1 /*
2  * intel_pstate.c: Native P state management for Intel processors
3  *
4  * (C) Copyright 2012 Intel Corporation
5  * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; version 2
10  * of the License.
11  */
12 
13 #include <linux/kernel.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/module.h>
16 #include <linux/ktime.h>
17 #include <linux/hrtimer.h>
18 #include <linux/tick.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/list.h>
22 #include <linux/cpu.h>
23 #include <linux/cpufreq.h>
24 #include <linux/sysfs.h>
25 #include <linux/types.h>
26 #include <linux/fs.h>
27 #include <linux/debugfs.h>
28 #include <linux/acpi.h>
29 #include <trace/events/power.h>
30 
31 #include <asm/div64.h>
32 #include <asm/msr.h>
33 #include <asm/cpu_device_id.h>
34 
35 #define BYT_RATIOS		0x66a
36 #define BYT_VIDS		0x66b
37 #define BYT_TURBO_RATIOS	0x66c
38 #define BYT_TURBO_VIDS		0x66d
39 
40 
41 #define FRAC_BITS 8
42 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
43 #define fp_toint(X) ((X) >> FRAC_BITS)
44 
45 
46 static inline int32_t mul_fp(int32_t x, int32_t y)
47 {
48 	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
49 }
50 
51 static inline int32_t div_fp(int32_t x, int32_t y)
52 {
53 	return div_s64((int64_t)x << FRAC_BITS, (int64_t)y);
54 }
55 
56 struct sample {
57 	int32_t core_pct_busy;
58 	u64 aperf;
59 	u64 mperf;
60 	int freq;
61 	ktime_t time;
62 };
63 
64 struct pstate_data {
65 	int	current_pstate;
66 	int	min_pstate;
67 	int	max_pstate;
68 	int	turbo_pstate;
69 };
70 
71 struct vid_data {
72 	int min;
73 	int max;
74 	int turbo;
75 	int32_t ratio;
76 };
77 
78 struct _pid {
79 	int setpoint;
80 	int32_t integral;
81 	int32_t p_gain;
82 	int32_t i_gain;
83 	int32_t d_gain;
84 	int deadband;
85 	int32_t last_err;
86 };
87 
88 struct cpudata {
89 	int cpu;
90 
91 	struct timer_list timer;
92 
93 	struct pstate_data pstate;
94 	struct vid_data vid;
95 	struct _pid pid;
96 
97 	ktime_t last_sample_time;
98 	u64	prev_aperf;
99 	u64	prev_mperf;
100 	struct sample sample;
101 };
102 
103 static struct cpudata **all_cpu_data;
104 struct pstate_adjust_policy {
105 	int sample_rate_ms;
106 	int deadband;
107 	int setpoint;
108 	int p_gain_pct;
109 	int d_gain_pct;
110 	int i_gain_pct;
111 };
112 
113 struct pstate_funcs {
114 	int (*get_max)(void);
115 	int (*get_min)(void);
116 	int (*get_turbo)(void);
117 	void (*set)(struct cpudata*, int pstate);
118 	void (*get_vid)(struct cpudata *);
119 };
120 
121 struct cpu_defaults {
122 	struct pstate_adjust_policy pid_policy;
123 	struct pstate_funcs funcs;
124 };
125 
126 static struct pstate_adjust_policy pid_params;
127 static struct pstate_funcs pstate_funcs;
128 
129 struct perf_limits {
130 	int no_turbo;
131 	int max_perf_pct;
132 	int min_perf_pct;
133 	int32_t max_perf;
134 	int32_t min_perf;
135 	int max_policy_pct;
136 	int max_sysfs_pct;
137 };
138 
139 static struct perf_limits limits = {
140 	.no_turbo = 0,
141 	.max_perf_pct = 100,
142 	.max_perf = int_tofp(1),
143 	.min_perf_pct = 0,
144 	.min_perf = 0,
145 	.max_policy_pct = 100,
146 	.max_sysfs_pct = 100,
147 };
148 
149 static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
150 			int deadband, int integral) {
151 	pid->setpoint = setpoint;
152 	pid->deadband  = deadband;
153 	pid->integral  = int_tofp(integral);
154 	pid->last_err  = int_tofp(setpoint) - int_tofp(busy);
155 }
156 
157 static inline void pid_p_gain_set(struct _pid *pid, int percent)
158 {
159 	pid->p_gain = div_fp(int_tofp(percent), int_tofp(100));
160 }
161 
162 static inline void pid_i_gain_set(struct _pid *pid, int percent)
163 {
164 	pid->i_gain = div_fp(int_tofp(percent), int_tofp(100));
165 }
166 
167 static inline void pid_d_gain_set(struct _pid *pid, int percent)
168 {
169 
170 	pid->d_gain = div_fp(int_tofp(percent), int_tofp(100));
171 }
172 
173 static signed int pid_calc(struct _pid *pid, int32_t busy)
174 {
175 	signed int result;
176 	int32_t pterm, dterm, fp_error;
177 	int32_t integral_limit;
178 
179 	fp_error = int_tofp(pid->setpoint) - busy;
180 
181 	if (abs(fp_error) <= int_tofp(pid->deadband))
182 		return 0;
183 
184 	pterm = mul_fp(pid->p_gain, fp_error);
185 
186 	pid->integral += fp_error;
187 
188 	/* limit the integral term */
189 	integral_limit = int_tofp(30);
190 	if (pid->integral > integral_limit)
191 		pid->integral = integral_limit;
192 	if (pid->integral < -integral_limit)
193 		pid->integral = -integral_limit;
194 
195 	dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
196 	pid->last_err = fp_error;
197 
198 	result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
199 	result = result + (1 << (FRAC_BITS-1));
200 	return (signed int)fp_toint(result);
201 }
202 
203 static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
204 {
205 	pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
206 	pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
207 	pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
208 
209 	pid_reset(&cpu->pid,
210 		pid_params.setpoint,
211 		100,
212 		pid_params.deadband,
213 		0);
214 }
215 
216 static inline void intel_pstate_reset_all_pid(void)
217 {
218 	unsigned int cpu;
219 	for_each_online_cpu(cpu) {
220 		if (all_cpu_data[cpu])
221 			intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
222 	}
223 }
224 
225 /************************** debugfs begin ************************/
226 static int pid_param_set(void *data, u64 val)
227 {
228 	*(u32 *)data = val;
229 	intel_pstate_reset_all_pid();
230 	return 0;
231 }
232 static int pid_param_get(void *data, u64 *val)
233 {
234 	*val = *(u32 *)data;
235 	return 0;
236 }
237 DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get,
238 			pid_param_set, "%llu\n");
239 
240 struct pid_param {
241 	char *name;
242 	void *value;
243 };
244 
245 static struct pid_param pid_files[] = {
246 	{"sample_rate_ms", &pid_params.sample_rate_ms},
247 	{"d_gain_pct", &pid_params.d_gain_pct},
248 	{"i_gain_pct", &pid_params.i_gain_pct},
249 	{"deadband", &pid_params.deadband},
250 	{"setpoint", &pid_params.setpoint},
251 	{"p_gain_pct", &pid_params.p_gain_pct},
252 	{NULL, NULL}
253 };
254 
255 static struct dentry *debugfs_parent;
256 static void intel_pstate_debug_expose_params(void)
257 {
258 	int i = 0;
259 
260 	debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
261 	if (IS_ERR_OR_NULL(debugfs_parent))
262 		return;
263 	while (pid_files[i].name) {
264 		debugfs_create_file(pid_files[i].name, 0660,
265 				debugfs_parent, pid_files[i].value,
266 				&fops_pid_param);
267 		i++;
268 	}
269 }
270 
271 /************************** debugfs end ************************/
272 
273 /************************** sysfs begin ************************/
274 #define show_one(file_name, object)					\
275 	static ssize_t show_##file_name					\
276 	(struct kobject *kobj, struct attribute *attr, char *buf)	\
277 	{								\
278 		return sprintf(buf, "%u\n", limits.object);		\
279 	}
280 
281 static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
282 				const char *buf, size_t count)
283 {
284 	unsigned int input;
285 	int ret;
286 	ret = sscanf(buf, "%u", &input);
287 	if (ret != 1)
288 		return -EINVAL;
289 	limits.no_turbo = clamp_t(int, input, 0 , 1);
290 
291 	return count;
292 }
293 
294 static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
295 				const char *buf, size_t count)
296 {
297 	unsigned int input;
298 	int ret;
299 	ret = sscanf(buf, "%u", &input);
300 	if (ret != 1)
301 		return -EINVAL;
302 
303 	limits.max_sysfs_pct = clamp_t(int, input, 0 , 100);
304 	limits.max_perf_pct = min(limits.max_policy_pct, limits.max_sysfs_pct);
305 	limits.max_perf = div_fp(int_tofp(limits.max_perf_pct), int_tofp(100));
306 	return count;
307 }
308 
309 static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
310 				const char *buf, size_t count)
311 {
312 	unsigned int input;
313 	int ret;
314 	ret = sscanf(buf, "%u", &input);
315 	if (ret != 1)
316 		return -EINVAL;
317 	limits.min_perf_pct = clamp_t(int, input, 0 , 100);
318 	limits.min_perf = div_fp(int_tofp(limits.min_perf_pct), int_tofp(100));
319 
320 	return count;
321 }
322 
323 show_one(no_turbo, no_turbo);
324 show_one(max_perf_pct, max_perf_pct);
325 show_one(min_perf_pct, min_perf_pct);
326 
327 define_one_global_rw(no_turbo);
328 define_one_global_rw(max_perf_pct);
329 define_one_global_rw(min_perf_pct);
330 
331 static struct attribute *intel_pstate_attributes[] = {
332 	&no_turbo.attr,
333 	&max_perf_pct.attr,
334 	&min_perf_pct.attr,
335 	NULL
336 };
337 
338 static struct attribute_group intel_pstate_attr_group = {
339 	.attrs = intel_pstate_attributes,
340 };
341 static struct kobject *intel_pstate_kobject;
342 
343 static void intel_pstate_sysfs_expose_params(void)
344 {
345 	int rc;
346 
347 	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
348 						&cpu_subsys.dev_root->kobj);
349 	BUG_ON(!intel_pstate_kobject);
350 	rc = sysfs_create_group(intel_pstate_kobject,
351 				&intel_pstate_attr_group);
352 	BUG_ON(rc);
353 }
354 
355 /************************** sysfs end ************************/
356 static int byt_get_min_pstate(void)
357 {
358 	u64 value;
359 	rdmsrl(BYT_RATIOS, value);
360 	return (value >> 8) & 0x3F;
361 }
362 
363 static int byt_get_max_pstate(void)
364 {
365 	u64 value;
366 	rdmsrl(BYT_RATIOS, value);
367 	return (value >> 16) & 0x3F;
368 }
369 
370 static int byt_get_turbo_pstate(void)
371 {
372 	u64 value;
373 	rdmsrl(BYT_TURBO_RATIOS, value);
374 	return value & 0x3F;
375 }
376 
377 static void byt_set_pstate(struct cpudata *cpudata, int pstate)
378 {
379 	u64 val;
380 	int32_t vid_fp;
381 	u32 vid;
382 
383 	val = pstate << 8;
384 	if (limits.no_turbo)
385 		val |= (u64)1 << 32;
386 
387 	vid_fp = cpudata->vid.min + mul_fp(
388 		int_tofp(pstate - cpudata->pstate.min_pstate),
389 		cpudata->vid.ratio);
390 
391 	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
392 	vid = fp_toint(vid_fp);
393 
394 	if (pstate > cpudata->pstate.max_pstate)
395 		vid = cpudata->vid.turbo;
396 
397 	val |= vid;
398 
399 	wrmsrl(MSR_IA32_PERF_CTL, val);
400 }
401 
402 static void byt_get_vid(struct cpudata *cpudata)
403 {
404 	u64 value;
405 
406 
407 	rdmsrl(BYT_VIDS, value);
408 	cpudata->vid.min = int_tofp((value >> 8) & 0x3f);
409 	cpudata->vid.max = int_tofp((value >> 16) & 0x3f);
410 	cpudata->vid.ratio = div_fp(
411 		cpudata->vid.max - cpudata->vid.min,
412 		int_tofp(cpudata->pstate.max_pstate -
413 			cpudata->pstate.min_pstate));
414 
415 	rdmsrl(BYT_TURBO_VIDS, value);
416 	cpudata->vid.turbo = value & 0x7f;
417 }
418 
419 
420 static int core_get_min_pstate(void)
421 {
422 	u64 value;
423 	rdmsrl(MSR_PLATFORM_INFO, value);
424 	return (value >> 40) & 0xFF;
425 }
426 
427 static int core_get_max_pstate(void)
428 {
429 	u64 value;
430 	rdmsrl(MSR_PLATFORM_INFO, value);
431 	return (value >> 8) & 0xFF;
432 }
433 
434 static int core_get_turbo_pstate(void)
435 {
436 	u64 value;
437 	int nont, ret;
438 	rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
439 	nont = core_get_max_pstate();
440 	ret = ((value) & 255);
441 	if (ret <= nont)
442 		ret = nont;
443 	return ret;
444 }
445 
446 static void core_set_pstate(struct cpudata *cpudata, int pstate)
447 {
448 	u64 val;
449 
450 	val = pstate << 8;
451 	if (limits.no_turbo)
452 		val |= (u64)1 << 32;
453 
454 	wrmsrl_on_cpu(cpudata->cpu, MSR_IA32_PERF_CTL, val);
455 }
456 
457 static struct cpu_defaults core_params = {
458 	.pid_policy = {
459 		.sample_rate_ms = 10,
460 		.deadband = 0,
461 		.setpoint = 97,
462 		.p_gain_pct = 20,
463 		.d_gain_pct = 0,
464 		.i_gain_pct = 0,
465 	},
466 	.funcs = {
467 		.get_max = core_get_max_pstate,
468 		.get_min = core_get_min_pstate,
469 		.get_turbo = core_get_turbo_pstate,
470 		.set = core_set_pstate,
471 	},
472 };
473 
474 static struct cpu_defaults byt_params = {
475 	.pid_policy = {
476 		.sample_rate_ms = 10,
477 		.deadband = 0,
478 		.setpoint = 97,
479 		.p_gain_pct = 14,
480 		.d_gain_pct = 0,
481 		.i_gain_pct = 4,
482 	},
483 	.funcs = {
484 		.get_max = byt_get_max_pstate,
485 		.get_min = byt_get_min_pstate,
486 		.get_turbo = byt_get_turbo_pstate,
487 		.set = byt_set_pstate,
488 		.get_vid = byt_get_vid,
489 	},
490 };
491 
492 
493 static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
494 {
495 	int max_perf = cpu->pstate.turbo_pstate;
496 	int max_perf_adj;
497 	int min_perf;
498 	if (limits.no_turbo)
499 		max_perf = cpu->pstate.max_pstate;
500 
501 	max_perf_adj = fp_toint(mul_fp(int_tofp(max_perf), limits.max_perf));
502 	*max = clamp_t(int, max_perf_adj,
503 			cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
504 
505 	min_perf = fp_toint(mul_fp(int_tofp(max_perf), limits.min_perf));
506 	*min = clamp_t(int, min_perf,
507 			cpu->pstate.min_pstate, max_perf);
508 }
509 
510 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
511 {
512 	int max_perf, min_perf;
513 
514 	intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
515 
516 	pstate = clamp_t(int, pstate, min_perf, max_perf);
517 
518 	if (pstate == cpu->pstate.current_pstate)
519 		return;
520 
521 	trace_cpu_frequency(pstate * 100000, cpu->cpu);
522 
523 	cpu->pstate.current_pstate = pstate;
524 
525 	pstate_funcs.set(cpu, pstate);
526 }
527 
528 static inline void intel_pstate_pstate_increase(struct cpudata *cpu, int steps)
529 {
530 	int target;
531 	target = cpu->pstate.current_pstate + steps;
532 
533 	intel_pstate_set_pstate(cpu, target);
534 }
535 
536 static inline void intel_pstate_pstate_decrease(struct cpudata *cpu, int steps)
537 {
538 	int target;
539 	target = cpu->pstate.current_pstate - steps;
540 	intel_pstate_set_pstate(cpu, target);
541 }
542 
543 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
544 {
545 	cpu->pstate.min_pstate = pstate_funcs.get_min();
546 	cpu->pstate.max_pstate = pstate_funcs.get_max();
547 	cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
548 
549 	if (pstate_funcs.get_vid)
550 		pstate_funcs.get_vid(cpu);
551 	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
552 }
553 
554 static inline void intel_pstate_calc_busy(struct cpudata *cpu)
555 {
556 	struct sample *sample = &cpu->sample;
557 	int64_t core_pct;
558 	int32_t rem;
559 
560 	core_pct = int_tofp(sample->aperf) * int_tofp(100);
561 	core_pct = div_u64_rem(core_pct, int_tofp(sample->mperf), &rem);
562 
563 	if ((rem << 1) >= int_tofp(sample->mperf))
564 		core_pct += 1;
565 
566 	sample->freq = fp_toint(
567 		mul_fp(int_tofp(cpu->pstate.max_pstate * 1000), core_pct));
568 
569 	sample->core_pct_busy = (int32_t)core_pct;
570 }
571 
572 static inline void intel_pstate_sample(struct cpudata *cpu)
573 {
574 	u64 aperf, mperf;
575 
576 	rdmsrl(MSR_IA32_APERF, aperf);
577 	rdmsrl(MSR_IA32_MPERF, mperf);
578 
579 	aperf = aperf >> FRAC_BITS;
580 	mperf = mperf >> FRAC_BITS;
581 
582 	cpu->last_sample_time = cpu->sample.time;
583 	cpu->sample.time = ktime_get();
584 	cpu->sample.aperf = aperf;
585 	cpu->sample.mperf = mperf;
586 	cpu->sample.aperf -= cpu->prev_aperf;
587 	cpu->sample.mperf -= cpu->prev_mperf;
588 
589 	intel_pstate_calc_busy(cpu);
590 
591 	cpu->prev_aperf = aperf;
592 	cpu->prev_mperf = mperf;
593 }
594 
595 static inline void intel_pstate_set_sample_time(struct cpudata *cpu)
596 {
597 	int sample_time, delay;
598 
599 	sample_time = pid_params.sample_rate_ms;
600 	delay = msecs_to_jiffies(sample_time);
601 	mod_timer_pinned(&cpu->timer, jiffies + delay);
602 }
603 
604 static inline int32_t intel_pstate_get_scaled_busy(struct cpudata *cpu)
605 {
606 	int32_t core_busy, max_pstate, current_pstate, sample_ratio;
607 	u32 duration_us;
608 	u32 sample_time;
609 
610 	core_busy = cpu->sample.core_pct_busy;
611 	max_pstate = int_tofp(cpu->pstate.max_pstate);
612 	current_pstate = int_tofp(cpu->pstate.current_pstate);
613 	core_busy = mul_fp(core_busy, div_fp(max_pstate, current_pstate));
614 
615 	sample_time = (pid_params.sample_rate_ms  * USEC_PER_MSEC);
616 	duration_us = (u32) ktime_us_delta(cpu->sample.time,
617 					cpu->last_sample_time);
618 	if (duration_us > sample_time * 3) {
619 		sample_ratio = div_fp(int_tofp(sample_time),
620 				int_tofp(duration_us));
621 		core_busy = mul_fp(core_busy, sample_ratio);
622 	}
623 
624 	return core_busy;
625 }
626 
627 static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
628 {
629 	int32_t busy_scaled;
630 	struct _pid *pid;
631 	signed int ctl = 0;
632 	int steps;
633 
634 	pid = &cpu->pid;
635 	busy_scaled = intel_pstate_get_scaled_busy(cpu);
636 
637 	ctl = pid_calc(pid, busy_scaled);
638 
639 	steps = abs(ctl);
640 
641 	if (ctl < 0)
642 		intel_pstate_pstate_increase(cpu, steps);
643 	else
644 		intel_pstate_pstate_decrease(cpu, steps);
645 }
646 
647 static void intel_pstate_timer_func(unsigned long __data)
648 {
649 	struct cpudata *cpu = (struct cpudata *) __data;
650 	struct sample *sample;
651 
652 	intel_pstate_sample(cpu);
653 
654 	sample = &cpu->sample;
655 
656 	intel_pstate_adjust_busy_pstate(cpu);
657 
658 	trace_pstate_sample(fp_toint(sample->core_pct_busy),
659 			fp_toint(intel_pstate_get_scaled_busy(cpu)),
660 			cpu->pstate.current_pstate,
661 			sample->mperf,
662 			sample->aperf,
663 			sample->freq);
664 
665 	intel_pstate_set_sample_time(cpu);
666 }
667 
668 #define ICPU(model, policy) \
669 	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
670 			(unsigned long)&policy }
671 
672 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
673 	ICPU(0x2a, core_params),
674 	ICPU(0x2d, core_params),
675 	ICPU(0x37, byt_params),
676 	ICPU(0x3a, core_params),
677 	ICPU(0x3c, core_params),
678 	ICPU(0x3d, core_params),
679 	ICPU(0x3e, core_params),
680 	ICPU(0x3f, core_params),
681 	ICPU(0x45, core_params),
682 	ICPU(0x46, core_params),
683 	ICPU(0x4f, core_params),
684 	ICPU(0x56, core_params),
685 	{}
686 };
687 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
688 
689 static int intel_pstate_init_cpu(unsigned int cpunum)
690 {
691 	struct cpudata *cpu;
692 
693 	all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata), GFP_KERNEL);
694 	if (!all_cpu_data[cpunum])
695 		return -ENOMEM;
696 
697 	cpu = all_cpu_data[cpunum];
698 
699 	intel_pstate_get_cpu_pstates(cpu);
700 
701 	cpu->cpu = cpunum;
702 
703 	init_timer_deferrable(&cpu->timer);
704 	cpu->timer.function = intel_pstate_timer_func;
705 	cpu->timer.data =
706 		(unsigned long)cpu;
707 	cpu->timer.expires = jiffies + HZ/100;
708 	intel_pstate_busy_pid_reset(cpu);
709 	intel_pstate_sample(cpu);
710 
711 	add_timer_on(&cpu->timer, cpunum);
712 
713 	pr_info("Intel pstate controlling: cpu %d\n", cpunum);
714 
715 	return 0;
716 }
717 
718 static unsigned int intel_pstate_get(unsigned int cpu_num)
719 {
720 	struct sample *sample;
721 	struct cpudata *cpu;
722 
723 	cpu = all_cpu_data[cpu_num];
724 	if (!cpu)
725 		return 0;
726 	sample = &cpu->sample;
727 	return sample->freq;
728 }
729 
730 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
731 {
732 	struct cpudata *cpu;
733 
734 	cpu = all_cpu_data[policy->cpu];
735 
736 	if (!policy->cpuinfo.max_freq)
737 		return -ENODEV;
738 
739 	if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) {
740 		limits.min_perf_pct = 100;
741 		limits.min_perf = int_tofp(1);
742 		limits.max_perf_pct = 100;
743 		limits.max_perf = int_tofp(1);
744 		limits.no_turbo = 0;
745 		return 0;
746 	}
747 	limits.min_perf_pct = (policy->min * 100) / policy->cpuinfo.max_freq;
748 	limits.min_perf_pct = clamp_t(int, limits.min_perf_pct, 0 , 100);
749 	limits.min_perf = div_fp(int_tofp(limits.min_perf_pct), int_tofp(100));
750 
751 	limits.max_policy_pct = policy->max * 100 / policy->cpuinfo.max_freq;
752 	limits.max_policy_pct = clamp_t(int, limits.max_policy_pct, 0 , 100);
753 	limits.max_perf_pct = min(limits.max_policy_pct, limits.max_sysfs_pct);
754 	limits.max_perf = div_fp(int_tofp(limits.max_perf_pct), int_tofp(100));
755 
756 	return 0;
757 }
758 
759 static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
760 {
761 	cpufreq_verify_within_cpu_limits(policy);
762 
763 	if ((policy->policy != CPUFREQ_POLICY_POWERSAVE) &&
764 		(policy->policy != CPUFREQ_POLICY_PERFORMANCE))
765 		return -EINVAL;
766 
767 	return 0;
768 }
769 
770 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
771 {
772 	int cpu_num = policy->cpu;
773 	struct cpudata *cpu = all_cpu_data[cpu_num];
774 
775 	pr_info("intel_pstate CPU %d exiting\n", cpu_num);
776 
777 	del_timer_sync(&all_cpu_data[cpu_num]->timer);
778 	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
779 	kfree(all_cpu_data[cpu_num]);
780 	all_cpu_data[cpu_num] = NULL;
781 }
782 
783 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
784 {
785 	struct cpudata *cpu;
786 	int rc;
787 
788 	rc = intel_pstate_init_cpu(policy->cpu);
789 	if (rc)
790 		return rc;
791 
792 	cpu = all_cpu_data[policy->cpu];
793 
794 	if (!limits.no_turbo &&
795 		limits.min_perf_pct == 100 && limits.max_perf_pct == 100)
796 		policy->policy = CPUFREQ_POLICY_PERFORMANCE;
797 	else
798 		policy->policy = CPUFREQ_POLICY_POWERSAVE;
799 
800 	policy->min = cpu->pstate.min_pstate * 100000;
801 	policy->max = cpu->pstate.turbo_pstate * 100000;
802 
803 	/* cpuinfo and default policy values */
804 	policy->cpuinfo.min_freq = cpu->pstate.min_pstate * 100000;
805 	policy->cpuinfo.max_freq = cpu->pstate.turbo_pstate * 100000;
806 	policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
807 	cpumask_set_cpu(policy->cpu, policy->cpus);
808 
809 	return 0;
810 }
811 
812 static struct cpufreq_driver intel_pstate_driver = {
813 	.flags		= CPUFREQ_CONST_LOOPS,
814 	.verify		= intel_pstate_verify_policy,
815 	.setpolicy	= intel_pstate_set_policy,
816 	.get		= intel_pstate_get,
817 	.init		= intel_pstate_cpu_init,
818 	.stop_cpu	= intel_pstate_stop_cpu,
819 	.name		= "intel_pstate",
820 };
821 
822 static int __initdata no_load;
823 
824 static int intel_pstate_msrs_not_valid(void)
825 {
826 	/* Check that all the msr's we are using are valid. */
827 	u64 aperf, mperf, tmp;
828 
829 	rdmsrl(MSR_IA32_APERF, aperf);
830 	rdmsrl(MSR_IA32_MPERF, mperf);
831 
832 	if (!pstate_funcs.get_max() ||
833 		!pstate_funcs.get_min() ||
834 		!pstate_funcs.get_turbo())
835 		return -ENODEV;
836 
837 	rdmsrl(MSR_IA32_APERF, tmp);
838 	if (!(tmp - aperf))
839 		return -ENODEV;
840 
841 	rdmsrl(MSR_IA32_MPERF, tmp);
842 	if (!(tmp - mperf))
843 		return -ENODEV;
844 
845 	return 0;
846 }
847 
848 static void copy_pid_params(struct pstate_adjust_policy *policy)
849 {
850 	pid_params.sample_rate_ms = policy->sample_rate_ms;
851 	pid_params.p_gain_pct = policy->p_gain_pct;
852 	pid_params.i_gain_pct = policy->i_gain_pct;
853 	pid_params.d_gain_pct = policy->d_gain_pct;
854 	pid_params.deadband = policy->deadband;
855 	pid_params.setpoint = policy->setpoint;
856 }
857 
858 static void copy_cpu_funcs(struct pstate_funcs *funcs)
859 {
860 	pstate_funcs.get_max   = funcs->get_max;
861 	pstate_funcs.get_min   = funcs->get_min;
862 	pstate_funcs.get_turbo = funcs->get_turbo;
863 	pstate_funcs.set       = funcs->set;
864 	pstate_funcs.get_vid   = funcs->get_vid;
865 }
866 
867 #if IS_ENABLED(CONFIG_ACPI)
868 #include <acpi/processor.h>
869 
870 static bool intel_pstate_no_acpi_pss(void)
871 {
872 	int i;
873 
874 	for_each_possible_cpu(i) {
875 		acpi_status status;
876 		union acpi_object *pss;
877 		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
878 		struct acpi_processor *pr = per_cpu(processors, i);
879 
880 		if (!pr)
881 			continue;
882 
883 		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
884 		if (ACPI_FAILURE(status))
885 			continue;
886 
887 		pss = buffer.pointer;
888 		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
889 			kfree(pss);
890 			return false;
891 		}
892 
893 		kfree(pss);
894 	}
895 
896 	return true;
897 }
898 
899 struct hw_vendor_info {
900 	u16  valid;
901 	char oem_id[ACPI_OEM_ID_SIZE];
902 	char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
903 };
904 
905 /* Hardware vendor-specific info that has its own power management modes */
906 static struct hw_vendor_info vendor_info[] = {
907 	{1, "HP    ", "ProLiant"},
908 	{0, "", ""},
909 };
910 
911 static bool intel_pstate_platform_pwr_mgmt_exists(void)
912 {
913 	struct acpi_table_header hdr;
914 	struct hw_vendor_info *v_info;
915 
916 	if (acpi_disabled
917 	    || ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
918 		return false;
919 
920 	for (v_info = vendor_info; v_info->valid; v_info++) {
921 		if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE)
922 		    && !strncmp(hdr.oem_table_id, v_info->oem_table_id, ACPI_OEM_TABLE_ID_SIZE)
923 		    && intel_pstate_no_acpi_pss())
924 			return true;
925 	}
926 
927 	return false;
928 }
929 #else /* CONFIG_ACPI not enabled */
930 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
931 #endif /* CONFIG_ACPI */
932 
933 static int __init intel_pstate_init(void)
934 {
935 	int cpu, rc = 0;
936 	const struct x86_cpu_id *id;
937 	struct cpu_defaults *cpu_info;
938 
939 	if (no_load)
940 		return -ENODEV;
941 
942 	id = x86_match_cpu(intel_pstate_cpu_ids);
943 	if (!id)
944 		return -ENODEV;
945 
946 	/*
947 	 * The Intel pstate driver will be ignored if the platform
948 	 * firmware has its own power management modes.
949 	 */
950 	if (intel_pstate_platform_pwr_mgmt_exists())
951 		return -ENODEV;
952 
953 	cpu_info = (struct cpu_defaults *)id->driver_data;
954 
955 	copy_pid_params(&cpu_info->pid_policy);
956 	copy_cpu_funcs(&cpu_info->funcs);
957 
958 	if (intel_pstate_msrs_not_valid())
959 		return -ENODEV;
960 
961 	pr_info("Intel P-state driver initializing.\n");
962 
963 	all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
964 	if (!all_cpu_data)
965 		return -ENOMEM;
966 
967 	rc = cpufreq_register_driver(&intel_pstate_driver);
968 	if (rc)
969 		goto out;
970 
971 	intel_pstate_debug_expose_params();
972 	intel_pstate_sysfs_expose_params();
973 
974 	return rc;
975 out:
976 	get_online_cpus();
977 	for_each_online_cpu(cpu) {
978 		if (all_cpu_data[cpu]) {
979 			del_timer_sync(&all_cpu_data[cpu]->timer);
980 			kfree(all_cpu_data[cpu]);
981 		}
982 	}
983 
984 	put_online_cpus();
985 	vfree(all_cpu_data);
986 	return -ENODEV;
987 }
988 device_initcall(intel_pstate_init);
989 
990 static int __init intel_pstate_setup(char *str)
991 {
992 	if (!str)
993 		return -EINVAL;
994 
995 	if (!strcmp(str, "disable"))
996 		no_load = 1;
997 	return 0;
998 }
999 early_param("intel_pstate", intel_pstate_setup);
1000 
1001 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
1002 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
1003 MODULE_LICENSE("GPL");
1004