limit) >> 1;
2078 
2079 	if (cpu->hwp_boost_min < boost_level1)
2080 		cpu->hwp_boost_min = boost_level1;
2081 	else if (cpu->hwp_boost_min < HWP_GUARANTEED_PERF(hwp_cap))
2082 		cpu->hwp_boost_min = HWP_GUARANTEED_PERF(hwp_cap);
2083 	else if (cpu->hwp_boost_min == HWP_GUARANTEED_PERF(hwp_cap) &&
2084 		 max_limit != HWP_GUARANTEED_PERF(hwp_cap))
2085 		cpu->hwp_boost_min = max_limit;
2086 	else
2087 		return;
2088 
2089 	hwp_req = (hwp_req & ~GENMASK_ULL(7, 0)) | cpu->hwp_boost_min;
2090 	wrmsrl(MSR_HWP_REQUEST, hwp_req);
2091 	cpu->last_update = cpu->sample.time;
2092 }
2093 
2094 static inline void intel_pstate_hwp_boost_down(struct cpudata *cpu)
2095 {
2096 	if (cpu->hwp_boost_min) {
2097 		bool expired;
2098 
2099 		/* Check if we are idle for hold time to boost down */
2100 		expired = time_after64(cpu->sample.time, cpu->last_update +
2101 				       hwp_boost_hold_time_ns);
2102 		if (expired) {
2103 			wrmsrl(MSR_HWP_REQUEST, cpu->hwp_req_cached);
2104 			cpu->hwp_boost_min = 0;
2105 		}
2106 	}
2107 	cpu->last_update = cpu->sample.time;
2108 }
2109 
2110 static inline void intel_pstate_update_util_hwp_local(struct cpudata *cpu,
2111 						      u64 time)
2112 {
2113 	cpu->sample.time = time;
2114 
2115 	if (cpu->sched_flags & SCHED_CPUFREQ_IOWAIT) {
2116 		bool do_io = false;
2117 
2118 		cpu->sched_flags = 0;
2119 		/*
2120 		 * Set iowait_boost flag and update time. Since IO WAIT flag
2121 		 * is set all the time, we can't just conclude that there is
2122 		 * some IO bound activity is scheduled on this CPU with just
2123 		 * one occurrence. If we receive at least two in two
2124 		 * consecutive ticks, then we treat as boost candidate.
2125 		 */
2126 		if (time_before64(time, cpu->last_io_update + 2 * TICK_NSEC))
2127 			do_io = true;
2128 
2129 		cpu->last_io_update = time;
2130 
2131 		if (do_io)
2132 			intel_pstate_hwp_boost_up(cpu);
2133 
2134 	} else {
2135 		intel_pstate_hwp_boost_down(cpu);
2136 	}
2137 }
2138 
2139 static inline void intel_pstate_update_util_hwp(struct update_util_data *data,
2140 						u64 time, unsigned int flags)
2141 {
2142 	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
2143 
2144 	cpu->sched_flags |= flags;
2145 
2146 	if (smp_processor_id() == cpu->cpu)
2147 		intel_pstate_update_util_hwp_local(cpu, time);
2148 }
2149 
2150 static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
2151 {
2152 	struct sample *sample = &cpu->sample;
2153 
2154 	sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
2155 }
2156 
2157 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
2158 {
2159 	u64 aperf, mperf;
2160 	unsigned long flags;
2161 	u64 tsc;
2162 
2163 	local_irq_save(flags);
2164 	rdmsrl(MSR_IA32_APERF, aperf);
2165 	rdmsrl(MSR_IA32_MPERF, mperf);
2166 	tsc = rdtsc();
2167 	if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
2168 		local_irq_restore(flags);
2169 		return false;
2170 	}
2171 	local_irq_restore(flags);
2172 
2173 	cpu->last_sample_time = cpu->sample.time;
2174 	cpu->sample.time = time;
2175 	cpu->sample.aperf = aperf;
2176 	cpu->sample.mperf = mperf;
2177 	cpu->sample.tsc =  tsc;
2178 	cpu->sample.aperf -= cpu->prev_aperf;
2179 	cpu->sample.mperf -= cpu->prev_mperf;
2180 	cpu->sample.tsc -= cpu->prev_tsc;
2181 
2182 	cpu->prev_aperf = aperf;
2183 	cpu->prev_mperf = mperf;
2184 	cpu->prev_tsc = tsc;
2185 	/*
2186 	 * First time this function is invoked in a given cycle, all of the
2187 	 * previous sample data fields are equal to zero or stale and they must
2188 	 * be populated with meaningful numbers for things to work, so assume
2189 	 * that sample.time will always be reset before setting the utilization
2190 	 * update hook and make the caller skip the sample then.
2191 	 */
2192 	if (cpu->last_sample_time) {
2193 		intel_pstate_calc_avg_perf(cpu);
2194 		return true;
2195 	}
2196 	return false;
2197 }
2198 
2199 static inline int32_t get_avg_frequency(struct cpudata *cpu)
2200 {
2201 	return mul_ext_fp(cpu->sample.core_avg_perf, cpu_khz);
2202 }
2203 
2204 static inline int32_t get_avg_pstate(struct cpudata *cpu)
2205 {
2206 	return mul_ext_fp(cpu->pstate.max_pstate_physical,
2207 			  cpu->sample.core_avg_perf);
2208 }
2209 
2210 static inline int32_t get_target_pstate(struct cpudata *cpu)
2211 {
2212 	struct sample *sample = &cpu->sample;
2213 	int32_t busy_frac;
2214 	int target, avg_pstate;
2215 
2216 	busy_frac = div_fp(sample->mperf << cpu->aperf_mperf_shift,
2217 			   sample->tsc);
2218 
2219 	if (busy_frac < cpu->iowait_boost)
2220 		busy_frac = cpu->iowait_boost;
2221 
2222 	sample->busy_scaled = busy_frac * 100;
2223 
2224 	target = global.no_turbo || global.turbo_disabled ?
2225 			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2226 	target += target >> 2;
2227 	target = mul_fp(target, busy_frac);
2228 	if (target < cpu->pstate.min_pstate)
2229 		target = cpu->pstate.min_pstate;
2230 
2231 	/*
2232 	 * If the average P-state during the previous cycle was higher than the
2233 	 * current target, add 50% of the difference to the target to reduce
2234 	 * possible performance oscillations and offset possible performance
2235 	 * loss related to moving the workload from one CPU to another within
2236 	 * a package/module.
2237 	 */
2238 	avg_pstate = get_avg_pstate(cpu);
2239 	if (avg_pstate > target)
2240 		target += (avg_pstate - target) >> 1;
2241 
2242 	return target;
2243 }
2244 
2245 static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
2246 {
2247 	int min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio);
2248 	int max_pstate = max(min_pstate, cpu->max_perf_ratio);
2249 
2250 	return clamp_t(int, pstate, min_pstate, max_pstate);
2251 }
2252 
2253 static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
2254 {
2255 	if (pstate == cpu->pstate.current_pstate)
2256 		return;
2257 
2258 	cpu->pstate.current_pstate = pstate;
2259 	wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
2260 }
2261 
2262 static void intel_pstate_adjust_pstate(struct cpudata *cpu)
2263 {
2264 	int from = cpu->pstate.current_pstate;
2265 	struct sample *sample;
2266 	int target_pstate;
2267 
2268 	update_turbo_state();
2269 
2270 	target_pstate = get_target_pstate(cpu);
2271 	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2272 	trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
2273 	intel_pstate_update_pstate(cpu, target_pstate);
2274 
2275 	sample = &cpu->sample;
2276 	trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
2277 		fp_toint(sample->busy_scaled),
2278 		from,
2279 		cpu->pstate.current_pstate,
2280 		sample->mperf,
2281 		sample->aperf,
2282 		sample->tsc,
2283 		get_avg_frequency(cpu),
2284 		fp_toint(cpu->iowait_boost * 100));
2285 }
2286 
2287 static void intel_pstate_update_util(struct update_util_data *data, u64 time,
2288 				     unsigned int flags)
2289 {
2290 	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
2291 	u64 delta_ns;
2292 
2293 	/* Don't allow remote callbacks */
2294 	if (smp_processor_id() != cpu->cpu)
2295 		return;
2296 
2297 	delta_ns = time - cpu->last_update;
2298 	if (flags & SCHED_CPUFREQ_IOWAIT) {
2299 		/* Start over if the CPU may have been idle. */
2300 		if (delta_ns > TICK_NSEC) {
2301 			cpu->iowait_boost = ONE_EIGHTH_FP;
2302 		} else if (cpu->iowait_boost >= ONE_EIGHTH_FP) {
2303 			cpu->iowait_boost <<= 1;
2304 			if (cpu->iowait_boost > int_tofp(1))
2305 				cpu->iowait_boost = int_tofp(1);
2306 		} else {
2307 			cpu->iowait_boost = ONE_EIGHTH_FP;
2308 		}
2309 	} else if (cpu->iowait_boost) {
2310 		/* Clear iowait_boost if the CPU may have been idle. */
2311 		if (delta_ns > TICK_NSEC)
2312 			cpu->iowait_boost = 0;
2313 		else
2314 			cpu->iowait_boost >>= 1;
2315 	}
2316 	cpu->last_update = time;
2317 	delta_ns = time - cpu->sample.time;
2318 	if ((s64)delta_ns < INTEL_PSTATE_SAMPLING_INTERVAL)
2319 		return;
2320 
2321 	if (intel_pstate_sample(cpu, time))
2322 		intel_pstate_adjust_pstate(cpu);
2323 }
2324 
2325 static struct pstate_funcs core_funcs = {
2326 	.get_max = core_get_max_pstate,
2327 	.get_max_physical = core_get_max_pstate_physical,
2328 	.get_min = core_get_min_pstate,
2329 	.get_turbo = core_get_turbo_pstate,
2330 	.get_scaling = core_get_scaling,
2331 	.get_val = core_get_val,
2332 };
2333 
2334 static const struct pstate_funcs silvermont_funcs = {
2335 	.get_max = atom_get_max_pstate,
2336 	.get_max_physical = atom_get_max_pstate,
2337 	.get_min = atom_get_min_pstate,
2338 	.get_turbo = atom_get_turbo_pstate,
2339 	.get_val = atom_get_val,
2340 	.get_scaling = silvermont_get_scaling,
2341 	.get_vid = atom_get_vid,
2342 };
2343 
2344 static const struct pstate_funcs airmont_funcs = {
2345 	.get_max = atom_get_max_pstate,
2346 	.get_max_physical = atom_get_max_pstate,
2347 	.get_min = atom_get_min_pstate,
2348 	.get_turbo = atom_get_turbo_pstate,
2349 	.get_val = atom_get_val,
2350 	.get_scaling = airmont_get_scaling,
2351 	.get_vid = atom_get_vid,
2352 };
2353 
2354 static const struct pstate_funcs knl_funcs = {
2355 	.get_max = core_get_max_pstate,
2356 	.get_max_physical = core_get_max_pstate_physical,
2357 	.get_min = core_get_min_pstate,
2358 	.get_turbo = knl_get_turbo_pstate,
2359 	.get_aperf_mperf_shift = knl_get_aperf_mperf_shift,
2360 	.get_scaling = core_get_scaling,
2361 	.get_val = core_get_val,
2362 };
2363 
2364 #define X86_MATCH(model, policy)					 \
2365 	X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6, INTEL_FAM6_##model, \
2366 					   X86_FEATURE_APERFMPERF, &policy)
2367 
2368 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
2369 	X86_MATCH(SANDYBRIDGE,		core_funcs),
2370 	X86_MATCH(SANDYBRIDGE_X,	core_funcs),
2371 	X86_MATCH(ATOM_SILVERMONT,	silvermont_funcs),
2372 	X86_MATCH(IVYBRIDGE,		core_funcs),
2373 	X86_MATCH(HASWELL,		core_funcs),
2374 	X86_MATCH(BROADWELL,		core_funcs),
2375 	X86_MATCH(IVYBRIDGE_X,		core_funcs),
2376 	X86_MATCH(HASWELL_X,		core_funcs),
2377 	X86_MATCH(HASWELL_L,		core_funcs),
2378 	X86_MATCH(HASWELL_G,		core_funcs),
2379 	X86_MATCH(BROADWELL_G,		core_funcs),
2380 	X86_MATCH(ATOM_AIRMONT,		airmont_funcs),
2381 	X86_MATCH(SKYLAKE_L,		core_funcs),
2382 	X86_MATCH(BROADWELL_X,		core_funcs),
2383 	X86_MATCH(SKYLAKE,		core_funcs),
2384 	X86_MATCH(BROADWELL_D,		core_funcs),
2385 	X86_MATCH(XEON_PHI_KNL,		knl_funcs),
2386 	X86_MATCH(XEON_PHI_KNM,		knl_funcs),
2387 	X86_MATCH(ATOM_GOLDMONT,	core_funcs),
2388 	X86_MATCH(ATOM_GOLDMONT_PLUS,	core_funcs),
2389 	X86_MATCH(SKYLAKE_X,		core_funcs),
2390 	X86_MATCH(COMETLAKE,		core_funcs),
2391 	X86_MATCH(ICELAKE_X,		core_funcs),
2392 	{}
2393 };
2394 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
2395 
2396 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
2397 	X86_MATCH(BROADWELL_D,		core_funcs),
2398 	X86_MATCH(BROADWELL_X,		core_funcs),
2399 	X86_MATCH(SKYLAKE_X,		core_funcs),
2400 	X86_MATCH(ICELAKE_X,		core_funcs),
2401 	{}
2402 };
2403 
2404 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
2405 	X86_MATCH(KABYLAKE,		core_funcs),
2406 	{}
2407 };
2408 
2409 static const struct x86_cpu_id intel_pstate_hwp_boost_ids[] = {
2410 	X86_MATCH(SKYLAKE_X,		core_funcs),
2411 	X86_MATCH(SKYLAKE,		core_funcs),
2412 	{}
2413 };
2414 
2415 static int intel_pstate_init_cpu(unsigned int cpunum)
2416 {
2417 	struct cpudata *cpu;
2418 
2419 	cpu = all_cpu_data[cpunum];
2420 
2421 	if (!cpu) {
2422 		cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
2423 		if (!cpu)
2424 			return -ENOMEM;
2425 
2426 		WRITE_ONCE(all_cpu_data[cpunum], cpu);
2427 
2428 		cpu->cpu = cpunum;
2429 
2430 		cpu->epp_default = -EINVAL;
2431 
2432 		if (hwp_active) {
2433 			const struct x86_cpu_id *id;
2434 
2435 			intel_pstate_hwp_enable(cpu);
2436 
2437 			id = x86_match_cpu(intel_pstate_hwp_boost_ids);
2438 			if (id && intel_pstate_acpi_pm_profile_server())
2439 				hwp_boost = true;
2440 		}
2441 	} else if (hwp_active) {
2442 		/*
2443 		 * Re-enable HWP in case this happens after a resume from ACPI
2444 		 * S3 if the CPU was offline during the whole system/resume
2445 		 * cycle.
2446 		 */
2447 		intel_pstate_hwp_reenable(cpu);
2448 	}
2449 
2450 	cpu->epp_powersave = -EINVAL;
2451 	cpu->epp_policy = 0;
2452 
2453 	intel_pstate_get_cpu_pstates(cpu);
2454 
2455 	pr_debug("controlling: cpu %d\n", cpunum);
2456 
2457 	return 0;
2458 }
2459 
2460 static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
2461 {
2462 	struct cpudata *cpu = all_cpu_data[cpu_num];
2463 
2464 	if (hwp_active && !hwp_boost)
2465 		return;
2466 
2467 	if (cpu->update_util_set)
2468 		return;
2469 
2470 	/* Prevent intel_pstate_update_util() from using stale data. */
2471 	cpu->sample.time = 0;
2472 	cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
2473 				     (hwp_active ?
2474 				      intel_pstate_update_util_hwp :
2475 				      intel_pstate_update_util));
2476 	cpu->update_util_set = true;
2477 }
2478 
2479 static void intel_pstate_clear_update_util_hook(unsigned int cpu)
2480 {
2481 	struct cpudata *cpu_data = all_cpu_data[cpu];
2482 
2483 	if (!cpu_data->update_util_set)
2484 		return;
2485 
2486 	cpufreq_remove_update_util_hook(cpu);
2487 	cpu_data->update_util_set = false;
2488 	synchronize_rcu();
2489 }
2490 
2491 static int intel_pstate_get_max_freq(struct cpudata *cpu)
2492 {
2493 	return global.turbo_disabled || global.no_turbo ?
2494 			cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2495 }
2496 
2497 static void intel_pstate_update_perf_limits(struct cpudata *cpu,
2498 					    unsigned int policy_min,
2499 					    unsigned int policy_max)
2500 {
2501 	int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling;
2502 	int32_t max_policy_perf, min_policy_perf;
2503 
2504 	max_policy_perf = policy_max / perf_ctl_scaling;
2505 	if (policy_max == policy_min) {
2506 		min_policy_perf = max_policy_perf;
2507 	} else {
2508 		min_policy_perf = policy_min / perf_ctl_scaling;
2509 		min_policy_perf = clamp_t(int32_t, min_policy_perf,
2510 					  0, max_policy_perf);
2511 	}
2512 
2513 	/*
2514 	 * HWP needs some special consideration, because HWP_REQUEST uses
2515 	 * abstract values to represent performance rather than pure ratios.
2516 	 */
2517 	if (hwp_active && cpu->pstate.scaling != perf_ctl_scaling) {
2518 		int scaling = cpu->pstate.scaling;
2519 		int freq;
2520 
2521 		freq = max_policy_perf * perf_ctl_scaling;
2522 		max_policy_perf = DIV_ROUND_UP(freq, scaling);
2523 		freq = min_policy_perf * perf_ctl_scaling;
2524 		min_policy_perf = DIV_ROUND_UP(freq, scaling);
2525 	}
2526 
2527 	pr_debug("cpu:%d min_policy_perf:%d max_policy_perf:%d\n",
2528 		 cpu->cpu, min_policy_perf, max_policy_perf);
2529 
2530 	/* Normalize user input to [min_perf, max_perf] */
2531 	if (per_cpu_limits) {
2532 		cpu->min_perf_ratio = min_policy_perf;
2533 		cpu->max_perf_ratio = max_policy_perf;
2534 	} else {
2535 		int turbo_max = cpu->pstate.turbo_pstate;
2536 		int32_t global_min, global_max;
2537 
2538 		/* Global limits are in percent of the maximum turbo P-state. */
2539 		global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
2540 		global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
2541 		global_min = clamp_t(int32_t, global_min, 0, global_max);
2542 
2543 		pr_debug("cpu:%d global_min:%d global_max:%d\n", cpu->cpu,
2544 			 global_min, global_max);
2545 
2546 		cpu->min_perf_ratio = max(min_policy_perf, global_min);
2547 		cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf);
2548 		cpu->max_perf_ratio = min(max_policy_perf, global_max);
2549 		cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio);
2550 
2551 		/* Make sure min_perf <= max_perf */
2552 		cpu->min_perf_ratio = min(cpu->min_perf_ratio,
2553 					  cpu->max_perf_ratio);
2554 
2555 	}
2556 	pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", cpu->cpu,
2557 		 cpu->max_perf_ratio,
2558 		 cpu->min_perf_ratio);
2559 }
2560 
2561 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
2562 {
2563 	struct cpudata *cpu;
2564 
2565 	if (!policy->cpuinfo.max_freq)
2566 		return -ENODEV;
2567 
2568 	pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
2569 		 policy->cpuinfo.max_freq, policy->max);
2570 
2571 	cpu = all_cpu_data[policy->cpu];
2572 	cpu->policy = policy->policy;
2573 
2574 	mutex_lock(&intel_pstate_limits_lock);
2575 
2576 	intel_pstate_update_perf_limits(cpu, policy->min, policy->max);
2577 
2578 	if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
2579 		/*
2580 		 * NOHZ_FULL CPUs need this as the governor callback may not
2581 		 * be invoked on them.
2582 		 */
2583 		intel_pstate_clear_update_util_hook(policy->cpu);
2584 		intel_pstate_max_within_limits(cpu);
2585 	} else {
2586 		intel_pstate_set_update_util_hook(policy->cpu);
2587 	}
2588 
2589 	if (hwp_active) {
2590 		/*
2591 		 * When hwp_boost was active before and dynamically it
2592 		 * was turned off, in that case we need to clear the
2593 		 * update util hook.
2594 		 */
2595 		if (!hwp_boost)
2596 			intel_pstate_clear_update_util_hook(policy->cpu);
2597 		intel_pstate_hwp_set(policy->cpu);
2598 	}
2599 
2600 	mutex_unlock(&intel_pstate_limits_lock);
2601 
2602 	return 0;
2603 }
2604 
2605 static void intel_pstate_adjust_policy_max(struct cpudata *cpu,
2606 					   struct cpufreq_policy_data *policy)
2607 {
2608 	if (!hwp_active &&
2609 	    cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
2610 	    policy->max < policy->cpuinfo.max_freq &&
2611 	    policy->max > cpu->pstate.max_freq) {
2612 		pr_debug("policy->max > max non turbo frequency\n");
2613 		policy->max = policy->cpuinfo.max_freq;
2614 	}
2615 }
2616 
2617 static void intel_pstate_verify_cpu_policy(struct cpudata *cpu,
2618 					   struct cpufreq_policy_data *policy)
2619 {
2620 	int max_freq;
2621 
2622 	update_turbo_state();
2623 	if (hwp_active) {
2624 		intel_pstate_get_hwp_cap(cpu);
2625 		max_freq = global.no_turbo || global.turbo_disabled ?
2626 				cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2627 	} else {
2628 		max_freq = intel_pstate_get_max_freq(cpu);
2629 	}
2630 	cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq, max_freq);
2631 
2632 	intel_pstate_adjust_policy_max(cpu, policy);
2633 }
2634 
2635 static int intel_pstate_verify_policy(struct cpufreq_policy_data *policy)
2636 {
2637 	intel_pstate_verify_cpu_policy(all_cpu_data[policy->cpu], policy);
2638 
2639 	return 0;
2640 }
2641 
2642 static int intel_cpufreq_cpu_offline(struct cpufreq_policy *policy)
2643 {
2644 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2645 
2646 	pr_debug("CPU %d going offline\n", cpu->cpu);
2647 
2648 	if (cpu->suspended)
2649 		return 0;
2650 
2651 	/*
2652 	 * If the CPU is an SMT thread and it goes offline with the performance
2653 	 * settings different from the minimum, it will prevent its sibling
2654 	 * from getting to lower performance levels, so force the minimum
2655 	 * performance on CPU offline to prevent that from happening.
2656 	 */
2657 	if (hwp_active)
2658 		intel_pstate_hwp_offline(cpu);
2659 	else
2660 		intel_pstate_set_min_pstate(cpu);
2661 
2662 	intel_pstate_exit_perf_limits(policy);
2663 
2664 	return 0;
2665 }
2666 
2667 static int intel_pstate_cpu_online(struct cpufreq_policy *policy)
2668 {
2669 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2670 
2671 	pr_debug("CPU %d going online\n", cpu->cpu);
2672 
2673 	intel_pstate_init_acpi_perf_limits(policy);
2674 
2675 	if (hwp_active) {
2676 		/*
2677 		 * Re-enable HWP and clear the "suspended" flag to let "resume"
2678 		 * know that it need not do that.
2679 		 */
2680 		intel_pstate_hwp_reenable(cpu);
2681 		cpu->suspended = false;
2682 	}
2683 
2684 	return 0;
2685 }
2686 
2687 static int intel_pstate_cpu_offline(struct cpufreq_policy *policy)
2688 {
2689 	intel_pstate_clear_update_util_hook(policy->cpu);
2690 
2691 	return intel_cpufreq_cpu_offline(policy);
2692 }
2693 
2694 static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
2695 {
2696 	pr_debug("CPU %d exiting\n", policy->cpu);
2697 
2698 	policy->fast_switch_possible = false;
2699 
2700 	return 0;
2701 }
2702 
2703 static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2704 {
2705 	struct cpudata *cpu;
2706 	int rc;
2707 
2708 	rc = intel_pstate_init_cpu(policy->cpu);
2709 	if (rc)
2710 		return rc;
2711 
2712 	cpu = all_cpu_data[policy->cpu];
2713 
2714 	cpu->max_perf_ratio = 0xFF;
2715 	cpu->min_perf_ratio = 0;
2716 
2717 	/* cpuinfo and default policy values */
2718 	policy->cpuinfo.min_freq = cpu->pstate.min_freq;
2719 	update_turbo_state();
2720 	global.turbo_disabled_mf = global.turbo_disabled;
2721 	policy->cpuinfo.max_freq = global.turbo_disabled ?
2722 			cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2723 
2724 	policy->min = policy->cpuinfo.min_freq;
2725 	policy->max = policy->cpuinfo.max_freq;
2726 
2727 	intel_pstate_init_acpi_perf_limits(policy);
2728 
2729 	policy->fast_switch_possible = true;
2730 
2731 	return 0;
2732 }
2733 
2734 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2735 {
2736 	int ret = __intel_pstate_cpu_init(policy);
2737 
2738 	if (ret)
2739 		return ret;
2740 
2741 	/*
2742 	 * Set the policy to powersave to provide a valid fallback value in case
2743 	 * the default cpufreq governor is neither powersave nor performance.
2744 	 */
2745 	policy->policy = CPUFREQ_POLICY_POWERSAVE;
2746 
2747 	if (hwp_active) {
2748 		struct cpudata *cpu = all_cpu_data[policy->cpu];
2749 
2750 		cpu->epp_cached = intel_pstate_get_epp(cpu, 0);
2751 	}
2752 
2753 	return 0;
2754 }
2755 
2756 static struct cpufreq_driver intel_pstate = {
2757 	.flags		= CPUFREQ_CONST_LOOPS,
2758 	.verify		= intel_pstate_verify_policy,
2759 	.setpolicy	= intel_pstate_set_policy,
2760 	.suspend	= intel_pstate_suspend,
2761 	.resume		= intel_pstate_resume,
2762 	.init		= intel_pstate_cpu_init,
2763 	.exit		= intel_pstate_cpu_exit,
2764 	.offline	= intel_pstate_cpu_offline,
2765 	.online		= intel_pstate_cpu_online,
2766 	.update_limits	= intel_pstate_update_limits,
2767 	.name		= "intel_pstate",
2768 };
2769 
2770 static int intel_cpufreq_verify_policy(struct cpufreq_policy_data *policy)
2771 {
2772 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2773 
2774 	intel_pstate_verify_cpu_policy(cpu, policy);
2775 	intel_pstate_update_perf_limits(cpu, policy->min, policy->max);
2776 
2777 	return 0;
2778 }
2779 
2780 /* Use of trace in passive mode:
2781  *
2782  * In passive mode the trace core_busy field (also known as the
2783  * performance field, and lablelled as such on the graphs; also known as
2784  * core_avg_perf) is not needed and so is re-assigned to indicate if the
2785  * driver call was via the normal or fast switch path. Various graphs
2786  * output from the intel_pstate_tracer.py utility that include core_busy
2787  * (or performance or core_avg_perf) have a fixed y-axis from 0 to 100%,
2788  * so we use 10 to indicate the normal path through the driver, and
2789  * 90 to indicate the fast switch path through the driver.
2790  * The scaled_busy field is not used, and is set to 0.
2791  */
2792 
2793 #define	INTEL_PSTATE_TRACE_TARGET 10
2794 #define	INTEL_PSTATE_TRACE_FAST_SWITCH 90
2795 
2796 static void intel_cpufreq_trace(struct cpudata *cpu, unsigned int trace_type, int old_pstate)
2797 {
2798 	struct sample *sample;
2799 
2800 	if (!trace_pstate_sample_enabled())
2801 		return;
2802 
2803 	if (!intel_pstate_sample(cpu, ktime_get()))
2804 		return;
2805 
2806 	sample = &cpu->sample;
2807 	trace_pstate_sample(trace_type,
2808 		0,
2809 		old_pstate,
2810 		cpu->pstate.current_pstate,
2811 		sample->mperf,
2812 		sample->aperf,
2813 		sample->tsc,
2814 		get_avg_frequency(cpu),
2815 		fp_toint(cpu->iowait_boost * 100));
2816 }
2817 
2818 static void intel_cpufreq_hwp_update(struct cpudata *cpu, u32 min, u32 max,
2819 				     u32 desired, bool fast_switch)
2820 {
2821 	u64 prev = READ_ONCE(cpu->hwp_req_cached), value = prev;
2822 
2823 	value &= ~HWP_MIN_PERF(~0L);
2824 	value |= HWP_MIN_PERF(min);
2825 
2826 	value &= ~HWP_MAX_PERF(~0L);
2827 	value |= HWP_MAX_PERF(max);
2828 
2829 	value &= ~HWP_DESIRED_PERF(~0L);
2830 	value |= HWP_DESIRED_PERF(desired);
2831 
2832 	if (value == prev)
2833 		return;
2834 
2835 	WRITE_ONCE(cpu->hwp_req_cached, value);
2836 	if (fast_switch)
2837 		wrmsrl(MSR_HWP_REQUEST, value);
2838 	else
2839 		wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
2840 }
2841 
2842 static void intel_cpufreq_perf_ctl_update(struct cpudata *cpu,
2843 					  u32 target_pstate, bool fast_switch)
2844 {
2845 	if (fast_switch)
2846 		wrmsrl(MSR_IA32_PERF_CTL,
2847 		       pstate_funcs.get_val(cpu, target_pstate));
2848 	else
2849 		wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
2850 			      pstate_funcs.get_val(cpu, target_pstate));
2851 }
2852 
2853 static int intel_cpufreq_update_pstate(struct cpufreq_policy *policy,
2854 				       int target_pstate, bool fast_switch)
2855 {
2856 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2857 	int old_pstate = cpu->pstate.current_pstate;
2858 
2859 	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2860 	if (hwp_active) {
2861 		int max_pstate = policy->strict_target ?
2862 					target_pstate : cpu->max_perf_ratio;
2863 
2864 		intel_cpufreq_hwp_update(cpu, target_pstate, max_pstate, 0,
2865 					 fast_switch);
2866 	} else if (target_pstate != old_pstate) {
2867 		intel_cpufreq_perf_ctl_update(cpu, target_pstate, fast_switch);
2868 	}
2869 
2870 	cpu->pstate.current_pstate = target_pstate;
2871 
2872 	intel_cpufreq_trace(cpu, fast_switch ? INTEL_PSTATE_TRACE_FAST_SWITCH :
2873 			    INTEL_PSTATE_TRACE_TARGET, old_pstate);
2874 
2875 	return target_pstate;
2876 }
2877 
2878 static int intel_cpufreq_target(struct cpufreq_policy *policy,
2879 				unsigned int target_freq,
2880 				unsigned int relation)
2881 {
2882 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2883 	struct cpufreq_freqs freqs;
2884 	int target_pstate;
2885 
2886 	update_turbo_state();
2887 
2888 	freqs.old = policy->cur;
2889 	freqs.new = target_freq;
2890 
2891 	cpufreq_freq_transition_begin(policy, &freqs);
2892 
2893 	switch (relation) {
2894 	case CPUFREQ_RELATION_L:
2895 		target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
2896 		break;
2897 	case CPUFREQ_RELATION_H:
2898 		target_pstate = freqs.new / cpu->pstate.scaling;
2899 		break;
2900 	default:
2901 		target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
2902 		break;
2903 	}
2904 
2905 	target_pstate = intel_cpufreq_update_pstate(policy, target_pstate, false);
2906 
2907 	freqs.new = target_pstate * cpu->pstate.scaling;
2908 
2909 	cpufreq_freq_transition_end(policy, &freqs, false);
2910 
2911 	return 0;
2912 }
2913 
2914 static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
2915 					      unsigned int target_freq)
2916 {
2917 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2918 	int target_pstate;
2919 
2920 	update_turbo_state();
2921 
2922 	target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
2923 
2924 	target_pstate = intel_cpufreq_update_pstate(policy, target_pstate, true);
2925 
2926 	return target_pstate * cpu->pstate.scaling;
2927 }
2928 
2929 static void intel_cpufreq_adjust_perf(unsigned int cpunum,
2930 				      unsigned long min_perf,
2931 				      unsigned long target_perf,
2932 				      unsigned long capacity)
2933 {
2934 	struct cpudata *cpu = all_cpu_data[cpunum];
2935 	u64 hwp_cap = READ_ONCE(cpu->hwp_cap_cached);
2936 	int old_pstate = cpu->pstate.current_pstate;
2937 	int cap_pstate, min_pstate, max_pstate, target_pstate;
2938 
2939 	update_turbo_state();
2940 	cap_pstate = global.turbo_disabled ? HWP_GUARANTEED_PERF(hwp_cap) :
2941 					     HWP_HIGHEST_PERF(hwp_cap);
2942 
2943 	/* Optimization: Avoid unnecessary divisions. */
2944 
2945 	target_pstate = cap_pstate;
2946 	if (target_perf < capacity)
2947 		target_pstate = DIV_ROUND_UP(cap_pstate * target_perf, capacity);
2948 
2949 	min_pstate = cap_pstate;
2950 	if (min_perf < capacity)
2951 		min_pstate = DIV_ROUND_UP(cap_pstate * min_perf, capacity);
2952 
2953 	if (min_pstate < cpu->pstate.min_pstate)
2954 		min_pstate = cpu->pstate.min_pstate;
2955 
2956 	if (min_pstate < cpu->min_perf_ratio)
2957 		min_pstate = cpu->min_perf_ratio;
2958 
2959 	max_pstate = min(cap_pstate, cpu->max_perf_ratio);
2960 	if (max_pstate < min_pstate)
2961 		max_pstate = min_pstate;
2962 
2963 	target_pstate = clamp_t(int, target_pstate, min_pstate, max_pstate);
2964 
2965 	intel_cpufreq_hwp_update(cpu, min_pstate, max_pstate, target_pstate, true);
2966 
2967 	cpu->pstate.current_pstate = target_pstate;
2968 	intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_FAST_SWITCH, old_pstate);
2969 }
2970 
2971 static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
2972 {
2973 	struct freq_qos_request *req;
2974 	struct cpudata *cpu;
2975 	struct device *dev;
2976 	int ret, freq;
2977 
2978 	dev = get_cpu_device(policy->cpu);
2979 	if (!dev)
2980 		return -ENODEV;
2981 
2982 	ret = __intel_pstate_cpu_init(policy);
2983 	if (ret)
2984 		return ret;
2985 
2986 	policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
2987 	/* This reflects the intel_pstate_get_cpu_pstates() setting. */
2988 	policy->cur = policy->cpuinfo.min_freq;
2989 
2990 	req = kcalloc(2, sizeof(*req), GFP_KERNEL);
2991 	if (!req) {
2992 		ret = -ENOMEM;
2993 		goto pstate_exit;
2994 	}
2995 
2996 	cpu = all_cpu_data[policy->cpu];
2997 
2998 	if (hwp_active) {
2999 		u64 value;
3000 
3001 		policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY_HWP;
3002 
3003 		intel_pstate_get_hwp_cap(cpu);
3004 
3005 		rdmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, &value);
3006 		WRITE_ONCE(cpu->hwp_req_cached, value);
3007 
3008 		cpu->epp_cached = intel_pstate_get_epp(cpu, value);
3009 	} else {
3010 		policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY;
3011 	}
3012 
3013 	freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * global.min_perf_pct, 100);
3014 
3015 	ret = freq_qos_add_request(&policy->constraints, req, FREQ_QOS_MIN,
3016 				   freq);
3017 	if (ret < 0) {
3018 		dev_err(dev, "Failed to add min-freq constraint (%d)\n", ret);
3019 		goto free_req;
3020 	}
3021 
3022 	freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * global.max_perf_pct, 100);
3023 
3024 	ret = freq_qos_add_request(&policy->constraints, req + 1, FREQ_QOS_MAX,
3025 				   freq);
3026 	if (ret < 0) {
3027 		dev_err(dev, "Failed to add max-freq constraint (%d)\n", ret);
3028 		goto remove_min_req;
3029 	}
3030 
3031 	policy->driver_data = req;
3032 
3033 	return 0;
3034 
3035 remove_min_req:
3036 	freq_qos_remove_request(req);
3037 free_req:
3038 	kfree(req);
3039 pstate_exit:
3040 	intel_pstate_exit_perf_limits(policy);
3041 
3042 	return ret;
3043 }
3044 
3045 static int intel_cpufreq_cpu_exit(struct cpufreq_policy *policy)
3046 {
3047 	struct freq_qos_request *req;
3048 
3049 	req = policy->driver_data;
3050 
3051 	freq_qos_remove_request(req + 1);
3052 	freq_qos_remove_request(req);
3053 	kfree(req);
3054 
3055 	return intel_pstate_cpu_exit(policy);
3056 }
3057 
3058 static int intel_cpufreq_suspend(struct cpufreq_policy *policy)
3059 {
3060 	intel_pstate_suspend(policy);
3061 
3062 	if (hwp_active) {
3063 		struct cpudata *cpu = all_cpu_data[policy->cpu];
3064 		u64 value = READ_ONCE(cpu->hwp_req_cached);
3065 
3066 		/*
3067 		 * Clear the desired perf field in MSR_HWP_REQUEST in case
3068 		 * intel_cpufreq_adjust_perf() is in use and the last value
3069 		 * written by it may not be suitable.
3070 		 */
3071 		value &= ~HWP_DESIRED_PERF(~0L);
3072 		wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
3073 		WRITE_ONCE(cpu->hwp_req_cached, value);
3074 	}
3075 
3076 	return 0;
3077 }
3078 
3079 static struct cpufreq_driver intel_cpufreq = {
3080 	.flags		= CPUFREQ_CONST_LOOPS,
3081 	.verify		= intel_cpufreq_verify_policy,
3082 	.target		= intel_cpufreq_target,
3083 	.fast_switch	= intel_cpufreq_fast_switch,
3084 	.init		= intel_cpufreq_cpu_init,
3085 	.exit		= intel_cpufreq_cpu_exit,
3086 	.offline	= intel_cpufreq_cpu_offline,
3087 	.online		= intel_pstate_cpu_online,
3088 	.suspend	= intel_cpufreq_suspend,
3089 	.resume		= intel_pstate_resume,
3090 	.update_limits	= intel_pstate_update_limits,
3091 	.name		= "intel_cpufreq",
3092 };
3093 
3094 static struct cpufreq_driver *default_driver;
3095 
3096 static void intel_pstate_driver_cleanup(void)
3097 {
3098 	unsigned int cpu;
3099 
3100 	cpus_read_lock();
3101 	for_each_online_cpu(cpu) {
3102 		if (all_cpu_data[cpu]) {
3103 			if (intel_pstate_driver == &intel_pstate)
3104 				intel_pstate_clear_update_util_hook(cpu);
3105 
3106 			spin_lock(&hwp_notify_lock);
3107 			kfree(all_cpu_data[cpu]);
3108 			WRITE_ONCE(all_cpu_data[cpu], NULL);
3109 			spin_unlock(&hwp_notify_lock);
3110 		}
3111 	}
3112 	cpus_read_unlock();
3113 
3114 	intel_pstate_driver = NULL;
3115 }
3116 
3117 static int intel_pstate_register_driver(struct cpufreq_driver *driver)
3118 {
3119 	int ret;
3120 
3121 	if (driver == &intel_pstate)
3122 		intel_pstate_sysfs_expose_hwp_dynamic_boost();
3123 
3124 	memset(&global, 0, sizeof(global));
3125 	global.max_perf_pct = 100;
3126 
3127 	intel_pstate_driver = driver;
3128 	ret = cpufreq_register_driver(intel_pstate_driver);
3129 	if (ret) {
3130 		intel_pstate_driver_cleanup();
3131 		return ret;
3132 	}
3133 
3134 	global.min_perf_pct = min_perf_pct_min();
3135 
3136 	return 0;
3137 }
3138 
3139 static ssize_t intel_pstate_show_status(char *buf)
3140 {
3141 	if (!intel_pstate_driver)
3142 		return sprintf(buf, "off\n");
3143 
3144 	return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
3145 					"active" : "passive");
3146 }
3147 
3148 static int intel_pstate_update_status(const char *buf, size_t size)
3149 {
3150 	if (size == 3 && !strncmp(buf, "off", size)) {
3151 		if (!intel_pstate_driver)
3152 			return -EINVAL;
3153 
3154 		if (hwp_active)
3155 			return -EBUSY;
3156 
3157 		cpufreq_unregister_driver(intel_pstate_driver);
3158 		intel_pstate_driver_cleanup();
3159 		return 0;
3160 	}
3161 
3162 	if (size == 6 && !strncmp(buf, "active", size)) {
3163 		if (intel_pstate_driver) {
3164 			if (intel_pstate_driver == &intel_pstate)
3165 				return 0;
3166 
3167 			cpufreq_unregister_driver(intel_pstate_driver);
3168 		}
3169 
3170 		return intel_pstate_register_driver(&intel_pstate);
3171 	}
3172 
3173 	if (size == 7 && !strncmp(buf, "passive", size)) {
3174 		if (intel_pstate_driver) {
3175 			if (intel_pstate_driver == &intel_cpufreq)
3176 				return 0;
3177 
3178 			cpufreq_unregister_driver(intel_pstate_driver);
3179 			intel_pstate_sysfs_hide_hwp_dynamic_boost();
3180 		}
3181 
3182 		return intel_pstate_register_driver(&intel_cpufreq);
3183 	}
3184 
3185 	return -EINVAL;
3186 }
3187 
3188 static int no_load __initdata;
3189 static int no_hwp __initdata;
3190 static int hwp_only __initdata;
3191 static unsigned int force_load __initdata;
3192 
3193 static int __init intel_pstate_msrs_not_valid(void)
3194 {
3195 	if (!pstate_funcs.get_max() ||
3196 	    !pstate_funcs.get_min() ||
3197 	    !pstate_funcs.get_turbo())
3198 		return -ENODEV;
3199 
3200 	return 0;
3201 }
3202 
3203 static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
3204 {
3205 	pstate_funcs.get_max   = funcs->get_max;
3206 	pstate_funcs.get_max_physical = funcs->get_max_physical;
3207 	pstate_funcs.get_min   = funcs->get_min;
3208 	pstate_funcs.get_turbo = funcs->get_turbo;
3209 	pstate_funcs.get_scaling = funcs->get_scaling;
3210 	pstate_funcs.get_val   = funcs->get_val;
3211 	pstate_funcs.get_vid   = funcs->get_vid;
3212 	pstate_funcs.get_aperf_mperf_shift = funcs->get_aperf_mperf_shift;
3213 }
3214 
3215 #ifdef CONFIG_ACPI
3216 
3217 static bool __init intel_pstate_no_acpi_pss(void)
3218 {
3219 	int i;
3220 
3221 	for_each_possible_cpu(i) {
3222 		acpi_status status;
3223 		union acpi_object *pss;
3224 		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
3225 		struct acpi_processor *pr = per_cpu(processors, i);
3226 
3227 		if (!pr)
3228 			continue;
3229 
3230 		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
3231 		if (ACPI_FAILURE(status))
3232 			continue;
3233 
3234 		pss = buffer.pointer;
3235 		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
3236 			kfree(pss);
3237 			return false;
3238 		}
3239 
3240 		kfree(pss);
3241 	}
3242 
3243 	pr_debug("ACPI _PSS not found\n");
3244 	return true;
3245 }
3246 
3247 static bool __init intel_pstate_no_acpi_pcch(void)
3248 {
3249 	acpi_status status;
3250 	acpi_handle handle;
3251 
3252 	status = acpi_get_handle(NULL, "\\_SB", &handle);
3253 	if (ACPI_FAILURE(status))
3254 		goto not_found;
3255 
3256 	if (acpi_has_method(handle, "PCCH"))
3257 		return false;
3258 
3259 not_found:
3260 	pr_debug("ACPI PCCH not found\n");
3261 	return true;
3262 }
3263 
3264 static bool __init intel_pstate_has_acpi_ppc(void)
3265 {
3266 	int i;
3267 
3268 	for_each_possible_cpu(i) {
3269 		struct acpi_processor *pr = per_cpu(processors, i);
3270 
3271 		if (!pr)
3272 			continue;
3273 		if (acpi_has_method(pr->handle, "_PPC"))
3274 			return true;
3275 	}
3276 	pr_debug("ACPI _PPC not found\n");
3277 	return false;
3278 }
3279 
3280 enum {
3281 	PSS,
3282 	PPC,
3283 };
3284 
3285 /* Hardware vendor-specific info that has its own power management modes */
3286 static struct acpi_platform_list plat_info[] __initdata = {
3287 	{"HP    ", "ProLiant", 0, ACPI_SIG_FADT, all_versions, NULL, PSS},
3288 	{"ORACLE", "X4-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3289 	{"ORACLE", "X4-2L   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3290 	{"ORACLE", "X4-2B   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3291 	{"ORACLE", "X3-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3292 	{"ORACLE", "X3-2L   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3293 	{"ORACLE", "X3-2B   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3294 	{"ORACLE", "X4470M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3295 	{"ORACLE", "X4270M3 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3296 	{"ORACLE", "X4270M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3297 	{"ORACLE", "X4170M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3298 	{"ORACLE", "X4170 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3299 	{"ORACLE", "X4275 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3300 	{"ORACLE", "X6-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3301 	{"ORACLE", "Sudbury ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3302 	{ } /* End */
3303 };
3304 
3305 #define BITMASK_OOB	(BIT(8) | BIT(18))
3306 
3307 static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
3308 {
3309 	const struct x86_cpu_id *id;
3310 	u64 misc_pwr;
3311 	int idx;
3312 
3313 	id = x86_match_cpu(intel_pstate_cpu_oob_ids);
3314 	if (id) {
3315 		rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
3316 		if (misc_pwr & BITMASK_OOB) {
3317 			pr_debug("Bit 8 or 18 in the MISC_PWR_MGMT MSR set\n");
3318 			pr_debug("P states are controlled in Out of Band mode by the firmware/hardware\n");
3319 			return true;
3320 		}
3321 	}
3322 
3323 	idx = acpi_match_platform_list(plat_info);
3324 	if (idx < 0)
3325 		return false;
3326 
3327 	switch (plat_info[idx].data) {
3328 	case PSS:
3329 		if (!intel_pstate_no_acpi_pss())
3330 			return false;
3331 
3332 		return intel_pstate_no_acpi_pcch();
3333 	case PPC:
3334 		return intel_pstate_has_acpi_ppc() && !force_load;
3335 	}
3336 
3337 	return false;
3338 }
3339 
3340 static void intel_pstate_request_control_from_smm(void)
3341 {
3342 	/*
3343 	 * It may be unsafe to request P-states control from SMM if _PPC support
3344 	 * has not been enabled.
3345 	 */
3346 	if (acpi_ppc)
3347 		acpi_processor_pstate_control();
3348 }
3349 #else /* CONFIG_ACPI not enabled */
3350 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
3351 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
3352 static inline void intel_pstate_request_control_from_smm(void) {}
3353 #endif /* CONFIG_ACPI */
3354 
3355 #define INTEL_PSTATE_HWP_BROADWELL	0x01
3356 
3357 #define X86_MATCH_HWP(model, hwp_mode)					\
3358 	X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6, INTEL_FAM6_##model, \
3359 					   X86_FEATURE_HWP, hwp_mode)
3360 
3361 static const struct x86_cpu_id hwp_support_ids[] __initconst = {
3362 	X86_MATCH_HWP(BROADWELL_X,	INTEL_PSTATE_HWP_BROADWELL),
3363 	X86_MATCH_HWP(BROADWELL_D,	INTEL_PSTATE_HWP_BROADWELL),
3364 	X86_MATCH_HWP(ANY,		0),
3365 	{}
3366 };
3367 
3368 static bool intel_pstate_hwp_is_enabled(void)
3369 {
3370 	u64 value;
3371 
3372 	rdmsrl(MSR_PM_ENABLE, value);
3373 	return !!(value & 0x1);
3374 }
3375 
3376 static const struct x86_cpu_id intel_epp_balance_perf[] = {
3377 	/*
3378 	 * Set EPP value as 102, this is the max suggested EPP
3379 	 * which can result in one core turbo frequency for
3380 	 * AlderLake Mobile CPUs.
3381 	 */
3382 	X86_MATCH_INTEL_FAM6_MODEL(ALDERLAKE_L, 102),
3383 	{}
3384 };
3385 
3386 static int __init intel_pstate_init(void)
3387 {
3388 	static struct cpudata **_all_cpu_data;
3389 	const struct x86_cpu_id *id;
3390 	int rc;
3391 
3392 	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
3393 		return -ENODEV;
3394 
3395 	id = x86_match_cpu(hwp_support_ids);
3396 	if (id) {
3397 		bool hwp_forced = intel_pstate_hwp_is_enabled();
3398 
3399 		if (hwp_forced)
3400 			pr_info("HWP enabled by BIOS\n");
3401 		else if (no_load)
3402 			return -ENODEV;
3403 
3404 		copy_cpu_funcs(&core_funcs);
3405 		/*
3406 		 * Avoid enabling HWP for processors without EPP support,
3407 		 * because that means incomplete HWP implementation which is a
3408 		 * corner case and supporting it is generally problematic.
3409 		 *
3410 		 * If HWP is enabled already, though, there is no choice but to
3411 		 * deal with it.
3412 		 */
3413 		if ((!no_hwp && boot_cpu_has(X86_FEATURE_HWP_EPP)) || hwp_forced) {
3414 			WRITE_ONCE(hwp_active, 1);
3415 			hwp_mode_bdw = id->driver_data;
3416 			intel_pstate.attr = hwp_cpufreq_attrs;
3417 			intel_cpufreq.attr = hwp_cpufreq_attrs;
3418 			intel_cpufreq.flags |= CPUFREQ_NEED_UPDATE_LIMITS;
3419 			intel_cpufreq.adjust_perf = intel_cpufreq_adjust_perf;
3420 			if (!default_driver)
3421 				default_driver = &intel_pstate;
3422 
3423 			if (boot_cpu_has(X86_FEATURE_HYBRID_CPU))
3424 				intel_pstate_cppc_set_cpu_scaling();
3425 
3426 			goto hwp_cpu_matched;
3427 		}
3428 		pr_info("HWP not enabled\n");
3429 	} else {
3430 		if (no_load)
3431 			return -ENODEV;
3432 
3433 		id = x86_match_cpu(intel_pstate_cpu_ids);
3434 		if (!id) {
3435 			pr_info("CPU model not supported\n");
3436 			return -ENODEV;
3437 		}
3438 
3439 		copy_cpu_funcs((struct pstate_funcs *)id->driver_data);
3440 	}
3441 
3442 	if (intel_pstate_msrs_not_valid()) {
3443 		pr_info("Invalid MSRs\n");
3444 		return -ENODEV;
3445 	}
3446 	/* Without HWP start in the passive mode. */
3447 	if (!default_driver)
3448 		default_driver = &intel_cpufreq;
3449 
3450 hwp_cpu_matched:
3451 	/*
3452 	 * The Intel pstate driver will be ignored if the platform
3453 	 * firmware has its own power management modes.
3454 	 */
3455 	if (intel_pstate_platform_pwr_mgmt_exists()) {
3456 		pr_info("P-states controlled by the platform\n");
3457 		return -ENODEV;
3458 	}
3459 
3460 	if (!hwp_active && hwp_only)
3461 		return -ENOTSUPP;
3462 
3463 	pr_info("Intel P-state driver initializing\n");
3464 
3465 	_all_cpu_data = vzalloc(array_size(sizeof(void *), num_possible_cpus()));
3466 	if (!_all_cpu_data)
3467 		return -ENOMEM;
3468 
3469 	WRITE_ONCE(all_cpu_data, _all_cpu_data);
3470 
3471 	intel_pstate_request_control_from_smm();
3472 
3473 	intel_pstate_sysfs_expose_params();
3474 
3475 	if (hwp_active) {
3476 		const struct x86_cpu_id *id = x86_match_cpu(intel_epp_balance_perf);
3477 
3478 		if (id)
3479 			epp_values[EPP_INDEX_BALANCE_PERFORMANCE] = id->driver_data;
3480 	}
3481 
3482 	mutex_lock(&intel_pstate_driver_lock);
3483 	rc = intel_pstate_register_driver(default_driver);
3484 	mutex_unlock(&intel_pstate_driver_lock);
3485 	if (rc) {
3486 		intel_pstate_sysfs_remove();
3487 		return rc;
3488 	}
3489 
3490 	if (hwp_active) {
3491 		const struct x86_cpu_id *id;
3492 
3493 		id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
3494 		if (id) {
3495 			set_power_ctl_ee_state(false);
3496 			pr_info("Disabling energy efficiency optimization\n");
3497 		}
3498 
3499 		pr_info("HWP enabled\n");
3500 	} else if (boot_cpu_has(X86_FEATURE_HYBRID_CPU)) {
3501 		pr_warn("Problematic setup: Hybrid processor with disabled HWP\n");
3502 	}
3503 
3504 	return 0;
3505 }
3506 device_initcall(intel_pstate_init);
3507 
3508 static int __init intel_pstate_setup(char *str)
3509 {
3510 	if (!str)
3511 		return -EINVAL;
3512 
3513 	if (!strcmp(str, "disable"))
3514 		no_load = 1;
3515 	else if (!strcmp(str, "active"))
3516 		default_driver = &intel_pstate;
3517 	else if (!strcmp(str, "passive"))
3518 		default_driver = &intel_cpufreq;
3519 
3520 	if (!strcmp(str, "no_hwp"))
3521 		no_hwp = 1;
3522 
3523 	if (!strcmp(str, "force"))
3524 		force_load = 1;
3525 	if (!strcmp(str, "hwp_only"))
3526 		hwp_only = 1;
3527 	if (!strcmp(str, "per_cpu_perf_limits"))
3528 		per_cpu_limits = true;
3529 
3530 #ifdef CONFIG_ACPI
3531 	if (!strcmp(str, "support_acpi_ppc"))
3532 		acpi_ppc = true;
3533 #endif
3534 
3535 	return 0;
3536 }
3537 early_param("intel_pstate", intel_pstate_setup);
3538 
3539 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
3540 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
3541 MODULE_LICENSE("GPL");
3542