1 /*
2  * intel_pstate.c: Native P state management for Intel processors
3  *
4  * (C) Copyright 2012 Intel Corporation
5  * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; version 2
10  * of the License.
11  */
12 
13 #include <linux/kernel.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/module.h>
16 #include <linux/ktime.h>
17 #include <linux/hrtimer.h>
18 #include <linux/tick.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/list.h>
22 #include <linux/cpu.h>
23 #include <linux/cpufreq.h>
24 #include <linux/sysfs.h>
25 #include <linux/types.h>
26 #include <linux/fs.h>
27 #include <linux/debugfs.h>
28 #include <linux/acpi.h>
29 #include <trace/events/power.h>
30 
31 #include <asm/div64.h>
32 #include <asm/msr.h>
33 #include <asm/cpu_device_id.h>
34 
35 #define BYT_RATIOS		0x66a
36 #define BYT_VIDS		0x66b
37 #define BYT_TURBO_RATIOS	0x66c
38 #define BYT_TURBO_VIDS		0x66d
39 
40 #define FRAC_BITS 8
41 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
42 #define fp_toint(X) ((X) >> FRAC_BITS)
43 
44 
45 static inline int32_t mul_fp(int32_t x, int32_t y)
46 {
47 	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
48 }
49 
50 static inline int32_t div_fp(int32_t x, int32_t y)
51 {
52 	return div_s64((int64_t)x << FRAC_BITS, y);
53 }
54 
55 static inline int ceiling_fp(int32_t x)
56 {
57 	int mask, ret;
58 
59 	ret = fp_toint(x);
60 	mask = (1 << FRAC_BITS) - 1;
61 	if (x & mask)
62 		ret += 1;
63 	return ret;
64 }
65 
66 struct sample {
67 	int32_t core_pct_busy;
68 	u64 aperf;
69 	u64 mperf;
70 	int freq;
71 	ktime_t time;
72 };
73 
74 struct pstate_data {
75 	int	current_pstate;
76 	int	min_pstate;
77 	int	max_pstate;
78 	int	scaling;
79 	int	turbo_pstate;
80 };
81 
82 struct vid_data {
83 	int min;
84 	int max;
85 	int turbo;
86 	int32_t ratio;
87 };
88 
89 struct _pid {
90 	int setpoint;
91 	int32_t integral;
92 	int32_t p_gain;
93 	int32_t i_gain;
94 	int32_t d_gain;
95 	int deadband;
96 	int32_t last_err;
97 };
98 
99 struct cpudata {
100 	int cpu;
101 
102 	struct timer_list timer;
103 
104 	struct pstate_data pstate;
105 	struct vid_data vid;
106 	struct _pid pid;
107 
108 	ktime_t last_sample_time;
109 	u64	prev_aperf;
110 	u64	prev_mperf;
111 	struct sample sample;
112 };
113 
114 static struct cpudata **all_cpu_data;
115 struct pstate_adjust_policy {
116 	int sample_rate_ms;
117 	int deadband;
118 	int setpoint;
119 	int p_gain_pct;
120 	int d_gain_pct;
121 	int i_gain_pct;
122 };
123 
124 struct pstate_funcs {
125 	int (*get_max)(void);
126 	int (*get_min)(void);
127 	int (*get_turbo)(void);
128 	int (*get_scaling)(void);
129 	void (*set)(struct cpudata*, int pstate);
130 	void (*get_vid)(struct cpudata *);
131 };
132 
133 struct cpu_defaults {
134 	struct pstate_adjust_policy pid_policy;
135 	struct pstate_funcs funcs;
136 };
137 
138 static struct pstate_adjust_policy pid_params;
139 static struct pstate_funcs pstate_funcs;
140 static int hwp_active;
141 
142 struct perf_limits {
143 	int no_turbo;
144 	int turbo_disabled;
145 	int max_perf_pct;
146 	int min_perf_pct;
147 	int32_t max_perf;
148 	int32_t min_perf;
149 	int max_policy_pct;
150 	int max_sysfs_pct;
151 };
152 
153 static struct perf_limits limits = {
154 	.no_turbo = 0,
155 	.turbo_disabled = 0,
156 	.max_perf_pct = 100,
157 	.max_perf = int_tofp(1),
158 	.min_perf_pct = 0,
159 	.min_perf = 0,
160 	.max_policy_pct = 100,
161 	.max_sysfs_pct = 100,
162 };
163 
164 static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
165 			     int deadband, int integral) {
166 	pid->setpoint = setpoint;
167 	pid->deadband  = deadband;
168 	pid->integral  = int_tofp(integral);
169 	pid->last_err  = int_tofp(setpoint) - int_tofp(busy);
170 }
171 
172 static inline void pid_p_gain_set(struct _pid *pid, int percent)
173 {
174 	pid->p_gain = div_fp(int_tofp(percent), int_tofp(100));
175 }
176 
177 static inline void pid_i_gain_set(struct _pid *pid, int percent)
178 {
179 	pid->i_gain = div_fp(int_tofp(percent), int_tofp(100));
180 }
181 
182 static inline void pid_d_gain_set(struct _pid *pid, int percent)
183 {
184 	pid->d_gain = div_fp(int_tofp(percent), int_tofp(100));
185 }
186 
187 static signed int pid_calc(struct _pid *pid, int32_t busy)
188 {
189 	signed int result;
190 	int32_t pterm, dterm, fp_error;
191 	int32_t integral_limit;
192 
193 	fp_error = int_tofp(pid->setpoint) - busy;
194 
195 	if (abs(fp_error) <= int_tofp(pid->deadband))
196 		return 0;
197 
198 	pterm = mul_fp(pid->p_gain, fp_error);
199 
200 	pid->integral += fp_error;
201 
202 	/*
203 	 * We limit the integral here so that it will never
204 	 * get higher than 30.  This prevents it from becoming
205 	 * too large an input over long periods of time and allows
206 	 * it to get factored out sooner.
207 	 *
208 	 * The value of 30 was chosen through experimentation.
209 	 */
210 	integral_limit = int_tofp(30);
211 	if (pid->integral > integral_limit)
212 		pid->integral = integral_limit;
213 	if (pid->integral < -integral_limit)
214 		pid->integral = -integral_limit;
215 
216 	dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
217 	pid->last_err = fp_error;
218 
219 	result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
220 	result = result + (1 << (FRAC_BITS-1));
221 	return (signed int)fp_toint(result);
222 }
223 
224 static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
225 {
226 	pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
227 	pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
228 	pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
229 
230 	pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
231 }
232 
233 static inline void intel_pstate_reset_all_pid(void)
234 {
235 	unsigned int cpu;
236 
237 	for_each_online_cpu(cpu) {
238 		if (all_cpu_data[cpu])
239 			intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
240 	}
241 }
242 
243 static inline void update_turbo_state(void)
244 {
245 	u64 misc_en;
246 	struct cpudata *cpu;
247 
248 	cpu = all_cpu_data[0];
249 	rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
250 	limits.turbo_disabled =
251 		(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
252 		 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
253 }
254 
255 #define PCT_TO_HWP(x) (x * 255 / 100)
256 static void intel_pstate_hwp_set(void)
257 {
258 	int min, max, cpu;
259 	u64 value, freq;
260 
261 	get_online_cpus();
262 
263 	for_each_online_cpu(cpu) {
264 		rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
265 		min = PCT_TO_HWP(limits.min_perf_pct);
266 		value &= ~HWP_MIN_PERF(~0L);
267 		value |= HWP_MIN_PERF(min);
268 
269 		max = PCT_TO_HWP(limits.max_perf_pct);
270 		if (limits.no_turbo) {
271 			rdmsrl( MSR_HWP_CAPABILITIES, freq);
272 			max = HWP_GUARANTEED_PERF(freq);
273 		}
274 
275 		value &= ~HWP_MAX_PERF(~0L);
276 		value |= HWP_MAX_PERF(max);
277 		wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
278 	}
279 
280 	put_online_cpus();
281 }
282 
283 /************************** debugfs begin ************************/
284 static int pid_param_set(void *data, u64 val)
285 {
286 	*(u32 *)data = val;
287 	intel_pstate_reset_all_pid();
288 	return 0;
289 }
290 
291 static int pid_param_get(void *data, u64 *val)
292 {
293 	*val = *(u32 *)data;
294 	return 0;
295 }
296 DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
297 
298 struct pid_param {
299 	char *name;
300 	void *value;
301 };
302 
303 static struct pid_param pid_files[] = {
304 	{"sample_rate_ms", &pid_params.sample_rate_ms},
305 	{"d_gain_pct", &pid_params.d_gain_pct},
306 	{"i_gain_pct", &pid_params.i_gain_pct},
307 	{"deadband", &pid_params.deadband},
308 	{"setpoint", &pid_params.setpoint},
309 	{"p_gain_pct", &pid_params.p_gain_pct},
310 	{NULL, NULL}
311 };
312 
313 static void __init intel_pstate_debug_expose_params(void)
314 {
315 	struct dentry *debugfs_parent;
316 	int i = 0;
317 
318 	if (hwp_active)
319 		return;
320 	debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
321 	if (IS_ERR_OR_NULL(debugfs_parent))
322 		return;
323 	while (pid_files[i].name) {
324 		debugfs_create_file(pid_files[i].name, 0660,
325 				    debugfs_parent, pid_files[i].value,
326 				    &fops_pid_param);
327 		i++;
328 	}
329 }
330 
331 /************************** debugfs end ************************/
332 
333 /************************** sysfs begin ************************/
334 #define show_one(file_name, object)					\
335 	static ssize_t show_##file_name					\
336 	(struct kobject *kobj, struct attribute *attr, char *buf)	\
337 	{								\
338 		return sprintf(buf, "%u\n", limits.object);		\
339 	}
340 
341 static ssize_t show_no_turbo(struct kobject *kobj,
342 			     struct attribute *attr, char *buf)
343 {
344 	ssize_t ret;
345 
346 	update_turbo_state();
347 	if (limits.turbo_disabled)
348 		ret = sprintf(buf, "%u\n", limits.turbo_disabled);
349 	else
350 		ret = sprintf(buf, "%u\n", limits.no_turbo);
351 
352 	return ret;
353 }
354 
355 static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
356 			      const char *buf, size_t count)
357 {
358 	unsigned int input;
359 	int ret;
360 
361 	ret = sscanf(buf, "%u", &input);
362 	if (ret != 1)
363 		return -EINVAL;
364 
365 	update_turbo_state();
366 	if (limits.turbo_disabled) {
367 		pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
368 		return -EPERM;
369 	}
370 
371 	limits.no_turbo = clamp_t(int, input, 0, 1);
372 
373 	if (hwp_active)
374 		intel_pstate_hwp_set();
375 
376 	return count;
377 }
378 
379 static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
380 				  const char *buf, size_t count)
381 {
382 	unsigned int input;
383 	int ret;
384 
385 	ret = sscanf(buf, "%u", &input);
386 	if (ret != 1)
387 		return -EINVAL;
388 
389 	limits.max_sysfs_pct = clamp_t(int, input, 0 , 100);
390 	limits.max_perf_pct = min(limits.max_policy_pct, limits.max_sysfs_pct);
391 	limits.max_perf = div_fp(int_tofp(limits.max_perf_pct), int_tofp(100));
392 
393 	if (hwp_active)
394 		intel_pstate_hwp_set();
395 	return count;
396 }
397 
398 static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
399 				  const char *buf, size_t count)
400 {
401 	unsigned int input;
402 	int ret;
403 
404 	ret = sscanf(buf, "%u", &input);
405 	if (ret != 1)
406 		return -EINVAL;
407 	limits.min_perf_pct = clamp_t(int, input, 0 , 100);
408 	limits.min_perf = div_fp(int_tofp(limits.min_perf_pct), int_tofp(100));
409 
410 	if (hwp_active)
411 		intel_pstate_hwp_set();
412 	return count;
413 }
414 
415 show_one(max_perf_pct, max_perf_pct);
416 show_one(min_perf_pct, min_perf_pct);
417 
418 define_one_global_rw(no_turbo);
419 define_one_global_rw(max_perf_pct);
420 define_one_global_rw(min_perf_pct);
421 
422 static struct attribute *intel_pstate_attributes[] = {
423 	&no_turbo.attr,
424 	&max_perf_pct.attr,
425 	&min_perf_pct.attr,
426 	NULL
427 };
428 
429 static struct attribute_group intel_pstate_attr_group = {
430 	.attrs = intel_pstate_attributes,
431 };
432 
433 static void __init intel_pstate_sysfs_expose_params(void)
434 {
435 	struct kobject *intel_pstate_kobject;
436 	int rc;
437 
438 	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
439 						&cpu_subsys.dev_root->kobj);
440 	BUG_ON(!intel_pstate_kobject);
441 	rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
442 	BUG_ON(rc);
443 }
444 /************************** sysfs end ************************/
445 
446 static void intel_pstate_hwp_enable(void)
447 {
448 	hwp_active++;
449 	pr_info("intel_pstate HWP enabled\n");
450 
451 	wrmsrl( MSR_PM_ENABLE, 0x1);
452 }
453 
454 static int byt_get_min_pstate(void)
455 {
456 	u64 value;
457 
458 	rdmsrl(BYT_RATIOS, value);
459 	return (value >> 8) & 0x7F;
460 }
461 
462 static int byt_get_max_pstate(void)
463 {
464 	u64 value;
465 
466 	rdmsrl(BYT_RATIOS, value);
467 	return (value >> 16) & 0x7F;
468 }
469 
470 static int byt_get_turbo_pstate(void)
471 {
472 	u64 value;
473 
474 	rdmsrl(BYT_TURBO_RATIOS, value);
475 	return value & 0x7F;
476 }
477 
478 static void byt_set_pstate(struct cpudata *cpudata, int pstate)
479 {
480 	u64 val;
481 	int32_t vid_fp;
482 	u32 vid;
483 
484 	val = pstate << 8;
485 	if (limits.no_turbo && !limits.turbo_disabled)
486 		val |= (u64)1 << 32;
487 
488 	vid_fp = cpudata->vid.min + mul_fp(
489 		int_tofp(pstate - cpudata->pstate.min_pstate),
490 		cpudata->vid.ratio);
491 
492 	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
493 	vid = ceiling_fp(vid_fp);
494 
495 	if (pstate > cpudata->pstate.max_pstate)
496 		vid = cpudata->vid.turbo;
497 
498 	val |= vid;
499 
500 	wrmsrl(MSR_IA32_PERF_CTL, val);
501 }
502 
503 #define BYT_BCLK_FREQS 5
504 static int byt_freq_table[BYT_BCLK_FREQS] = { 833, 1000, 1333, 1167, 800};
505 
506 static int byt_get_scaling(void)
507 {
508 	u64 value;
509 	int i;
510 
511 	rdmsrl(MSR_FSB_FREQ, value);
512 	i = value & 0x3;
513 
514 	BUG_ON(i > BYT_BCLK_FREQS);
515 
516 	return byt_freq_table[i] * 100;
517 }
518 
519 static void byt_get_vid(struct cpudata *cpudata)
520 {
521 	u64 value;
522 
523 	rdmsrl(BYT_VIDS, value);
524 	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
525 	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
526 	cpudata->vid.ratio = div_fp(
527 		cpudata->vid.max - cpudata->vid.min,
528 		int_tofp(cpudata->pstate.max_pstate -
529 			cpudata->pstate.min_pstate));
530 
531 	rdmsrl(BYT_TURBO_VIDS, value);
532 	cpudata->vid.turbo = value & 0x7f;
533 }
534 
535 static int core_get_min_pstate(void)
536 {
537 	u64 value;
538 
539 	rdmsrl(MSR_PLATFORM_INFO, value);
540 	return (value >> 40) & 0xFF;
541 }
542 
543 static int core_get_max_pstate(void)
544 {
545 	u64 value;
546 
547 	rdmsrl(MSR_PLATFORM_INFO, value);
548 	return (value >> 8) & 0xFF;
549 }
550 
551 static int core_get_turbo_pstate(void)
552 {
553 	u64 value;
554 	int nont, ret;
555 
556 	rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
557 	nont = core_get_max_pstate();
558 	ret = (value) & 255;
559 	if (ret <= nont)
560 		ret = nont;
561 	return ret;
562 }
563 
564 static inline int core_get_scaling(void)
565 {
566 	return 100000;
567 }
568 
569 static void core_set_pstate(struct cpudata *cpudata, int pstate)
570 {
571 	u64 val;
572 
573 	val = pstate << 8;
574 	if (limits.no_turbo && !limits.turbo_disabled)
575 		val |= (u64)1 << 32;
576 
577 	wrmsrl_on_cpu(cpudata->cpu, MSR_IA32_PERF_CTL, val);
578 }
579 
580 static struct cpu_defaults core_params = {
581 	.pid_policy = {
582 		.sample_rate_ms = 10,
583 		.deadband = 0,
584 		.setpoint = 97,
585 		.p_gain_pct = 20,
586 		.d_gain_pct = 0,
587 		.i_gain_pct = 0,
588 	},
589 	.funcs = {
590 		.get_max = core_get_max_pstate,
591 		.get_min = core_get_min_pstate,
592 		.get_turbo = core_get_turbo_pstate,
593 		.get_scaling = core_get_scaling,
594 		.set = core_set_pstate,
595 	},
596 };
597 
598 static struct cpu_defaults byt_params = {
599 	.pid_policy = {
600 		.sample_rate_ms = 10,
601 		.deadband = 0,
602 		.setpoint = 97,
603 		.p_gain_pct = 14,
604 		.d_gain_pct = 0,
605 		.i_gain_pct = 4,
606 	},
607 	.funcs = {
608 		.get_max = byt_get_max_pstate,
609 		.get_min = byt_get_min_pstate,
610 		.get_turbo = byt_get_turbo_pstate,
611 		.set = byt_set_pstate,
612 		.get_scaling = byt_get_scaling,
613 		.get_vid = byt_get_vid,
614 	},
615 };
616 
617 static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
618 {
619 	int max_perf = cpu->pstate.turbo_pstate;
620 	int max_perf_adj;
621 	int min_perf;
622 
623 	if (limits.no_turbo || limits.turbo_disabled)
624 		max_perf = cpu->pstate.max_pstate;
625 
626 	/*
627 	 * performance can be limited by user through sysfs, by cpufreq
628 	 * policy, or by cpu specific default values determined through
629 	 * experimentation.
630 	 */
631 	max_perf_adj = fp_toint(mul_fp(int_tofp(max_perf), limits.max_perf));
632 	*max = clamp_t(int, max_perf_adj,
633 			cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
634 
635 	min_perf = fp_toint(mul_fp(int_tofp(max_perf), limits.min_perf));
636 	*min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
637 }
638 
639 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
640 {
641 	int max_perf, min_perf;
642 
643 	update_turbo_state();
644 
645 	intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
646 
647 	pstate = clamp_t(int, pstate, min_perf, max_perf);
648 
649 	if (pstate == cpu->pstate.current_pstate)
650 		return;
651 
652 	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
653 
654 	cpu->pstate.current_pstate = pstate;
655 
656 	pstate_funcs.set(cpu, pstate);
657 }
658 
659 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
660 {
661 	cpu->pstate.min_pstate = pstate_funcs.get_min();
662 	cpu->pstate.max_pstate = pstate_funcs.get_max();
663 	cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
664 	cpu->pstate.scaling = pstate_funcs.get_scaling();
665 
666 	if (pstate_funcs.get_vid)
667 		pstate_funcs.get_vid(cpu);
668 	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
669 }
670 
671 static inline void intel_pstate_calc_busy(struct cpudata *cpu)
672 {
673 	struct sample *sample = &cpu->sample;
674 	int64_t core_pct;
675 
676 	core_pct = int_tofp(sample->aperf) * int_tofp(100);
677 	core_pct = div64_u64(core_pct, int_tofp(sample->mperf));
678 
679 	sample->freq = fp_toint(
680 		mul_fp(int_tofp(
681 			cpu->pstate.max_pstate * cpu->pstate.scaling / 100),
682 			core_pct));
683 
684 	sample->core_pct_busy = (int32_t)core_pct;
685 }
686 
687 static inline void intel_pstate_sample(struct cpudata *cpu)
688 {
689 	u64 aperf, mperf;
690 	unsigned long flags;
691 
692 	local_irq_save(flags);
693 	rdmsrl(MSR_IA32_APERF, aperf);
694 	rdmsrl(MSR_IA32_MPERF, mperf);
695 	local_irq_restore(flags);
696 
697 	cpu->last_sample_time = cpu->sample.time;
698 	cpu->sample.time = ktime_get();
699 	cpu->sample.aperf = aperf;
700 	cpu->sample.mperf = mperf;
701 	cpu->sample.aperf -= cpu->prev_aperf;
702 	cpu->sample.mperf -= cpu->prev_mperf;
703 
704 	intel_pstate_calc_busy(cpu);
705 
706 	cpu->prev_aperf = aperf;
707 	cpu->prev_mperf = mperf;
708 }
709 
710 static inline void intel_hwp_set_sample_time(struct cpudata *cpu)
711 {
712 	int delay;
713 
714 	delay = msecs_to_jiffies(50);
715 	mod_timer_pinned(&cpu->timer, jiffies + delay);
716 }
717 
718 static inline void intel_pstate_set_sample_time(struct cpudata *cpu)
719 {
720 	int delay;
721 
722 	delay = msecs_to_jiffies(pid_params.sample_rate_ms);
723 	mod_timer_pinned(&cpu->timer, jiffies + delay);
724 }
725 
726 static inline int32_t intel_pstate_get_scaled_busy(struct cpudata *cpu)
727 {
728 	int32_t core_busy, max_pstate, current_pstate, sample_ratio;
729 	u32 duration_us;
730 	u32 sample_time;
731 
732 	/*
733 	 * core_busy is the ratio of actual performance to max
734 	 * max_pstate is the max non turbo pstate available
735 	 * current_pstate was the pstate that was requested during
736 	 * 	the last sample period.
737 	 *
738 	 * We normalize core_busy, which was our actual percent
739 	 * performance to what we requested during the last sample
740 	 * period. The result will be a percentage of busy at a
741 	 * specified pstate.
742 	 */
743 	core_busy = cpu->sample.core_pct_busy;
744 	max_pstate = int_tofp(cpu->pstate.max_pstate);
745 	current_pstate = int_tofp(cpu->pstate.current_pstate);
746 	core_busy = mul_fp(core_busy, div_fp(max_pstate, current_pstate));
747 
748 	/*
749 	 * Since we have a deferred timer, it will not fire unless
750 	 * we are in C0.  So, determine if the actual elapsed time
751 	 * is significantly greater (3x) than our sample interval.  If it
752 	 * is, then we were idle for a long enough period of time
753 	 * to adjust our busyness.
754 	 */
755 	sample_time = pid_params.sample_rate_ms  * USEC_PER_MSEC;
756 	duration_us = (u32) ktime_us_delta(cpu->sample.time,
757 					   cpu->last_sample_time);
758 	if (duration_us > sample_time * 3) {
759 		sample_ratio = div_fp(int_tofp(sample_time),
760 				      int_tofp(duration_us));
761 		core_busy = mul_fp(core_busy, sample_ratio);
762 	}
763 
764 	return core_busy;
765 }
766 
767 static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
768 {
769 	int32_t busy_scaled;
770 	struct _pid *pid;
771 	signed int ctl;
772 
773 	pid = &cpu->pid;
774 	busy_scaled = intel_pstate_get_scaled_busy(cpu);
775 
776 	ctl = pid_calc(pid, busy_scaled);
777 
778 	/* Negative values of ctl increase the pstate and vice versa */
779 	intel_pstate_set_pstate(cpu, cpu->pstate.current_pstate - ctl);
780 }
781 
782 static void intel_hwp_timer_func(unsigned long __data)
783 {
784 	struct cpudata *cpu = (struct cpudata *) __data;
785 
786 	intel_pstate_sample(cpu);
787 	intel_hwp_set_sample_time(cpu);
788 }
789 
790 static void intel_pstate_timer_func(unsigned long __data)
791 {
792 	struct cpudata *cpu = (struct cpudata *) __data;
793 	struct sample *sample;
794 
795 	intel_pstate_sample(cpu);
796 
797 	sample = &cpu->sample;
798 
799 	intel_pstate_adjust_busy_pstate(cpu);
800 
801 	trace_pstate_sample(fp_toint(sample->core_pct_busy),
802 			fp_toint(intel_pstate_get_scaled_busy(cpu)),
803 			cpu->pstate.current_pstate,
804 			sample->mperf,
805 			sample->aperf,
806 			sample->freq);
807 
808 	intel_pstate_set_sample_time(cpu);
809 }
810 
811 #define ICPU(model, policy) \
812 	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
813 			(unsigned long)&policy }
814 
815 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
816 	ICPU(0x2a, core_params),
817 	ICPU(0x2d, core_params),
818 	ICPU(0x37, byt_params),
819 	ICPU(0x3a, core_params),
820 	ICPU(0x3c, core_params),
821 	ICPU(0x3d, core_params),
822 	ICPU(0x3e, core_params),
823 	ICPU(0x3f, core_params),
824 	ICPU(0x45, core_params),
825 	ICPU(0x46, core_params),
826 	ICPU(0x47, core_params),
827 	ICPU(0x4c, byt_params),
828 	ICPU(0x4f, core_params),
829 	ICPU(0x56, core_params),
830 	{}
831 };
832 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
833 
834 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] = {
835 	ICPU(0x56, core_params),
836 	{}
837 };
838 
839 static int intel_pstate_init_cpu(unsigned int cpunum)
840 {
841 	struct cpudata *cpu;
842 
843 	if (!all_cpu_data[cpunum])
844 		all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata),
845 					       GFP_KERNEL);
846 	if (!all_cpu_data[cpunum])
847 		return -ENOMEM;
848 
849 	cpu = all_cpu_data[cpunum];
850 
851 	cpu->cpu = cpunum;
852 	intel_pstate_get_cpu_pstates(cpu);
853 
854 	init_timer_deferrable(&cpu->timer);
855 	cpu->timer.data = (unsigned long)cpu;
856 	cpu->timer.expires = jiffies + HZ/100;
857 
858 	if (!hwp_active)
859 		cpu->timer.function = intel_pstate_timer_func;
860 	else
861 		cpu->timer.function = intel_hwp_timer_func;
862 
863 	intel_pstate_busy_pid_reset(cpu);
864 	intel_pstate_sample(cpu);
865 
866 	add_timer_on(&cpu->timer, cpunum);
867 
868 	pr_debug("Intel pstate controlling: cpu %d\n", cpunum);
869 
870 	return 0;
871 }
872 
873 static unsigned int intel_pstate_get(unsigned int cpu_num)
874 {
875 	struct sample *sample;
876 	struct cpudata *cpu;
877 
878 	cpu = all_cpu_data[cpu_num];
879 	if (!cpu)
880 		return 0;
881 	sample = &cpu->sample;
882 	return sample->freq;
883 }
884 
885 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
886 {
887 	if (!policy->cpuinfo.max_freq)
888 		return -ENODEV;
889 
890 	if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) {
891 		limits.min_perf_pct = 100;
892 		limits.min_perf = int_tofp(1);
893 		limits.max_policy_pct = 100;
894 		limits.max_perf_pct = 100;
895 		limits.max_perf = int_tofp(1);
896 		limits.no_turbo = 0;
897 		return 0;
898 	}
899 
900 	limits.min_perf_pct = (policy->min * 100) / policy->cpuinfo.max_freq;
901 	limits.min_perf_pct = clamp_t(int, limits.min_perf_pct, 0 , 100);
902 	limits.min_perf = div_fp(int_tofp(limits.min_perf_pct), int_tofp(100));
903 
904 	limits.max_policy_pct = (policy->max * 100) / policy->cpuinfo.max_freq;
905 	limits.max_policy_pct = clamp_t(int, limits.max_policy_pct, 0 , 100);
906 	limits.max_perf_pct = min(limits.max_policy_pct, limits.max_sysfs_pct);
907 	limits.max_perf = div_fp(int_tofp(limits.max_perf_pct), int_tofp(100));
908 
909 	if (hwp_active)
910 		intel_pstate_hwp_set();
911 
912 	return 0;
913 }
914 
915 static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
916 {
917 	cpufreq_verify_within_cpu_limits(policy);
918 
919 	if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
920 	    policy->policy != CPUFREQ_POLICY_PERFORMANCE)
921 		return -EINVAL;
922 
923 	return 0;
924 }
925 
926 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
927 {
928 	int cpu_num = policy->cpu;
929 	struct cpudata *cpu = all_cpu_data[cpu_num];
930 
931 	pr_info("intel_pstate CPU %d exiting\n", cpu_num);
932 
933 	del_timer_sync(&all_cpu_data[cpu_num]->timer);
934 	if (hwp_active)
935 		return;
936 
937 	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
938 }
939 
940 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
941 {
942 	struct cpudata *cpu;
943 	int rc;
944 
945 	rc = intel_pstate_init_cpu(policy->cpu);
946 	if (rc)
947 		return rc;
948 
949 	cpu = all_cpu_data[policy->cpu];
950 
951 	if (limits.min_perf_pct == 100 && limits.max_perf_pct == 100)
952 		policy->policy = CPUFREQ_POLICY_PERFORMANCE;
953 	else
954 		policy->policy = CPUFREQ_POLICY_POWERSAVE;
955 
956 	policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
957 	policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
958 
959 	/* cpuinfo and default policy values */
960 	policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
961 	policy->cpuinfo.max_freq =
962 		cpu->pstate.turbo_pstate * cpu->pstate.scaling;
963 	policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
964 	cpumask_set_cpu(policy->cpu, policy->cpus);
965 
966 	return 0;
967 }
968 
969 static struct cpufreq_driver intel_pstate_driver = {
970 	.flags		= CPUFREQ_CONST_LOOPS,
971 	.verify		= intel_pstate_verify_policy,
972 	.setpolicy	= intel_pstate_set_policy,
973 	.get		= intel_pstate_get,
974 	.init		= intel_pstate_cpu_init,
975 	.stop_cpu	= intel_pstate_stop_cpu,
976 	.name		= "intel_pstate",
977 };
978 
979 static int __initdata no_load;
980 static int __initdata no_hwp;
981 static unsigned int force_load;
982 
983 static int intel_pstate_msrs_not_valid(void)
984 {
985 	/* Check that all the msr's we are using are valid. */
986 	u64 aperf, mperf, tmp;
987 
988 	rdmsrl(MSR_IA32_APERF, aperf);
989 	rdmsrl(MSR_IA32_MPERF, mperf);
990 
991 	if (!pstate_funcs.get_max() ||
992 	    !pstate_funcs.get_min() ||
993 	    !pstate_funcs.get_turbo())
994 		return -ENODEV;
995 
996 	rdmsrl(MSR_IA32_APERF, tmp);
997 	if (!(tmp - aperf))
998 		return -ENODEV;
999 
1000 	rdmsrl(MSR_IA32_MPERF, tmp);
1001 	if (!(tmp - mperf))
1002 		return -ENODEV;
1003 
1004 	return 0;
1005 }
1006 
1007 static void copy_pid_params(struct pstate_adjust_policy *policy)
1008 {
1009 	pid_params.sample_rate_ms = policy->sample_rate_ms;
1010 	pid_params.p_gain_pct = policy->p_gain_pct;
1011 	pid_params.i_gain_pct = policy->i_gain_pct;
1012 	pid_params.d_gain_pct = policy->d_gain_pct;
1013 	pid_params.deadband = policy->deadband;
1014 	pid_params.setpoint = policy->setpoint;
1015 }
1016 
1017 static void copy_cpu_funcs(struct pstate_funcs *funcs)
1018 {
1019 	pstate_funcs.get_max   = funcs->get_max;
1020 	pstate_funcs.get_min   = funcs->get_min;
1021 	pstate_funcs.get_turbo = funcs->get_turbo;
1022 	pstate_funcs.get_scaling = funcs->get_scaling;
1023 	pstate_funcs.set       = funcs->set;
1024 	pstate_funcs.get_vid   = funcs->get_vid;
1025 }
1026 
1027 #if IS_ENABLED(CONFIG_ACPI)
1028 #include <acpi/processor.h>
1029 
1030 static bool intel_pstate_no_acpi_pss(void)
1031 {
1032 	int i;
1033 
1034 	for_each_possible_cpu(i) {
1035 		acpi_status status;
1036 		union acpi_object *pss;
1037 		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
1038 		struct acpi_processor *pr = per_cpu(processors, i);
1039 
1040 		if (!pr)
1041 			continue;
1042 
1043 		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
1044 		if (ACPI_FAILURE(status))
1045 			continue;
1046 
1047 		pss = buffer.pointer;
1048 		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
1049 			kfree(pss);
1050 			return false;
1051 		}
1052 
1053 		kfree(pss);
1054 	}
1055 
1056 	return true;
1057 }
1058 
1059 static bool intel_pstate_has_acpi_ppc(void)
1060 {
1061 	int i;
1062 
1063 	for_each_possible_cpu(i) {
1064 		struct acpi_processor *pr = per_cpu(processors, i);
1065 
1066 		if (!pr)
1067 			continue;
1068 		if (acpi_has_method(pr->handle, "_PPC"))
1069 			return true;
1070 	}
1071 	return false;
1072 }
1073 
1074 enum {
1075 	PSS,
1076 	PPC,
1077 };
1078 
1079 struct hw_vendor_info {
1080 	u16  valid;
1081 	char oem_id[ACPI_OEM_ID_SIZE];
1082 	char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
1083 	int  oem_pwr_table;
1084 };
1085 
1086 /* Hardware vendor-specific info that has its own power management modes */
1087 static struct hw_vendor_info vendor_info[] = {
1088 	{1, "HP    ", "ProLiant", PSS},
1089 	{1, "ORACLE", "X4-2    ", PPC},
1090 	{1, "ORACLE", "X4-2L   ", PPC},
1091 	{1, "ORACLE", "X4-2B   ", PPC},
1092 	{1, "ORACLE", "X3-2    ", PPC},
1093 	{1, "ORACLE", "X3-2L   ", PPC},
1094 	{1, "ORACLE", "X3-2B   ", PPC},
1095 	{1, "ORACLE", "X4470M2 ", PPC},
1096 	{1, "ORACLE", "X4270M3 ", PPC},
1097 	{1, "ORACLE", "X4270M2 ", PPC},
1098 	{1, "ORACLE", "X4170M2 ", PPC},
1099 	{0, "", ""},
1100 };
1101 
1102 static bool intel_pstate_platform_pwr_mgmt_exists(void)
1103 {
1104 	struct acpi_table_header hdr;
1105 	struct hw_vendor_info *v_info;
1106 	const struct x86_cpu_id *id;
1107 	u64 misc_pwr;
1108 
1109 	id = x86_match_cpu(intel_pstate_cpu_oob_ids);
1110 	if (id) {
1111 		rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
1112 		if ( misc_pwr & (1 << 8))
1113 			return true;
1114 	}
1115 
1116 	if (acpi_disabled ||
1117 	    ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
1118 		return false;
1119 
1120 	for (v_info = vendor_info; v_info->valid; v_info++) {
1121 		if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
1122 			!strncmp(hdr.oem_table_id, v_info->oem_table_id,
1123 						ACPI_OEM_TABLE_ID_SIZE))
1124 			switch (v_info->oem_pwr_table) {
1125 			case PSS:
1126 				return intel_pstate_no_acpi_pss();
1127 			case PPC:
1128 				return intel_pstate_has_acpi_ppc() &&
1129 					(!force_load);
1130 			}
1131 	}
1132 
1133 	return false;
1134 }
1135 #else /* CONFIG_ACPI not enabled */
1136 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
1137 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
1138 #endif /* CONFIG_ACPI */
1139 
1140 static int __init intel_pstate_init(void)
1141 {
1142 	int cpu, rc = 0;
1143 	const struct x86_cpu_id *id;
1144 	struct cpu_defaults *cpu_info;
1145 	struct cpuinfo_x86 *c = &boot_cpu_data;
1146 
1147 	if (no_load)
1148 		return -ENODEV;
1149 
1150 	id = x86_match_cpu(intel_pstate_cpu_ids);
1151 	if (!id)
1152 		return -ENODEV;
1153 
1154 	/*
1155 	 * The Intel pstate driver will be ignored if the platform
1156 	 * firmware has its own power management modes.
1157 	 */
1158 	if (intel_pstate_platform_pwr_mgmt_exists())
1159 		return -ENODEV;
1160 
1161 	cpu_info = (struct cpu_defaults *)id->driver_data;
1162 
1163 	copy_pid_params(&cpu_info->pid_policy);
1164 	copy_cpu_funcs(&cpu_info->funcs);
1165 
1166 	if (intel_pstate_msrs_not_valid())
1167 		return -ENODEV;
1168 
1169 	pr_info("Intel P-state driver initializing.\n");
1170 
1171 	all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
1172 	if (!all_cpu_data)
1173 		return -ENOMEM;
1174 
1175 	if (cpu_has(c,X86_FEATURE_HWP) && !no_hwp)
1176 		intel_pstate_hwp_enable();
1177 
1178 	rc = cpufreq_register_driver(&intel_pstate_driver);
1179 	if (rc)
1180 		goto out;
1181 
1182 	intel_pstate_debug_expose_params();
1183 	intel_pstate_sysfs_expose_params();
1184 
1185 	return rc;
1186 out:
1187 	get_online_cpus();
1188 	for_each_online_cpu(cpu) {
1189 		if (all_cpu_data[cpu]) {
1190 			del_timer_sync(&all_cpu_data[cpu]->timer);
1191 			kfree(all_cpu_data[cpu]);
1192 		}
1193 	}
1194 
1195 	put_online_cpus();
1196 	vfree(all_cpu_data);
1197 	return -ENODEV;
1198 }
1199 device_initcall(intel_pstate_init);
1200 
1201 static int __init intel_pstate_setup(char *str)
1202 {
1203 	if (!str)
1204 		return -EINVAL;
1205 
1206 	if (!strcmp(str, "disable"))
1207 		no_load = 1;
1208 	if (!strcmp(str, "no_hwp"))
1209 		no_hwp = 1;
1210 	if (!strcmp(str, "force"))
1211 		force_load = 1;
1212 	return 0;
1213 }
1214 early_param("intel_pstate", intel_pstate_setup);
1215 
1216 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
1217 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
1218 MODULE_LICENSE("GPL");
1219