1 /*
2  * intel_pstate.c: Native P state management for Intel processors
3  *
4  * (C) Copyright 2012 Intel Corporation
5  * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; version 2
10  * of the License.
11  */
12 
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 
15 #include <linux/kernel.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/module.h>
18 #include <linux/ktime.h>
19 #include <linux/hrtimer.h>
20 #include <linux/tick.h>
21 #include <linux/slab.h>
22 #include <linux/sched/cpufreq.h>
23 #include <linux/list.h>
24 #include <linux/cpu.h>
25 #include <linux/cpufreq.h>
26 #include <linux/sysfs.h>
27 #include <linux/types.h>
28 #include <linux/fs.h>
29 #include <linux/debugfs.h>
30 #include <linux/acpi.h>
31 #include <linux/vmalloc.h>
32 #include <trace/events/power.h>
33 
34 #include <asm/div64.h>
35 #include <asm/msr.h>
36 #include <asm/cpu_device_id.h>
37 #include <asm/cpufeature.h>
38 #include <asm/intel-family.h>
39 
40 #define INTEL_PSTATE_SAMPLING_INTERVAL	(10 * NSEC_PER_MSEC)
41 
42 #define INTEL_CPUFREQ_TRANSITION_LATENCY	20000
43 #define INTEL_CPUFREQ_TRANSITION_DELAY		500
44 
45 #ifdef CONFIG_ACPI
46 #include <acpi/processor.h>
47 #include <acpi/cppc_acpi.h>
48 #endif
49 
50 #define FRAC_BITS 8
51 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
52 #define fp_toint(X) ((X) >> FRAC_BITS)
53 
54 #define EXT_BITS 6
55 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
56 #define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
57 #define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
58 
59 static inline int32_t mul_fp(int32_t x, int32_t y)
60 {
61 	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
62 }
63 
64 static inline int32_t div_fp(s64 x, s64 y)
65 {
66 	return div64_s64((int64_t)x << FRAC_BITS, y);
67 }
68 
69 static inline int ceiling_fp(int32_t x)
70 {
71 	int mask, ret;
72 
73 	ret = fp_toint(x);
74 	mask = (1 << FRAC_BITS) - 1;
75 	if (x & mask)
76 		ret += 1;
77 	return ret;
78 }
79 
80 static inline int32_t percent_fp(int percent)
81 {
82 	return div_fp(percent, 100);
83 }
84 
85 static inline u64 mul_ext_fp(u64 x, u64 y)
86 {
87 	return (x * y) >> EXT_FRAC_BITS;
88 }
89 
90 static inline u64 div_ext_fp(u64 x, u64 y)
91 {
92 	return div64_u64(x << EXT_FRAC_BITS, y);
93 }
94 
95 static inline int32_t percent_ext_fp(int percent)
96 {
97 	return div_ext_fp(percent, 100);
98 }
99 
100 /**
101  * struct sample -	Store performance sample
102  * @core_avg_perf:	Ratio of APERF/MPERF which is the actual average
103  *			performance during last sample period
104  * @busy_scaled:	Scaled busy value which is used to calculate next
105  *			P state. This can be different than core_avg_perf
106  *			to account for cpu idle period
107  * @aperf:		Difference of actual performance frequency clock count
108  *			read from APERF MSR between last and current sample
109  * @mperf:		Difference of maximum performance frequency clock count
110  *			read from MPERF MSR between last and current sample
111  * @tsc:		Difference of time stamp counter between last and
112  *			current sample
113  * @time:		Current time from scheduler
114  *
115  * This structure is used in the cpudata structure to store performance sample
116  * data for choosing next P State.
117  */
118 struct sample {
119 	int32_t core_avg_perf;
120 	int32_t busy_scaled;
121 	u64 aperf;
122 	u64 mperf;
123 	u64 tsc;
124 	u64 time;
125 };
126 
127 /**
128  * struct pstate_data - Store P state data
129  * @current_pstate:	Current requested P state
130  * @min_pstate:		Min P state possible for this platform
131  * @max_pstate:		Max P state possible for this platform
132  * @max_pstate_physical:This is physical Max P state for a processor
133  *			This can be higher than the max_pstate which can
134  *			be limited by platform thermal design power limits
135  * @scaling:		Scaling factor to  convert frequency to cpufreq
136  *			frequency units
137  * @turbo_pstate:	Max Turbo P state possible for this platform
138  * @max_freq:		@max_pstate frequency in cpufreq units
139  * @turbo_freq:		@turbo_pstate frequency in cpufreq units
140  *
141  * Stores the per cpu model P state limits and current P state.
142  */
143 struct pstate_data {
144 	int	current_pstate;
145 	int	min_pstate;
146 	int	max_pstate;
147 	int	max_pstate_physical;
148 	int	scaling;
149 	int	turbo_pstate;
150 	unsigned int max_freq;
151 	unsigned int turbo_freq;
152 };
153 
154 /**
155  * struct vid_data -	Stores voltage information data
156  * @min:		VID data for this platform corresponding to
157  *			the lowest P state
158  * @max:		VID data corresponding to the highest P State.
159  * @turbo:		VID data for turbo P state
160  * @ratio:		Ratio of (vid max - vid min) /
161  *			(max P state - Min P State)
162  *
163  * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
164  * This data is used in Atom platforms, where in addition to target P state,
165  * the voltage data needs to be specified to select next P State.
166  */
167 struct vid_data {
168 	int min;
169 	int max;
170 	int turbo;
171 	int32_t ratio;
172 };
173 
174 /**
175  * struct global_params - Global parameters, mostly tunable via sysfs.
176  * @no_turbo:		Whether or not to use turbo P-states.
177  * @turbo_disabled:	Whethet or not turbo P-states are available at all,
178  *			based on the MSR_IA32_MISC_ENABLE value and whether or
179  *			not the maximum reported turbo P-state is different from
180  *			the maximum reported non-turbo one.
181  * @min_perf_pct:	Minimum capacity limit in percent of the maximum turbo
182  *			P-state capacity.
183  * @max_perf_pct:	Maximum capacity limit in percent of the maximum turbo
184  *			P-state capacity.
185  */
186 struct global_params {
187 	bool no_turbo;
188 	bool turbo_disabled;
189 	int max_perf_pct;
190 	int min_perf_pct;
191 };
192 
193 /**
194  * struct cpudata -	Per CPU instance data storage
195  * @cpu:		CPU number for this instance data
196  * @policy:		CPUFreq policy value
197  * @update_util:	CPUFreq utility callback information
198  * @update_util_set:	CPUFreq utility callback is set
199  * @iowait_boost:	iowait-related boost fraction
200  * @last_update:	Time of the last update.
201  * @pstate:		Stores P state limits for this CPU
202  * @vid:		Stores VID limits for this CPU
203  * @last_sample_time:	Last Sample time
204  * @aperf_mperf_shift:	Number of clock cycles after aperf, merf is incremented
205  *			This shift is a multiplier to mperf delta to
206  *			calculate CPU busy.
207  * @prev_aperf:		Last APERF value read from APERF MSR
208  * @prev_mperf:		Last MPERF value read from MPERF MSR
209  * @prev_tsc:		Last timestamp counter (TSC) value
210  * @prev_cummulative_iowait: IO Wait time difference from last and
211  *			current sample
212  * @sample:		Storage for storing last Sample data
213  * @min_perf_ratio:	Minimum capacity in terms of PERF or HWP ratios
214  * @max_perf_ratio:	Maximum capacity in terms of PERF or HWP ratios
215  * @acpi_perf_data:	Stores ACPI perf information read from _PSS
216  * @valid_pss_table:	Set to true for valid ACPI _PSS entries found
217  * @epp_powersave:	Last saved HWP energy performance preference
218  *			(EPP) or energy performance bias (EPB),
219  *			when policy switched to performance
220  * @epp_policy:		Last saved policy used to set EPP/EPB
221  * @epp_default:	Power on default HWP energy performance
222  *			preference/bias
223  * @epp_saved:		Saved EPP/EPB during system suspend or CPU offline
224  *			operation
225  *
226  * This structure stores per CPU instance data for all CPUs.
227  */
228 struct cpudata {
229 	int cpu;
230 
231 	unsigned int policy;
232 	struct update_util_data update_util;
233 	bool   update_util_set;
234 
235 	struct pstate_data pstate;
236 	struct vid_data vid;
237 
238 	u64	last_update;
239 	u64	last_sample_time;
240 	u64	aperf_mperf_shift;
241 	u64	prev_aperf;
242 	u64	prev_mperf;
243 	u64	prev_tsc;
244 	u64	prev_cummulative_iowait;
245 	struct sample sample;
246 	int32_t	min_perf_ratio;
247 	int32_t	max_perf_ratio;
248 #ifdef CONFIG_ACPI
249 	struct acpi_processor_performance acpi_perf_data;
250 	bool valid_pss_table;
251 #endif
252 	unsigned int iowait_boost;
253 	s16 epp_powersave;
254 	s16 epp_policy;
255 	s16 epp_default;
256 	s16 epp_saved;
257 };
258 
259 static struct cpudata **all_cpu_data;
260 
261 /**
262  * struct pstate_funcs - Per CPU model specific callbacks
263  * @get_max:		Callback to get maximum non turbo effective P state
264  * @get_max_physical:	Callback to get maximum non turbo physical P state
265  * @get_min:		Callback to get minimum P state
266  * @get_turbo:		Callback to get turbo P state
267  * @get_scaling:	Callback to get frequency scaling factor
268  * @get_val:		Callback to convert P state to actual MSR write value
269  * @get_vid:		Callback to get VID data for Atom platforms
270  *
271  * Core and Atom CPU models have different way to get P State limits. This
272  * structure is used to store those callbacks.
273  */
274 struct pstate_funcs {
275 	int (*get_max)(void);
276 	int (*get_max_physical)(void);
277 	int (*get_min)(void);
278 	int (*get_turbo)(void);
279 	int (*get_scaling)(void);
280 	int (*get_aperf_mperf_shift)(void);
281 	u64 (*get_val)(struct cpudata*, int pstate);
282 	void (*get_vid)(struct cpudata *);
283 };
284 
285 static struct pstate_funcs pstate_funcs __read_mostly;
286 
287 static int hwp_active __read_mostly;
288 static bool per_cpu_limits __read_mostly;
289 
290 static struct cpufreq_driver *intel_pstate_driver __read_mostly;
291 
292 #ifdef CONFIG_ACPI
293 static bool acpi_ppc;
294 #endif
295 
296 static struct global_params global;
297 
298 static DEFINE_MUTEX(intel_pstate_driver_lock);
299 static DEFINE_MUTEX(intel_pstate_limits_lock);
300 
301 #ifdef CONFIG_ACPI
302 
303 static bool intel_pstate_get_ppc_enable_status(void)
304 {
305 	if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
306 	    acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
307 		return true;
308 
309 	return acpi_ppc;
310 }
311 
312 #ifdef CONFIG_ACPI_CPPC_LIB
313 
314 /* The work item is needed to avoid CPU hotplug locking issues */
315 static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
316 {
317 	sched_set_itmt_support();
318 }
319 
320 static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);
321 
322 static void intel_pstate_set_itmt_prio(int cpu)
323 {
324 	struct cppc_perf_caps cppc_perf;
325 	static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
326 	int ret;
327 
328 	ret = cppc_get_perf_caps(cpu, &cppc_perf);
329 	if (ret)
330 		return;
331 
332 	/*
333 	 * The priorities can be set regardless of whether or not
334 	 * sched_set_itmt_support(true) has been called and it is valid to
335 	 * update them at any time after it has been called.
336 	 */
337 	sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);
338 
339 	if (max_highest_perf <= min_highest_perf) {
340 		if (cppc_perf.highest_perf > max_highest_perf)
341 			max_highest_perf = cppc_perf.highest_perf;
342 
343 		if (cppc_perf.highest_perf < min_highest_perf)
344 			min_highest_perf = cppc_perf.highest_perf;
345 
346 		if (max_highest_perf > min_highest_perf) {
347 			/*
348 			 * This code can be run during CPU online under the
349 			 * CPU hotplug locks, so sched_set_itmt_support()
350 			 * cannot be called from here.  Queue up a work item
351 			 * to invoke it.
352 			 */
353 			schedule_work(&sched_itmt_work);
354 		}
355 	}
356 }
357 #else
358 static void intel_pstate_set_itmt_prio(int cpu)
359 {
360 }
361 #endif
362 
363 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
364 {
365 	struct cpudata *cpu;
366 	int ret;
367 	int i;
368 
369 	if (hwp_active) {
370 		intel_pstate_set_itmt_prio(policy->cpu);
371 		return;
372 	}
373 
374 	if (!intel_pstate_get_ppc_enable_status())
375 		return;
376 
377 	cpu = all_cpu_data[policy->cpu];
378 
379 	ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
380 						  policy->cpu);
381 	if (ret)
382 		return;
383 
384 	/*
385 	 * Check if the control value in _PSS is for PERF_CTL MSR, which should
386 	 * guarantee that the states returned by it map to the states in our
387 	 * list directly.
388 	 */
389 	if (cpu->acpi_perf_data.control_register.space_id !=
390 						ACPI_ADR_SPACE_FIXED_HARDWARE)
391 		goto err;
392 
393 	/*
394 	 * If there is only one entry _PSS, simply ignore _PSS and continue as
395 	 * usual without taking _PSS into account
396 	 */
397 	if (cpu->acpi_perf_data.state_count < 2)
398 		goto err;
399 
400 	pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
401 	for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
402 		pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
403 			 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
404 			 (u32) cpu->acpi_perf_data.states[i].core_frequency,
405 			 (u32) cpu->acpi_perf_data.states[i].power,
406 			 (u32) cpu->acpi_perf_data.states[i].control);
407 	}
408 
409 	/*
410 	 * The _PSS table doesn't contain whole turbo frequency range.
411 	 * This just contains +1 MHZ above the max non turbo frequency,
412 	 * with control value corresponding to max turbo ratio. But
413 	 * when cpufreq set policy is called, it will call with this
414 	 * max frequency, which will cause a reduced performance as
415 	 * this driver uses real max turbo frequency as the max
416 	 * frequency. So correct this frequency in _PSS table to
417 	 * correct max turbo frequency based on the turbo state.
418 	 * Also need to convert to MHz as _PSS freq is in MHz.
419 	 */
420 	if (!global.turbo_disabled)
421 		cpu->acpi_perf_data.states[0].core_frequency =
422 					policy->cpuinfo.max_freq / 1000;
423 	cpu->valid_pss_table = true;
424 	pr_debug("_PPC limits will be enforced\n");
425 
426 	return;
427 
428  err:
429 	cpu->valid_pss_table = false;
430 	acpi_processor_unregister_performance(policy->cpu);
431 }
432 
433 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
434 {
435 	struct cpudata *cpu;
436 
437 	cpu = all_cpu_data[policy->cpu];
438 	if (!cpu->valid_pss_table)
439 		return;
440 
441 	acpi_processor_unregister_performance(policy->cpu);
442 }
443 #else
444 static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
445 {
446 }
447 
448 static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
449 {
450 }
451 #endif
452 
453 static inline void update_turbo_state(void)
454 {
455 	u64 misc_en;
456 	struct cpudata *cpu;
457 
458 	cpu = all_cpu_data[0];
459 	rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
460 	global.turbo_disabled =
461 		(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
462 		 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
463 }
464 
465 static int min_perf_pct_min(void)
466 {
467 	struct cpudata *cpu = all_cpu_data[0];
468 	int turbo_pstate = cpu->pstate.turbo_pstate;
469 
470 	return turbo_pstate ?
471 		(cpu->pstate.min_pstate * 100 / turbo_pstate) : 0;
472 }
473 
474 static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
475 {
476 	u64 epb;
477 	int ret;
478 
479 	if (!static_cpu_has(X86_FEATURE_EPB))
480 		return -ENXIO;
481 
482 	ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
483 	if (ret)
484 		return (s16)ret;
485 
486 	return (s16)(epb & 0x0f);
487 }
488 
489 static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
490 {
491 	s16 epp;
492 
493 	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
494 		/*
495 		 * When hwp_req_data is 0, means that caller didn't read
496 		 * MSR_HWP_REQUEST, so need to read and get EPP.
497 		 */
498 		if (!hwp_req_data) {
499 			epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
500 					    &hwp_req_data);
501 			if (epp)
502 				return epp;
503 		}
504 		epp = (hwp_req_data >> 24) & 0xff;
505 	} else {
506 		/* When there is no EPP present, HWP uses EPB settings */
507 		epp = intel_pstate_get_epb(cpu_data);
508 	}
509 
510 	return epp;
511 }
512 
513 static int intel_pstate_set_epb(int cpu, s16 pref)
514 {
515 	u64 epb;
516 	int ret;
517 
518 	if (!static_cpu_has(X86_FEATURE_EPB))
519 		return -ENXIO;
520 
521 	ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
522 	if (ret)
523 		return ret;
524 
525 	epb = (epb & ~0x0f) | pref;
526 	wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
527 
528 	return 0;
529 }
530 
531 /*
532  * EPP/EPB display strings corresponding to EPP index in the
533  * energy_perf_strings[]
534  *	index		String
535  *-------------------------------------
536  *	0		default
537  *	1		performance
538  *	2		balance_performance
539  *	3		balance_power
540  *	4		power
541  */
542 static const char * const energy_perf_strings[] = {
543 	"default",
544 	"performance",
545 	"balance_performance",
546 	"balance_power",
547 	"power",
548 	NULL
549 };
550 static const unsigned int epp_values[] = {
551 	HWP_EPP_PERFORMANCE,
552 	HWP_EPP_BALANCE_PERFORMANCE,
553 	HWP_EPP_BALANCE_POWERSAVE,
554 	HWP_EPP_POWERSAVE
555 };
556 
557 static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data)
558 {
559 	s16 epp;
560 	int index = -EINVAL;
561 
562 	epp = intel_pstate_get_epp(cpu_data, 0);
563 	if (epp < 0)
564 		return epp;
565 
566 	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
567 		if (epp == HWP_EPP_PERFORMANCE)
568 			return 1;
569 		if (epp <= HWP_EPP_BALANCE_PERFORMANCE)
570 			return 2;
571 		if (epp <= HWP_EPP_BALANCE_POWERSAVE)
572 			return 3;
573 		else
574 			return 4;
575 	} else if (static_cpu_has(X86_FEATURE_EPB)) {
576 		/*
577 		 * Range:
578 		 *	0x00-0x03	:	Performance
579 		 *	0x04-0x07	:	Balance performance
580 		 *	0x08-0x0B	:	Balance power
581 		 *	0x0C-0x0F	:	Power
582 		 * The EPB is a 4 bit value, but our ranges restrict the
583 		 * value which can be set. Here only using top two bits
584 		 * effectively.
585 		 */
586 		index = (epp >> 2) + 1;
587 	}
588 
589 	return index;
590 }
591 
592 static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
593 					      int pref_index)
594 {
595 	int epp = -EINVAL;
596 	int ret;
597 
598 	if (!pref_index)
599 		epp = cpu_data->epp_default;
600 
601 	mutex_lock(&intel_pstate_limits_lock);
602 
603 	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
604 		u64 value;
605 
606 		ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, &value);
607 		if (ret)
608 			goto return_pref;
609 
610 		value &= ~GENMASK_ULL(31, 24);
611 
612 		if (epp == -EINVAL)
613 			epp = epp_values[pref_index - 1];
614 
615 		value |= (u64)epp << 24;
616 		ret = wrmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, value);
617 	} else {
618 		if (epp == -EINVAL)
619 			epp = (pref_index - 1) << 2;
620 		ret = intel_pstate_set_epb(cpu_data->cpu, epp);
621 	}
622 return_pref:
623 	mutex_unlock(&intel_pstate_limits_lock);
624 
625 	return ret;
626 }
627 
628 static ssize_t show_energy_performance_available_preferences(
629 				struct cpufreq_policy *policy, char *buf)
630 {
631 	int i = 0;
632 	int ret = 0;
633 
634 	while (energy_perf_strings[i] != NULL)
635 		ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);
636 
637 	ret += sprintf(&buf[ret], "\n");
638 
639 	return ret;
640 }
641 
642 cpufreq_freq_attr_ro(energy_performance_available_preferences);
643 
644 static ssize_t store_energy_performance_preference(
645 		struct cpufreq_policy *policy, const char *buf, size_t count)
646 {
647 	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
648 	char str_preference[21];
649 	int ret, i = 0;
650 
651 	ret = sscanf(buf, "%20s", str_preference);
652 	if (ret != 1)
653 		return -EINVAL;
654 
655 	while (energy_perf_strings[i] != NULL) {
656 		if (!strcmp(str_preference, energy_perf_strings[i])) {
657 			intel_pstate_set_energy_pref_index(cpu_data, i);
658 			return count;
659 		}
660 		++i;
661 	}
662 
663 	return -EINVAL;
664 }
665 
666 static ssize_t show_energy_performance_preference(
667 				struct cpufreq_policy *policy, char *buf)
668 {
669 	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
670 	int preference;
671 
672 	preference = intel_pstate_get_energy_pref_index(cpu_data);
673 	if (preference < 0)
674 		return preference;
675 
676 	return  sprintf(buf, "%s\n", energy_perf_strings[preference]);
677 }
678 
679 cpufreq_freq_attr_rw(energy_performance_preference);
680 
681 static struct freq_attr *hwp_cpufreq_attrs[] = {
682 	&energy_performance_preference,
683 	&energy_performance_available_preferences,
684 	NULL,
685 };
686 
687 static void intel_pstate_get_hwp_max(unsigned int cpu, int *phy_max,
688 				     int *current_max)
689 {
690 	u64 cap;
691 
692 	rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
693 	if (global.no_turbo)
694 		*current_max = HWP_GUARANTEED_PERF(cap);
695 	else
696 		*current_max = HWP_HIGHEST_PERF(cap);
697 
698 	*phy_max = HWP_HIGHEST_PERF(cap);
699 }
700 
701 static void intel_pstate_hwp_set(unsigned int cpu)
702 {
703 	struct cpudata *cpu_data = all_cpu_data[cpu];
704 	int max, min;
705 	u64 value;
706 	s16 epp;
707 
708 	max = cpu_data->max_perf_ratio;
709 	min = cpu_data->min_perf_ratio;
710 
711 	if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
712 		min = max;
713 
714 	rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
715 
716 	value &= ~HWP_MIN_PERF(~0L);
717 	value |= HWP_MIN_PERF(min);
718 
719 	value &= ~HWP_MAX_PERF(~0L);
720 	value |= HWP_MAX_PERF(max);
721 
722 	if (cpu_data->epp_policy == cpu_data->policy)
723 		goto skip_epp;
724 
725 	cpu_data->epp_policy = cpu_data->policy;
726 
727 	if (cpu_data->epp_saved >= 0) {
728 		epp = cpu_data->epp_saved;
729 		cpu_data->epp_saved = -EINVAL;
730 		goto update_epp;
731 	}
732 
733 	if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
734 		epp = intel_pstate_get_epp(cpu_data, value);
735 		cpu_data->epp_powersave = epp;
736 		/* If EPP read was failed, then don't try to write */
737 		if (epp < 0)
738 			goto skip_epp;
739 
740 		epp = 0;
741 	} else {
742 		/* skip setting EPP, when saved value is invalid */
743 		if (cpu_data->epp_powersave < 0)
744 			goto skip_epp;
745 
746 		/*
747 		 * No need to restore EPP when it is not zero. This
748 		 * means:
749 		 *  - Policy is not changed
750 		 *  - user has manually changed
751 		 *  - Error reading EPB
752 		 */
753 		epp = intel_pstate_get_epp(cpu_data, value);
754 		if (epp)
755 			goto skip_epp;
756 
757 		epp = cpu_data->epp_powersave;
758 	}
759 update_epp:
760 	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
761 		value &= ~GENMASK_ULL(31, 24);
762 		value |= (u64)epp << 24;
763 	} else {
764 		intel_pstate_set_epb(cpu, epp);
765 	}
766 skip_epp:
767 	wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
768 }
769 
770 static int intel_pstate_hwp_save_state(struct cpufreq_policy *policy)
771 {
772 	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
773 
774 	if (!hwp_active)
775 		return 0;
776 
777 	cpu_data->epp_saved = intel_pstate_get_epp(cpu_data, 0);
778 
779 	return 0;
780 }
781 
782 static int intel_pstate_resume(struct cpufreq_policy *policy)
783 {
784 	if (!hwp_active)
785 		return 0;
786 
787 	mutex_lock(&intel_pstate_limits_lock);
788 
789 	all_cpu_data[policy->cpu]->epp_policy = 0;
790 	intel_pstate_hwp_set(policy->cpu);
791 
792 	mutex_unlock(&intel_pstate_limits_lock);
793 
794 	return 0;
795 }
796 
797 static void intel_pstate_update_policies(void)
798 {
799 	int cpu;
800 
801 	for_each_possible_cpu(cpu)
802 		cpufreq_update_policy(cpu);
803 }
804 
805 /************************** sysfs begin ************************/
806 #define show_one(file_name, object)					\
807 	static ssize_t show_##file_name					\
808 	(struct kobject *kobj, struct attribute *attr, char *buf)	\
809 	{								\
810 		return sprintf(buf, "%u\n", global.object);		\
811 	}
812 
813 static ssize_t intel_pstate_show_status(char *buf);
814 static int intel_pstate_update_status(const char *buf, size_t size);
815 
816 static ssize_t show_status(struct kobject *kobj,
817 			   struct attribute *attr, char *buf)
818 {
819 	ssize_t ret;
820 
821 	mutex_lock(&intel_pstate_driver_lock);
822 	ret = intel_pstate_show_status(buf);
823 	mutex_unlock(&intel_pstate_driver_lock);
824 
825 	return ret;
826 }
827 
828 static ssize_t store_status(struct kobject *a, struct attribute *b,
829 			    const char *buf, size_t count)
830 {
831 	char *p = memchr(buf, '\n', count);
832 	int ret;
833 
834 	mutex_lock(&intel_pstate_driver_lock);
835 	ret = intel_pstate_update_status(buf, p ? p - buf : count);
836 	mutex_unlock(&intel_pstate_driver_lock);
837 
838 	return ret < 0 ? ret : count;
839 }
840 
841 static ssize_t show_turbo_pct(struct kobject *kobj,
842 				struct attribute *attr, char *buf)
843 {
844 	struct cpudata *cpu;
845 	int total, no_turbo, turbo_pct;
846 	uint32_t turbo_fp;
847 
848 	mutex_lock(&intel_pstate_driver_lock);
849 
850 	if (!intel_pstate_driver) {
851 		mutex_unlock(&intel_pstate_driver_lock);
852 		return -EAGAIN;
853 	}
854 
855 	cpu = all_cpu_data[0];
856 
857 	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
858 	no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
859 	turbo_fp = div_fp(no_turbo, total);
860 	turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
861 
862 	mutex_unlock(&intel_pstate_driver_lock);
863 
864 	return sprintf(buf, "%u\n", turbo_pct);
865 }
866 
867 static ssize_t show_num_pstates(struct kobject *kobj,
868 				struct attribute *attr, char *buf)
869 {
870 	struct cpudata *cpu;
871 	int total;
872 
873 	mutex_lock(&intel_pstate_driver_lock);
874 
875 	if (!intel_pstate_driver) {
876 		mutex_unlock(&intel_pstate_driver_lock);
877 		return -EAGAIN;
878 	}
879 
880 	cpu = all_cpu_data[0];
881 	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
882 
883 	mutex_unlock(&intel_pstate_driver_lock);
884 
885 	return sprintf(buf, "%u\n", total);
886 }
887 
888 static ssize_t show_no_turbo(struct kobject *kobj,
889 			     struct attribute *attr, char *buf)
890 {
891 	ssize_t ret;
892 
893 	mutex_lock(&intel_pstate_driver_lock);
894 
895 	if (!intel_pstate_driver) {
896 		mutex_unlock(&intel_pstate_driver_lock);
897 		return -EAGAIN;
898 	}
899 
900 	update_turbo_state();
901 	if (global.turbo_disabled)
902 		ret = sprintf(buf, "%u\n", global.turbo_disabled);
903 	else
904 		ret = sprintf(buf, "%u\n", global.no_turbo);
905 
906 	mutex_unlock(&intel_pstate_driver_lock);
907 
908 	return ret;
909 }
910 
911 static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
912 			      const char *buf, size_t count)
913 {
914 	unsigned int input;
915 	int ret;
916 
917 	ret = sscanf(buf, "%u", &input);
918 	if (ret != 1)
919 		return -EINVAL;
920 
921 	mutex_lock(&intel_pstate_driver_lock);
922 
923 	if (!intel_pstate_driver) {
924 		mutex_unlock(&intel_pstate_driver_lock);
925 		return -EAGAIN;
926 	}
927 
928 	mutex_lock(&intel_pstate_limits_lock);
929 
930 	update_turbo_state();
931 	if (global.turbo_disabled) {
932 		pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
933 		mutex_unlock(&intel_pstate_limits_lock);
934 		mutex_unlock(&intel_pstate_driver_lock);
935 		return -EPERM;
936 	}
937 
938 	global.no_turbo = clamp_t(int, input, 0, 1);
939 
940 	if (global.no_turbo) {
941 		struct cpudata *cpu = all_cpu_data[0];
942 		int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;
943 
944 		/* Squash the global minimum into the permitted range. */
945 		if (global.min_perf_pct > pct)
946 			global.min_perf_pct = pct;
947 	}
948 
949 	mutex_unlock(&intel_pstate_limits_lock);
950 
951 	intel_pstate_update_policies();
952 
953 	mutex_unlock(&intel_pstate_driver_lock);
954 
955 	return count;
956 }
957 
958 static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
959 				  const char *buf, size_t count)
960 {
961 	unsigned int input;
962 	int ret;
963 
964 	ret = sscanf(buf, "%u", &input);
965 	if (ret != 1)
966 		return -EINVAL;
967 
968 	mutex_lock(&intel_pstate_driver_lock);
969 
970 	if (!intel_pstate_driver) {
971 		mutex_unlock(&intel_pstate_driver_lock);
972 		return -EAGAIN;
973 	}
974 
975 	mutex_lock(&intel_pstate_limits_lock);
976 
977 	global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
978 
979 	mutex_unlock(&intel_pstate_limits_lock);
980 
981 	intel_pstate_update_policies();
982 
983 	mutex_unlock(&intel_pstate_driver_lock);
984 
985 	return count;
986 }
987 
988 static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
989 				  const char *buf, size_t count)
990 {
991 	unsigned int input;
992 	int ret;
993 
994 	ret = sscanf(buf, "%u", &input);
995 	if (ret != 1)
996 		return -EINVAL;
997 
998 	mutex_lock(&intel_pstate_driver_lock);
999 
1000 	if (!intel_pstate_driver) {
1001 		mutex_unlock(&intel_pstate_driver_lock);
1002 		return -EAGAIN;
1003 	}
1004 
1005 	mutex_lock(&intel_pstate_limits_lock);
1006 
1007 	global.min_perf_pct = clamp_t(int, input,
1008 				      min_perf_pct_min(), global.max_perf_pct);
1009 
1010 	mutex_unlock(&intel_pstate_limits_lock);
1011 
1012 	intel_pstate_update_policies();
1013 
1014 	mutex_unlock(&intel_pstate_driver_lock);
1015 
1016 	return count;
1017 }
1018 
1019 show_one(max_perf_pct, max_perf_pct);
1020 show_one(min_perf_pct, min_perf_pct);
1021 
1022 define_one_global_rw(status);
1023 define_one_global_rw(no_turbo);
1024 define_one_global_rw(max_perf_pct);
1025 define_one_global_rw(min_perf_pct);
1026 define_one_global_ro(turbo_pct);
1027 define_one_global_ro(num_pstates);
1028 
1029 static struct attribute *intel_pstate_attributes[] = {
1030 	&status.attr,
1031 	&no_turbo.attr,
1032 	&turbo_pct.attr,
1033 	&num_pstates.attr,
1034 	NULL
1035 };
1036 
1037 static const struct attribute_group intel_pstate_attr_group = {
1038 	.attrs = intel_pstate_attributes,
1039 };
1040 
1041 static void __init intel_pstate_sysfs_expose_params(void)
1042 {
1043 	struct kobject *intel_pstate_kobject;
1044 	int rc;
1045 
1046 	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
1047 						&cpu_subsys.dev_root->kobj);
1048 	if (WARN_ON(!intel_pstate_kobject))
1049 		return;
1050 
1051 	rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1052 	if (WARN_ON(rc))
1053 		return;
1054 
1055 	/*
1056 	 * If per cpu limits are enforced there are no global limits, so
1057 	 * return without creating max/min_perf_pct attributes
1058 	 */
1059 	if (per_cpu_limits)
1060 		return;
1061 
1062 	rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
1063 	WARN_ON(rc);
1064 
1065 	rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
1066 	WARN_ON(rc);
1067 
1068 }
1069 /************************** sysfs end ************************/
1070 
1071 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
1072 {
1073 	/* First disable HWP notification interrupt as we don't process them */
1074 	if (static_cpu_has(X86_FEATURE_HWP_NOTIFY))
1075 		wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1076 
1077 	wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1078 	cpudata->epp_policy = 0;
1079 	if (cpudata->epp_default == -EINVAL)
1080 		cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
1081 }
1082 
1083 #define MSR_IA32_POWER_CTL_BIT_EE	19
1084 
1085 /* Disable energy efficiency optimization */
1086 static void intel_pstate_disable_ee(int cpu)
1087 {
1088 	u64 power_ctl;
1089 	int ret;
1090 
1091 	ret = rdmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, &power_ctl);
1092 	if (ret)
1093 		return;
1094 
1095 	if (!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE))) {
1096 		pr_info("Disabling energy efficiency optimization\n");
1097 		power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
1098 		wrmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, power_ctl);
1099 	}
1100 }
1101 
1102 static int atom_get_min_pstate(void)
1103 {
1104 	u64 value;
1105 
1106 	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1107 	return (value >> 8) & 0x7F;
1108 }
1109 
1110 static int atom_get_max_pstate(void)
1111 {
1112 	u64 value;
1113 
1114 	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1115 	return (value >> 16) & 0x7F;
1116 }
1117 
1118 static int atom_get_turbo_pstate(void)
1119 {
1120 	u64 value;
1121 
1122 	rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
1123 	return value & 0x7F;
1124 }
1125 
1126 static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1127 {
1128 	u64 val;
1129 	int32_t vid_fp;
1130 	u32 vid;
1131 
1132 	val = (u64)pstate << 8;
1133 	if (global.no_turbo && !global.turbo_disabled)
1134 		val |= (u64)1 << 32;
1135 
1136 	vid_fp = cpudata->vid.min + mul_fp(
1137 		int_tofp(pstate - cpudata->pstate.min_pstate),
1138 		cpudata->vid.ratio);
1139 
1140 	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1141 	vid = ceiling_fp(vid_fp);
1142 
1143 	if (pstate > cpudata->pstate.max_pstate)
1144 		vid = cpudata->vid.turbo;
1145 
1146 	return val | vid;
1147 }
1148 
1149 static int silvermont_get_scaling(void)
1150 {
1151 	u64 value;
1152 	int i;
1153 	/* Defined in Table 35-6 from SDM (Sept 2015) */
1154 	static int silvermont_freq_table[] = {
1155 		83300, 100000, 133300, 116700, 80000};
1156 
1157 	rdmsrl(MSR_FSB_FREQ, value);
1158 	i = value & 0x7;
1159 	WARN_ON(i > 4);
1160 
1161 	return silvermont_freq_table[i];
1162 }
1163 
1164 static int airmont_get_scaling(void)
1165 {
1166 	u64 value;
1167 	int i;
1168 	/* Defined in Table 35-10 from SDM (Sept 2015) */
1169 	static int airmont_freq_table[] = {
1170 		83300, 100000, 133300, 116700, 80000,
1171 		93300, 90000, 88900, 87500};
1172 
1173 	rdmsrl(MSR_FSB_FREQ, value);
1174 	i = value & 0xF;
1175 	WARN_ON(i > 8);
1176 
1177 	return airmont_freq_table[i];
1178 }
1179 
1180 static void atom_get_vid(struct cpudata *cpudata)
1181 {
1182 	u64 value;
1183 
1184 	rdmsrl(MSR_ATOM_CORE_VIDS, value);
1185 	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
1186 	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1187 	cpudata->vid.ratio = div_fp(
1188 		cpudata->vid.max - cpudata->vid.min,
1189 		int_tofp(cpudata->pstate.max_pstate -
1190 			cpudata->pstate.min_pstate));
1191 
1192 	rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1193 	cpudata->vid.turbo = value & 0x7f;
1194 }
1195 
1196 static int core_get_min_pstate(void)
1197 {
1198 	u64 value;
1199 
1200 	rdmsrl(MSR_PLATFORM_INFO, value);
1201 	return (value >> 40) & 0xFF;
1202 }
1203 
1204 static int core_get_max_pstate_physical(void)
1205 {
1206 	u64 value;
1207 
1208 	rdmsrl(MSR_PLATFORM_INFO, value);
1209 	return (value >> 8) & 0xFF;
1210 }
1211 
1212 static int core_get_tdp_ratio(u64 plat_info)
1213 {
1214 	/* Check how many TDP levels present */
1215 	if (plat_info & 0x600000000) {
1216 		u64 tdp_ctrl;
1217 		u64 tdp_ratio;
1218 		int tdp_msr;
1219 		int err;
1220 
1221 		/* Get the TDP level (0, 1, 2) to get ratios */
1222 		err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
1223 		if (err)
1224 			return err;
1225 
1226 		/* TDP MSR are continuous starting at 0x648 */
1227 		tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
1228 		err = rdmsrl_safe(tdp_msr, &tdp_ratio);
1229 		if (err)
1230 			return err;
1231 
1232 		/* For level 1 and 2, bits[23:16] contain the ratio */
1233 		if (tdp_ctrl & 0x03)
1234 			tdp_ratio >>= 16;
1235 
1236 		tdp_ratio &= 0xff; /* ratios are only 8 bits long */
1237 		pr_debug("tdp_ratio %x\n", (int)tdp_ratio);
1238 
1239 		return (int)tdp_ratio;
1240 	}
1241 
1242 	return -ENXIO;
1243 }
1244 
1245 static int core_get_max_pstate(void)
1246 {
1247 	u64 tar;
1248 	u64 plat_info;
1249 	int max_pstate;
1250 	int tdp_ratio;
1251 	int err;
1252 
1253 	rdmsrl(MSR_PLATFORM_INFO, plat_info);
1254 	max_pstate = (plat_info >> 8) & 0xFF;
1255 
1256 	tdp_ratio = core_get_tdp_ratio(plat_info);
1257 	if (tdp_ratio <= 0)
1258 		return max_pstate;
1259 
1260 	if (hwp_active) {
1261 		/* Turbo activation ratio is not used on HWP platforms */
1262 		return tdp_ratio;
1263 	}
1264 
1265 	err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
1266 	if (!err) {
1267 		int tar_levels;
1268 
1269 		/* Do some sanity checking for safety */
1270 		tar_levels = tar & 0xff;
1271 		if (tdp_ratio - 1 == tar_levels) {
1272 			max_pstate = tar_levels;
1273 			pr_debug("max_pstate=TAC %x\n", max_pstate);
1274 		}
1275 	}
1276 
1277 	return max_pstate;
1278 }
1279 
1280 static int core_get_turbo_pstate(void)
1281 {
1282 	u64 value;
1283 	int nont, ret;
1284 
1285 	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1286 	nont = core_get_max_pstate();
1287 	ret = (value) & 255;
1288 	if (ret <= nont)
1289 		ret = nont;
1290 	return ret;
1291 }
1292 
1293 static inline int core_get_scaling(void)
1294 {
1295 	return 100000;
1296 }
1297 
1298 static u64 core_get_val(struct cpudata *cpudata, int pstate)
1299 {
1300 	u64 val;
1301 
1302 	val = (u64)pstate << 8;
1303 	if (global.no_turbo && !global.turbo_disabled)
1304 		val |= (u64)1 << 32;
1305 
1306 	return val;
1307 }
1308 
1309 static int knl_get_aperf_mperf_shift(void)
1310 {
1311 	return 10;
1312 }
1313 
1314 static int knl_get_turbo_pstate(void)
1315 {
1316 	u64 value;
1317 	int nont, ret;
1318 
1319 	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1320 	nont = core_get_max_pstate();
1321 	ret = (((value) >> 8) & 0xFF);
1322 	if (ret <= nont)
1323 		ret = nont;
1324 	return ret;
1325 }
1326 
1327 static int intel_pstate_get_base_pstate(struct cpudata *cpu)
1328 {
1329 	return global.no_turbo || global.turbo_disabled ?
1330 			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1331 }
1332 
1333 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1334 {
1335 	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1336 	cpu->pstate.current_pstate = pstate;
1337 	/*
1338 	 * Generally, there is no guarantee that this code will always run on
1339 	 * the CPU being updated, so force the register update to run on the
1340 	 * right CPU.
1341 	 */
1342 	wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1343 		      pstate_funcs.get_val(cpu, pstate));
1344 }
1345 
1346 static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1347 {
1348 	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
1349 }
1350 
1351 static void intel_pstate_max_within_limits(struct cpudata *cpu)
1352 {
1353 	int pstate;
1354 
1355 	update_turbo_state();
1356 	pstate = intel_pstate_get_base_pstate(cpu);
1357 	pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio);
1358 	intel_pstate_set_pstate(cpu, pstate);
1359 }
1360 
1361 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1362 {
1363 	cpu->pstate.min_pstate = pstate_funcs.get_min();
1364 	cpu->pstate.max_pstate = pstate_funcs.get_max();
1365 	cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1366 	cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1367 	cpu->pstate.scaling = pstate_funcs.get_scaling();
1368 	cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
1369 	cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1370 
1371 	if (pstate_funcs.get_aperf_mperf_shift)
1372 		cpu->aperf_mperf_shift = pstate_funcs.get_aperf_mperf_shift();
1373 
1374 	if (pstate_funcs.get_vid)
1375 		pstate_funcs.get_vid(cpu);
1376 
1377 	intel_pstate_set_min_pstate(cpu);
1378 }
1379 
1380 static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1381 {
1382 	struct sample *sample = &cpu->sample;
1383 
1384 	sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1385 }
1386 
1387 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1388 {
1389 	u64 aperf, mperf;
1390 	unsigned long flags;
1391 	u64 tsc;
1392 
1393 	local_irq_save(flags);
1394 	rdmsrl(MSR_IA32_APERF, aperf);
1395 	rdmsrl(MSR_IA32_MPERF, mperf);
1396 	tsc = rdtsc();
1397 	if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1398 		local_irq_restore(flags);
1399 		return false;
1400 	}
1401 	local_irq_restore(flags);
1402 
1403 	cpu->last_sample_time = cpu->sample.time;
1404 	cpu->sample.time = time;
1405 	cpu->sample.aperf = aperf;
1406 	cpu->sample.mperf = mperf;
1407 	cpu->sample.tsc =  tsc;
1408 	cpu->sample.aperf -= cpu->prev_aperf;
1409 	cpu->sample.mperf -= cpu->prev_mperf;
1410 	cpu->sample.tsc -= cpu->prev_tsc;
1411 
1412 	cpu->prev_aperf = aperf;
1413 	cpu->prev_mperf = mperf;
1414 	cpu->prev_tsc = tsc;
1415 	/*
1416 	 * First time this function is invoked in a given cycle, all of the
1417 	 * previous sample data fields are equal to zero or stale and they must
1418 	 * be populated with meaningful numbers for things to work, so assume
1419 	 * that sample.time will always be reset before setting the utilization
1420 	 * update hook and make the caller skip the sample then.
1421 	 */
1422 	if (cpu->last_sample_time) {
1423 		intel_pstate_calc_avg_perf(cpu);
1424 		return true;
1425 	}
1426 	return false;
1427 }
1428 
1429 static inline int32_t get_avg_frequency(struct cpudata *cpu)
1430 {
1431 	return mul_ext_fp(cpu->sample.core_avg_perf,
1432 			  cpu->pstate.max_pstate_physical * cpu->pstate.scaling);
1433 }
1434 
1435 static inline int32_t get_avg_pstate(struct cpudata *cpu)
1436 {
1437 	return mul_ext_fp(cpu->pstate.max_pstate_physical,
1438 			  cpu->sample.core_avg_perf);
1439 }
1440 
1441 static inline int32_t get_target_pstate(struct cpudata *cpu)
1442 {
1443 	struct sample *sample = &cpu->sample;
1444 	int32_t busy_frac, boost;
1445 	int target, avg_pstate;
1446 
1447 	busy_frac = div_fp(sample->mperf << cpu->aperf_mperf_shift,
1448 			   sample->tsc);
1449 
1450 	boost = cpu->iowait_boost;
1451 	cpu->iowait_boost >>= 1;
1452 
1453 	if (busy_frac < boost)
1454 		busy_frac = boost;
1455 
1456 	sample->busy_scaled = busy_frac * 100;
1457 
1458 	target = global.no_turbo || global.turbo_disabled ?
1459 			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1460 	target += target >> 2;
1461 	target = mul_fp(target, busy_frac);
1462 	if (target < cpu->pstate.min_pstate)
1463 		target = cpu->pstate.min_pstate;
1464 
1465 	/*
1466 	 * If the average P-state during the previous cycle was higher than the
1467 	 * current target, add 50% of the difference to the target to reduce
1468 	 * possible performance oscillations and offset possible performance
1469 	 * loss related to moving the workload from one CPU to another within
1470 	 * a package/module.
1471 	 */
1472 	avg_pstate = get_avg_pstate(cpu);
1473 	if (avg_pstate > target)
1474 		target += (avg_pstate - target) >> 1;
1475 
1476 	return target;
1477 }
1478 
1479 static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
1480 {
1481 	int max_pstate = intel_pstate_get_base_pstate(cpu);
1482 	int min_pstate;
1483 
1484 	min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio);
1485 	max_pstate = max(min_pstate, cpu->max_perf_ratio);
1486 	return clamp_t(int, pstate, min_pstate, max_pstate);
1487 }
1488 
1489 static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1490 {
1491 	if (pstate == cpu->pstate.current_pstate)
1492 		return;
1493 
1494 	cpu->pstate.current_pstate = pstate;
1495 	wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1496 }
1497 
1498 static void intel_pstate_adjust_pstate(struct cpudata *cpu)
1499 {
1500 	int from = cpu->pstate.current_pstate;
1501 	struct sample *sample;
1502 	int target_pstate;
1503 
1504 	update_turbo_state();
1505 
1506 	target_pstate = get_target_pstate(cpu);
1507 	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
1508 	trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
1509 	intel_pstate_update_pstate(cpu, target_pstate);
1510 
1511 	sample = &cpu->sample;
1512 	trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1513 		fp_toint(sample->busy_scaled),
1514 		from,
1515 		cpu->pstate.current_pstate,
1516 		sample->mperf,
1517 		sample->aperf,
1518 		sample->tsc,
1519 		get_avg_frequency(cpu),
1520 		fp_toint(cpu->iowait_boost * 100));
1521 }
1522 
1523 static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1524 				     unsigned int flags)
1525 {
1526 	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1527 	u64 delta_ns;
1528 
1529 	if (flags & SCHED_CPUFREQ_IOWAIT) {
1530 		cpu->iowait_boost = int_tofp(1);
1531 		cpu->last_update = time;
1532 		/*
1533 		 * The last time the busy was 100% so P-state was max anyway
1534 		 * so avoid overhead of computation.
1535 		 */
1536 		if (fp_toint(cpu->sample.busy_scaled) == 100)
1537 			return;
1538 
1539 		goto set_pstate;
1540 	} else if (cpu->iowait_boost) {
1541 		/* Clear iowait_boost if the CPU may have been idle. */
1542 		delta_ns = time - cpu->last_update;
1543 		if (delta_ns > TICK_NSEC)
1544 			cpu->iowait_boost = 0;
1545 	}
1546 	cpu->last_update = time;
1547 	delta_ns = time - cpu->sample.time;
1548 	if ((s64)delta_ns < INTEL_PSTATE_SAMPLING_INTERVAL)
1549 		return;
1550 
1551 set_pstate:
1552 	if (intel_pstate_sample(cpu, time))
1553 		intel_pstate_adjust_pstate(cpu);
1554 }
1555 
1556 static struct pstate_funcs core_funcs = {
1557 	.get_max = core_get_max_pstate,
1558 	.get_max_physical = core_get_max_pstate_physical,
1559 	.get_min = core_get_min_pstate,
1560 	.get_turbo = core_get_turbo_pstate,
1561 	.get_scaling = core_get_scaling,
1562 	.get_val = core_get_val,
1563 };
1564 
1565 static const struct pstate_funcs silvermont_funcs = {
1566 	.get_max = atom_get_max_pstate,
1567 	.get_max_physical = atom_get_max_pstate,
1568 	.get_min = atom_get_min_pstate,
1569 	.get_turbo = atom_get_turbo_pstate,
1570 	.get_val = atom_get_val,
1571 	.get_scaling = silvermont_get_scaling,
1572 	.get_vid = atom_get_vid,
1573 };
1574 
1575 static const struct pstate_funcs airmont_funcs = {
1576 	.get_max = atom_get_max_pstate,
1577 	.get_max_physical = atom_get_max_pstate,
1578 	.get_min = atom_get_min_pstate,
1579 	.get_turbo = atom_get_turbo_pstate,
1580 	.get_val = atom_get_val,
1581 	.get_scaling = airmont_get_scaling,
1582 	.get_vid = atom_get_vid,
1583 };
1584 
1585 static const struct pstate_funcs knl_funcs = {
1586 	.get_max = core_get_max_pstate,
1587 	.get_max_physical = core_get_max_pstate_physical,
1588 	.get_min = core_get_min_pstate,
1589 	.get_turbo = knl_get_turbo_pstate,
1590 	.get_aperf_mperf_shift = knl_get_aperf_mperf_shift,
1591 	.get_scaling = core_get_scaling,
1592 	.get_val = core_get_val,
1593 };
1594 
1595 static const struct pstate_funcs bxt_funcs = {
1596 	.get_max = core_get_max_pstate,
1597 	.get_max_physical = core_get_max_pstate_physical,
1598 	.get_min = core_get_min_pstate,
1599 	.get_turbo = core_get_turbo_pstate,
1600 	.get_scaling = core_get_scaling,
1601 	.get_val = core_get_val,
1602 };
1603 
1604 #define ICPU(model, policy) \
1605 	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1606 			(unsigned long)&policy }
1607 
1608 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1609 	ICPU(INTEL_FAM6_SANDYBRIDGE, 		core_funcs),
1610 	ICPU(INTEL_FAM6_SANDYBRIDGE_X,		core_funcs),
1611 	ICPU(INTEL_FAM6_ATOM_SILVERMONT1,	silvermont_funcs),
1612 	ICPU(INTEL_FAM6_IVYBRIDGE,		core_funcs),
1613 	ICPU(INTEL_FAM6_HASWELL_CORE,		core_funcs),
1614 	ICPU(INTEL_FAM6_BROADWELL_CORE,		core_funcs),
1615 	ICPU(INTEL_FAM6_IVYBRIDGE_X,		core_funcs),
1616 	ICPU(INTEL_FAM6_HASWELL_X,		core_funcs),
1617 	ICPU(INTEL_FAM6_HASWELL_ULT,		core_funcs),
1618 	ICPU(INTEL_FAM6_HASWELL_GT3E,		core_funcs),
1619 	ICPU(INTEL_FAM6_BROADWELL_GT3E,		core_funcs),
1620 	ICPU(INTEL_FAM6_ATOM_AIRMONT,		airmont_funcs),
1621 	ICPU(INTEL_FAM6_SKYLAKE_MOBILE,		core_funcs),
1622 	ICPU(INTEL_FAM6_BROADWELL_X,		core_funcs),
1623 	ICPU(INTEL_FAM6_SKYLAKE_DESKTOP,	core_funcs),
1624 	ICPU(INTEL_FAM6_BROADWELL_XEON_D,	core_funcs),
1625 	ICPU(INTEL_FAM6_XEON_PHI_KNL,		knl_funcs),
1626 	ICPU(INTEL_FAM6_XEON_PHI_KNM,		knl_funcs),
1627 	ICPU(INTEL_FAM6_ATOM_GOLDMONT,		bxt_funcs),
1628 	ICPU(INTEL_FAM6_ATOM_GEMINI_LAKE,       bxt_funcs),
1629 	{}
1630 };
1631 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1632 
1633 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
1634 	ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_funcs),
1635 	ICPU(INTEL_FAM6_BROADWELL_X, core_funcs),
1636 	ICPU(INTEL_FAM6_SKYLAKE_X, core_funcs),
1637 	{}
1638 };
1639 
1640 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
1641 	ICPU(INTEL_FAM6_KABYLAKE_DESKTOP, core_funcs),
1642 	{}
1643 };
1644 
1645 static int intel_pstate_init_cpu(unsigned int cpunum)
1646 {
1647 	struct cpudata *cpu;
1648 
1649 	cpu = all_cpu_data[cpunum];
1650 
1651 	if (!cpu) {
1652 		cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
1653 		if (!cpu)
1654 			return -ENOMEM;
1655 
1656 		all_cpu_data[cpunum] = cpu;
1657 
1658 		cpu->epp_default = -EINVAL;
1659 		cpu->epp_powersave = -EINVAL;
1660 		cpu->epp_saved = -EINVAL;
1661 	}
1662 
1663 	cpu = all_cpu_data[cpunum];
1664 
1665 	cpu->cpu = cpunum;
1666 
1667 	if (hwp_active) {
1668 		const struct x86_cpu_id *id;
1669 
1670 		id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
1671 		if (id)
1672 			intel_pstate_disable_ee(cpunum);
1673 
1674 		intel_pstate_hwp_enable(cpu);
1675 	}
1676 
1677 	intel_pstate_get_cpu_pstates(cpu);
1678 
1679 	pr_debug("controlling: cpu %d\n", cpunum);
1680 
1681 	return 0;
1682 }
1683 
1684 static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
1685 {
1686 	struct cpudata *cpu = all_cpu_data[cpu_num];
1687 
1688 	if (hwp_active)
1689 		return;
1690 
1691 	if (cpu->update_util_set)
1692 		return;
1693 
1694 	/* Prevent intel_pstate_update_util() from using stale data. */
1695 	cpu->sample.time = 0;
1696 	cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
1697 				     intel_pstate_update_util);
1698 	cpu->update_util_set = true;
1699 }
1700 
1701 static void intel_pstate_clear_update_util_hook(unsigned int cpu)
1702 {
1703 	struct cpudata *cpu_data = all_cpu_data[cpu];
1704 
1705 	if (!cpu_data->update_util_set)
1706 		return;
1707 
1708 	cpufreq_remove_update_util_hook(cpu);
1709 	cpu_data->update_util_set = false;
1710 	synchronize_sched();
1711 }
1712 
1713 static int intel_pstate_get_max_freq(struct cpudata *cpu)
1714 {
1715 	return global.turbo_disabled || global.no_turbo ?
1716 			cpu->pstate.max_freq : cpu->pstate.turbo_freq;
1717 }
1718 
1719 static void intel_pstate_update_perf_limits(struct cpufreq_policy *policy,
1720 					    struct cpudata *cpu)
1721 {
1722 	int max_freq = intel_pstate_get_max_freq(cpu);
1723 	int32_t max_policy_perf, min_policy_perf;
1724 	int max_state, turbo_max;
1725 
1726 	/*
1727 	 * HWP needs some special consideration, because on BDX the
1728 	 * HWP_REQUEST uses abstract value to represent performance
1729 	 * rather than pure ratios.
1730 	 */
1731 	if (hwp_active) {
1732 		intel_pstate_get_hwp_max(cpu->cpu, &turbo_max, &max_state);
1733 	} else {
1734 		max_state = intel_pstate_get_base_pstate(cpu);
1735 		turbo_max = cpu->pstate.turbo_pstate;
1736 	}
1737 
1738 	max_policy_perf = max_state * policy->max / max_freq;
1739 	if (policy->max == policy->min) {
1740 		min_policy_perf = max_policy_perf;
1741 	} else {
1742 		min_policy_perf = max_state * policy->min / max_freq;
1743 		min_policy_perf = clamp_t(int32_t, min_policy_perf,
1744 					  0, max_policy_perf);
1745 	}
1746 
1747 	pr_debug("cpu:%d max_state %d min_policy_perf:%d max_policy_perf:%d\n",
1748 		 policy->cpu, max_state,
1749 		 min_policy_perf, max_policy_perf);
1750 
1751 	/* Normalize user input to [min_perf, max_perf] */
1752 	if (per_cpu_limits) {
1753 		cpu->min_perf_ratio = min_policy_perf;
1754 		cpu->max_perf_ratio = max_policy_perf;
1755 	} else {
1756 		int32_t global_min, global_max;
1757 
1758 		/* Global limits are in percent of the maximum turbo P-state. */
1759 		global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
1760 		global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
1761 		global_min = clamp_t(int32_t, global_min, 0, global_max);
1762 
1763 		pr_debug("cpu:%d global_min:%d global_max:%d\n", policy->cpu,
1764 			 global_min, global_max);
1765 
1766 		cpu->min_perf_ratio = max(min_policy_perf, global_min);
1767 		cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf);
1768 		cpu->max_perf_ratio = min(max_policy_perf, global_max);
1769 		cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio);
1770 
1771 		/* Make sure min_perf <= max_perf */
1772 		cpu->min_perf_ratio = min(cpu->min_perf_ratio,
1773 					  cpu->max_perf_ratio);
1774 
1775 	}
1776 	pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", policy->cpu,
1777 		 cpu->max_perf_ratio,
1778 		 cpu->min_perf_ratio);
1779 }
1780 
1781 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
1782 {
1783 	struct cpudata *cpu;
1784 
1785 	if (!policy->cpuinfo.max_freq)
1786 		return -ENODEV;
1787 
1788 	pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
1789 		 policy->cpuinfo.max_freq, policy->max);
1790 
1791 	cpu = all_cpu_data[policy->cpu];
1792 	cpu->policy = policy->policy;
1793 
1794 	mutex_lock(&intel_pstate_limits_lock);
1795 
1796 	intel_pstate_update_perf_limits(policy, cpu);
1797 
1798 	if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
1799 		/*
1800 		 * NOHZ_FULL CPUs need this as the governor callback may not
1801 		 * be invoked on them.
1802 		 */
1803 		intel_pstate_clear_update_util_hook(policy->cpu);
1804 		intel_pstate_max_within_limits(cpu);
1805 	} else {
1806 		intel_pstate_set_update_util_hook(policy->cpu);
1807 	}
1808 
1809 	if (hwp_active)
1810 		intel_pstate_hwp_set(policy->cpu);
1811 
1812 	mutex_unlock(&intel_pstate_limits_lock);
1813 
1814 	return 0;
1815 }
1816 
1817 static void intel_pstate_adjust_policy_max(struct cpufreq_policy *policy,
1818 					 struct cpudata *cpu)
1819 {
1820 	if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
1821 	    policy->max < policy->cpuinfo.max_freq &&
1822 	    policy->max > cpu->pstate.max_freq) {
1823 		pr_debug("policy->max > max non turbo frequency\n");
1824 		policy->max = policy->cpuinfo.max_freq;
1825 	}
1826 }
1827 
1828 static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
1829 {
1830 	struct cpudata *cpu = all_cpu_data[policy->cpu];
1831 
1832 	update_turbo_state();
1833 	cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
1834 				     intel_pstate_get_max_freq(cpu));
1835 
1836 	if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
1837 	    policy->policy != CPUFREQ_POLICY_PERFORMANCE)
1838 		return -EINVAL;
1839 
1840 	intel_pstate_adjust_policy_max(policy, cpu);
1841 
1842 	return 0;
1843 }
1844 
1845 static void intel_cpufreq_stop_cpu(struct cpufreq_policy *policy)
1846 {
1847 	intel_pstate_set_min_pstate(all_cpu_data[policy->cpu]);
1848 }
1849 
1850 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
1851 {
1852 	pr_debug("CPU %d exiting\n", policy->cpu);
1853 
1854 	intel_pstate_clear_update_util_hook(policy->cpu);
1855 	if (hwp_active)
1856 		intel_pstate_hwp_save_state(policy);
1857 	else
1858 		intel_cpufreq_stop_cpu(policy);
1859 }
1860 
1861 static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
1862 {
1863 	intel_pstate_exit_perf_limits(policy);
1864 
1865 	policy->fast_switch_possible = false;
1866 
1867 	return 0;
1868 }
1869 
1870 static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
1871 {
1872 	struct cpudata *cpu;
1873 	int rc;
1874 
1875 	rc = intel_pstate_init_cpu(policy->cpu);
1876 	if (rc)
1877 		return rc;
1878 
1879 	cpu = all_cpu_data[policy->cpu];
1880 
1881 	cpu->max_perf_ratio = 0xFF;
1882 	cpu->min_perf_ratio = 0;
1883 
1884 	policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
1885 	policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1886 
1887 	/* cpuinfo and default policy values */
1888 	policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
1889 	update_turbo_state();
1890 	policy->cpuinfo.max_freq = global.turbo_disabled ?
1891 			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1892 	policy->cpuinfo.max_freq *= cpu->pstate.scaling;
1893 
1894 	intel_pstate_init_acpi_perf_limits(policy);
1895 	cpumask_set_cpu(policy->cpu, policy->cpus);
1896 
1897 	policy->fast_switch_possible = true;
1898 
1899 	return 0;
1900 }
1901 
1902 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
1903 {
1904 	int ret = __intel_pstate_cpu_init(policy);
1905 
1906 	if (ret)
1907 		return ret;
1908 
1909 	policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
1910 	if (IS_ENABLED(CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE))
1911 		policy->policy = CPUFREQ_POLICY_PERFORMANCE;
1912 	else
1913 		policy->policy = CPUFREQ_POLICY_POWERSAVE;
1914 
1915 	return 0;
1916 }
1917 
1918 static struct cpufreq_driver intel_pstate = {
1919 	.flags		= CPUFREQ_CONST_LOOPS,
1920 	.verify		= intel_pstate_verify_policy,
1921 	.setpolicy	= intel_pstate_set_policy,
1922 	.suspend	= intel_pstate_hwp_save_state,
1923 	.resume		= intel_pstate_resume,
1924 	.init		= intel_pstate_cpu_init,
1925 	.exit		= intel_pstate_cpu_exit,
1926 	.stop_cpu	= intel_pstate_stop_cpu,
1927 	.name		= "intel_pstate",
1928 };
1929 
1930 static int intel_cpufreq_verify_policy(struct cpufreq_policy *policy)
1931 {
1932 	struct cpudata *cpu = all_cpu_data[policy->cpu];
1933 
1934 	update_turbo_state();
1935 	cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
1936 				     intel_pstate_get_max_freq(cpu));
1937 
1938 	intel_pstate_adjust_policy_max(policy, cpu);
1939 
1940 	intel_pstate_update_perf_limits(policy, cpu);
1941 
1942 	return 0;
1943 }
1944 
1945 static int intel_cpufreq_target(struct cpufreq_policy *policy,
1946 				unsigned int target_freq,
1947 				unsigned int relation)
1948 {
1949 	struct cpudata *cpu = all_cpu_data[policy->cpu];
1950 	struct cpufreq_freqs freqs;
1951 	int target_pstate;
1952 
1953 	update_turbo_state();
1954 
1955 	freqs.old = policy->cur;
1956 	freqs.new = target_freq;
1957 
1958 	cpufreq_freq_transition_begin(policy, &freqs);
1959 	switch (relation) {
1960 	case CPUFREQ_RELATION_L:
1961 		target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
1962 		break;
1963 	case CPUFREQ_RELATION_H:
1964 		target_pstate = freqs.new / cpu->pstate.scaling;
1965 		break;
1966 	default:
1967 		target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
1968 		break;
1969 	}
1970 	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
1971 	if (target_pstate != cpu->pstate.current_pstate) {
1972 		cpu->pstate.current_pstate = target_pstate;
1973 		wrmsrl_on_cpu(policy->cpu, MSR_IA32_PERF_CTL,
1974 			      pstate_funcs.get_val(cpu, target_pstate));
1975 	}
1976 	freqs.new = target_pstate * cpu->pstate.scaling;
1977 	cpufreq_freq_transition_end(policy, &freqs, false);
1978 
1979 	return 0;
1980 }
1981 
1982 static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
1983 					      unsigned int target_freq)
1984 {
1985 	struct cpudata *cpu = all_cpu_data[policy->cpu];
1986 	int target_pstate;
1987 
1988 	update_turbo_state();
1989 
1990 	target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
1991 	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
1992 	intel_pstate_update_pstate(cpu, target_pstate);
1993 	return target_pstate * cpu->pstate.scaling;
1994 }
1995 
1996 static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
1997 {
1998 	int ret = __intel_pstate_cpu_init(policy);
1999 
2000 	if (ret)
2001 		return ret;
2002 
2003 	policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
2004 	policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY;
2005 	/* This reflects the intel_pstate_get_cpu_pstates() setting. */
2006 	policy->cur = policy->cpuinfo.min_freq;
2007 
2008 	return 0;
2009 }
2010 
2011 static struct cpufreq_driver intel_cpufreq = {
2012 	.flags		= CPUFREQ_CONST_LOOPS,
2013 	.verify		= intel_cpufreq_verify_policy,
2014 	.target		= intel_cpufreq_target,
2015 	.fast_switch	= intel_cpufreq_fast_switch,
2016 	.init		= intel_cpufreq_cpu_init,
2017 	.exit		= intel_pstate_cpu_exit,
2018 	.stop_cpu	= intel_cpufreq_stop_cpu,
2019 	.name		= "intel_cpufreq",
2020 };
2021 
2022 static struct cpufreq_driver *default_driver = &intel_pstate;
2023 
2024 static void intel_pstate_driver_cleanup(void)
2025 {
2026 	unsigned int cpu;
2027 
2028 	get_online_cpus();
2029 	for_each_online_cpu(cpu) {
2030 		if (all_cpu_data[cpu]) {
2031 			if (intel_pstate_driver == &intel_pstate)
2032 				intel_pstate_clear_update_util_hook(cpu);
2033 
2034 			kfree(all_cpu_data[cpu]);
2035 			all_cpu_data[cpu] = NULL;
2036 		}
2037 	}
2038 	put_online_cpus();
2039 	intel_pstate_driver = NULL;
2040 }
2041 
2042 static int intel_pstate_register_driver(struct cpufreq_driver *driver)
2043 {
2044 	int ret;
2045 
2046 	memset(&global, 0, sizeof(global));
2047 	global.max_perf_pct = 100;
2048 
2049 	intel_pstate_driver = driver;
2050 	ret = cpufreq_register_driver(intel_pstate_driver);
2051 	if (ret) {
2052 		intel_pstate_driver_cleanup();
2053 		return ret;
2054 	}
2055 
2056 	global.min_perf_pct = min_perf_pct_min();
2057 
2058 	return 0;
2059 }
2060 
2061 static int intel_pstate_unregister_driver(void)
2062 {
2063 	if (hwp_active)
2064 		return -EBUSY;
2065 
2066 	cpufreq_unregister_driver(intel_pstate_driver);
2067 	intel_pstate_driver_cleanup();
2068 
2069 	return 0;
2070 }
2071 
2072 static ssize_t intel_pstate_show_status(char *buf)
2073 {
2074 	if (!intel_pstate_driver)
2075 		return sprintf(buf, "off\n");
2076 
2077 	return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
2078 					"active" : "passive");
2079 }
2080 
2081 static int intel_pstate_update_status(const char *buf, size_t size)
2082 {
2083 	int ret;
2084 
2085 	if (size == 3 && !strncmp(buf, "off", size))
2086 		return intel_pstate_driver ?
2087 			intel_pstate_unregister_driver() : -EINVAL;
2088 
2089 	if (size == 6 && !strncmp(buf, "active", size)) {
2090 		if (intel_pstate_driver) {
2091 			if (intel_pstate_driver == &intel_pstate)
2092 				return 0;
2093 
2094 			ret = intel_pstate_unregister_driver();
2095 			if (ret)
2096 				return ret;
2097 		}
2098 
2099 		return intel_pstate_register_driver(&intel_pstate);
2100 	}
2101 
2102 	if (size == 7 && !strncmp(buf, "passive", size)) {
2103 		if (intel_pstate_driver) {
2104 			if (intel_pstate_driver == &intel_cpufreq)
2105 				return 0;
2106 
2107 			ret = intel_pstate_unregister_driver();
2108 			if (ret)
2109 				return ret;
2110 		}
2111 
2112 		return intel_pstate_register_driver(&intel_cpufreq);
2113 	}
2114 
2115 	return -EINVAL;
2116 }
2117 
2118 static int no_load __initdata;
2119 static int no_hwp __initdata;
2120 static int hwp_only __initdata;
2121 static unsigned int force_load __initdata;
2122 
2123 static int __init intel_pstate_msrs_not_valid(void)
2124 {
2125 	if (!pstate_funcs.get_max() ||
2126 	    !pstate_funcs.get_min() ||
2127 	    !pstate_funcs.get_turbo())
2128 		return -ENODEV;
2129 
2130 	return 0;
2131 }
2132 
2133 static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
2134 {
2135 	pstate_funcs.get_max   = funcs->get_max;
2136 	pstate_funcs.get_max_physical = funcs->get_max_physical;
2137 	pstate_funcs.get_min   = funcs->get_min;
2138 	pstate_funcs.get_turbo = funcs->get_turbo;
2139 	pstate_funcs.get_scaling = funcs->get_scaling;
2140 	pstate_funcs.get_val   = funcs->get_val;
2141 	pstate_funcs.get_vid   = funcs->get_vid;
2142 	pstate_funcs.get_aperf_mperf_shift = funcs->get_aperf_mperf_shift;
2143 }
2144 
2145 #ifdef CONFIG_ACPI
2146 
2147 static bool __init intel_pstate_no_acpi_pss(void)
2148 {
2149 	int i;
2150 
2151 	for_each_possible_cpu(i) {
2152 		acpi_status status;
2153 		union acpi_object *pss;
2154 		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
2155 		struct acpi_processor *pr = per_cpu(processors, i);
2156 
2157 		if (!pr)
2158 			continue;
2159 
2160 		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
2161 		if (ACPI_FAILURE(status))
2162 			continue;
2163 
2164 		pss = buffer.pointer;
2165 		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
2166 			kfree(pss);
2167 			return false;
2168 		}
2169 
2170 		kfree(pss);
2171 	}
2172 
2173 	return true;
2174 }
2175 
2176 static bool __init intel_pstate_has_acpi_ppc(void)
2177 {
2178 	int i;
2179 
2180 	for_each_possible_cpu(i) {
2181 		struct acpi_processor *pr = per_cpu(processors, i);
2182 
2183 		if (!pr)
2184 			continue;
2185 		if (acpi_has_method(pr->handle, "_PPC"))
2186 			return true;
2187 	}
2188 	return false;
2189 }
2190 
2191 enum {
2192 	PSS,
2193 	PPC,
2194 };
2195 
2196 struct hw_vendor_info {
2197 	u16  valid;
2198 	char oem_id[ACPI_OEM_ID_SIZE];
2199 	char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
2200 	int  oem_pwr_table;
2201 };
2202 
2203 /* Hardware vendor-specific info that has its own power management modes */
2204 static struct hw_vendor_info vendor_info[] __initdata = {
2205 	{1, "HP    ", "ProLiant", PSS},
2206 	{1, "ORACLE", "X4-2    ", PPC},
2207 	{1, "ORACLE", "X4-2L   ", PPC},
2208 	{1, "ORACLE", "X4-2B   ", PPC},
2209 	{1, "ORACLE", "X3-2    ", PPC},
2210 	{1, "ORACLE", "X3-2L   ", PPC},
2211 	{1, "ORACLE", "X3-2B   ", PPC},
2212 	{1, "ORACLE", "X4470M2 ", PPC},
2213 	{1, "ORACLE", "X4270M3 ", PPC},
2214 	{1, "ORACLE", "X4270M2 ", PPC},
2215 	{1, "ORACLE", "X4170M2 ", PPC},
2216 	{1, "ORACLE", "X4170 M3", PPC},
2217 	{1, "ORACLE", "X4275 M3", PPC},
2218 	{1, "ORACLE", "X6-2    ", PPC},
2219 	{1, "ORACLE", "Sudbury ", PPC},
2220 	{0, "", ""},
2221 };
2222 
2223 static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
2224 {
2225 	struct acpi_table_header hdr;
2226 	struct hw_vendor_info *v_info;
2227 	const struct x86_cpu_id *id;
2228 	u64 misc_pwr;
2229 
2230 	id = x86_match_cpu(intel_pstate_cpu_oob_ids);
2231 	if (id) {
2232 		rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
2233 		if ( misc_pwr & (1 << 8))
2234 			return true;
2235 	}
2236 
2237 	if (acpi_disabled ||
2238 	    ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
2239 		return false;
2240 
2241 	for (v_info = vendor_info; v_info->valid; v_info++) {
2242 		if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
2243 			!strncmp(hdr.oem_table_id, v_info->oem_table_id,
2244 						ACPI_OEM_TABLE_ID_SIZE))
2245 			switch (v_info->oem_pwr_table) {
2246 			case PSS:
2247 				return intel_pstate_no_acpi_pss();
2248 			case PPC:
2249 				return intel_pstate_has_acpi_ppc() &&
2250 					(!force_load);
2251 			}
2252 	}
2253 
2254 	return false;
2255 }
2256 
2257 static void intel_pstate_request_control_from_smm(void)
2258 {
2259 	/*
2260 	 * It may be unsafe to request P-states control from SMM if _PPC support
2261 	 * has not been enabled.
2262 	 */
2263 	if (acpi_ppc)
2264 		acpi_processor_pstate_control();
2265 }
2266 #else /* CONFIG_ACPI not enabled */
2267 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
2268 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
2269 static inline void intel_pstate_request_control_from_smm(void) {}
2270 #endif /* CONFIG_ACPI */
2271 
2272 static const struct x86_cpu_id hwp_support_ids[] __initconst = {
2273 	{ X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
2274 	{}
2275 };
2276 
2277 static int __init intel_pstate_init(void)
2278 {
2279 	int rc;
2280 
2281 	if (no_load)
2282 		return -ENODEV;
2283 
2284 	if (x86_match_cpu(hwp_support_ids)) {
2285 		copy_cpu_funcs(&core_funcs);
2286 		if (!no_hwp) {
2287 			hwp_active++;
2288 			intel_pstate.attr = hwp_cpufreq_attrs;
2289 			goto hwp_cpu_matched;
2290 		}
2291 	} else {
2292 		const struct x86_cpu_id *id;
2293 
2294 		id = x86_match_cpu(intel_pstate_cpu_ids);
2295 		if (!id)
2296 			return -ENODEV;
2297 
2298 		copy_cpu_funcs((struct pstate_funcs *)id->driver_data);
2299 	}
2300 
2301 	if (intel_pstate_msrs_not_valid())
2302 		return -ENODEV;
2303 
2304 hwp_cpu_matched:
2305 	/*
2306 	 * The Intel pstate driver will be ignored if the platform
2307 	 * firmware has its own power management modes.
2308 	 */
2309 	if (intel_pstate_platform_pwr_mgmt_exists())
2310 		return -ENODEV;
2311 
2312 	if (!hwp_active && hwp_only)
2313 		return -ENOTSUPP;
2314 
2315 	pr_info("Intel P-state driver initializing\n");
2316 
2317 	all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
2318 	if (!all_cpu_data)
2319 		return -ENOMEM;
2320 
2321 	intel_pstate_request_control_from_smm();
2322 
2323 	intel_pstate_sysfs_expose_params();
2324 
2325 	mutex_lock(&intel_pstate_driver_lock);
2326 	rc = intel_pstate_register_driver(default_driver);
2327 	mutex_unlock(&intel_pstate_driver_lock);
2328 	if (rc)
2329 		return rc;
2330 
2331 	if (hwp_active)
2332 		pr_info("HWP enabled\n");
2333 
2334 	return 0;
2335 }
2336 device_initcall(intel_pstate_init);
2337 
2338 static int __init intel_pstate_setup(char *str)
2339 {
2340 	if (!str)
2341 		return -EINVAL;
2342 
2343 	if (!strcmp(str, "disable")) {
2344 		no_load = 1;
2345 	} else if (!strcmp(str, "passive")) {
2346 		pr_info("Passive mode enabled\n");
2347 		default_driver = &intel_cpufreq;
2348 		no_hwp = 1;
2349 	}
2350 	if (!strcmp(str, "no_hwp")) {
2351 		pr_info("HWP disabled\n");
2352 		no_hwp = 1;
2353 	}
2354 	if (!strcmp(str, "force"))
2355 		force_load = 1;
2356 	if (!strcmp(str, "hwp_only"))
2357 		hwp_only = 1;
2358 	if (!strcmp(str, "per_cpu_perf_limits"))
2359 		per_cpu_limits = true;
2360 
2361 #ifdef CONFIG_ACPI
2362 	if (!strcmp(str, "support_acpi_ppc"))
2363 		acpi_ppc = true;
2364 #endif
2365 
2366 	return 0;
2367 }
2368 early_param("intel_pstate", intel_pstate_setup);
2369 
2370 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
2371 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
2372 MODULE_LICENSE("GPL");
2373