1 /*
2  * intel_pstate.c: Native P state management for Intel processors
3  *
4  * (C) Copyright 2012 Intel Corporation
5  * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; version 2
10  * of the License.
11  */
12 
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 
15 #include <linux/kernel.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/module.h>
18 #include <linux/ktime.h>
19 #include <linux/hrtimer.h>
20 #include <linux/tick.h>
21 #include <linux/slab.h>
22 #include <linux/sched/cpufreq.h>
23 #include <linux/list.h>
24 #include <linux/cpu.h>
25 #include <linux/cpufreq.h>
26 #include <linux/sysfs.h>
27 #include <linux/types.h>
28 #include <linux/fs.h>
29 #include <linux/debugfs.h>
30 #include <linux/acpi.h>
31 #include <linux/vmalloc.h>
32 #include <trace/events/power.h>
33 
34 #include <asm/div64.h>
35 #include <asm/msr.h>
36 #include <asm/cpu_device_id.h>
37 #include <asm/cpufeature.h>
38 #include <asm/intel-family.h>
39 
40 #define INTEL_CPUFREQ_TRANSITION_LATENCY	20000
41 
42 #ifdef CONFIG_ACPI
43 #include <acpi/processor.h>
44 #include <acpi/cppc_acpi.h>
45 #endif
46 
47 #define FRAC_BITS 8
48 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
49 #define fp_toint(X) ((X) >> FRAC_BITS)
50 
51 #define EXT_BITS 6
52 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
53 #define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
54 #define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
55 
56 static inline int32_t mul_fp(int32_t x, int32_t y)
57 {
58 	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
59 }
60 
61 static inline int32_t div_fp(s64 x, s64 y)
62 {
63 	return div64_s64((int64_t)x << FRAC_BITS, y);
64 }
65 
66 static inline int ceiling_fp(int32_t x)
67 {
68 	int mask, ret;
69 
70 	ret = fp_toint(x);
71 	mask = (1 << FRAC_BITS) - 1;
72 	if (x & mask)
73 		ret += 1;
74 	return ret;
75 }
76 
77 static inline u64 mul_ext_fp(u64 x, u64 y)
78 {
79 	return (x * y) >> EXT_FRAC_BITS;
80 }
81 
82 static inline u64 div_ext_fp(u64 x, u64 y)
83 {
84 	return div64_u64(x << EXT_FRAC_BITS, y);
85 }
86 
87 static inline int32_t percent_ext_fp(int percent)
88 {
89 	return div_ext_fp(percent, 100);
90 }
91 
92 /**
93  * struct sample -	Store performance sample
94  * @core_avg_perf:	Ratio of APERF/MPERF which is the actual average
95  *			performance during last sample period
96  * @busy_scaled:	Scaled busy value which is used to calculate next
97  *			P state. This can be different than core_avg_perf
98  *			to account for cpu idle period
99  * @aperf:		Difference of actual performance frequency clock count
100  *			read from APERF MSR between last and current sample
101  * @mperf:		Difference of maximum performance frequency clock count
102  *			read from MPERF MSR between last and current sample
103  * @tsc:		Difference of time stamp counter between last and
104  *			current sample
105  * @time:		Current time from scheduler
106  *
107  * This structure is used in the cpudata structure to store performance sample
108  * data for choosing next P State.
109  */
110 struct sample {
111 	int32_t core_avg_perf;
112 	int32_t busy_scaled;
113 	u64 aperf;
114 	u64 mperf;
115 	u64 tsc;
116 	u64 time;
117 };
118 
119 /**
120  * struct pstate_data - Store P state data
121  * @current_pstate:	Current requested P state
122  * @min_pstate:		Min P state possible for this platform
123  * @max_pstate:		Max P state possible for this platform
124  * @max_pstate_physical:This is physical Max P state for a processor
125  *			This can be higher than the max_pstate which can
126  *			be limited by platform thermal design power limits
127  * @scaling:		Scaling factor to  convert frequency to cpufreq
128  *			frequency units
129  * @turbo_pstate:	Max Turbo P state possible for this platform
130  * @max_freq:		@max_pstate frequency in cpufreq units
131  * @turbo_freq:		@turbo_pstate frequency in cpufreq units
132  *
133  * Stores the per cpu model P state limits and current P state.
134  */
135 struct pstate_data {
136 	int	current_pstate;
137 	int	min_pstate;
138 	int	max_pstate;
139 	int	max_pstate_physical;
140 	int	scaling;
141 	int	turbo_pstate;
142 	unsigned int max_freq;
143 	unsigned int turbo_freq;
144 };
145 
146 /**
147  * struct vid_data -	Stores voltage information data
148  * @min:		VID data for this platform corresponding to
149  *			the lowest P state
150  * @max:		VID data corresponding to the highest P State.
151  * @turbo:		VID data for turbo P state
152  * @ratio:		Ratio of (vid max - vid min) /
153  *			(max P state - Min P State)
154  *
155  * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
156  * This data is used in Atom platforms, where in addition to target P state,
157  * the voltage data needs to be specified to select next P State.
158  */
159 struct vid_data {
160 	int min;
161 	int max;
162 	int turbo;
163 	int32_t ratio;
164 };
165 
166 /**
167  * struct _pid -	Stores PID data
168  * @setpoint:		Target set point for busyness or performance
169  * @integral:		Storage for accumulated error values
170  * @p_gain:		PID proportional gain
171  * @i_gain:		PID integral gain
172  * @d_gain:		PID derivative gain
173  * @deadband:		PID deadband
174  * @last_err:		Last error storage for integral part of PID calculation
175  *
176  * Stores PID coefficients and last error for PID controller.
177  */
178 struct _pid {
179 	int setpoint;
180 	int32_t integral;
181 	int32_t p_gain;
182 	int32_t i_gain;
183 	int32_t d_gain;
184 	int deadband;
185 	int32_t last_err;
186 };
187 
188 /**
189  * struct perf_limits - Store user and policy limits
190  * @max_perf:		This is a scaled value between 0 to 255 for max_perf_pct
191  *			This value is used to limit max pstate
192  * @min_perf:		This is a scaled value between 0 to 255 for min_perf_pct
193  *			This value is used to limit min pstate
194  *
195  * Storage for policy defined limits.
196  */
197 struct perf_limits {
198 	int32_t max_perf;
199 	int32_t min_perf;
200 };
201 
202 /**
203  * struct global_params - Global parameters, mostly tunable via sysfs.
204  * @no_turbo:		Whether or not to use turbo P-states.
205  * @turbo_disabled:	Whethet or not turbo P-states are available at all,
206  *			based on the MSR_IA32_MISC_ENABLE value and whether or
207  *			not the maximum reported turbo P-state is different from
208  *			the maximum reported non-turbo one.
209  * @min_perf_pct:	Minimum capacity limit in percent of the maximum turbo
210  *			P-state capacity.
211  * @max_perf_pct:	Maximum capacity limit in percent of the maximum turbo
212  *			P-state capacity.
213  */
214 struct global_params {
215 	bool no_turbo;
216 	bool turbo_disabled;
217 	int max_perf_pct;
218 	int min_perf_pct;
219 };
220 
221 /**
222  * struct cpudata -	Per CPU instance data storage
223  * @cpu:		CPU number for this instance data
224  * @policy:		CPUFreq policy value
225  * @update_util:	CPUFreq utility callback information
226  * @update_util_set:	CPUFreq utility callback is set
227  * @iowait_boost:	iowait-related boost fraction
228  * @last_update:	Time of the last update.
229  * @pstate:		Stores P state limits for this CPU
230  * @vid:		Stores VID limits for this CPU
231  * @pid:		Stores PID parameters for this CPU
232  * @last_sample_time:	Last Sample time
233  * @prev_aperf:		Last APERF value read from APERF MSR
234  * @prev_mperf:		Last MPERF value read from MPERF MSR
235  * @prev_tsc:		Last timestamp counter (TSC) value
236  * @prev_cummulative_iowait: IO Wait time difference from last and
237  *			current sample
238  * @sample:		Storage for storing last Sample data
239  * @perf_limits:	Capacity limits unique to this CPU
240  * @acpi_perf_data:	Stores ACPI perf information read from _PSS
241  * @valid_pss_table:	Set to true for valid ACPI _PSS entries found
242  * @epp_powersave:	Last saved HWP energy performance preference
243  *			(EPP) or energy performance bias (EPB),
244  *			when policy switched to performance
245  * @epp_policy:		Last saved policy used to set EPP/EPB
246  * @epp_default:	Power on default HWP energy performance
247  *			preference/bias
248  * @epp_saved:		Saved EPP/EPB during system suspend or CPU offline
249  *			operation
250  *
251  * This structure stores per CPU instance data for all CPUs.
252  */
253 struct cpudata {
254 	int cpu;
255 
256 	unsigned int policy;
257 	struct update_util_data update_util;
258 	bool   update_util_set;
259 
260 	struct pstate_data pstate;
261 	struct vid_data vid;
262 	struct _pid pid;
263 
264 	u64	last_update;
265 	u64	last_sample_time;
266 	u64	prev_aperf;
267 	u64	prev_mperf;
268 	u64	prev_tsc;
269 	u64	prev_cummulative_iowait;
270 	struct sample sample;
271 	struct perf_limits perf_limits;
272 #ifdef CONFIG_ACPI
273 	struct acpi_processor_performance acpi_perf_data;
274 	bool valid_pss_table;
275 #endif
276 	unsigned int iowait_boost;
277 	s16 epp_powersave;
278 	s16 epp_policy;
279 	s16 epp_default;
280 	s16 epp_saved;
281 };
282 
283 static struct cpudata **all_cpu_data;
284 
285 /**
286  * struct pstate_adjust_policy - Stores static PID configuration data
287  * @sample_rate_ms:	PID calculation sample rate in ms
288  * @sample_rate_ns:	Sample rate calculation in ns
289  * @deadband:		PID deadband
290  * @setpoint:		PID Setpoint
291  * @p_gain_pct:		PID proportional gain
292  * @i_gain_pct:		PID integral gain
293  * @d_gain_pct:		PID derivative gain
294  *
295  * Stores per CPU model static PID configuration data.
296  */
297 struct pstate_adjust_policy {
298 	int sample_rate_ms;
299 	s64 sample_rate_ns;
300 	int deadband;
301 	int setpoint;
302 	int p_gain_pct;
303 	int d_gain_pct;
304 	int i_gain_pct;
305 };
306 
307 /**
308  * struct pstate_funcs - Per CPU model specific callbacks
309  * @get_max:		Callback to get maximum non turbo effective P state
310  * @get_max_physical:	Callback to get maximum non turbo physical P state
311  * @get_min:		Callback to get minimum P state
312  * @get_turbo:		Callback to get turbo P state
313  * @get_scaling:	Callback to get frequency scaling factor
314  * @get_val:		Callback to convert P state to actual MSR write value
315  * @get_vid:		Callback to get VID data for Atom platforms
316  * @get_target_pstate:	Callback to a function to calculate next P state to use
317  *
318  * Core and Atom CPU models have different way to get P State limits. This
319  * structure is used to store those callbacks.
320  */
321 struct pstate_funcs {
322 	int (*get_max)(void);
323 	int (*get_max_physical)(void);
324 	int (*get_min)(void);
325 	int (*get_turbo)(void);
326 	int (*get_scaling)(void);
327 	u64 (*get_val)(struct cpudata*, int pstate);
328 	void (*get_vid)(struct cpudata *);
329 	int32_t (*get_target_pstate)(struct cpudata *);
330 };
331 
332 /**
333  * struct cpu_defaults- Per CPU model default config data
334  * @pid_policy:	PID config data
335  * @funcs:		Callback function data
336  */
337 struct cpu_defaults {
338 	struct pstate_adjust_policy pid_policy;
339 	struct pstate_funcs funcs;
340 };
341 
342 static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu);
343 static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu);
344 
345 static struct pstate_adjust_policy pid_params __read_mostly;
346 static struct pstate_funcs pstate_funcs __read_mostly;
347 static int hwp_active __read_mostly;
348 static bool per_cpu_limits __read_mostly;
349 
350 static bool driver_registered __read_mostly;
351 
352 #ifdef CONFIG_ACPI
353 static bool acpi_ppc;
354 #endif
355 
356 static struct global_params global;
357 
358 static DEFINE_MUTEX(intel_pstate_driver_lock);
359 static DEFINE_MUTEX(intel_pstate_limits_lock);
360 
361 #ifdef CONFIG_ACPI
362 
363 static bool intel_pstate_get_ppc_enable_status(void)
364 {
365 	if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
366 	    acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
367 		return true;
368 
369 	return acpi_ppc;
370 }
371 
372 #ifdef CONFIG_ACPI_CPPC_LIB
373 
374 /* The work item is needed to avoid CPU hotplug locking issues */
375 static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
376 {
377 	sched_set_itmt_support();
378 }
379 
380 static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);
381 
382 static void intel_pstate_set_itmt_prio(int cpu)
383 {
384 	struct cppc_perf_caps cppc_perf;
385 	static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
386 	int ret;
387 
388 	ret = cppc_get_perf_caps(cpu, &cppc_perf);
389 	if (ret)
390 		return;
391 
392 	/*
393 	 * The priorities can be set regardless of whether or not
394 	 * sched_set_itmt_support(true) has been called and it is valid to
395 	 * update them at any time after it has been called.
396 	 */
397 	sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);
398 
399 	if (max_highest_perf <= min_highest_perf) {
400 		if (cppc_perf.highest_perf > max_highest_perf)
401 			max_highest_perf = cppc_perf.highest_perf;
402 
403 		if (cppc_perf.highest_perf < min_highest_perf)
404 			min_highest_perf = cppc_perf.highest_perf;
405 
406 		if (max_highest_perf > min_highest_perf) {
407 			/*
408 			 * This code can be run during CPU online under the
409 			 * CPU hotplug locks, so sched_set_itmt_support()
410 			 * cannot be called from here.  Queue up a work item
411 			 * to invoke it.
412 			 */
413 			schedule_work(&sched_itmt_work);
414 		}
415 	}
416 }
417 #else
418 static void intel_pstate_set_itmt_prio(int cpu)
419 {
420 }
421 #endif
422 
423 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
424 {
425 	struct cpudata *cpu;
426 	int ret;
427 	int i;
428 
429 	if (hwp_active) {
430 		intel_pstate_set_itmt_prio(policy->cpu);
431 		return;
432 	}
433 
434 	if (!intel_pstate_get_ppc_enable_status())
435 		return;
436 
437 	cpu = all_cpu_data[policy->cpu];
438 
439 	ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
440 						  policy->cpu);
441 	if (ret)
442 		return;
443 
444 	/*
445 	 * Check if the control value in _PSS is for PERF_CTL MSR, which should
446 	 * guarantee that the states returned by it map to the states in our
447 	 * list directly.
448 	 */
449 	if (cpu->acpi_perf_data.control_register.space_id !=
450 						ACPI_ADR_SPACE_FIXED_HARDWARE)
451 		goto err;
452 
453 	/*
454 	 * If there is only one entry _PSS, simply ignore _PSS and continue as
455 	 * usual without taking _PSS into account
456 	 */
457 	if (cpu->acpi_perf_data.state_count < 2)
458 		goto err;
459 
460 	pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
461 	for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
462 		pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
463 			 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
464 			 (u32) cpu->acpi_perf_data.states[i].core_frequency,
465 			 (u32) cpu->acpi_perf_data.states[i].power,
466 			 (u32) cpu->acpi_perf_data.states[i].control);
467 	}
468 
469 	/*
470 	 * The _PSS table doesn't contain whole turbo frequency range.
471 	 * This just contains +1 MHZ above the max non turbo frequency,
472 	 * with control value corresponding to max turbo ratio. But
473 	 * when cpufreq set policy is called, it will call with this
474 	 * max frequency, which will cause a reduced performance as
475 	 * this driver uses real max turbo frequency as the max
476 	 * frequency. So correct this frequency in _PSS table to
477 	 * correct max turbo frequency based on the turbo state.
478 	 * Also need to convert to MHz as _PSS freq is in MHz.
479 	 */
480 	if (!global.turbo_disabled)
481 		cpu->acpi_perf_data.states[0].core_frequency =
482 					policy->cpuinfo.max_freq / 1000;
483 	cpu->valid_pss_table = true;
484 	pr_debug("_PPC limits will be enforced\n");
485 
486 	return;
487 
488  err:
489 	cpu->valid_pss_table = false;
490 	acpi_processor_unregister_performance(policy->cpu);
491 }
492 
493 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
494 {
495 	struct cpudata *cpu;
496 
497 	cpu = all_cpu_data[policy->cpu];
498 	if (!cpu->valid_pss_table)
499 		return;
500 
501 	acpi_processor_unregister_performance(policy->cpu);
502 }
503 #else
504 static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
505 {
506 }
507 
508 static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
509 {
510 }
511 #endif
512 
513 static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
514 			     int deadband, int integral) {
515 	pid->setpoint = int_tofp(setpoint);
516 	pid->deadband  = int_tofp(deadband);
517 	pid->integral  = int_tofp(integral);
518 	pid->last_err  = int_tofp(setpoint) - int_tofp(busy);
519 }
520 
521 static inline void pid_p_gain_set(struct _pid *pid, int percent)
522 {
523 	pid->p_gain = div_fp(percent, 100);
524 }
525 
526 static inline void pid_i_gain_set(struct _pid *pid, int percent)
527 {
528 	pid->i_gain = div_fp(percent, 100);
529 }
530 
531 static inline void pid_d_gain_set(struct _pid *pid, int percent)
532 {
533 	pid->d_gain = div_fp(percent, 100);
534 }
535 
536 static signed int pid_calc(struct _pid *pid, int32_t busy)
537 {
538 	signed int result;
539 	int32_t pterm, dterm, fp_error;
540 	int32_t integral_limit;
541 
542 	fp_error = pid->setpoint - busy;
543 
544 	if (abs(fp_error) <= pid->deadband)
545 		return 0;
546 
547 	pterm = mul_fp(pid->p_gain, fp_error);
548 
549 	pid->integral += fp_error;
550 
551 	/*
552 	 * We limit the integral here so that it will never
553 	 * get higher than 30.  This prevents it from becoming
554 	 * too large an input over long periods of time and allows
555 	 * it to get factored out sooner.
556 	 *
557 	 * The value of 30 was chosen through experimentation.
558 	 */
559 	integral_limit = int_tofp(30);
560 	if (pid->integral > integral_limit)
561 		pid->integral = integral_limit;
562 	if (pid->integral < -integral_limit)
563 		pid->integral = -integral_limit;
564 
565 	dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
566 	pid->last_err = fp_error;
567 
568 	result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
569 	result = result + (1 << (FRAC_BITS-1));
570 	return (signed int)fp_toint(result);
571 }
572 
573 static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
574 {
575 	pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
576 	pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
577 	pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
578 
579 	pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
580 }
581 
582 static inline void intel_pstate_reset_all_pid(void)
583 {
584 	unsigned int cpu;
585 
586 	for_each_online_cpu(cpu) {
587 		if (all_cpu_data[cpu])
588 			intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
589 	}
590 }
591 
592 static inline void update_turbo_state(void)
593 {
594 	u64 misc_en;
595 	struct cpudata *cpu;
596 
597 	cpu = all_cpu_data[0];
598 	rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
599 	global.turbo_disabled =
600 		(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
601 		 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
602 }
603 
604 static int min_perf_pct_min(void)
605 {
606 	struct cpudata *cpu = all_cpu_data[0];
607 
608 	return DIV_ROUND_UP(cpu->pstate.min_pstate * 100,
609 			    cpu->pstate.turbo_pstate);
610 }
611 
612 static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
613 {
614 	u64 epb;
615 	int ret;
616 
617 	if (!static_cpu_has(X86_FEATURE_EPB))
618 		return -ENXIO;
619 
620 	ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
621 	if (ret)
622 		return (s16)ret;
623 
624 	return (s16)(epb & 0x0f);
625 }
626 
627 static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
628 {
629 	s16 epp;
630 
631 	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
632 		/*
633 		 * When hwp_req_data is 0, means that caller didn't read
634 		 * MSR_HWP_REQUEST, so need to read and get EPP.
635 		 */
636 		if (!hwp_req_data) {
637 			epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
638 					    &hwp_req_data);
639 			if (epp)
640 				return epp;
641 		}
642 		epp = (hwp_req_data >> 24) & 0xff;
643 	} else {
644 		/* When there is no EPP present, HWP uses EPB settings */
645 		epp = intel_pstate_get_epb(cpu_data);
646 	}
647 
648 	return epp;
649 }
650 
651 static int intel_pstate_set_epb(int cpu, s16 pref)
652 {
653 	u64 epb;
654 	int ret;
655 
656 	if (!static_cpu_has(X86_FEATURE_EPB))
657 		return -ENXIO;
658 
659 	ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
660 	if (ret)
661 		return ret;
662 
663 	epb = (epb & ~0x0f) | pref;
664 	wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
665 
666 	return 0;
667 }
668 
669 /*
670  * EPP/EPB display strings corresponding to EPP index in the
671  * energy_perf_strings[]
672  *	index		String
673  *-------------------------------------
674  *	0		default
675  *	1		performance
676  *	2		balance_performance
677  *	3		balance_power
678  *	4		power
679  */
680 static const char * const energy_perf_strings[] = {
681 	"default",
682 	"performance",
683 	"balance_performance",
684 	"balance_power",
685 	"power",
686 	NULL
687 };
688 
689 static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data)
690 {
691 	s16 epp;
692 	int index = -EINVAL;
693 
694 	epp = intel_pstate_get_epp(cpu_data, 0);
695 	if (epp < 0)
696 		return epp;
697 
698 	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
699 		/*
700 		 * Range:
701 		 *	0x00-0x3F	:	Performance
702 		 *	0x40-0x7F	:	Balance performance
703 		 *	0x80-0xBF	:	Balance power
704 		 *	0xC0-0xFF	:	Power
705 		 * The EPP is a 8 bit value, but our ranges restrict the
706 		 * value which can be set. Here only using top two bits
707 		 * effectively.
708 		 */
709 		index = (epp >> 6) + 1;
710 	} else if (static_cpu_has(X86_FEATURE_EPB)) {
711 		/*
712 		 * Range:
713 		 *	0x00-0x03	:	Performance
714 		 *	0x04-0x07	:	Balance performance
715 		 *	0x08-0x0B	:	Balance power
716 		 *	0x0C-0x0F	:	Power
717 		 * The EPB is a 4 bit value, but our ranges restrict the
718 		 * value which can be set. Here only using top two bits
719 		 * effectively.
720 		 */
721 		index = (epp >> 2) + 1;
722 	}
723 
724 	return index;
725 }
726 
727 static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
728 					      int pref_index)
729 {
730 	int epp = -EINVAL;
731 	int ret;
732 
733 	if (!pref_index)
734 		epp = cpu_data->epp_default;
735 
736 	mutex_lock(&intel_pstate_limits_lock);
737 
738 	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
739 		u64 value;
740 
741 		ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, &value);
742 		if (ret)
743 			goto return_pref;
744 
745 		value &= ~GENMASK_ULL(31, 24);
746 
747 		/*
748 		 * If epp is not default, convert from index into
749 		 * energy_perf_strings to epp value, by shifting 6
750 		 * bits left to use only top two bits in epp.
751 		 * The resultant epp need to shifted by 24 bits to
752 		 * epp position in MSR_HWP_REQUEST.
753 		 */
754 		if (epp == -EINVAL)
755 			epp = (pref_index - 1) << 6;
756 
757 		value |= (u64)epp << 24;
758 		ret = wrmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, value);
759 	} else {
760 		if (epp == -EINVAL)
761 			epp = (pref_index - 1) << 2;
762 		ret = intel_pstate_set_epb(cpu_data->cpu, epp);
763 	}
764 return_pref:
765 	mutex_unlock(&intel_pstate_limits_lock);
766 
767 	return ret;
768 }
769 
770 static ssize_t show_energy_performance_available_preferences(
771 				struct cpufreq_policy *policy, char *buf)
772 {
773 	int i = 0;
774 	int ret = 0;
775 
776 	while (energy_perf_strings[i] != NULL)
777 		ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);
778 
779 	ret += sprintf(&buf[ret], "\n");
780 
781 	return ret;
782 }
783 
784 cpufreq_freq_attr_ro(energy_performance_available_preferences);
785 
786 static ssize_t store_energy_performance_preference(
787 		struct cpufreq_policy *policy, const char *buf, size_t count)
788 {
789 	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
790 	char str_preference[21];
791 	int ret, i = 0;
792 
793 	ret = sscanf(buf, "%20s", str_preference);
794 	if (ret != 1)
795 		return -EINVAL;
796 
797 	while (energy_perf_strings[i] != NULL) {
798 		if (!strcmp(str_preference, energy_perf_strings[i])) {
799 			intel_pstate_set_energy_pref_index(cpu_data, i);
800 			return count;
801 		}
802 		++i;
803 	}
804 
805 	return -EINVAL;
806 }
807 
808 static ssize_t show_energy_performance_preference(
809 				struct cpufreq_policy *policy, char *buf)
810 {
811 	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
812 	int preference;
813 
814 	preference = intel_pstate_get_energy_pref_index(cpu_data);
815 	if (preference < 0)
816 		return preference;
817 
818 	return  sprintf(buf, "%s\n", energy_perf_strings[preference]);
819 }
820 
821 cpufreq_freq_attr_rw(energy_performance_preference);
822 
823 static struct freq_attr *hwp_cpufreq_attrs[] = {
824 	&energy_performance_preference,
825 	&energy_performance_available_preferences,
826 	NULL,
827 };
828 
829 static void intel_pstate_hwp_set(struct cpufreq_policy *policy)
830 {
831 	int min, hw_min, max, hw_max, cpu;
832 	u64 value, cap;
833 
834 	for_each_cpu(cpu, policy->cpus) {
835 		struct cpudata *cpu_data = all_cpu_data[cpu];
836 		struct perf_limits *perf_limits = &cpu_data->perf_limits;
837 		s16 epp;
838 
839 		rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
840 		hw_min = HWP_LOWEST_PERF(cap);
841 		if (global.no_turbo)
842 			hw_max = HWP_GUARANTEED_PERF(cap);
843 		else
844 			hw_max = HWP_HIGHEST_PERF(cap);
845 
846 		max = fp_ext_toint(hw_max * perf_limits->max_perf);
847 		if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
848 			min = max;
849 		else
850 			min = fp_ext_toint(hw_max * perf_limits->min_perf);
851 
852 		rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
853 
854 		value &= ~HWP_MIN_PERF(~0L);
855 		value |= HWP_MIN_PERF(min);
856 
857 		value &= ~HWP_MAX_PERF(~0L);
858 		value |= HWP_MAX_PERF(max);
859 
860 		if (cpu_data->epp_policy == cpu_data->policy)
861 			goto skip_epp;
862 
863 		cpu_data->epp_policy = cpu_data->policy;
864 
865 		if (cpu_data->epp_saved >= 0) {
866 			epp = cpu_data->epp_saved;
867 			cpu_data->epp_saved = -EINVAL;
868 			goto update_epp;
869 		}
870 
871 		if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
872 			epp = intel_pstate_get_epp(cpu_data, value);
873 			cpu_data->epp_powersave = epp;
874 			/* If EPP read was failed, then don't try to write */
875 			if (epp < 0)
876 				goto skip_epp;
877 
878 
879 			epp = 0;
880 		} else {
881 			/* skip setting EPP, when saved value is invalid */
882 			if (cpu_data->epp_powersave < 0)
883 				goto skip_epp;
884 
885 			/*
886 			 * No need to restore EPP when it is not zero. This
887 			 * means:
888 			 *  - Policy is not changed
889 			 *  - user has manually changed
890 			 *  - Error reading EPB
891 			 */
892 			epp = intel_pstate_get_epp(cpu_data, value);
893 			if (epp)
894 				goto skip_epp;
895 
896 			epp = cpu_data->epp_powersave;
897 		}
898 update_epp:
899 		if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
900 			value &= ~GENMASK_ULL(31, 24);
901 			value |= (u64)epp << 24;
902 		} else {
903 			intel_pstate_set_epb(cpu, epp);
904 		}
905 skip_epp:
906 		wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
907 	}
908 }
909 
910 static int intel_pstate_hwp_save_state(struct cpufreq_policy *policy)
911 {
912 	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
913 
914 	if (!hwp_active)
915 		return 0;
916 
917 	cpu_data->epp_saved = intel_pstate_get_epp(cpu_data, 0);
918 
919 	return 0;
920 }
921 
922 static int intel_pstate_resume(struct cpufreq_policy *policy)
923 {
924 	if (!hwp_active)
925 		return 0;
926 
927 	mutex_lock(&intel_pstate_limits_lock);
928 
929 	all_cpu_data[policy->cpu]->epp_policy = 0;
930 	intel_pstate_hwp_set(policy);
931 
932 	mutex_unlock(&intel_pstate_limits_lock);
933 
934 	return 0;
935 }
936 
937 static void intel_pstate_update_policies(void)
938 {
939 	int cpu;
940 
941 	for_each_possible_cpu(cpu)
942 		cpufreq_update_policy(cpu);
943 }
944 
945 /************************** debugfs begin ************************/
946 static int pid_param_set(void *data, u64 val)
947 {
948 	*(u32 *)data = val;
949 	pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
950 	intel_pstate_reset_all_pid();
951 	return 0;
952 }
953 
954 static int pid_param_get(void *data, u64 *val)
955 {
956 	*val = *(u32 *)data;
957 	return 0;
958 }
959 DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
960 
961 static struct dentry *debugfs_parent;
962 
963 struct pid_param {
964 	char *name;
965 	void *value;
966 	struct dentry *dentry;
967 };
968 
969 static struct pid_param pid_files[] = {
970 	{"sample_rate_ms", &pid_params.sample_rate_ms, },
971 	{"d_gain_pct", &pid_params.d_gain_pct, },
972 	{"i_gain_pct", &pid_params.i_gain_pct, },
973 	{"deadband", &pid_params.deadband, },
974 	{"setpoint", &pid_params.setpoint, },
975 	{"p_gain_pct", &pid_params.p_gain_pct, },
976 	{NULL, NULL, }
977 };
978 
979 static void intel_pstate_debug_expose_params(void)
980 {
981 	int i;
982 
983 	debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
984 	if (IS_ERR_OR_NULL(debugfs_parent))
985 		return;
986 
987 	for (i = 0; pid_files[i].name; i++) {
988 		struct dentry *dentry;
989 
990 		dentry = debugfs_create_file(pid_files[i].name, 0660,
991 					     debugfs_parent, pid_files[i].value,
992 					     &fops_pid_param);
993 		if (!IS_ERR(dentry))
994 			pid_files[i].dentry = dentry;
995 	}
996 }
997 
998 static void intel_pstate_debug_hide_params(void)
999 {
1000 	int i;
1001 
1002 	if (IS_ERR_OR_NULL(debugfs_parent))
1003 		return;
1004 
1005 	for (i = 0; pid_files[i].name; i++) {
1006 		debugfs_remove(pid_files[i].dentry);
1007 		pid_files[i].dentry = NULL;
1008 	}
1009 
1010 	debugfs_remove(debugfs_parent);
1011 	debugfs_parent = NULL;
1012 }
1013 
1014 /************************** debugfs end ************************/
1015 
1016 /************************** sysfs begin ************************/
1017 #define show_one(file_name, object)					\
1018 	static ssize_t show_##file_name					\
1019 	(struct kobject *kobj, struct attribute *attr, char *buf)	\
1020 	{								\
1021 		return sprintf(buf, "%u\n", global.object);		\
1022 	}
1023 
1024 static ssize_t intel_pstate_show_status(char *buf);
1025 static int intel_pstate_update_status(const char *buf, size_t size);
1026 
1027 static ssize_t show_status(struct kobject *kobj,
1028 			   struct attribute *attr, char *buf)
1029 {
1030 	ssize_t ret;
1031 
1032 	mutex_lock(&intel_pstate_driver_lock);
1033 	ret = intel_pstate_show_status(buf);
1034 	mutex_unlock(&intel_pstate_driver_lock);
1035 
1036 	return ret;
1037 }
1038 
1039 static ssize_t store_status(struct kobject *a, struct attribute *b,
1040 			    const char *buf, size_t count)
1041 {
1042 	char *p = memchr(buf, '\n', count);
1043 	int ret;
1044 
1045 	mutex_lock(&intel_pstate_driver_lock);
1046 	ret = intel_pstate_update_status(buf, p ? p - buf : count);
1047 	mutex_unlock(&intel_pstate_driver_lock);
1048 
1049 	return ret < 0 ? ret : count;
1050 }
1051 
1052 static ssize_t show_turbo_pct(struct kobject *kobj,
1053 				struct attribute *attr, char *buf)
1054 {
1055 	struct cpudata *cpu;
1056 	int total, no_turbo, turbo_pct;
1057 	uint32_t turbo_fp;
1058 
1059 	mutex_lock(&intel_pstate_driver_lock);
1060 
1061 	if (!driver_registered) {
1062 		mutex_unlock(&intel_pstate_driver_lock);
1063 		return -EAGAIN;
1064 	}
1065 
1066 	cpu = all_cpu_data[0];
1067 
1068 	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1069 	no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
1070 	turbo_fp = div_fp(no_turbo, total);
1071 	turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
1072 
1073 	mutex_unlock(&intel_pstate_driver_lock);
1074 
1075 	return sprintf(buf, "%u\n", turbo_pct);
1076 }
1077 
1078 static ssize_t show_num_pstates(struct kobject *kobj,
1079 				struct attribute *attr, char *buf)
1080 {
1081 	struct cpudata *cpu;
1082 	int total;
1083 
1084 	mutex_lock(&intel_pstate_driver_lock);
1085 
1086 	if (!driver_registered) {
1087 		mutex_unlock(&intel_pstate_driver_lock);
1088 		return -EAGAIN;
1089 	}
1090 
1091 	cpu = all_cpu_data[0];
1092 	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1093 
1094 	mutex_unlock(&intel_pstate_driver_lock);
1095 
1096 	return sprintf(buf, "%u\n", total);
1097 }
1098 
1099 static ssize_t show_no_turbo(struct kobject *kobj,
1100 			     struct attribute *attr, char *buf)
1101 {
1102 	ssize_t ret;
1103 
1104 	mutex_lock(&intel_pstate_driver_lock);
1105 
1106 	if (!driver_registered) {
1107 		mutex_unlock(&intel_pstate_driver_lock);
1108 		return -EAGAIN;
1109 	}
1110 
1111 	update_turbo_state();
1112 	if (global.turbo_disabled)
1113 		ret = sprintf(buf, "%u\n", global.turbo_disabled);
1114 	else
1115 		ret = sprintf(buf, "%u\n", global.no_turbo);
1116 
1117 	mutex_unlock(&intel_pstate_driver_lock);
1118 
1119 	return ret;
1120 }
1121 
1122 static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
1123 			      const char *buf, size_t count)
1124 {
1125 	unsigned int input;
1126 	int ret;
1127 
1128 	ret = sscanf(buf, "%u", &input);
1129 	if (ret != 1)
1130 		return -EINVAL;
1131 
1132 	mutex_lock(&intel_pstate_driver_lock);
1133 
1134 	if (!driver_registered) {
1135 		mutex_unlock(&intel_pstate_driver_lock);
1136 		return -EAGAIN;
1137 	}
1138 
1139 	mutex_lock(&intel_pstate_limits_lock);
1140 
1141 	update_turbo_state();
1142 	if (global.turbo_disabled) {
1143 		pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
1144 		mutex_unlock(&intel_pstate_limits_lock);
1145 		mutex_unlock(&intel_pstate_driver_lock);
1146 		return -EPERM;
1147 	}
1148 
1149 	global.no_turbo = clamp_t(int, input, 0, 1);
1150 
1151 	if (global.no_turbo) {
1152 		struct cpudata *cpu = all_cpu_data[0];
1153 		int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;
1154 
1155 		/* Squash the global minimum into the permitted range. */
1156 		if (global.min_perf_pct > pct)
1157 			global.min_perf_pct = pct;
1158 	}
1159 
1160 	mutex_unlock(&intel_pstate_limits_lock);
1161 
1162 	intel_pstate_update_policies();
1163 
1164 	mutex_unlock(&intel_pstate_driver_lock);
1165 
1166 	return count;
1167 }
1168 
1169 static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
1170 				  const char *buf, size_t count)
1171 {
1172 	unsigned int input;
1173 	int ret;
1174 
1175 	ret = sscanf(buf, "%u", &input);
1176 	if (ret != 1)
1177 		return -EINVAL;
1178 
1179 	mutex_lock(&intel_pstate_driver_lock);
1180 
1181 	if (!driver_registered) {
1182 		mutex_unlock(&intel_pstate_driver_lock);
1183 		return -EAGAIN;
1184 	}
1185 
1186 	mutex_lock(&intel_pstate_limits_lock);
1187 
1188 	global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
1189 
1190 	mutex_unlock(&intel_pstate_limits_lock);
1191 
1192 	intel_pstate_update_policies();
1193 
1194 	mutex_unlock(&intel_pstate_driver_lock);
1195 
1196 	return count;
1197 }
1198 
1199 static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
1200 				  const char *buf, size_t count)
1201 {
1202 	unsigned int input;
1203 	int ret;
1204 
1205 	ret = sscanf(buf, "%u", &input);
1206 	if (ret != 1)
1207 		return -EINVAL;
1208 
1209 	mutex_lock(&intel_pstate_driver_lock);
1210 
1211 	if (!driver_registered) {
1212 		mutex_unlock(&intel_pstate_driver_lock);
1213 		return -EAGAIN;
1214 	}
1215 
1216 	mutex_lock(&intel_pstate_limits_lock);
1217 
1218 	global.min_perf_pct = clamp_t(int, input,
1219 				      min_perf_pct_min(), global.max_perf_pct);
1220 
1221 	mutex_unlock(&intel_pstate_limits_lock);
1222 
1223 	intel_pstate_update_policies();
1224 
1225 	mutex_unlock(&intel_pstate_driver_lock);
1226 
1227 	return count;
1228 }
1229 
1230 show_one(max_perf_pct, max_perf_pct);
1231 show_one(min_perf_pct, min_perf_pct);
1232 
1233 define_one_global_rw(status);
1234 define_one_global_rw(no_turbo);
1235 define_one_global_rw(max_perf_pct);
1236 define_one_global_rw(min_perf_pct);
1237 define_one_global_ro(turbo_pct);
1238 define_one_global_ro(num_pstates);
1239 
1240 static struct attribute *intel_pstate_attributes[] = {
1241 	&status.attr,
1242 	&no_turbo.attr,
1243 	&turbo_pct.attr,
1244 	&num_pstates.attr,
1245 	NULL
1246 };
1247 
1248 static struct attribute_group intel_pstate_attr_group = {
1249 	.attrs = intel_pstate_attributes,
1250 };
1251 
1252 static void __init intel_pstate_sysfs_expose_params(void)
1253 {
1254 	struct kobject *intel_pstate_kobject;
1255 	int rc;
1256 
1257 	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
1258 						&cpu_subsys.dev_root->kobj);
1259 	if (WARN_ON(!intel_pstate_kobject))
1260 		return;
1261 
1262 	rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1263 	if (WARN_ON(rc))
1264 		return;
1265 
1266 	/*
1267 	 * If per cpu limits are enforced there are no global limits, so
1268 	 * return without creating max/min_perf_pct attributes
1269 	 */
1270 	if (per_cpu_limits)
1271 		return;
1272 
1273 	rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
1274 	WARN_ON(rc);
1275 
1276 	rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
1277 	WARN_ON(rc);
1278 
1279 }
1280 /************************** sysfs end ************************/
1281 
1282 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
1283 {
1284 	/* First disable HWP notification interrupt as we don't process them */
1285 	if (static_cpu_has(X86_FEATURE_HWP_NOTIFY))
1286 		wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1287 
1288 	wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1289 	cpudata->epp_policy = 0;
1290 	if (cpudata->epp_default == -EINVAL)
1291 		cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
1292 }
1293 
1294 #define MSR_IA32_POWER_CTL_BIT_EE	19
1295 
1296 /* Disable energy efficiency optimization */
1297 static void intel_pstate_disable_ee(int cpu)
1298 {
1299 	u64 power_ctl;
1300 	int ret;
1301 
1302 	ret = rdmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, &power_ctl);
1303 	if (ret)
1304 		return;
1305 
1306 	if (!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE))) {
1307 		pr_info("Disabling energy efficiency optimization\n");
1308 		power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
1309 		wrmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, power_ctl);
1310 	}
1311 }
1312 
1313 static int atom_get_min_pstate(void)
1314 {
1315 	u64 value;
1316 
1317 	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1318 	return (value >> 8) & 0x7F;
1319 }
1320 
1321 static int atom_get_max_pstate(void)
1322 {
1323 	u64 value;
1324 
1325 	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1326 	return (value >> 16) & 0x7F;
1327 }
1328 
1329 static int atom_get_turbo_pstate(void)
1330 {
1331 	u64 value;
1332 
1333 	rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
1334 	return value & 0x7F;
1335 }
1336 
1337 static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1338 {
1339 	u64 val;
1340 	int32_t vid_fp;
1341 	u32 vid;
1342 
1343 	val = (u64)pstate << 8;
1344 	if (global.no_turbo && !global.turbo_disabled)
1345 		val |= (u64)1 << 32;
1346 
1347 	vid_fp = cpudata->vid.min + mul_fp(
1348 		int_tofp(pstate - cpudata->pstate.min_pstate),
1349 		cpudata->vid.ratio);
1350 
1351 	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1352 	vid = ceiling_fp(vid_fp);
1353 
1354 	if (pstate > cpudata->pstate.max_pstate)
1355 		vid = cpudata->vid.turbo;
1356 
1357 	return val | vid;
1358 }
1359 
1360 static int silvermont_get_scaling(void)
1361 {
1362 	u64 value;
1363 	int i;
1364 	/* Defined in Table 35-6 from SDM (Sept 2015) */
1365 	static int silvermont_freq_table[] = {
1366 		83300, 100000, 133300, 116700, 80000};
1367 
1368 	rdmsrl(MSR_FSB_FREQ, value);
1369 	i = value & 0x7;
1370 	WARN_ON(i > 4);
1371 
1372 	return silvermont_freq_table[i];
1373 }
1374 
1375 static int airmont_get_scaling(void)
1376 {
1377 	u64 value;
1378 	int i;
1379 	/* Defined in Table 35-10 from SDM (Sept 2015) */
1380 	static int airmont_freq_table[] = {
1381 		83300, 100000, 133300, 116700, 80000,
1382 		93300, 90000, 88900, 87500};
1383 
1384 	rdmsrl(MSR_FSB_FREQ, value);
1385 	i = value & 0xF;
1386 	WARN_ON(i > 8);
1387 
1388 	return airmont_freq_table[i];
1389 }
1390 
1391 static void atom_get_vid(struct cpudata *cpudata)
1392 {
1393 	u64 value;
1394 
1395 	rdmsrl(MSR_ATOM_CORE_VIDS, value);
1396 	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
1397 	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1398 	cpudata->vid.ratio = div_fp(
1399 		cpudata->vid.max - cpudata->vid.min,
1400 		int_tofp(cpudata->pstate.max_pstate -
1401 			cpudata->pstate.min_pstate));
1402 
1403 	rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1404 	cpudata->vid.turbo = value & 0x7f;
1405 }
1406 
1407 static int core_get_min_pstate(void)
1408 {
1409 	u64 value;
1410 
1411 	rdmsrl(MSR_PLATFORM_INFO, value);
1412 	return (value >> 40) & 0xFF;
1413 }
1414 
1415 static int core_get_max_pstate_physical(void)
1416 {
1417 	u64 value;
1418 
1419 	rdmsrl(MSR_PLATFORM_INFO, value);
1420 	return (value >> 8) & 0xFF;
1421 }
1422 
1423 static int core_get_tdp_ratio(u64 plat_info)
1424 {
1425 	/* Check how many TDP levels present */
1426 	if (plat_info & 0x600000000) {
1427 		u64 tdp_ctrl;
1428 		u64 tdp_ratio;
1429 		int tdp_msr;
1430 		int err;
1431 
1432 		/* Get the TDP level (0, 1, 2) to get ratios */
1433 		err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
1434 		if (err)
1435 			return err;
1436 
1437 		/* TDP MSR are continuous starting at 0x648 */
1438 		tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
1439 		err = rdmsrl_safe(tdp_msr, &tdp_ratio);
1440 		if (err)
1441 			return err;
1442 
1443 		/* For level 1 and 2, bits[23:16] contain the ratio */
1444 		if (tdp_ctrl & 0x03)
1445 			tdp_ratio >>= 16;
1446 
1447 		tdp_ratio &= 0xff; /* ratios are only 8 bits long */
1448 		pr_debug("tdp_ratio %x\n", (int)tdp_ratio);
1449 
1450 		return (int)tdp_ratio;
1451 	}
1452 
1453 	return -ENXIO;
1454 }
1455 
1456 static int core_get_max_pstate(void)
1457 {
1458 	u64 tar;
1459 	u64 plat_info;
1460 	int max_pstate;
1461 	int tdp_ratio;
1462 	int err;
1463 
1464 	rdmsrl(MSR_PLATFORM_INFO, plat_info);
1465 	max_pstate = (plat_info >> 8) & 0xFF;
1466 
1467 	tdp_ratio = core_get_tdp_ratio(plat_info);
1468 	if (tdp_ratio <= 0)
1469 		return max_pstate;
1470 
1471 	if (hwp_active) {
1472 		/* Turbo activation ratio is not used on HWP platforms */
1473 		return tdp_ratio;
1474 	}
1475 
1476 	err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
1477 	if (!err) {
1478 		int tar_levels;
1479 
1480 		/* Do some sanity checking for safety */
1481 		tar_levels = tar & 0xff;
1482 		if (tdp_ratio - 1 == tar_levels) {
1483 			max_pstate = tar_levels;
1484 			pr_debug("max_pstate=TAC %x\n", max_pstate);
1485 		}
1486 	}
1487 
1488 	return max_pstate;
1489 }
1490 
1491 static int core_get_turbo_pstate(void)
1492 {
1493 	u64 value;
1494 	int nont, ret;
1495 
1496 	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1497 	nont = core_get_max_pstate();
1498 	ret = (value) & 255;
1499 	if (ret <= nont)
1500 		ret = nont;
1501 	return ret;
1502 }
1503 
1504 static inline int core_get_scaling(void)
1505 {
1506 	return 100000;
1507 }
1508 
1509 static u64 core_get_val(struct cpudata *cpudata, int pstate)
1510 {
1511 	u64 val;
1512 
1513 	val = (u64)pstate << 8;
1514 	if (global.no_turbo && !global.turbo_disabled)
1515 		val |= (u64)1 << 32;
1516 
1517 	return val;
1518 }
1519 
1520 static int knl_get_turbo_pstate(void)
1521 {
1522 	u64 value;
1523 	int nont, ret;
1524 
1525 	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1526 	nont = core_get_max_pstate();
1527 	ret = (((value) >> 8) & 0xFF);
1528 	if (ret <= nont)
1529 		ret = nont;
1530 	return ret;
1531 }
1532 
1533 static struct cpu_defaults core_params = {
1534 	.pid_policy = {
1535 		.sample_rate_ms = 10,
1536 		.deadband = 0,
1537 		.setpoint = 97,
1538 		.p_gain_pct = 20,
1539 		.d_gain_pct = 0,
1540 		.i_gain_pct = 0,
1541 	},
1542 	.funcs = {
1543 		.get_max = core_get_max_pstate,
1544 		.get_max_physical = core_get_max_pstate_physical,
1545 		.get_min = core_get_min_pstate,
1546 		.get_turbo = core_get_turbo_pstate,
1547 		.get_scaling = core_get_scaling,
1548 		.get_val = core_get_val,
1549 		.get_target_pstate = get_target_pstate_use_performance,
1550 	},
1551 };
1552 
1553 static const struct cpu_defaults silvermont_params = {
1554 	.pid_policy = {
1555 		.sample_rate_ms = 10,
1556 		.deadband = 0,
1557 		.setpoint = 60,
1558 		.p_gain_pct = 14,
1559 		.d_gain_pct = 0,
1560 		.i_gain_pct = 4,
1561 	},
1562 	.funcs = {
1563 		.get_max = atom_get_max_pstate,
1564 		.get_max_physical = atom_get_max_pstate,
1565 		.get_min = atom_get_min_pstate,
1566 		.get_turbo = atom_get_turbo_pstate,
1567 		.get_val = atom_get_val,
1568 		.get_scaling = silvermont_get_scaling,
1569 		.get_vid = atom_get_vid,
1570 		.get_target_pstate = get_target_pstate_use_cpu_load,
1571 	},
1572 };
1573 
1574 static const struct cpu_defaults airmont_params = {
1575 	.pid_policy = {
1576 		.sample_rate_ms = 10,
1577 		.deadband = 0,
1578 		.setpoint = 60,
1579 		.p_gain_pct = 14,
1580 		.d_gain_pct = 0,
1581 		.i_gain_pct = 4,
1582 	},
1583 	.funcs = {
1584 		.get_max = atom_get_max_pstate,
1585 		.get_max_physical = atom_get_max_pstate,
1586 		.get_min = atom_get_min_pstate,
1587 		.get_turbo = atom_get_turbo_pstate,
1588 		.get_val = atom_get_val,
1589 		.get_scaling = airmont_get_scaling,
1590 		.get_vid = atom_get_vid,
1591 		.get_target_pstate = get_target_pstate_use_cpu_load,
1592 	},
1593 };
1594 
1595 static const struct cpu_defaults knl_params = {
1596 	.pid_policy = {
1597 		.sample_rate_ms = 10,
1598 		.deadband = 0,
1599 		.setpoint = 97,
1600 		.p_gain_pct = 20,
1601 		.d_gain_pct = 0,
1602 		.i_gain_pct = 0,
1603 	},
1604 	.funcs = {
1605 		.get_max = core_get_max_pstate,
1606 		.get_max_physical = core_get_max_pstate_physical,
1607 		.get_min = core_get_min_pstate,
1608 		.get_turbo = knl_get_turbo_pstate,
1609 		.get_scaling = core_get_scaling,
1610 		.get_val = core_get_val,
1611 		.get_target_pstate = get_target_pstate_use_performance,
1612 	},
1613 };
1614 
1615 static const struct cpu_defaults bxt_params = {
1616 	.pid_policy = {
1617 		.sample_rate_ms = 10,
1618 		.deadband = 0,
1619 		.setpoint = 60,
1620 		.p_gain_pct = 14,
1621 		.d_gain_pct = 0,
1622 		.i_gain_pct = 4,
1623 	},
1624 	.funcs = {
1625 		.get_max = core_get_max_pstate,
1626 		.get_max_physical = core_get_max_pstate_physical,
1627 		.get_min = core_get_min_pstate,
1628 		.get_turbo = core_get_turbo_pstate,
1629 		.get_scaling = core_get_scaling,
1630 		.get_val = core_get_val,
1631 		.get_target_pstate = get_target_pstate_use_cpu_load,
1632 	},
1633 };
1634 
1635 static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
1636 {
1637 	int max_perf = cpu->pstate.turbo_pstate;
1638 	int max_perf_adj;
1639 	int min_perf;
1640 	struct perf_limits *perf_limits = &cpu->perf_limits;
1641 
1642 	if (global.no_turbo || global.turbo_disabled)
1643 		max_perf = cpu->pstate.max_pstate;
1644 
1645 	/*
1646 	 * performance can be limited by user through sysfs, by cpufreq
1647 	 * policy, or by cpu specific default values determined through
1648 	 * experimentation.
1649 	 */
1650 	max_perf_adj = fp_ext_toint(max_perf * perf_limits->max_perf);
1651 	*max = clamp_t(int, max_perf_adj,
1652 			cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
1653 
1654 	min_perf = fp_ext_toint(max_perf * perf_limits->min_perf);
1655 	*min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
1656 }
1657 
1658 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1659 {
1660 	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1661 	cpu->pstate.current_pstate = pstate;
1662 	/*
1663 	 * Generally, there is no guarantee that this code will always run on
1664 	 * the CPU being updated, so force the register update to run on the
1665 	 * right CPU.
1666 	 */
1667 	wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1668 		      pstate_funcs.get_val(cpu, pstate));
1669 }
1670 
1671 static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1672 {
1673 	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
1674 }
1675 
1676 static void intel_pstate_max_within_limits(struct cpudata *cpu)
1677 {
1678 	int min_pstate, max_pstate;
1679 
1680 	update_turbo_state();
1681 	intel_pstate_get_min_max(cpu, &min_pstate, &max_pstate);
1682 	intel_pstate_set_pstate(cpu, max_pstate);
1683 }
1684 
1685 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1686 {
1687 	cpu->pstate.min_pstate = pstate_funcs.get_min();
1688 	cpu->pstate.max_pstate = pstate_funcs.get_max();
1689 	cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1690 	cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1691 	cpu->pstate.scaling = pstate_funcs.get_scaling();
1692 	cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
1693 	cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1694 
1695 	if (pstate_funcs.get_vid)
1696 		pstate_funcs.get_vid(cpu);
1697 
1698 	intel_pstate_set_min_pstate(cpu);
1699 }
1700 
1701 static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1702 {
1703 	struct sample *sample = &cpu->sample;
1704 
1705 	sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1706 }
1707 
1708 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1709 {
1710 	u64 aperf, mperf;
1711 	unsigned long flags;
1712 	u64 tsc;
1713 
1714 	local_irq_save(flags);
1715 	rdmsrl(MSR_IA32_APERF, aperf);
1716 	rdmsrl(MSR_IA32_MPERF, mperf);
1717 	tsc = rdtsc();
1718 	if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1719 		local_irq_restore(flags);
1720 		return false;
1721 	}
1722 	local_irq_restore(flags);
1723 
1724 	cpu->last_sample_time = cpu->sample.time;
1725 	cpu->sample.time = time;
1726 	cpu->sample.aperf = aperf;
1727 	cpu->sample.mperf = mperf;
1728 	cpu->sample.tsc =  tsc;
1729 	cpu->sample.aperf -= cpu->prev_aperf;
1730 	cpu->sample.mperf -= cpu->prev_mperf;
1731 	cpu->sample.tsc -= cpu->prev_tsc;
1732 
1733 	cpu->prev_aperf = aperf;
1734 	cpu->prev_mperf = mperf;
1735 	cpu->prev_tsc = tsc;
1736 	/*
1737 	 * First time this function is invoked in a given cycle, all of the
1738 	 * previous sample data fields are equal to zero or stale and they must
1739 	 * be populated with meaningful numbers for things to work, so assume
1740 	 * that sample.time will always be reset before setting the utilization
1741 	 * update hook and make the caller skip the sample then.
1742 	 */
1743 	return !!cpu->last_sample_time;
1744 }
1745 
1746 static inline int32_t get_avg_frequency(struct cpudata *cpu)
1747 {
1748 	return mul_ext_fp(cpu->sample.core_avg_perf,
1749 			  cpu->pstate.max_pstate_physical * cpu->pstate.scaling);
1750 }
1751 
1752 static inline int32_t get_avg_pstate(struct cpudata *cpu)
1753 {
1754 	return mul_ext_fp(cpu->pstate.max_pstate_physical,
1755 			  cpu->sample.core_avg_perf);
1756 }
1757 
1758 static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
1759 {
1760 	struct sample *sample = &cpu->sample;
1761 	int32_t busy_frac, boost;
1762 	int target, avg_pstate;
1763 
1764 	busy_frac = div_fp(sample->mperf, sample->tsc);
1765 
1766 	boost = cpu->iowait_boost;
1767 	cpu->iowait_boost >>= 1;
1768 
1769 	if (busy_frac < boost)
1770 		busy_frac = boost;
1771 
1772 	sample->busy_scaled = busy_frac * 100;
1773 
1774 	target = global.no_turbo || global.turbo_disabled ?
1775 			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1776 	target += target >> 2;
1777 	target = mul_fp(target, busy_frac);
1778 	if (target < cpu->pstate.min_pstate)
1779 		target = cpu->pstate.min_pstate;
1780 
1781 	/*
1782 	 * If the average P-state during the previous cycle was higher than the
1783 	 * current target, add 50% of the difference to the target to reduce
1784 	 * possible performance oscillations and offset possible performance
1785 	 * loss related to moving the workload from one CPU to another within
1786 	 * a package/module.
1787 	 */
1788 	avg_pstate = get_avg_pstate(cpu);
1789 	if (avg_pstate > target)
1790 		target += (avg_pstate - target) >> 1;
1791 
1792 	return target;
1793 }
1794 
1795 static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
1796 {
1797 	int32_t perf_scaled, max_pstate, current_pstate, sample_ratio;
1798 	u64 duration_ns;
1799 
1800 	/*
1801 	 * perf_scaled is the ratio of the average P-state during the last
1802 	 * sampling period to the P-state requested last time (in percent).
1803 	 *
1804 	 * That measures the system's response to the previous P-state
1805 	 * selection.
1806 	 */
1807 	max_pstate = cpu->pstate.max_pstate_physical;
1808 	current_pstate = cpu->pstate.current_pstate;
1809 	perf_scaled = mul_ext_fp(cpu->sample.core_avg_perf,
1810 			       div_fp(100 * max_pstate, current_pstate));
1811 
1812 	/*
1813 	 * Since our utilization update callback will not run unless we are
1814 	 * in C0, check if the actual elapsed time is significantly greater (3x)
1815 	 * than our sample interval.  If it is, then we were idle for a long
1816 	 * enough period of time to adjust our performance metric.
1817 	 */
1818 	duration_ns = cpu->sample.time - cpu->last_sample_time;
1819 	if ((s64)duration_ns > pid_params.sample_rate_ns * 3) {
1820 		sample_ratio = div_fp(pid_params.sample_rate_ns, duration_ns);
1821 		perf_scaled = mul_fp(perf_scaled, sample_ratio);
1822 	} else {
1823 		sample_ratio = div_fp(100 * cpu->sample.mperf, cpu->sample.tsc);
1824 		if (sample_ratio < int_tofp(1))
1825 			perf_scaled = 0;
1826 	}
1827 
1828 	cpu->sample.busy_scaled = perf_scaled;
1829 	return cpu->pstate.current_pstate - pid_calc(&cpu->pid, perf_scaled);
1830 }
1831 
1832 static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
1833 {
1834 	int max_perf, min_perf;
1835 
1836 	intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
1837 	pstate = clamp_t(int, pstate, min_perf, max_perf);
1838 	return pstate;
1839 }
1840 
1841 static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1842 {
1843 	if (pstate == cpu->pstate.current_pstate)
1844 		return;
1845 
1846 	cpu->pstate.current_pstate = pstate;
1847 	wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1848 }
1849 
1850 static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
1851 {
1852 	int from, target_pstate;
1853 	struct sample *sample;
1854 
1855 	from = cpu->pstate.current_pstate;
1856 
1857 	target_pstate = cpu->policy == CPUFREQ_POLICY_PERFORMANCE ?
1858 		cpu->pstate.turbo_pstate : pstate_funcs.get_target_pstate(cpu);
1859 
1860 	update_turbo_state();
1861 
1862 	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
1863 	trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
1864 	intel_pstate_update_pstate(cpu, target_pstate);
1865 
1866 	sample = &cpu->sample;
1867 	trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1868 		fp_toint(sample->busy_scaled),
1869 		from,
1870 		cpu->pstate.current_pstate,
1871 		sample->mperf,
1872 		sample->aperf,
1873 		sample->tsc,
1874 		get_avg_frequency(cpu),
1875 		fp_toint(cpu->iowait_boost * 100));
1876 }
1877 
1878 static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1879 				     unsigned int flags)
1880 {
1881 	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1882 	u64 delta_ns;
1883 
1884 	if (pstate_funcs.get_target_pstate == get_target_pstate_use_cpu_load) {
1885 		if (flags & SCHED_CPUFREQ_IOWAIT) {
1886 			cpu->iowait_boost = int_tofp(1);
1887 		} else if (cpu->iowait_boost) {
1888 			/* Clear iowait_boost if the CPU may have been idle. */
1889 			delta_ns = time - cpu->last_update;
1890 			if (delta_ns > TICK_NSEC)
1891 				cpu->iowait_boost = 0;
1892 		}
1893 		cpu->last_update = time;
1894 	}
1895 
1896 	delta_ns = time - cpu->sample.time;
1897 	if ((s64)delta_ns >= pid_params.sample_rate_ns) {
1898 		bool sample_taken = intel_pstate_sample(cpu, time);
1899 
1900 		if (sample_taken) {
1901 			intel_pstate_calc_avg_perf(cpu);
1902 			if (!hwp_active)
1903 				intel_pstate_adjust_busy_pstate(cpu);
1904 		}
1905 	}
1906 }
1907 
1908 #define ICPU(model, policy) \
1909 	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1910 			(unsigned long)&policy }
1911 
1912 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1913 	ICPU(INTEL_FAM6_SANDYBRIDGE, 		core_params),
1914 	ICPU(INTEL_FAM6_SANDYBRIDGE_X,		core_params),
1915 	ICPU(INTEL_FAM6_ATOM_SILVERMONT1,	silvermont_params),
1916 	ICPU(INTEL_FAM6_IVYBRIDGE,		core_params),
1917 	ICPU(INTEL_FAM6_HASWELL_CORE,		core_params),
1918 	ICPU(INTEL_FAM6_BROADWELL_CORE,		core_params),
1919 	ICPU(INTEL_FAM6_IVYBRIDGE_X,		core_params),
1920 	ICPU(INTEL_FAM6_HASWELL_X,		core_params),
1921 	ICPU(INTEL_FAM6_HASWELL_ULT,		core_params),
1922 	ICPU(INTEL_FAM6_HASWELL_GT3E,		core_params),
1923 	ICPU(INTEL_FAM6_BROADWELL_GT3E,		core_params),
1924 	ICPU(INTEL_FAM6_ATOM_AIRMONT,		airmont_params),
1925 	ICPU(INTEL_FAM6_SKYLAKE_MOBILE,		core_params),
1926 	ICPU(INTEL_FAM6_BROADWELL_X,		core_params),
1927 	ICPU(INTEL_FAM6_SKYLAKE_DESKTOP,	core_params),
1928 	ICPU(INTEL_FAM6_BROADWELL_XEON_D,	core_params),
1929 	ICPU(INTEL_FAM6_XEON_PHI_KNL,		knl_params),
1930 	ICPU(INTEL_FAM6_XEON_PHI_KNM,		knl_params),
1931 	ICPU(INTEL_FAM6_ATOM_GOLDMONT,		bxt_params),
1932 	{}
1933 };
1934 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1935 
1936 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
1937 	ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_params),
1938 	ICPU(INTEL_FAM6_BROADWELL_X, core_params),
1939 	ICPU(INTEL_FAM6_SKYLAKE_X, core_params),
1940 	{}
1941 };
1942 
1943 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
1944 	ICPU(INTEL_FAM6_KABYLAKE_DESKTOP, core_params),
1945 	{}
1946 };
1947 
1948 static int intel_pstate_init_cpu(unsigned int cpunum)
1949 {
1950 	struct cpudata *cpu;
1951 
1952 	cpu = all_cpu_data[cpunum];
1953 
1954 	if (!cpu) {
1955 		cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
1956 		if (!cpu)
1957 			return -ENOMEM;
1958 
1959 		all_cpu_data[cpunum] = cpu;
1960 
1961 		cpu->epp_default = -EINVAL;
1962 		cpu->epp_powersave = -EINVAL;
1963 		cpu->epp_saved = -EINVAL;
1964 	}
1965 
1966 	cpu = all_cpu_data[cpunum];
1967 
1968 	cpu->cpu = cpunum;
1969 
1970 	if (hwp_active) {
1971 		const struct x86_cpu_id *id;
1972 
1973 		id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
1974 		if (id)
1975 			intel_pstate_disable_ee(cpunum);
1976 
1977 		intel_pstate_hwp_enable(cpu);
1978 		pid_params.sample_rate_ms = 50;
1979 		pid_params.sample_rate_ns = 50 * NSEC_PER_MSEC;
1980 	}
1981 
1982 	intel_pstate_get_cpu_pstates(cpu);
1983 
1984 	intel_pstate_busy_pid_reset(cpu);
1985 
1986 	pr_debug("controlling: cpu %d\n", cpunum);
1987 
1988 	return 0;
1989 }
1990 
1991 static unsigned int intel_pstate_get(unsigned int cpu_num)
1992 {
1993 	struct cpudata *cpu = all_cpu_data[cpu_num];
1994 
1995 	return cpu ? get_avg_frequency(cpu) : 0;
1996 }
1997 
1998 static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
1999 {
2000 	struct cpudata *cpu = all_cpu_data[cpu_num];
2001 
2002 	if (cpu->update_util_set)
2003 		return;
2004 
2005 	/* Prevent intel_pstate_update_util() from using stale data. */
2006 	cpu->sample.time = 0;
2007 	cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
2008 				     intel_pstate_update_util);
2009 	cpu->update_util_set = true;
2010 }
2011 
2012 static void intel_pstate_clear_update_util_hook(unsigned int cpu)
2013 {
2014 	struct cpudata *cpu_data = all_cpu_data[cpu];
2015 
2016 	if (!cpu_data->update_util_set)
2017 		return;
2018 
2019 	cpufreq_remove_update_util_hook(cpu);
2020 	cpu_data->update_util_set = false;
2021 	synchronize_sched();
2022 }
2023 
2024 static void intel_pstate_update_perf_limits(struct cpufreq_policy *policy,
2025 					    struct cpudata *cpu)
2026 {
2027 	struct perf_limits *limits = &cpu->perf_limits;
2028 	int32_t max_policy_perf, min_policy_perf;
2029 
2030 	max_policy_perf = div_ext_fp(policy->max, policy->cpuinfo.max_freq);
2031 	max_policy_perf = clamp_t(int32_t, max_policy_perf, 0, int_ext_tofp(1));
2032 	if (policy->max == policy->min) {
2033 		min_policy_perf = max_policy_perf;
2034 	} else {
2035 		min_policy_perf = div_ext_fp(policy->min,
2036 					     policy->cpuinfo.max_freq);
2037 		min_policy_perf = clamp_t(int32_t, min_policy_perf,
2038 					  0, max_policy_perf);
2039 	}
2040 
2041 	/* Normalize user input to [min_perf, max_perf] */
2042 	if (per_cpu_limits) {
2043 		limits->min_perf = min_policy_perf;
2044 		limits->max_perf = max_policy_perf;
2045 	} else {
2046 		int32_t global_min, global_max;
2047 
2048 		/* Global limits are in percent of the maximum turbo P-state. */
2049 		global_max = percent_ext_fp(global.max_perf_pct);
2050 		global_min = percent_ext_fp(global.min_perf_pct);
2051 		if (policy->cpuinfo.max_freq != cpu->pstate.turbo_freq) {
2052 			int32_t turbo_factor;
2053 
2054 			turbo_factor = div_ext_fp(cpu->pstate.turbo_pstate,
2055 						  cpu->pstate.max_pstate);
2056 			global_min = mul_ext_fp(global_min, turbo_factor);
2057 			global_max = mul_ext_fp(global_max, turbo_factor);
2058 		}
2059 		global_min = clamp_t(int32_t, global_min, 0, global_max);
2060 
2061 		limits->min_perf = max(min_policy_perf, global_min);
2062 		limits->min_perf = min(limits->min_perf, max_policy_perf);
2063 		limits->max_perf = min(max_policy_perf, global_max);
2064 		limits->max_perf = max(min_policy_perf, limits->max_perf);
2065 
2066 		/* Make sure min_perf <= max_perf */
2067 		limits->min_perf = min(limits->min_perf, limits->max_perf);
2068 	}
2069 
2070 	limits->max_perf = round_up(limits->max_perf, EXT_FRAC_BITS);
2071 	limits->min_perf = round_up(limits->min_perf, EXT_FRAC_BITS);
2072 
2073 	pr_debug("cpu:%d max_perf_pct:%d min_perf_pct:%d\n", policy->cpu,
2074 		 fp_ext_toint(limits->max_perf * 100),
2075 		 fp_ext_toint(limits->min_perf * 100));
2076 }
2077 
2078 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
2079 {
2080 	struct cpudata *cpu;
2081 
2082 	if (!policy->cpuinfo.max_freq)
2083 		return -ENODEV;
2084 
2085 	pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
2086 		 policy->cpuinfo.max_freq, policy->max);
2087 
2088 	cpu = all_cpu_data[policy->cpu];
2089 	cpu->policy = policy->policy;
2090 
2091 	if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
2092 	    policy->max < policy->cpuinfo.max_freq &&
2093 	    policy->max > cpu->pstate.max_pstate * cpu->pstate.scaling) {
2094 		pr_debug("policy->max > max non turbo frequency\n");
2095 		policy->max = policy->cpuinfo.max_freq;
2096 	}
2097 
2098 	mutex_lock(&intel_pstate_limits_lock);
2099 
2100 	intel_pstate_update_perf_limits(policy, cpu);
2101 
2102 	if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
2103 		/*
2104 		 * NOHZ_FULL CPUs need this as the governor callback may not
2105 		 * be invoked on them.
2106 		 */
2107 		intel_pstate_clear_update_util_hook(policy->cpu);
2108 		intel_pstate_max_within_limits(cpu);
2109 	}
2110 
2111 	intel_pstate_set_update_util_hook(policy->cpu);
2112 
2113 	if (hwp_active)
2114 		intel_pstate_hwp_set(policy);
2115 
2116 	mutex_unlock(&intel_pstate_limits_lock);
2117 
2118 	return 0;
2119 }
2120 
2121 static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
2122 {
2123 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2124 
2125 	update_turbo_state();
2126 	policy->cpuinfo.max_freq = global.turbo_disabled || global.no_turbo ?
2127 					cpu->pstate.max_freq :
2128 					cpu->pstate.turbo_freq;
2129 
2130 	cpufreq_verify_within_cpu_limits(policy);
2131 
2132 	if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
2133 	    policy->policy != CPUFREQ_POLICY_PERFORMANCE)
2134 		return -EINVAL;
2135 
2136 	return 0;
2137 }
2138 
2139 static void intel_cpufreq_stop_cpu(struct cpufreq_policy *policy)
2140 {
2141 	intel_pstate_set_min_pstate(all_cpu_data[policy->cpu]);
2142 }
2143 
2144 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
2145 {
2146 	pr_debug("CPU %d exiting\n", policy->cpu);
2147 
2148 	intel_pstate_clear_update_util_hook(policy->cpu);
2149 	if (hwp_active)
2150 		intel_pstate_hwp_save_state(policy);
2151 	else
2152 		intel_cpufreq_stop_cpu(policy);
2153 }
2154 
2155 static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
2156 {
2157 	intel_pstate_exit_perf_limits(policy);
2158 
2159 	policy->fast_switch_possible = false;
2160 
2161 	return 0;
2162 }
2163 
2164 static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2165 {
2166 	struct cpudata *cpu;
2167 	int rc;
2168 
2169 	rc = intel_pstate_init_cpu(policy->cpu);
2170 	if (rc)
2171 		return rc;
2172 
2173 	cpu = all_cpu_data[policy->cpu];
2174 
2175 	cpu->perf_limits.max_perf = int_ext_tofp(1);
2176 	cpu->perf_limits.min_perf = 0;
2177 
2178 	policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
2179 	policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
2180 
2181 	/* cpuinfo and default policy values */
2182 	policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
2183 	update_turbo_state();
2184 	policy->cpuinfo.max_freq = global.turbo_disabled ?
2185 			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2186 	policy->cpuinfo.max_freq *= cpu->pstate.scaling;
2187 
2188 	intel_pstate_init_acpi_perf_limits(policy);
2189 	cpumask_set_cpu(policy->cpu, policy->cpus);
2190 
2191 	policy->fast_switch_possible = true;
2192 
2193 	return 0;
2194 }
2195 
2196 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2197 {
2198 	int ret = __intel_pstate_cpu_init(policy);
2199 
2200 	if (ret)
2201 		return ret;
2202 
2203 	policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
2204 	if (IS_ENABLED(CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE))
2205 		policy->policy = CPUFREQ_POLICY_PERFORMANCE;
2206 	else
2207 		policy->policy = CPUFREQ_POLICY_POWERSAVE;
2208 
2209 	return 0;
2210 }
2211 
2212 static struct cpufreq_driver intel_pstate = {
2213 	.flags		= CPUFREQ_CONST_LOOPS,
2214 	.verify		= intel_pstate_verify_policy,
2215 	.setpolicy	= intel_pstate_set_policy,
2216 	.suspend	= intel_pstate_hwp_save_state,
2217 	.resume		= intel_pstate_resume,
2218 	.get		= intel_pstate_get,
2219 	.init		= intel_pstate_cpu_init,
2220 	.exit		= intel_pstate_cpu_exit,
2221 	.stop_cpu	= intel_pstate_stop_cpu,
2222 	.name		= "intel_pstate",
2223 };
2224 
2225 static int intel_cpufreq_verify_policy(struct cpufreq_policy *policy)
2226 {
2227 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2228 
2229 	update_turbo_state();
2230 	policy->cpuinfo.max_freq = global.no_turbo || global.turbo_disabled ?
2231 			cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2232 
2233 	cpufreq_verify_within_cpu_limits(policy);
2234 
2235 	intel_pstate_update_perf_limits(policy, cpu);
2236 
2237 	return 0;
2238 }
2239 
2240 static int intel_cpufreq_target(struct cpufreq_policy *policy,
2241 				unsigned int target_freq,
2242 				unsigned int relation)
2243 {
2244 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2245 	struct cpufreq_freqs freqs;
2246 	int target_pstate;
2247 
2248 	update_turbo_state();
2249 
2250 	freqs.old = policy->cur;
2251 	freqs.new = target_freq;
2252 
2253 	cpufreq_freq_transition_begin(policy, &freqs);
2254 	switch (relation) {
2255 	case CPUFREQ_RELATION_L:
2256 		target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
2257 		break;
2258 	case CPUFREQ_RELATION_H:
2259 		target_pstate = freqs.new / cpu->pstate.scaling;
2260 		break;
2261 	default:
2262 		target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
2263 		break;
2264 	}
2265 	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2266 	if (target_pstate != cpu->pstate.current_pstate) {
2267 		cpu->pstate.current_pstate = target_pstate;
2268 		wrmsrl_on_cpu(policy->cpu, MSR_IA32_PERF_CTL,
2269 			      pstate_funcs.get_val(cpu, target_pstate));
2270 	}
2271 	freqs.new = target_pstate * cpu->pstate.scaling;
2272 	cpufreq_freq_transition_end(policy, &freqs, false);
2273 
2274 	return 0;
2275 }
2276 
2277 static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
2278 					      unsigned int target_freq)
2279 {
2280 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2281 	int target_pstate;
2282 
2283 	update_turbo_state();
2284 
2285 	target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
2286 	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2287 	intel_pstate_update_pstate(cpu, target_pstate);
2288 	return target_pstate * cpu->pstate.scaling;
2289 }
2290 
2291 static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
2292 {
2293 	int ret = __intel_pstate_cpu_init(policy);
2294 
2295 	if (ret)
2296 		return ret;
2297 
2298 	policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
2299 	/* This reflects the intel_pstate_get_cpu_pstates() setting. */
2300 	policy->cur = policy->cpuinfo.min_freq;
2301 
2302 	return 0;
2303 }
2304 
2305 static struct cpufreq_driver intel_cpufreq = {
2306 	.flags		= CPUFREQ_CONST_LOOPS,
2307 	.verify		= intel_cpufreq_verify_policy,
2308 	.target		= intel_cpufreq_target,
2309 	.fast_switch	= intel_cpufreq_fast_switch,
2310 	.init		= intel_cpufreq_cpu_init,
2311 	.exit		= intel_pstate_cpu_exit,
2312 	.stop_cpu	= intel_cpufreq_stop_cpu,
2313 	.name		= "intel_cpufreq",
2314 };
2315 
2316 static struct cpufreq_driver *intel_pstate_driver = &intel_pstate;
2317 
2318 static void intel_pstate_driver_cleanup(void)
2319 {
2320 	unsigned int cpu;
2321 
2322 	get_online_cpus();
2323 	for_each_online_cpu(cpu) {
2324 		if (all_cpu_data[cpu]) {
2325 			if (intel_pstate_driver == &intel_pstate)
2326 				intel_pstate_clear_update_util_hook(cpu);
2327 
2328 			kfree(all_cpu_data[cpu]);
2329 			all_cpu_data[cpu] = NULL;
2330 		}
2331 	}
2332 	put_online_cpus();
2333 }
2334 
2335 static int intel_pstate_register_driver(void)
2336 {
2337 	int ret;
2338 
2339 	memset(&global, 0, sizeof(global));
2340 	global.max_perf_pct = 100;
2341 
2342 	ret = cpufreq_register_driver(intel_pstate_driver);
2343 	if (ret) {
2344 		intel_pstate_driver_cleanup();
2345 		return ret;
2346 	}
2347 
2348 	global.min_perf_pct = min_perf_pct_min();
2349 
2350 	mutex_lock(&intel_pstate_limits_lock);
2351 	driver_registered = true;
2352 	mutex_unlock(&intel_pstate_limits_lock);
2353 
2354 	if (intel_pstate_driver == &intel_pstate && !hwp_active &&
2355 	    pstate_funcs.get_target_pstate != get_target_pstate_use_cpu_load)
2356 		intel_pstate_debug_expose_params();
2357 
2358 	return 0;
2359 }
2360 
2361 static int intel_pstate_unregister_driver(void)
2362 {
2363 	if (hwp_active)
2364 		return -EBUSY;
2365 
2366 	if (intel_pstate_driver == &intel_pstate && !hwp_active &&
2367 	    pstate_funcs.get_target_pstate != get_target_pstate_use_cpu_load)
2368 		intel_pstate_debug_hide_params();
2369 
2370 	mutex_lock(&intel_pstate_limits_lock);
2371 	driver_registered = false;
2372 	mutex_unlock(&intel_pstate_limits_lock);
2373 
2374 	cpufreq_unregister_driver(intel_pstate_driver);
2375 	intel_pstate_driver_cleanup();
2376 
2377 	return 0;
2378 }
2379 
2380 static ssize_t intel_pstate_show_status(char *buf)
2381 {
2382 	if (!driver_registered)
2383 		return sprintf(buf, "off\n");
2384 
2385 	return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
2386 					"active" : "passive");
2387 }
2388 
2389 static int intel_pstate_update_status(const char *buf, size_t size)
2390 {
2391 	int ret;
2392 
2393 	if (size == 3 && !strncmp(buf, "off", size))
2394 		return driver_registered ?
2395 			intel_pstate_unregister_driver() : -EINVAL;
2396 
2397 	if (size == 6 && !strncmp(buf, "active", size)) {
2398 		if (driver_registered) {
2399 			if (intel_pstate_driver == &intel_pstate)
2400 				return 0;
2401 
2402 			ret = intel_pstate_unregister_driver();
2403 			if (ret)
2404 				return ret;
2405 		}
2406 
2407 		intel_pstate_driver = &intel_pstate;
2408 		return intel_pstate_register_driver();
2409 	}
2410 
2411 	if (size == 7 && !strncmp(buf, "passive", size)) {
2412 		if (driver_registered) {
2413 			if (intel_pstate_driver != &intel_pstate)
2414 				return 0;
2415 
2416 			ret = intel_pstate_unregister_driver();
2417 			if (ret)
2418 				return ret;
2419 		}
2420 
2421 		intel_pstate_driver = &intel_cpufreq;
2422 		return intel_pstate_register_driver();
2423 	}
2424 
2425 	return -EINVAL;
2426 }
2427 
2428 static int no_load __initdata;
2429 static int no_hwp __initdata;
2430 static int hwp_only __initdata;
2431 static unsigned int force_load __initdata;
2432 
2433 static int __init intel_pstate_msrs_not_valid(void)
2434 {
2435 	if (!pstate_funcs.get_max() ||
2436 	    !pstate_funcs.get_min() ||
2437 	    !pstate_funcs.get_turbo())
2438 		return -ENODEV;
2439 
2440 	return 0;
2441 }
2442 
2443 static void __init copy_pid_params(struct pstate_adjust_policy *policy)
2444 {
2445 	pid_params.sample_rate_ms = policy->sample_rate_ms;
2446 	pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
2447 	pid_params.p_gain_pct = policy->p_gain_pct;
2448 	pid_params.i_gain_pct = policy->i_gain_pct;
2449 	pid_params.d_gain_pct = policy->d_gain_pct;
2450 	pid_params.deadband = policy->deadband;
2451 	pid_params.setpoint = policy->setpoint;
2452 }
2453 
2454 #ifdef CONFIG_ACPI
2455 static void intel_pstate_use_acpi_profile(void)
2456 {
2457 	switch (acpi_gbl_FADT.preferred_profile) {
2458 	case PM_MOBILE:
2459 	case PM_TABLET:
2460 	case PM_APPLIANCE_PC:
2461 	case PM_DESKTOP:
2462 	case PM_WORKSTATION:
2463 		pstate_funcs.get_target_pstate =
2464 				get_target_pstate_use_cpu_load;
2465 	}
2466 }
2467 #else
2468 static void intel_pstate_use_acpi_profile(void)
2469 {
2470 }
2471 #endif
2472 
2473 static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
2474 {
2475 	pstate_funcs.get_max   = funcs->get_max;
2476 	pstate_funcs.get_max_physical = funcs->get_max_physical;
2477 	pstate_funcs.get_min   = funcs->get_min;
2478 	pstate_funcs.get_turbo = funcs->get_turbo;
2479 	pstate_funcs.get_scaling = funcs->get_scaling;
2480 	pstate_funcs.get_val   = funcs->get_val;
2481 	pstate_funcs.get_vid   = funcs->get_vid;
2482 	pstate_funcs.get_target_pstate = funcs->get_target_pstate;
2483 
2484 	intel_pstate_use_acpi_profile();
2485 }
2486 
2487 #ifdef CONFIG_ACPI
2488 
2489 static bool __init intel_pstate_no_acpi_pss(void)
2490 {
2491 	int i;
2492 
2493 	for_each_possible_cpu(i) {
2494 		acpi_status status;
2495 		union acpi_object *pss;
2496 		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
2497 		struct acpi_processor *pr = per_cpu(processors, i);
2498 
2499 		if (!pr)
2500 			continue;
2501 
2502 		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
2503 		if (ACPI_FAILURE(status))
2504 			continue;
2505 
2506 		pss = buffer.pointer;
2507 		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
2508 			kfree(pss);
2509 			return false;
2510 		}
2511 
2512 		kfree(pss);
2513 	}
2514 
2515 	return true;
2516 }
2517 
2518 static bool __init intel_pstate_has_acpi_ppc(void)
2519 {
2520 	int i;
2521 
2522 	for_each_possible_cpu(i) {
2523 		struct acpi_processor *pr = per_cpu(processors, i);
2524 
2525 		if (!pr)
2526 			continue;
2527 		if (acpi_has_method(pr->handle, "_PPC"))
2528 			return true;
2529 	}
2530 	return false;
2531 }
2532 
2533 enum {
2534 	PSS,
2535 	PPC,
2536 };
2537 
2538 struct hw_vendor_info {
2539 	u16  valid;
2540 	char oem_id[ACPI_OEM_ID_SIZE];
2541 	char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
2542 	int  oem_pwr_table;
2543 };
2544 
2545 /* Hardware vendor-specific info that has its own power management modes */
2546 static struct hw_vendor_info vendor_info[] __initdata = {
2547 	{1, "HP    ", "ProLiant", PSS},
2548 	{1, "ORACLE", "X4-2    ", PPC},
2549 	{1, "ORACLE", "X4-2L   ", PPC},
2550 	{1, "ORACLE", "X4-2B   ", PPC},
2551 	{1, "ORACLE", "X3-2    ", PPC},
2552 	{1, "ORACLE", "X3-2L   ", PPC},
2553 	{1, "ORACLE", "X3-2B   ", PPC},
2554 	{1, "ORACLE", "X4470M2 ", PPC},
2555 	{1, "ORACLE", "X4270M3 ", PPC},
2556 	{1, "ORACLE", "X4270M2 ", PPC},
2557 	{1, "ORACLE", "X4170M2 ", PPC},
2558 	{1, "ORACLE", "X4170 M3", PPC},
2559 	{1, "ORACLE", "X4275 M3", PPC},
2560 	{1, "ORACLE", "X6-2    ", PPC},
2561 	{1, "ORACLE", "Sudbury ", PPC},
2562 	{0, "", ""},
2563 };
2564 
2565 static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
2566 {
2567 	struct acpi_table_header hdr;
2568 	struct hw_vendor_info *v_info;
2569 	const struct x86_cpu_id *id;
2570 	u64 misc_pwr;
2571 
2572 	id = x86_match_cpu(intel_pstate_cpu_oob_ids);
2573 	if (id) {
2574 		rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
2575 		if ( misc_pwr & (1 << 8))
2576 			return true;
2577 	}
2578 
2579 	if (acpi_disabled ||
2580 	    ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
2581 		return false;
2582 
2583 	for (v_info = vendor_info; v_info->valid; v_info++) {
2584 		if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
2585 			!strncmp(hdr.oem_table_id, v_info->oem_table_id,
2586 						ACPI_OEM_TABLE_ID_SIZE))
2587 			switch (v_info->oem_pwr_table) {
2588 			case PSS:
2589 				return intel_pstate_no_acpi_pss();
2590 			case PPC:
2591 				return intel_pstate_has_acpi_ppc() &&
2592 					(!force_load);
2593 			}
2594 	}
2595 
2596 	return false;
2597 }
2598 
2599 static void intel_pstate_request_control_from_smm(void)
2600 {
2601 	/*
2602 	 * It may be unsafe to request P-states control from SMM if _PPC support
2603 	 * has not been enabled.
2604 	 */
2605 	if (acpi_ppc)
2606 		acpi_processor_pstate_control();
2607 }
2608 #else /* CONFIG_ACPI not enabled */
2609 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
2610 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
2611 static inline void intel_pstate_request_control_from_smm(void) {}
2612 #endif /* CONFIG_ACPI */
2613 
2614 static const struct x86_cpu_id hwp_support_ids[] __initconst = {
2615 	{ X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
2616 	{}
2617 };
2618 
2619 static int __init intel_pstate_init(void)
2620 {
2621 	int rc;
2622 
2623 	if (no_load)
2624 		return -ENODEV;
2625 
2626 	if (x86_match_cpu(hwp_support_ids)) {
2627 		copy_cpu_funcs(&core_params.funcs);
2628 		if (no_hwp) {
2629 			pstate_funcs.get_target_pstate = get_target_pstate_use_cpu_load;
2630 		} else {
2631 			hwp_active++;
2632 			intel_pstate.attr = hwp_cpufreq_attrs;
2633 			goto hwp_cpu_matched;
2634 		}
2635 	} else {
2636 		const struct x86_cpu_id *id;
2637 		struct cpu_defaults *cpu_def;
2638 
2639 		id = x86_match_cpu(intel_pstate_cpu_ids);
2640 		if (!id)
2641 			return -ENODEV;
2642 
2643 		cpu_def = (struct cpu_defaults *)id->driver_data;
2644 
2645 		copy_pid_params(&cpu_def->pid_policy);
2646 		copy_cpu_funcs(&cpu_def->funcs);
2647 	}
2648 
2649 	if (intel_pstate_msrs_not_valid())
2650 		return -ENODEV;
2651 
2652 hwp_cpu_matched:
2653 	/*
2654 	 * The Intel pstate driver will be ignored if the platform
2655 	 * firmware has its own power management modes.
2656 	 */
2657 	if (intel_pstate_platform_pwr_mgmt_exists())
2658 		return -ENODEV;
2659 
2660 	if (!hwp_active && hwp_only)
2661 		return -ENOTSUPP;
2662 
2663 	pr_info("Intel P-state driver initializing\n");
2664 
2665 	all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
2666 	if (!all_cpu_data)
2667 		return -ENOMEM;
2668 
2669 	intel_pstate_request_control_from_smm();
2670 
2671 	intel_pstate_sysfs_expose_params();
2672 
2673 	mutex_lock(&intel_pstate_driver_lock);
2674 	rc = intel_pstate_register_driver();
2675 	mutex_unlock(&intel_pstate_driver_lock);
2676 	if (rc)
2677 		return rc;
2678 
2679 	if (hwp_active)
2680 		pr_info("HWP enabled\n");
2681 
2682 	return 0;
2683 }
2684 device_initcall(intel_pstate_init);
2685 
2686 static int __init intel_pstate_setup(char *str)
2687 {
2688 	if (!str)
2689 		return -EINVAL;
2690 
2691 	if (!strcmp(str, "disable")) {
2692 		no_load = 1;
2693 	} else if (!strcmp(str, "passive")) {
2694 		pr_info("Passive mode enabled\n");
2695 		intel_pstate_driver = &intel_cpufreq;
2696 		no_hwp = 1;
2697 	}
2698 	if (!strcmp(str, "no_hwp")) {
2699 		pr_info("HWP disabled\n");
2700 		no_hwp = 1;
2701 	}
2702 	if (!strcmp(str, "force"))
2703 		force_load = 1;
2704 	if (!strcmp(str, "hwp_only"))
2705 		hwp_only = 1;
2706 	if (!strcmp(str, "per_cpu_perf_limits"))
2707 		per_cpu_limits = true;
2708 
2709 #ifdef CONFIG_ACPI
2710 	if (!strcmp(str, "support_acpi_ppc"))
2711 		acpi_ppc = true;
2712 #endif
2713 
2714 	return 0;
2715 }
2716 early_param("intel_pstate", intel_pstate_setup);
2717 
2718 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
2719 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
2720 MODULE_LICENSE("GPL");
2721