1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * intel_pstate.c: Native P state management for Intel processors 4 * 5 * (C) Copyright 2012 Intel Corporation 6 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com> 7 */ 8 9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 10 11 #include <linux/kernel.h> 12 #include <linux/kernel_stat.h> 13 #include <linux/module.h> 14 #include <linux/ktime.h> 15 #include <linux/hrtimer.h> 16 #include <linux/tick.h> 17 #include <linux/slab.h> 18 #include <linux/sched/cpufreq.h> 19 #include <linux/list.h> 20 #include <linux/cpu.h> 21 #include <linux/cpufreq.h> 22 #include <linux/sysfs.h> 23 #include <linux/types.h> 24 #include <linux/fs.h> 25 #include <linux/acpi.h> 26 #include <linux/vmalloc.h> 27 #include <linux/pm_qos.h> 28 #include <trace/events/power.h> 29 30 #include <asm/div64.h> 31 #include <asm/msr.h> 32 #include <asm/cpu_device_id.h> 33 #include <asm/cpufeature.h> 34 #include <asm/intel-family.h> 35 36 #define INTEL_PSTATE_SAMPLING_INTERVAL (10 * NSEC_PER_MSEC) 37 38 #define INTEL_CPUFREQ_TRANSITION_LATENCY 20000 39 #define INTEL_CPUFREQ_TRANSITION_DELAY_HWP 5000 40 #define INTEL_CPUFREQ_TRANSITION_DELAY 500 41 42 #ifdef CONFIG_ACPI 43 #include <acpi/processor.h> 44 #include <acpi/cppc_acpi.h> 45 #endif 46 47 #define FRAC_BITS 8 48 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS) 49 #define fp_toint(X) ((X) >> FRAC_BITS) 50 51 #define ONE_EIGHTH_FP ((int64_t)1 << (FRAC_BITS - 3)) 52 53 #define EXT_BITS 6 54 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS) 55 #define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS) 56 #define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS) 57 58 static inline int32_t mul_fp(int32_t x, int32_t y) 59 { 60 return ((int64_t)x * (int64_t)y) >> FRAC_BITS; 61 } 62 63 static inline int32_t div_fp(s64 x, s64 y) 64 { 65 return div64_s64((int64_t)x << FRAC_BITS, y); 66 } 67 68 static inline int ceiling_fp(int32_t x) 69 { 70 int mask, ret; 71 72 ret = fp_toint(x); 73 mask = (1 << FRAC_BITS) - 1; 74 if (x & mask) 75 ret += 1; 76 return ret; 77 } 78 79 static inline u64 mul_ext_fp(u64 x, u64 y) 80 { 81 return (x * y) >> EXT_FRAC_BITS; 82 } 83 84 static inline u64 div_ext_fp(u64 x, u64 y) 85 { 86 return div64_u64(x << EXT_FRAC_BITS, y); 87 } 88 89 /** 90 * struct sample - Store performance sample 91 * @core_avg_perf: Ratio of APERF/MPERF which is the actual average 92 * performance during last sample period 93 * @busy_scaled: Scaled busy value which is used to calculate next 94 * P state. This can be different than core_avg_perf 95 * to account for cpu idle period 96 * @aperf: Difference of actual performance frequency clock count 97 * read from APERF MSR between last and current sample 98 * @mperf: Difference of maximum performance frequency clock count 99 * read from MPERF MSR between last and current sample 100 * @tsc: Difference of time stamp counter between last and 101 * current sample 102 * @time: Current time from scheduler 103 * 104 * This structure is used in the cpudata structure to store performance sample 105 * data for choosing next P State. 106 */ 107 struct sample { 108 int32_t core_avg_perf; 109 int32_t busy_scaled; 110 u64 aperf; 111 u64 mperf; 112 u64 tsc; 113 u64 time; 114 }; 115 116 /** 117 * struct pstate_data - Store P state data 118 * @current_pstate: Current requested P state 119 * @min_pstate: Min P state possible for this platform 120 * @max_pstate: Max P state possible for this platform 121 * @max_pstate_physical:This is physical Max P state for a processor 122 * This can be higher than the max_pstate which can 123 * be limited by platform thermal design power limits 124 * @scaling: Scaling factor to convert frequency to cpufreq 125 * frequency units 126 * @turbo_pstate: Max Turbo P state possible for this platform 127 * @max_freq: @max_pstate frequency in cpufreq units 128 * @turbo_freq: @turbo_pstate frequency in cpufreq units 129 * 130 * Stores the per cpu model P state limits and current P state. 131 */ 132 struct pstate_data { 133 int current_pstate; 134 int min_pstate; 135 int max_pstate; 136 int max_pstate_physical; 137 int scaling; 138 int turbo_pstate; 139 unsigned int max_freq; 140 unsigned int turbo_freq; 141 }; 142 143 /** 144 * struct vid_data - Stores voltage information data 145 * @min: VID data for this platform corresponding to 146 * the lowest P state 147 * @max: VID data corresponding to the highest P State. 148 * @turbo: VID data for turbo P state 149 * @ratio: Ratio of (vid max - vid min) / 150 * (max P state - Min P State) 151 * 152 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling) 153 * This data is used in Atom platforms, where in addition to target P state, 154 * the voltage data needs to be specified to select next P State. 155 */ 156 struct vid_data { 157 int min; 158 int max; 159 int turbo; 160 int32_t ratio; 161 }; 162 163 /** 164 * struct global_params - Global parameters, mostly tunable via sysfs. 165 * @no_turbo: Whether or not to use turbo P-states. 166 * @turbo_disabled: Whether or not turbo P-states are available at all, 167 * based on the MSR_IA32_MISC_ENABLE value and whether or 168 * not the maximum reported turbo P-state is different from 169 * the maximum reported non-turbo one. 170 * @turbo_disabled_mf: The @turbo_disabled value reflected by cpuinfo.max_freq. 171 * @min_perf_pct: Minimum capacity limit in percent of the maximum turbo 172 * P-state capacity. 173 * @max_perf_pct: Maximum capacity limit in percent of the maximum turbo 174 * P-state capacity. 175 */ 176 struct global_params { 177 bool no_turbo; 178 bool turbo_disabled; 179 bool turbo_disabled_mf; 180 int max_perf_pct; 181 int min_perf_pct; 182 }; 183 184 /** 185 * struct cpudata - Per CPU instance data storage 186 * @cpu: CPU number for this instance data 187 * @policy: CPUFreq policy value 188 * @update_util: CPUFreq utility callback information 189 * @update_util_set: CPUFreq utility callback is set 190 * @iowait_boost: iowait-related boost fraction 191 * @last_update: Time of the last update. 192 * @pstate: Stores P state limits for this CPU 193 * @vid: Stores VID limits for this CPU 194 * @last_sample_time: Last Sample time 195 * @aperf_mperf_shift: APERF vs MPERF counting frequency difference 196 * @prev_aperf: Last APERF value read from APERF MSR 197 * @prev_mperf: Last MPERF value read from MPERF MSR 198 * @prev_tsc: Last timestamp counter (TSC) value 199 * @prev_cummulative_iowait: IO Wait time difference from last and 200 * current sample 201 * @sample: Storage for storing last Sample data 202 * @min_perf_ratio: Minimum capacity in terms of PERF or HWP ratios 203 * @max_perf_ratio: Maximum capacity in terms of PERF or HWP ratios 204 * @acpi_perf_data: Stores ACPI perf information read from _PSS 205 * @valid_pss_table: Set to true for valid ACPI _PSS entries found 206 * @epp_powersave: Last saved HWP energy performance preference 207 * (EPP) or energy performance bias (EPB), 208 * when policy switched to performance 209 * @epp_policy: Last saved policy used to set EPP/EPB 210 * @epp_default: Power on default HWP energy performance 211 * preference/bias 212 * @epp_cached Cached HWP energy-performance preference value 213 * @hwp_req_cached: Cached value of the last HWP Request MSR 214 * @hwp_cap_cached: Cached value of the last HWP Capabilities MSR 215 * @last_io_update: Last time when IO wake flag was set 216 * @sched_flags: Store scheduler flags for possible cross CPU update 217 * @hwp_boost_min: Last HWP boosted min performance 218 * @suspended: Whether or not the driver has been suspended. 219 * 220 * This structure stores per CPU instance data for all CPUs. 221 */ 222 struct cpudata { 223 int cpu; 224 225 unsigned int policy; 226 struct update_util_data update_util; 227 bool update_util_set; 228 229 struct pstate_data pstate; 230 struct vid_data vid; 231 232 u64 last_update; 233 u64 last_sample_time; 234 u64 aperf_mperf_shift; 235 u64 prev_aperf; 236 u64 prev_mperf; 237 u64 prev_tsc; 238 u64 prev_cummulative_iowait; 239 struct sample sample; 240 int32_t min_perf_ratio; 241 int32_t max_perf_ratio; 242 #ifdef CONFIG_ACPI 243 struct acpi_processor_performance acpi_perf_data; 244 bool valid_pss_table; 245 #endif 246 unsigned int iowait_boost; 247 s16 epp_powersave; 248 s16 epp_policy; 249 s16 epp_default; 250 s16 epp_cached; 251 u64 hwp_req_cached; 252 u64 hwp_cap_cached; 253 u64 last_io_update; 254 unsigned int sched_flags; 255 u32 hwp_boost_min; 256 bool suspended; 257 }; 258 259 static struct cpudata **all_cpu_data; 260 261 /** 262 * struct pstate_funcs - Per CPU model specific callbacks 263 * @get_max: Callback to get maximum non turbo effective P state 264 * @get_max_physical: Callback to get maximum non turbo physical P state 265 * @get_min: Callback to get minimum P state 266 * @get_turbo: Callback to get turbo P state 267 * @get_scaling: Callback to get frequency scaling factor 268 * @get_aperf_mperf_shift: Callback to get the APERF vs MPERF frequency difference 269 * @get_val: Callback to convert P state to actual MSR write value 270 * @get_vid: Callback to get VID data for Atom platforms 271 * 272 * Core and Atom CPU models have different way to get P State limits. This 273 * structure is used to store those callbacks. 274 */ 275 struct pstate_funcs { 276 int (*get_max)(void); 277 int (*get_max_physical)(void); 278 int (*get_min)(void); 279 int (*get_turbo)(void); 280 int (*get_scaling)(void); 281 int (*get_aperf_mperf_shift)(void); 282 u64 (*get_val)(struct cpudata*, int pstate); 283 void (*get_vid)(struct cpudata *); 284 }; 285 286 static struct pstate_funcs pstate_funcs __read_mostly; 287 288 static int hwp_active __read_mostly; 289 static int hwp_mode_bdw __read_mostly; 290 static bool per_cpu_limits __read_mostly; 291 static bool hwp_boost __read_mostly; 292 293 static struct cpufreq_driver *intel_pstate_driver __read_mostly; 294 295 #ifdef CONFIG_ACPI 296 static bool acpi_ppc; 297 #endif 298 299 static struct global_params global; 300 301 static DEFINE_MUTEX(intel_pstate_driver_lock); 302 static DEFINE_MUTEX(intel_pstate_limits_lock); 303 304 #ifdef CONFIG_ACPI 305 306 static bool intel_pstate_acpi_pm_profile_server(void) 307 { 308 if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER || 309 acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER) 310 return true; 311 312 return false; 313 } 314 315 static bool intel_pstate_get_ppc_enable_status(void) 316 { 317 if (intel_pstate_acpi_pm_profile_server()) 318 return true; 319 320 return acpi_ppc; 321 } 322 323 #ifdef CONFIG_ACPI_CPPC_LIB 324 325 /* The work item is needed to avoid CPU hotplug locking issues */ 326 static void intel_pstste_sched_itmt_work_fn(struct work_struct *work) 327 { 328 sched_set_itmt_support(); 329 } 330 331 static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn); 332 333 static void intel_pstate_set_itmt_prio(int cpu) 334 { 335 struct cppc_perf_caps cppc_perf; 336 static u32 max_highest_perf = 0, min_highest_perf = U32_MAX; 337 int ret; 338 339 ret = cppc_get_perf_caps(cpu, &cppc_perf); 340 if (ret) 341 return; 342 343 /* 344 * The priorities can be set regardless of whether or not 345 * sched_set_itmt_support(true) has been called and it is valid to 346 * update them at any time after it has been called. 347 */ 348 sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu); 349 350 if (max_highest_perf <= min_highest_perf) { 351 if (cppc_perf.highest_perf > max_highest_perf) 352 max_highest_perf = cppc_perf.highest_perf; 353 354 if (cppc_perf.highest_perf < min_highest_perf) 355 min_highest_perf = cppc_perf.highest_perf; 356 357 if (max_highest_perf > min_highest_perf) { 358 /* 359 * This code can be run during CPU online under the 360 * CPU hotplug locks, so sched_set_itmt_support() 361 * cannot be called from here. Queue up a work item 362 * to invoke it. 363 */ 364 schedule_work(&sched_itmt_work); 365 } 366 } 367 } 368 369 static int intel_pstate_get_cppc_guranteed(int cpu) 370 { 371 struct cppc_perf_caps cppc_perf; 372 int ret; 373 374 ret = cppc_get_perf_caps(cpu, &cppc_perf); 375 if (ret) 376 return ret; 377 378 if (cppc_perf.guaranteed_perf) 379 return cppc_perf.guaranteed_perf; 380 381 return cppc_perf.nominal_perf; 382 } 383 384 #else /* CONFIG_ACPI_CPPC_LIB */ 385 static void intel_pstate_set_itmt_prio(int cpu) 386 { 387 } 388 #endif /* CONFIG_ACPI_CPPC_LIB */ 389 390 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy) 391 { 392 struct cpudata *cpu; 393 int ret; 394 int i; 395 396 if (hwp_active) { 397 intel_pstate_set_itmt_prio(policy->cpu); 398 return; 399 } 400 401 if (!intel_pstate_get_ppc_enable_status()) 402 return; 403 404 cpu = all_cpu_data[policy->cpu]; 405 406 ret = acpi_processor_register_performance(&cpu->acpi_perf_data, 407 policy->cpu); 408 if (ret) 409 return; 410 411 /* 412 * Check if the control value in _PSS is for PERF_CTL MSR, which should 413 * guarantee that the states returned by it map to the states in our 414 * list directly. 415 */ 416 if (cpu->acpi_perf_data.control_register.space_id != 417 ACPI_ADR_SPACE_FIXED_HARDWARE) 418 goto err; 419 420 /* 421 * If there is only one entry _PSS, simply ignore _PSS and continue as 422 * usual without taking _PSS into account 423 */ 424 if (cpu->acpi_perf_data.state_count < 2) 425 goto err; 426 427 pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu); 428 for (i = 0; i < cpu->acpi_perf_data.state_count; i++) { 429 pr_debug(" %cP%d: %u MHz, %u mW, 0x%x\n", 430 (i == cpu->acpi_perf_data.state ? '*' : ' '), i, 431 (u32) cpu->acpi_perf_data.states[i].core_frequency, 432 (u32) cpu->acpi_perf_data.states[i].power, 433 (u32) cpu->acpi_perf_data.states[i].control); 434 } 435 436 /* 437 * The _PSS table doesn't contain whole turbo frequency range. 438 * This just contains +1 MHZ above the max non turbo frequency, 439 * with control value corresponding to max turbo ratio. But 440 * when cpufreq set policy is called, it will call with this 441 * max frequency, which will cause a reduced performance as 442 * this driver uses real max turbo frequency as the max 443 * frequency. So correct this frequency in _PSS table to 444 * correct max turbo frequency based on the turbo state. 445 * Also need to convert to MHz as _PSS freq is in MHz. 446 */ 447 if (!global.turbo_disabled) 448 cpu->acpi_perf_data.states[0].core_frequency = 449 policy->cpuinfo.max_freq / 1000; 450 cpu->valid_pss_table = true; 451 pr_debug("_PPC limits will be enforced\n"); 452 453 return; 454 455 err: 456 cpu->valid_pss_table = false; 457 acpi_processor_unregister_performance(policy->cpu); 458 } 459 460 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy) 461 { 462 struct cpudata *cpu; 463 464 cpu = all_cpu_data[policy->cpu]; 465 if (!cpu->valid_pss_table) 466 return; 467 468 acpi_processor_unregister_performance(policy->cpu); 469 } 470 #else /* CONFIG_ACPI */ 471 static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy) 472 { 473 } 474 475 static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy) 476 { 477 } 478 479 static inline bool intel_pstate_acpi_pm_profile_server(void) 480 { 481 return false; 482 } 483 #endif /* CONFIG_ACPI */ 484 485 #ifndef CONFIG_ACPI_CPPC_LIB 486 static int intel_pstate_get_cppc_guranteed(int cpu) 487 { 488 return -ENOTSUPP; 489 } 490 #endif /* CONFIG_ACPI_CPPC_LIB */ 491 492 static inline void update_turbo_state(void) 493 { 494 u64 misc_en; 495 struct cpudata *cpu; 496 497 cpu = all_cpu_data[0]; 498 rdmsrl(MSR_IA32_MISC_ENABLE, misc_en); 499 global.turbo_disabled = 500 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE || 501 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate); 502 } 503 504 static int min_perf_pct_min(void) 505 { 506 struct cpudata *cpu = all_cpu_data[0]; 507 int turbo_pstate = cpu->pstate.turbo_pstate; 508 509 return turbo_pstate ? 510 (cpu->pstate.min_pstate * 100 / turbo_pstate) : 0; 511 } 512 513 static s16 intel_pstate_get_epb(struct cpudata *cpu_data) 514 { 515 u64 epb; 516 int ret; 517 518 if (!boot_cpu_has(X86_FEATURE_EPB)) 519 return -ENXIO; 520 521 ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb); 522 if (ret) 523 return (s16)ret; 524 525 return (s16)(epb & 0x0f); 526 } 527 528 static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data) 529 { 530 s16 epp; 531 532 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) { 533 /* 534 * When hwp_req_data is 0, means that caller didn't read 535 * MSR_HWP_REQUEST, so need to read and get EPP. 536 */ 537 if (!hwp_req_data) { 538 epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, 539 &hwp_req_data); 540 if (epp) 541 return epp; 542 } 543 epp = (hwp_req_data >> 24) & 0xff; 544 } else { 545 /* When there is no EPP present, HWP uses EPB settings */ 546 epp = intel_pstate_get_epb(cpu_data); 547 } 548 549 return epp; 550 } 551 552 static int intel_pstate_set_epb(int cpu, s16 pref) 553 { 554 u64 epb; 555 int ret; 556 557 if (!boot_cpu_has(X86_FEATURE_EPB)) 558 return -ENXIO; 559 560 ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb); 561 if (ret) 562 return ret; 563 564 epb = (epb & ~0x0f) | pref; 565 wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb); 566 567 return 0; 568 } 569 570 /* 571 * EPP/EPB display strings corresponding to EPP index in the 572 * energy_perf_strings[] 573 * index String 574 *------------------------------------- 575 * 0 default 576 * 1 performance 577 * 2 balance_performance 578 * 3 balance_power 579 * 4 power 580 */ 581 static const char * const energy_perf_strings[] = { 582 "default", 583 "performance", 584 "balance_performance", 585 "balance_power", 586 "power", 587 NULL 588 }; 589 static const unsigned int epp_values[] = { 590 HWP_EPP_PERFORMANCE, 591 HWP_EPP_BALANCE_PERFORMANCE, 592 HWP_EPP_BALANCE_POWERSAVE, 593 HWP_EPP_POWERSAVE 594 }; 595 596 static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data, int *raw_epp) 597 { 598 s16 epp; 599 int index = -EINVAL; 600 601 *raw_epp = 0; 602 epp = intel_pstate_get_epp(cpu_data, 0); 603 if (epp < 0) 604 return epp; 605 606 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) { 607 if (epp == HWP_EPP_PERFORMANCE) 608 return 1; 609 if (epp == HWP_EPP_BALANCE_PERFORMANCE) 610 return 2; 611 if (epp == HWP_EPP_BALANCE_POWERSAVE) 612 return 3; 613 if (epp == HWP_EPP_POWERSAVE) 614 return 4; 615 *raw_epp = epp; 616 return 0; 617 } else if (boot_cpu_has(X86_FEATURE_EPB)) { 618 /* 619 * Range: 620 * 0x00-0x03 : Performance 621 * 0x04-0x07 : Balance performance 622 * 0x08-0x0B : Balance power 623 * 0x0C-0x0F : Power 624 * The EPB is a 4 bit value, but our ranges restrict the 625 * value which can be set. Here only using top two bits 626 * effectively. 627 */ 628 index = (epp >> 2) + 1; 629 } 630 631 return index; 632 } 633 634 static int intel_pstate_set_epp(struct cpudata *cpu, u32 epp) 635 { 636 int ret; 637 638 /* 639 * Use the cached HWP Request MSR value, because in the active mode the 640 * register itself may be updated by intel_pstate_hwp_boost_up() or 641 * intel_pstate_hwp_boost_down() at any time. 642 */ 643 u64 value = READ_ONCE(cpu->hwp_req_cached); 644 645 value &= ~GENMASK_ULL(31, 24); 646 value |= (u64)epp << 24; 647 /* 648 * The only other updater of hwp_req_cached in the active mode, 649 * intel_pstate_hwp_set(), is called under the same lock as this 650 * function, so it cannot run in parallel with the update below. 651 */ 652 WRITE_ONCE(cpu->hwp_req_cached, value); 653 ret = wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value); 654 if (!ret) 655 cpu->epp_cached = epp; 656 657 return ret; 658 } 659 660 static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data, 661 int pref_index, bool use_raw, 662 u32 raw_epp) 663 { 664 int epp = -EINVAL; 665 int ret; 666 667 if (!pref_index) 668 epp = cpu_data->epp_default; 669 670 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) { 671 if (use_raw) 672 epp = raw_epp; 673 else if (epp == -EINVAL) 674 epp = epp_values[pref_index - 1]; 675 676 /* 677 * To avoid confusion, refuse to set EPP to any values different 678 * from 0 (performance) if the current policy is "performance", 679 * because those values would be overridden. 680 */ 681 if (epp > 0 && cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) 682 return -EBUSY; 683 684 ret = intel_pstate_set_epp(cpu_data, epp); 685 } else { 686 if (epp == -EINVAL) 687 epp = (pref_index - 1) << 2; 688 ret = intel_pstate_set_epb(cpu_data->cpu, epp); 689 } 690 691 return ret; 692 } 693 694 static ssize_t show_energy_performance_available_preferences( 695 struct cpufreq_policy *policy, char *buf) 696 { 697 int i = 0; 698 int ret = 0; 699 700 while (energy_perf_strings[i] != NULL) 701 ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]); 702 703 ret += sprintf(&buf[ret], "\n"); 704 705 return ret; 706 } 707 708 cpufreq_freq_attr_ro(energy_performance_available_preferences); 709 710 static struct cpufreq_driver intel_pstate; 711 712 static ssize_t store_energy_performance_preference( 713 struct cpufreq_policy *policy, const char *buf, size_t count) 714 { 715 struct cpudata *cpu = all_cpu_data[policy->cpu]; 716 char str_preference[21]; 717 bool raw = false; 718 ssize_t ret; 719 u32 epp = 0; 720 721 ret = sscanf(buf, "%20s", str_preference); 722 if (ret != 1) 723 return -EINVAL; 724 725 ret = match_string(energy_perf_strings, -1, str_preference); 726 if (ret < 0) { 727 if (!boot_cpu_has(X86_FEATURE_HWP_EPP)) 728 return ret; 729 730 ret = kstrtouint(buf, 10, &epp); 731 if (ret) 732 return ret; 733 734 if (epp > 255) 735 return -EINVAL; 736 737 raw = true; 738 } 739 740 /* 741 * This function runs with the policy R/W semaphore held, which 742 * guarantees that the driver pointer will not change while it is 743 * running. 744 */ 745 if (!intel_pstate_driver) 746 return -EAGAIN; 747 748 mutex_lock(&intel_pstate_limits_lock); 749 750 if (intel_pstate_driver == &intel_pstate) { 751 ret = intel_pstate_set_energy_pref_index(cpu, ret, raw, epp); 752 } else { 753 /* 754 * In the passive mode the governor needs to be stopped on the 755 * target CPU before the EPP update and restarted after it, 756 * which is super-heavy-weight, so make sure it is worth doing 757 * upfront. 758 */ 759 if (!raw) 760 epp = ret ? epp_values[ret - 1] : cpu->epp_default; 761 762 if (cpu->epp_cached != epp) { 763 int err; 764 765 cpufreq_stop_governor(policy); 766 ret = intel_pstate_set_epp(cpu, epp); 767 err = cpufreq_start_governor(policy); 768 if (!ret) 769 ret = err; 770 } 771 } 772 773 mutex_unlock(&intel_pstate_limits_lock); 774 775 return ret ?: count; 776 } 777 778 static ssize_t show_energy_performance_preference( 779 struct cpufreq_policy *policy, char *buf) 780 { 781 struct cpudata *cpu_data = all_cpu_data[policy->cpu]; 782 int preference, raw_epp; 783 784 preference = intel_pstate_get_energy_pref_index(cpu_data, &raw_epp); 785 if (preference < 0) 786 return preference; 787 788 if (raw_epp) 789 return sprintf(buf, "%d\n", raw_epp); 790 else 791 return sprintf(buf, "%s\n", energy_perf_strings[preference]); 792 } 793 794 cpufreq_freq_attr_rw(energy_performance_preference); 795 796 static ssize_t show_base_frequency(struct cpufreq_policy *policy, char *buf) 797 { 798 struct cpudata *cpu; 799 u64 cap; 800 int ratio; 801 802 ratio = intel_pstate_get_cppc_guranteed(policy->cpu); 803 if (ratio <= 0) { 804 rdmsrl_on_cpu(policy->cpu, MSR_HWP_CAPABILITIES, &cap); 805 ratio = HWP_GUARANTEED_PERF(cap); 806 } 807 808 cpu = all_cpu_data[policy->cpu]; 809 810 return sprintf(buf, "%d\n", ratio * cpu->pstate.scaling); 811 } 812 813 cpufreq_freq_attr_ro(base_frequency); 814 815 static struct freq_attr *hwp_cpufreq_attrs[] = { 816 &energy_performance_preference, 817 &energy_performance_available_preferences, 818 &base_frequency, 819 NULL, 820 }; 821 822 static void intel_pstate_get_hwp_max(unsigned int cpu, int *phy_max, 823 int *current_max) 824 { 825 u64 cap; 826 827 rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap); 828 WRITE_ONCE(all_cpu_data[cpu]->hwp_cap_cached, cap); 829 if (global.no_turbo || global.turbo_disabled) 830 *current_max = HWP_GUARANTEED_PERF(cap); 831 else 832 *current_max = HWP_HIGHEST_PERF(cap); 833 834 *phy_max = HWP_HIGHEST_PERF(cap); 835 } 836 837 static void intel_pstate_hwp_set(unsigned int cpu) 838 { 839 struct cpudata *cpu_data = all_cpu_data[cpu]; 840 int max, min; 841 u64 value; 842 s16 epp; 843 844 max = cpu_data->max_perf_ratio; 845 min = cpu_data->min_perf_ratio; 846 847 if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) 848 min = max; 849 850 rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value); 851 852 value &= ~HWP_MIN_PERF(~0L); 853 value |= HWP_MIN_PERF(min); 854 855 value &= ~HWP_MAX_PERF(~0L); 856 value |= HWP_MAX_PERF(max); 857 858 if (cpu_data->epp_policy == cpu_data->policy) 859 goto skip_epp; 860 861 cpu_data->epp_policy = cpu_data->policy; 862 863 if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) { 864 epp = intel_pstate_get_epp(cpu_data, value); 865 cpu_data->epp_powersave = epp; 866 /* If EPP read was failed, then don't try to write */ 867 if (epp < 0) 868 goto skip_epp; 869 870 epp = 0; 871 } else { 872 /* skip setting EPP, when saved value is invalid */ 873 if (cpu_data->epp_powersave < 0) 874 goto skip_epp; 875 876 /* 877 * No need to restore EPP when it is not zero. This 878 * means: 879 * - Policy is not changed 880 * - user has manually changed 881 * - Error reading EPB 882 */ 883 epp = intel_pstate_get_epp(cpu_data, value); 884 if (epp) 885 goto skip_epp; 886 887 epp = cpu_data->epp_powersave; 888 } 889 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) { 890 value &= ~GENMASK_ULL(31, 24); 891 value |= (u64)epp << 24; 892 } else { 893 intel_pstate_set_epb(cpu, epp); 894 } 895 skip_epp: 896 WRITE_ONCE(cpu_data->hwp_req_cached, value); 897 wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value); 898 } 899 900 static void intel_pstate_hwp_offline(struct cpudata *cpu) 901 { 902 u64 value = READ_ONCE(cpu->hwp_req_cached); 903 int min_perf; 904 905 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) { 906 /* 907 * In case the EPP has been set to "performance" by the 908 * active mode "performance" scaling algorithm, replace that 909 * temporary value with the cached EPP one. 910 */ 911 value &= ~GENMASK_ULL(31, 24); 912 value |= HWP_ENERGY_PERF_PREFERENCE(cpu->epp_cached); 913 WRITE_ONCE(cpu->hwp_req_cached, value); 914 } 915 916 value &= ~GENMASK_ULL(31, 0); 917 min_perf = HWP_LOWEST_PERF(cpu->hwp_cap_cached); 918 919 /* Set hwp_max = hwp_min */ 920 value |= HWP_MAX_PERF(min_perf); 921 value |= HWP_MIN_PERF(min_perf); 922 923 /* Set EPP to min */ 924 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) 925 value |= HWP_ENERGY_PERF_PREFERENCE(HWP_EPP_POWERSAVE); 926 927 wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value); 928 } 929 930 #define POWER_CTL_EE_ENABLE 1 931 #define POWER_CTL_EE_DISABLE 2 932 933 static int power_ctl_ee_state; 934 935 static void set_power_ctl_ee_state(bool input) 936 { 937 u64 power_ctl; 938 939 mutex_lock(&intel_pstate_driver_lock); 940 rdmsrl(MSR_IA32_POWER_CTL, power_ctl); 941 if (input) { 942 power_ctl &= ~BIT(MSR_IA32_POWER_CTL_BIT_EE); 943 power_ctl_ee_state = POWER_CTL_EE_ENABLE; 944 } else { 945 power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE); 946 power_ctl_ee_state = POWER_CTL_EE_DISABLE; 947 } 948 wrmsrl(MSR_IA32_POWER_CTL, power_ctl); 949 mutex_unlock(&intel_pstate_driver_lock); 950 } 951 952 static void intel_pstate_hwp_enable(struct cpudata *cpudata); 953 954 static void intel_pstate_hwp_reenable(struct cpudata *cpu) 955 { 956 intel_pstate_hwp_enable(cpu); 957 wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, READ_ONCE(cpu->hwp_req_cached)); 958 } 959 960 static int intel_pstate_suspend(struct cpufreq_policy *policy) 961 { 962 struct cpudata *cpu = all_cpu_data[policy->cpu]; 963 964 pr_debug("CPU %d suspending\n", cpu->cpu); 965 966 cpu->suspended = true; 967 968 return 0; 969 } 970 971 static int intel_pstate_resume(struct cpufreq_policy *policy) 972 { 973 struct cpudata *cpu = all_cpu_data[policy->cpu]; 974 975 pr_debug("CPU %d resuming\n", cpu->cpu); 976 977 /* Only restore if the system default is changed */ 978 if (power_ctl_ee_state == POWER_CTL_EE_ENABLE) 979 set_power_ctl_ee_state(true); 980 else if (power_ctl_ee_state == POWER_CTL_EE_DISABLE) 981 set_power_ctl_ee_state(false); 982 983 if (cpu->suspended && hwp_active) { 984 mutex_lock(&intel_pstate_limits_lock); 985 986 /* Re-enable HWP, because "online" has not done that. */ 987 intel_pstate_hwp_reenable(cpu); 988 989 mutex_unlock(&intel_pstate_limits_lock); 990 } 991 992 cpu->suspended = false; 993 994 return 0; 995 } 996 997 static void intel_pstate_update_policies(void) 998 { 999 int cpu; 1000 1001 for_each_possible_cpu(cpu) 1002 cpufreq_update_policy(cpu); 1003 } 1004 1005 static void intel_pstate_update_max_freq(unsigned int cpu) 1006 { 1007 struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu); 1008 struct cpudata *cpudata; 1009 1010 if (!policy) 1011 return; 1012 1013 cpudata = all_cpu_data[cpu]; 1014 policy->cpuinfo.max_freq = global.turbo_disabled_mf ? 1015 cpudata->pstate.max_freq : cpudata->pstate.turbo_freq; 1016 1017 refresh_frequency_limits(policy); 1018 1019 cpufreq_cpu_release(policy); 1020 } 1021 1022 static void intel_pstate_update_limits(unsigned int cpu) 1023 { 1024 mutex_lock(&intel_pstate_driver_lock); 1025 1026 update_turbo_state(); 1027 /* 1028 * If turbo has been turned on or off globally, policy limits for 1029 * all CPUs need to be updated to reflect that. 1030 */ 1031 if (global.turbo_disabled_mf != global.turbo_disabled) { 1032 global.turbo_disabled_mf = global.turbo_disabled; 1033 arch_set_max_freq_ratio(global.turbo_disabled); 1034 for_each_possible_cpu(cpu) 1035 intel_pstate_update_max_freq(cpu); 1036 } else { 1037 cpufreq_update_policy(cpu); 1038 } 1039 1040 mutex_unlock(&intel_pstate_driver_lock); 1041 } 1042 1043 /************************** sysfs begin ************************/ 1044 #define show_one(file_name, object) \ 1045 static ssize_t show_##file_name \ 1046 (struct kobject *kobj, struct kobj_attribute *attr, char *buf) \ 1047 { \ 1048 return sprintf(buf, "%u\n", global.object); \ 1049 } 1050 1051 static ssize_t intel_pstate_show_status(char *buf); 1052 static int intel_pstate_update_status(const char *buf, size_t size); 1053 1054 static ssize_t show_status(struct kobject *kobj, 1055 struct kobj_attribute *attr, char *buf) 1056 { 1057 ssize_t ret; 1058 1059 mutex_lock(&intel_pstate_driver_lock); 1060 ret = intel_pstate_show_status(buf); 1061 mutex_unlock(&intel_pstate_driver_lock); 1062 1063 return ret; 1064 } 1065 1066 static ssize_t store_status(struct kobject *a, struct kobj_attribute *b, 1067 const char *buf, size_t count) 1068 { 1069 char *p = memchr(buf, '\n', count); 1070 int ret; 1071 1072 mutex_lock(&intel_pstate_driver_lock); 1073 ret = intel_pstate_update_status(buf, p ? p - buf : count); 1074 mutex_unlock(&intel_pstate_driver_lock); 1075 1076 return ret < 0 ? ret : count; 1077 } 1078 1079 static ssize_t show_turbo_pct(struct kobject *kobj, 1080 struct kobj_attribute *attr, char *buf) 1081 { 1082 struct cpudata *cpu; 1083 int total, no_turbo, turbo_pct; 1084 uint32_t turbo_fp; 1085 1086 mutex_lock(&intel_pstate_driver_lock); 1087 1088 if (!intel_pstate_driver) { 1089 mutex_unlock(&intel_pstate_driver_lock); 1090 return -EAGAIN; 1091 } 1092 1093 cpu = all_cpu_data[0]; 1094 1095 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1; 1096 no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1; 1097 turbo_fp = div_fp(no_turbo, total); 1098 turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100))); 1099 1100 mutex_unlock(&intel_pstate_driver_lock); 1101 1102 return sprintf(buf, "%u\n", turbo_pct); 1103 } 1104 1105 static ssize_t show_num_pstates(struct kobject *kobj, 1106 struct kobj_attribute *attr, char *buf) 1107 { 1108 struct cpudata *cpu; 1109 int total; 1110 1111 mutex_lock(&intel_pstate_driver_lock); 1112 1113 if (!intel_pstate_driver) { 1114 mutex_unlock(&intel_pstate_driver_lock); 1115 return -EAGAIN; 1116 } 1117 1118 cpu = all_cpu_data[0]; 1119 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1; 1120 1121 mutex_unlock(&intel_pstate_driver_lock); 1122 1123 return sprintf(buf, "%u\n", total); 1124 } 1125 1126 static ssize_t show_no_turbo(struct kobject *kobj, 1127 struct kobj_attribute *attr, char *buf) 1128 { 1129 ssize_t ret; 1130 1131 mutex_lock(&intel_pstate_driver_lock); 1132 1133 if (!intel_pstate_driver) { 1134 mutex_unlock(&intel_pstate_driver_lock); 1135 return -EAGAIN; 1136 } 1137 1138 update_turbo_state(); 1139 if (global.turbo_disabled) 1140 ret = sprintf(buf, "%u\n", global.turbo_disabled); 1141 else 1142 ret = sprintf(buf, "%u\n", global.no_turbo); 1143 1144 mutex_unlock(&intel_pstate_driver_lock); 1145 1146 return ret; 1147 } 1148 1149 static ssize_t store_no_turbo(struct kobject *a, struct kobj_attribute *b, 1150 const char *buf, size_t count) 1151 { 1152 unsigned int input; 1153 int ret; 1154 1155 ret = sscanf(buf, "%u", &input); 1156 if (ret != 1) 1157 return -EINVAL; 1158 1159 mutex_lock(&intel_pstate_driver_lock); 1160 1161 if (!intel_pstate_driver) { 1162 mutex_unlock(&intel_pstate_driver_lock); 1163 return -EAGAIN; 1164 } 1165 1166 mutex_lock(&intel_pstate_limits_lock); 1167 1168 update_turbo_state(); 1169 if (global.turbo_disabled) { 1170 pr_notice_once("Turbo disabled by BIOS or unavailable on processor\n"); 1171 mutex_unlock(&intel_pstate_limits_lock); 1172 mutex_unlock(&intel_pstate_driver_lock); 1173 return -EPERM; 1174 } 1175 1176 global.no_turbo = clamp_t(int, input, 0, 1); 1177 1178 if (global.no_turbo) { 1179 struct cpudata *cpu = all_cpu_data[0]; 1180 int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate; 1181 1182 /* Squash the global minimum into the permitted range. */ 1183 if (global.min_perf_pct > pct) 1184 global.min_perf_pct = pct; 1185 } 1186 1187 mutex_unlock(&intel_pstate_limits_lock); 1188 1189 intel_pstate_update_policies(); 1190 1191 mutex_unlock(&intel_pstate_driver_lock); 1192 1193 return count; 1194 } 1195 1196 static void update_qos_request(enum freq_qos_req_type type) 1197 { 1198 int max_state, turbo_max, freq, i, perf_pct; 1199 struct freq_qos_request *req; 1200 struct cpufreq_policy *policy; 1201 1202 for_each_possible_cpu(i) { 1203 struct cpudata *cpu = all_cpu_data[i]; 1204 1205 policy = cpufreq_cpu_get(i); 1206 if (!policy) 1207 continue; 1208 1209 req = policy->driver_data; 1210 cpufreq_cpu_put(policy); 1211 1212 if (!req) 1213 continue; 1214 1215 if (hwp_active) 1216 intel_pstate_get_hwp_max(i, &turbo_max, &max_state); 1217 else 1218 turbo_max = cpu->pstate.turbo_pstate; 1219 1220 if (type == FREQ_QOS_MIN) { 1221 perf_pct = global.min_perf_pct; 1222 } else { 1223 req++; 1224 perf_pct = global.max_perf_pct; 1225 } 1226 1227 freq = DIV_ROUND_UP(turbo_max * perf_pct, 100); 1228 freq *= cpu->pstate.scaling; 1229 1230 if (freq_qos_update_request(req, freq) < 0) 1231 pr_warn("Failed to update freq constraint: CPU%d\n", i); 1232 } 1233 } 1234 1235 static ssize_t store_max_perf_pct(struct kobject *a, struct kobj_attribute *b, 1236 const char *buf, size_t count) 1237 { 1238 unsigned int input; 1239 int ret; 1240 1241 ret = sscanf(buf, "%u", &input); 1242 if (ret != 1) 1243 return -EINVAL; 1244 1245 mutex_lock(&intel_pstate_driver_lock); 1246 1247 if (!intel_pstate_driver) { 1248 mutex_unlock(&intel_pstate_driver_lock); 1249 return -EAGAIN; 1250 } 1251 1252 mutex_lock(&intel_pstate_limits_lock); 1253 1254 global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100); 1255 1256 mutex_unlock(&intel_pstate_limits_lock); 1257 1258 if (intel_pstate_driver == &intel_pstate) 1259 intel_pstate_update_policies(); 1260 else 1261 update_qos_request(FREQ_QOS_MAX); 1262 1263 mutex_unlock(&intel_pstate_driver_lock); 1264 1265 return count; 1266 } 1267 1268 static ssize_t store_min_perf_pct(struct kobject *a, struct kobj_attribute *b, 1269 const char *buf, size_t count) 1270 { 1271 unsigned int input; 1272 int ret; 1273 1274 ret = sscanf(buf, "%u", &input); 1275 if (ret != 1) 1276 return -EINVAL; 1277 1278 mutex_lock(&intel_pstate_driver_lock); 1279 1280 if (!intel_pstate_driver) { 1281 mutex_unlock(&intel_pstate_driver_lock); 1282 return -EAGAIN; 1283 } 1284 1285 mutex_lock(&intel_pstate_limits_lock); 1286 1287 global.min_perf_pct = clamp_t(int, input, 1288 min_perf_pct_min(), global.max_perf_pct); 1289 1290 mutex_unlock(&intel_pstate_limits_lock); 1291 1292 if (intel_pstate_driver == &intel_pstate) 1293 intel_pstate_update_policies(); 1294 else 1295 update_qos_request(FREQ_QOS_MIN); 1296 1297 mutex_unlock(&intel_pstate_driver_lock); 1298 1299 return count; 1300 } 1301 1302 static ssize_t show_hwp_dynamic_boost(struct kobject *kobj, 1303 struct kobj_attribute *attr, char *buf) 1304 { 1305 return sprintf(buf, "%u\n", hwp_boost); 1306 } 1307 1308 static ssize_t store_hwp_dynamic_boost(struct kobject *a, 1309 struct kobj_attribute *b, 1310 const char *buf, size_t count) 1311 { 1312 unsigned int input; 1313 int ret; 1314 1315 ret = kstrtouint(buf, 10, &input); 1316 if (ret) 1317 return ret; 1318 1319 mutex_lock(&intel_pstate_driver_lock); 1320 hwp_boost = !!input; 1321 intel_pstate_update_policies(); 1322 mutex_unlock(&intel_pstate_driver_lock); 1323 1324 return count; 1325 } 1326 1327 static ssize_t show_energy_efficiency(struct kobject *kobj, struct kobj_attribute *attr, 1328 char *buf) 1329 { 1330 u64 power_ctl; 1331 int enable; 1332 1333 rdmsrl(MSR_IA32_POWER_CTL, power_ctl); 1334 enable = !!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE)); 1335 return sprintf(buf, "%d\n", !enable); 1336 } 1337 1338 static ssize_t store_energy_efficiency(struct kobject *a, struct kobj_attribute *b, 1339 const char *buf, size_t count) 1340 { 1341 bool input; 1342 int ret; 1343 1344 ret = kstrtobool(buf, &input); 1345 if (ret) 1346 return ret; 1347 1348 set_power_ctl_ee_state(input); 1349 1350 return count; 1351 } 1352 1353 show_one(max_perf_pct, max_perf_pct); 1354 show_one(min_perf_pct, min_perf_pct); 1355 1356 define_one_global_rw(status); 1357 define_one_global_rw(no_turbo); 1358 define_one_global_rw(max_perf_pct); 1359 define_one_global_rw(min_perf_pct); 1360 define_one_global_ro(turbo_pct); 1361 define_one_global_ro(num_pstates); 1362 define_one_global_rw(hwp_dynamic_boost); 1363 define_one_global_rw(energy_efficiency); 1364 1365 static struct attribute *intel_pstate_attributes[] = { 1366 &status.attr, 1367 &no_turbo.attr, 1368 &turbo_pct.attr, 1369 &num_pstates.attr, 1370 NULL 1371 }; 1372 1373 static const struct attribute_group intel_pstate_attr_group = { 1374 .attrs = intel_pstate_attributes, 1375 }; 1376 1377 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[]; 1378 1379 static struct kobject *intel_pstate_kobject; 1380 1381 static void __init intel_pstate_sysfs_expose_params(void) 1382 { 1383 int rc; 1384 1385 intel_pstate_kobject = kobject_create_and_add("intel_pstate", 1386 &cpu_subsys.dev_root->kobj); 1387 if (WARN_ON(!intel_pstate_kobject)) 1388 return; 1389 1390 rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group); 1391 if (WARN_ON(rc)) 1392 return; 1393 1394 /* 1395 * If per cpu limits are enforced there are no global limits, so 1396 * return without creating max/min_perf_pct attributes 1397 */ 1398 if (per_cpu_limits) 1399 return; 1400 1401 rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr); 1402 WARN_ON(rc); 1403 1404 rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr); 1405 WARN_ON(rc); 1406 1407 if (x86_match_cpu(intel_pstate_cpu_ee_disable_ids)) { 1408 rc = sysfs_create_file(intel_pstate_kobject, &energy_efficiency.attr); 1409 WARN_ON(rc); 1410 } 1411 } 1412 1413 static void __init intel_pstate_sysfs_remove(void) 1414 { 1415 if (!intel_pstate_kobject) 1416 return; 1417 1418 sysfs_remove_group(intel_pstate_kobject, &intel_pstate_attr_group); 1419 1420 if (!per_cpu_limits) { 1421 sysfs_remove_file(intel_pstate_kobject, &max_perf_pct.attr); 1422 sysfs_remove_file(intel_pstate_kobject, &min_perf_pct.attr); 1423 1424 if (x86_match_cpu(intel_pstate_cpu_ee_disable_ids)) 1425 sysfs_remove_file(intel_pstate_kobject, &energy_efficiency.attr); 1426 } 1427 1428 kobject_put(intel_pstate_kobject); 1429 } 1430 1431 static void intel_pstate_sysfs_expose_hwp_dynamic_boost(void) 1432 { 1433 int rc; 1434 1435 if (!hwp_active) 1436 return; 1437 1438 rc = sysfs_create_file(intel_pstate_kobject, &hwp_dynamic_boost.attr); 1439 WARN_ON_ONCE(rc); 1440 } 1441 1442 static void intel_pstate_sysfs_hide_hwp_dynamic_boost(void) 1443 { 1444 if (!hwp_active) 1445 return; 1446 1447 sysfs_remove_file(intel_pstate_kobject, &hwp_dynamic_boost.attr); 1448 } 1449 1450 /************************** sysfs end ************************/ 1451 1452 static void intel_pstate_hwp_enable(struct cpudata *cpudata) 1453 { 1454 /* First disable HWP notification interrupt as we don't process them */ 1455 if (boot_cpu_has(X86_FEATURE_HWP_NOTIFY)) 1456 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00); 1457 1458 wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1); 1459 if (cpudata->epp_default == -EINVAL) 1460 cpudata->epp_default = intel_pstate_get_epp(cpudata, 0); 1461 } 1462 1463 static int atom_get_min_pstate(void) 1464 { 1465 u64 value; 1466 1467 rdmsrl(MSR_ATOM_CORE_RATIOS, value); 1468 return (value >> 8) & 0x7F; 1469 } 1470 1471 static int atom_get_max_pstate(void) 1472 { 1473 u64 value; 1474 1475 rdmsrl(MSR_ATOM_CORE_RATIOS, value); 1476 return (value >> 16) & 0x7F; 1477 } 1478 1479 static int atom_get_turbo_pstate(void) 1480 { 1481 u64 value; 1482 1483 rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value); 1484 return value & 0x7F; 1485 } 1486 1487 static u64 atom_get_val(struct cpudata *cpudata, int pstate) 1488 { 1489 u64 val; 1490 int32_t vid_fp; 1491 u32 vid; 1492 1493 val = (u64)pstate << 8; 1494 if (global.no_turbo && !global.turbo_disabled) 1495 val |= (u64)1 << 32; 1496 1497 vid_fp = cpudata->vid.min + mul_fp( 1498 int_tofp(pstate - cpudata->pstate.min_pstate), 1499 cpudata->vid.ratio); 1500 1501 vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max); 1502 vid = ceiling_fp(vid_fp); 1503 1504 if (pstate > cpudata->pstate.max_pstate) 1505 vid = cpudata->vid.turbo; 1506 1507 return val | vid; 1508 } 1509 1510 static int silvermont_get_scaling(void) 1511 { 1512 u64 value; 1513 int i; 1514 /* Defined in Table 35-6 from SDM (Sept 2015) */ 1515 static int silvermont_freq_table[] = { 1516 83300, 100000, 133300, 116700, 80000}; 1517 1518 rdmsrl(MSR_FSB_FREQ, value); 1519 i = value & 0x7; 1520 WARN_ON(i > 4); 1521 1522 return silvermont_freq_table[i]; 1523 } 1524 1525 static int airmont_get_scaling(void) 1526 { 1527 u64 value; 1528 int i; 1529 /* Defined in Table 35-10 from SDM (Sept 2015) */ 1530 static int airmont_freq_table[] = { 1531 83300, 100000, 133300, 116700, 80000, 1532 93300, 90000, 88900, 87500}; 1533 1534 rdmsrl(MSR_FSB_FREQ, value); 1535 i = value & 0xF; 1536 WARN_ON(i > 8); 1537 1538 return airmont_freq_table[i]; 1539 } 1540 1541 static void atom_get_vid(struct cpudata *cpudata) 1542 { 1543 u64 value; 1544 1545 rdmsrl(MSR_ATOM_CORE_VIDS, value); 1546 cpudata->vid.min = int_tofp((value >> 8) & 0x7f); 1547 cpudata->vid.max = int_tofp((value >> 16) & 0x7f); 1548 cpudata->vid.ratio = div_fp( 1549 cpudata->vid.max - cpudata->vid.min, 1550 int_tofp(cpudata->pstate.max_pstate - 1551 cpudata->pstate.min_pstate)); 1552 1553 rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value); 1554 cpudata->vid.turbo = value & 0x7f; 1555 } 1556 1557 static int core_get_min_pstate(void) 1558 { 1559 u64 value; 1560 1561 rdmsrl(MSR_PLATFORM_INFO, value); 1562 return (value >> 40) & 0xFF; 1563 } 1564 1565 static int core_get_max_pstate_physical(void) 1566 { 1567 u64 value; 1568 1569 rdmsrl(MSR_PLATFORM_INFO, value); 1570 return (value >> 8) & 0xFF; 1571 } 1572 1573 static int core_get_tdp_ratio(u64 plat_info) 1574 { 1575 /* Check how many TDP levels present */ 1576 if (plat_info & 0x600000000) { 1577 u64 tdp_ctrl; 1578 u64 tdp_ratio; 1579 int tdp_msr; 1580 int err; 1581 1582 /* Get the TDP level (0, 1, 2) to get ratios */ 1583 err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl); 1584 if (err) 1585 return err; 1586 1587 /* TDP MSR are continuous starting at 0x648 */ 1588 tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03); 1589 err = rdmsrl_safe(tdp_msr, &tdp_ratio); 1590 if (err) 1591 return err; 1592 1593 /* For level 1 and 2, bits[23:16] contain the ratio */ 1594 if (tdp_ctrl & 0x03) 1595 tdp_ratio >>= 16; 1596 1597 tdp_ratio &= 0xff; /* ratios are only 8 bits long */ 1598 pr_debug("tdp_ratio %x\n", (int)tdp_ratio); 1599 1600 return (int)tdp_ratio; 1601 } 1602 1603 return -ENXIO; 1604 } 1605 1606 static int core_get_max_pstate(void) 1607 { 1608 u64 tar; 1609 u64 plat_info; 1610 int max_pstate; 1611 int tdp_ratio; 1612 int err; 1613 1614 rdmsrl(MSR_PLATFORM_INFO, plat_info); 1615 max_pstate = (plat_info >> 8) & 0xFF; 1616 1617 tdp_ratio = core_get_tdp_ratio(plat_info); 1618 if (tdp_ratio <= 0) 1619 return max_pstate; 1620 1621 if (hwp_active) { 1622 /* Turbo activation ratio is not used on HWP platforms */ 1623 return tdp_ratio; 1624 } 1625 1626 err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar); 1627 if (!err) { 1628 int tar_levels; 1629 1630 /* Do some sanity checking for safety */ 1631 tar_levels = tar & 0xff; 1632 if (tdp_ratio - 1 == tar_levels) { 1633 max_pstate = tar_levels; 1634 pr_debug("max_pstate=TAC %x\n", max_pstate); 1635 } 1636 } 1637 1638 return max_pstate; 1639 } 1640 1641 static int core_get_turbo_pstate(void) 1642 { 1643 u64 value; 1644 int nont, ret; 1645 1646 rdmsrl(MSR_TURBO_RATIO_LIMIT, value); 1647 nont = core_get_max_pstate(); 1648 ret = (value) & 255; 1649 if (ret <= nont) 1650 ret = nont; 1651 return ret; 1652 } 1653 1654 static inline int core_get_scaling(void) 1655 { 1656 return 100000; 1657 } 1658 1659 static u64 core_get_val(struct cpudata *cpudata, int pstate) 1660 { 1661 u64 val; 1662 1663 val = (u64)pstate << 8; 1664 if (global.no_turbo && !global.turbo_disabled) 1665 val |= (u64)1 << 32; 1666 1667 return val; 1668 } 1669 1670 static int knl_get_aperf_mperf_shift(void) 1671 { 1672 return 10; 1673 } 1674 1675 static int knl_get_turbo_pstate(void) 1676 { 1677 u64 value; 1678 int nont, ret; 1679 1680 rdmsrl(MSR_TURBO_RATIO_LIMIT, value); 1681 nont = core_get_max_pstate(); 1682 ret = (((value) >> 8) & 0xFF); 1683 if (ret <= nont) 1684 ret = nont; 1685 return ret; 1686 } 1687 1688 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate) 1689 { 1690 trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu); 1691 cpu->pstate.current_pstate = pstate; 1692 /* 1693 * Generally, there is no guarantee that this code will always run on 1694 * the CPU being updated, so force the register update to run on the 1695 * right CPU. 1696 */ 1697 wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL, 1698 pstate_funcs.get_val(cpu, pstate)); 1699 } 1700 1701 static void intel_pstate_set_min_pstate(struct cpudata *cpu) 1702 { 1703 intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate); 1704 } 1705 1706 static void intel_pstate_max_within_limits(struct cpudata *cpu) 1707 { 1708 int pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio); 1709 1710 update_turbo_state(); 1711 intel_pstate_set_pstate(cpu, pstate); 1712 } 1713 1714 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu) 1715 { 1716 cpu->pstate.min_pstate = pstate_funcs.get_min(); 1717 cpu->pstate.max_pstate = pstate_funcs.get_max(); 1718 cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical(); 1719 cpu->pstate.turbo_pstate = pstate_funcs.get_turbo(); 1720 cpu->pstate.scaling = pstate_funcs.get_scaling(); 1721 cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling; 1722 1723 if (hwp_active && !hwp_mode_bdw) { 1724 unsigned int phy_max, current_max; 1725 1726 intel_pstate_get_hwp_max(cpu->cpu, &phy_max, ¤t_max); 1727 cpu->pstate.turbo_freq = phy_max * cpu->pstate.scaling; 1728 cpu->pstate.turbo_pstate = phy_max; 1729 } else { 1730 cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling; 1731 } 1732 1733 if (pstate_funcs.get_aperf_mperf_shift) 1734 cpu->aperf_mperf_shift = pstate_funcs.get_aperf_mperf_shift(); 1735 1736 if (pstate_funcs.get_vid) 1737 pstate_funcs.get_vid(cpu); 1738 1739 intel_pstate_set_min_pstate(cpu); 1740 } 1741 1742 /* 1743 * Long hold time will keep high perf limits for long time, 1744 * which negatively impacts perf/watt for some workloads, 1745 * like specpower. 3ms is based on experiements on some 1746 * workoads. 1747 */ 1748 static int hwp_boost_hold_time_ns = 3 * NSEC_PER_MSEC; 1749 1750 static inline void intel_pstate_hwp_boost_up(struct cpudata *cpu) 1751 { 1752 u64 hwp_req = READ_ONCE(cpu->hwp_req_cached); 1753 u32 max_limit = (hwp_req & 0xff00) >> 8; 1754 u32 min_limit = (hwp_req & 0xff); 1755 u32 boost_level1; 1756 1757 /* 1758 * Cases to consider (User changes via sysfs or boot time): 1759 * If, P0 (Turbo max) = P1 (Guaranteed max) = min: 1760 * No boost, return. 1761 * If, P0 (Turbo max) > P1 (Guaranteed max) = min: 1762 * Should result in one level boost only for P0. 1763 * If, P0 (Turbo max) = P1 (Guaranteed max) > min: 1764 * Should result in two level boost: 1765 * (min + p1)/2 and P1. 1766 * If, P0 (Turbo max) > P1 (Guaranteed max) > min: 1767 * Should result in three level boost: 1768 * (min + p1)/2, P1 and P0. 1769 */ 1770 1771 /* If max and min are equal or already at max, nothing to boost */ 1772 if (max_limit == min_limit || cpu->hwp_boost_min >= max_limit) 1773 return; 1774 1775 if (!cpu->hwp_boost_min) 1776 cpu->hwp_boost_min = min_limit; 1777 1778 /* level at half way mark between min and guranteed */ 1779 boost_level1 = (HWP_GUARANTEED_PERF(cpu->hwp_cap_cached) + min_limit) >> 1; 1780 1781 if (cpu->hwp_boost_min < boost_level1) 1782 cpu->hwp_boost_min = boost_level1; 1783 else if (cpu->hwp_boost_min < HWP_GUARANTEED_PERF(cpu->hwp_cap_cached)) 1784 cpu->hwp_boost_min = HWP_GUARANTEED_PERF(cpu->hwp_cap_cached); 1785 else if (cpu->hwp_boost_min == HWP_GUARANTEED_PERF(cpu->hwp_cap_cached) && 1786 max_limit != HWP_GUARANTEED_PERF(cpu->hwp_cap_cached)) 1787 cpu->hwp_boost_min = max_limit; 1788 else 1789 return; 1790 1791 hwp_req = (hwp_req & ~GENMASK_ULL(7, 0)) | cpu->hwp_boost_min; 1792 wrmsrl(MSR_HWP_REQUEST, hwp_req); 1793 cpu->last_update = cpu->sample.time; 1794 } 1795 1796 static inline void intel_pstate_hwp_boost_down(struct cpudata *cpu) 1797 { 1798 if (cpu->hwp_boost_min) { 1799 bool expired; 1800 1801 /* Check if we are idle for hold time to boost down */ 1802 expired = time_after64(cpu->sample.time, cpu->last_update + 1803 hwp_boost_hold_time_ns); 1804 if (expired) { 1805 wrmsrl(MSR_HWP_REQUEST, cpu->hwp_req_cached); 1806 cpu->hwp_boost_min = 0; 1807 } 1808 } 1809 cpu->last_update = cpu->sample.time; 1810 } 1811 1812 static inline void intel_pstate_update_util_hwp_local(struct cpudata *cpu, 1813 u64 time) 1814 { 1815 cpu->sample.time = time; 1816 1817 if (cpu->sched_flags & SCHED_CPUFREQ_IOWAIT) { 1818 bool do_io = false; 1819 1820 cpu->sched_flags = 0; 1821 /* 1822 * Set iowait_boost flag and update time. Since IO WAIT flag 1823 * is set all the time, we can't just conclude that there is 1824 * some IO bound activity is scheduled on this CPU with just 1825 * one occurrence. If we receive at least two in two 1826 * consecutive ticks, then we treat as boost candidate. 1827 */ 1828 if (time_before64(time, cpu->last_io_update + 2 * TICK_NSEC)) 1829 do_io = true; 1830 1831 cpu->last_io_update = time; 1832 1833 if (do_io) 1834 intel_pstate_hwp_boost_up(cpu); 1835 1836 } else { 1837 intel_pstate_hwp_boost_down(cpu); 1838 } 1839 } 1840 1841 static inline void intel_pstate_update_util_hwp(struct update_util_data *data, 1842 u64 time, unsigned int flags) 1843 { 1844 struct cpudata *cpu = container_of(data, struct cpudata, update_util); 1845 1846 cpu->sched_flags |= flags; 1847 1848 if (smp_processor_id() == cpu->cpu) 1849 intel_pstate_update_util_hwp_local(cpu, time); 1850 } 1851 1852 static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu) 1853 { 1854 struct sample *sample = &cpu->sample; 1855 1856 sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf); 1857 } 1858 1859 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time) 1860 { 1861 u64 aperf, mperf; 1862 unsigned long flags; 1863 u64 tsc; 1864 1865 local_irq_save(flags); 1866 rdmsrl(MSR_IA32_APERF, aperf); 1867 rdmsrl(MSR_IA32_MPERF, mperf); 1868 tsc = rdtsc(); 1869 if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) { 1870 local_irq_restore(flags); 1871 return false; 1872 } 1873 local_irq_restore(flags); 1874 1875 cpu->last_sample_time = cpu->sample.time; 1876 cpu->sample.time = time; 1877 cpu->sample.aperf = aperf; 1878 cpu->sample.mperf = mperf; 1879 cpu->sample.tsc = tsc; 1880 cpu->sample.aperf -= cpu->prev_aperf; 1881 cpu->sample.mperf -= cpu->prev_mperf; 1882 cpu->sample.tsc -= cpu->prev_tsc; 1883 1884 cpu->prev_aperf = aperf; 1885 cpu->prev_mperf = mperf; 1886 cpu->prev_tsc = tsc; 1887 /* 1888 * First time this function is invoked in a given cycle, all of the 1889 * previous sample data fields are equal to zero or stale and they must 1890 * be populated with meaningful numbers for things to work, so assume 1891 * that sample.time will always be reset before setting the utilization 1892 * update hook and make the caller skip the sample then. 1893 */ 1894 if (cpu->last_sample_time) { 1895 intel_pstate_calc_avg_perf(cpu); 1896 return true; 1897 } 1898 return false; 1899 } 1900 1901 static inline int32_t get_avg_frequency(struct cpudata *cpu) 1902 { 1903 return mul_ext_fp(cpu->sample.core_avg_perf, cpu_khz); 1904 } 1905 1906 static inline int32_t get_avg_pstate(struct cpudata *cpu) 1907 { 1908 return mul_ext_fp(cpu->pstate.max_pstate_physical, 1909 cpu->sample.core_avg_perf); 1910 } 1911 1912 static inline int32_t get_target_pstate(struct cpudata *cpu) 1913 { 1914 struct sample *sample = &cpu->sample; 1915 int32_t busy_frac; 1916 int target, avg_pstate; 1917 1918 busy_frac = div_fp(sample->mperf << cpu->aperf_mperf_shift, 1919 sample->tsc); 1920 1921 if (busy_frac < cpu->iowait_boost) 1922 busy_frac = cpu->iowait_boost; 1923 1924 sample->busy_scaled = busy_frac * 100; 1925 1926 target = global.no_turbo || global.turbo_disabled ? 1927 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate; 1928 target += target >> 2; 1929 target = mul_fp(target, busy_frac); 1930 if (target < cpu->pstate.min_pstate) 1931 target = cpu->pstate.min_pstate; 1932 1933 /* 1934 * If the average P-state during the previous cycle was higher than the 1935 * current target, add 50% of the difference to the target to reduce 1936 * possible performance oscillations and offset possible performance 1937 * loss related to moving the workload from one CPU to another within 1938 * a package/module. 1939 */ 1940 avg_pstate = get_avg_pstate(cpu); 1941 if (avg_pstate > target) 1942 target += (avg_pstate - target) >> 1; 1943 1944 return target; 1945 } 1946 1947 static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate) 1948 { 1949 int min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio); 1950 int max_pstate = max(min_pstate, cpu->max_perf_ratio); 1951 1952 return clamp_t(int, pstate, min_pstate, max_pstate); 1953 } 1954 1955 static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate) 1956 { 1957 if (pstate == cpu->pstate.current_pstate) 1958 return; 1959 1960 cpu->pstate.current_pstate = pstate; 1961 wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate)); 1962 } 1963 1964 static void intel_pstate_adjust_pstate(struct cpudata *cpu) 1965 { 1966 int from = cpu->pstate.current_pstate; 1967 struct sample *sample; 1968 int target_pstate; 1969 1970 update_turbo_state(); 1971 1972 target_pstate = get_target_pstate(cpu); 1973 target_pstate = intel_pstate_prepare_request(cpu, target_pstate); 1974 trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu); 1975 intel_pstate_update_pstate(cpu, target_pstate); 1976 1977 sample = &cpu->sample; 1978 trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf), 1979 fp_toint(sample->busy_scaled), 1980 from, 1981 cpu->pstate.current_pstate, 1982 sample->mperf, 1983 sample->aperf, 1984 sample->tsc, 1985 get_avg_frequency(cpu), 1986 fp_toint(cpu->iowait_boost * 100)); 1987 } 1988 1989 static void intel_pstate_update_util(struct update_util_data *data, u64 time, 1990 unsigned int flags) 1991 { 1992 struct cpudata *cpu = container_of(data, struct cpudata, update_util); 1993 u64 delta_ns; 1994 1995 /* Don't allow remote callbacks */ 1996 if (smp_processor_id() != cpu->cpu) 1997 return; 1998 1999 delta_ns = time - cpu->last_update; 2000 if (flags & SCHED_CPUFREQ_IOWAIT) { 2001 /* Start over if the CPU may have been idle. */ 2002 if (delta_ns > TICK_NSEC) { 2003 cpu->iowait_boost = ONE_EIGHTH_FP; 2004 } else if (cpu->iowait_boost >= ONE_EIGHTH_FP) { 2005 cpu->iowait_boost <<= 1; 2006 if (cpu->iowait_boost > int_tofp(1)) 2007 cpu->iowait_boost = int_tofp(1); 2008 } else { 2009 cpu->iowait_boost = ONE_EIGHTH_FP; 2010 } 2011 } else if (cpu->iowait_boost) { 2012 /* Clear iowait_boost if the CPU may have been idle. */ 2013 if (delta_ns > TICK_NSEC) 2014 cpu->iowait_boost = 0; 2015 else 2016 cpu->iowait_boost >>= 1; 2017 } 2018 cpu->last_update = time; 2019 delta_ns = time - cpu->sample.time; 2020 if ((s64)delta_ns < INTEL_PSTATE_SAMPLING_INTERVAL) 2021 return; 2022 2023 if (intel_pstate_sample(cpu, time)) 2024 intel_pstate_adjust_pstate(cpu); 2025 } 2026 2027 static struct pstate_funcs core_funcs = { 2028 .get_max = core_get_max_pstate, 2029 .get_max_physical = core_get_max_pstate_physical, 2030 .get_min = core_get_min_pstate, 2031 .get_turbo = core_get_turbo_pstate, 2032 .get_scaling = core_get_scaling, 2033 .get_val = core_get_val, 2034 }; 2035 2036 static const struct pstate_funcs silvermont_funcs = { 2037 .get_max = atom_get_max_pstate, 2038 .get_max_physical = atom_get_max_pstate, 2039 .get_min = atom_get_min_pstate, 2040 .get_turbo = atom_get_turbo_pstate, 2041 .get_val = atom_get_val, 2042 .get_scaling = silvermont_get_scaling, 2043 .get_vid = atom_get_vid, 2044 }; 2045 2046 static const struct pstate_funcs airmont_funcs = { 2047 .get_max = atom_get_max_pstate, 2048 .get_max_physical = atom_get_max_pstate, 2049 .get_min = atom_get_min_pstate, 2050 .get_turbo = atom_get_turbo_pstate, 2051 .get_val = atom_get_val, 2052 .get_scaling = airmont_get_scaling, 2053 .get_vid = atom_get_vid, 2054 }; 2055 2056 static const struct pstate_funcs knl_funcs = { 2057 .get_max = core_get_max_pstate, 2058 .get_max_physical = core_get_max_pstate_physical, 2059 .get_min = core_get_min_pstate, 2060 .get_turbo = knl_get_turbo_pstate, 2061 .get_aperf_mperf_shift = knl_get_aperf_mperf_shift, 2062 .get_scaling = core_get_scaling, 2063 .get_val = core_get_val, 2064 }; 2065 2066 #define X86_MATCH(model, policy) \ 2067 X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6, INTEL_FAM6_##model, \ 2068 X86_FEATURE_APERFMPERF, &policy) 2069 2070 static const struct x86_cpu_id intel_pstate_cpu_ids[] = { 2071 X86_MATCH(SANDYBRIDGE, core_funcs), 2072 X86_MATCH(SANDYBRIDGE_X, core_funcs), 2073 X86_MATCH(ATOM_SILVERMONT, silvermont_funcs), 2074 X86_MATCH(IVYBRIDGE, core_funcs), 2075 X86_MATCH(HASWELL, core_funcs), 2076 X86_MATCH(BROADWELL, core_funcs), 2077 X86_MATCH(IVYBRIDGE_X, core_funcs), 2078 X86_MATCH(HASWELL_X, core_funcs), 2079 X86_MATCH(HASWELL_L, core_funcs), 2080 X86_MATCH(HASWELL_G, core_funcs), 2081 X86_MATCH(BROADWELL_G, core_funcs), 2082 X86_MATCH(ATOM_AIRMONT, airmont_funcs), 2083 X86_MATCH(SKYLAKE_L, core_funcs), 2084 X86_MATCH(BROADWELL_X, core_funcs), 2085 X86_MATCH(SKYLAKE, core_funcs), 2086 X86_MATCH(BROADWELL_D, core_funcs), 2087 X86_MATCH(XEON_PHI_KNL, knl_funcs), 2088 X86_MATCH(XEON_PHI_KNM, knl_funcs), 2089 X86_MATCH(ATOM_GOLDMONT, core_funcs), 2090 X86_MATCH(ATOM_GOLDMONT_PLUS, core_funcs), 2091 X86_MATCH(SKYLAKE_X, core_funcs), 2092 {} 2093 }; 2094 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids); 2095 2096 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = { 2097 X86_MATCH(BROADWELL_D, core_funcs), 2098 X86_MATCH(BROADWELL_X, core_funcs), 2099 X86_MATCH(SKYLAKE_X, core_funcs), 2100 {} 2101 }; 2102 2103 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = { 2104 X86_MATCH(KABYLAKE, core_funcs), 2105 {} 2106 }; 2107 2108 static const struct x86_cpu_id intel_pstate_hwp_boost_ids[] = { 2109 X86_MATCH(SKYLAKE_X, core_funcs), 2110 X86_MATCH(SKYLAKE, core_funcs), 2111 {} 2112 }; 2113 2114 static int intel_pstate_init_cpu(unsigned int cpunum) 2115 { 2116 struct cpudata *cpu; 2117 2118 cpu = all_cpu_data[cpunum]; 2119 2120 if (!cpu) { 2121 cpu = kzalloc(sizeof(*cpu), GFP_KERNEL); 2122 if (!cpu) 2123 return -ENOMEM; 2124 2125 all_cpu_data[cpunum] = cpu; 2126 2127 cpu->cpu = cpunum; 2128 2129 cpu->epp_default = -EINVAL; 2130 2131 if (hwp_active) { 2132 const struct x86_cpu_id *id; 2133 2134 intel_pstate_hwp_enable(cpu); 2135 2136 id = x86_match_cpu(intel_pstate_hwp_boost_ids); 2137 if (id && intel_pstate_acpi_pm_profile_server()) 2138 hwp_boost = true; 2139 } 2140 } else if (hwp_active) { 2141 /* 2142 * Re-enable HWP in case this happens after a resume from ACPI 2143 * S3 if the CPU was offline during the whole system/resume 2144 * cycle. 2145 */ 2146 intel_pstate_hwp_reenable(cpu); 2147 } 2148 2149 cpu->epp_powersave = -EINVAL; 2150 cpu->epp_policy = 0; 2151 2152 intel_pstate_get_cpu_pstates(cpu); 2153 2154 pr_debug("controlling: cpu %d\n", cpunum); 2155 2156 return 0; 2157 } 2158 2159 static void intel_pstate_set_update_util_hook(unsigned int cpu_num) 2160 { 2161 struct cpudata *cpu = all_cpu_data[cpu_num]; 2162 2163 if (hwp_active && !hwp_boost) 2164 return; 2165 2166 if (cpu->update_util_set) 2167 return; 2168 2169 /* Prevent intel_pstate_update_util() from using stale data. */ 2170 cpu->sample.time = 0; 2171 cpufreq_add_update_util_hook(cpu_num, &cpu->update_util, 2172 (hwp_active ? 2173 intel_pstate_update_util_hwp : 2174 intel_pstate_update_util)); 2175 cpu->update_util_set = true; 2176 } 2177 2178 static void intel_pstate_clear_update_util_hook(unsigned int cpu) 2179 { 2180 struct cpudata *cpu_data = all_cpu_data[cpu]; 2181 2182 if (!cpu_data->update_util_set) 2183 return; 2184 2185 cpufreq_remove_update_util_hook(cpu); 2186 cpu_data->update_util_set = false; 2187 synchronize_rcu(); 2188 } 2189 2190 static int intel_pstate_get_max_freq(struct cpudata *cpu) 2191 { 2192 return global.turbo_disabled || global.no_turbo ? 2193 cpu->pstate.max_freq : cpu->pstate.turbo_freq; 2194 } 2195 2196 static void intel_pstate_update_perf_limits(struct cpudata *cpu, 2197 unsigned int policy_min, 2198 unsigned int policy_max) 2199 { 2200 int32_t max_policy_perf, min_policy_perf; 2201 int max_state, turbo_max; 2202 int max_freq; 2203 2204 /* 2205 * HWP needs some special consideration, because on BDX the 2206 * HWP_REQUEST uses abstract value to represent performance 2207 * rather than pure ratios. 2208 */ 2209 if (hwp_active) { 2210 intel_pstate_get_hwp_max(cpu->cpu, &turbo_max, &max_state); 2211 } else { 2212 max_state = global.no_turbo || global.turbo_disabled ? 2213 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate; 2214 turbo_max = cpu->pstate.turbo_pstate; 2215 } 2216 max_freq = max_state * cpu->pstate.scaling; 2217 2218 max_policy_perf = max_state * policy_max / max_freq; 2219 if (policy_max == policy_min) { 2220 min_policy_perf = max_policy_perf; 2221 } else { 2222 min_policy_perf = max_state * policy_min / max_freq; 2223 min_policy_perf = clamp_t(int32_t, min_policy_perf, 2224 0, max_policy_perf); 2225 } 2226 2227 pr_debug("cpu:%d max_state %d min_policy_perf:%d max_policy_perf:%d\n", 2228 cpu->cpu, max_state, min_policy_perf, max_policy_perf); 2229 2230 /* Normalize user input to [min_perf, max_perf] */ 2231 if (per_cpu_limits) { 2232 cpu->min_perf_ratio = min_policy_perf; 2233 cpu->max_perf_ratio = max_policy_perf; 2234 } else { 2235 int32_t global_min, global_max; 2236 2237 /* Global limits are in percent of the maximum turbo P-state. */ 2238 global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100); 2239 global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100); 2240 global_min = clamp_t(int32_t, global_min, 0, global_max); 2241 2242 pr_debug("cpu:%d global_min:%d global_max:%d\n", cpu->cpu, 2243 global_min, global_max); 2244 2245 cpu->min_perf_ratio = max(min_policy_perf, global_min); 2246 cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf); 2247 cpu->max_perf_ratio = min(max_policy_perf, global_max); 2248 cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio); 2249 2250 /* Make sure min_perf <= max_perf */ 2251 cpu->min_perf_ratio = min(cpu->min_perf_ratio, 2252 cpu->max_perf_ratio); 2253 2254 } 2255 pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", cpu->cpu, 2256 cpu->max_perf_ratio, 2257 cpu->min_perf_ratio); 2258 } 2259 2260 static int intel_pstate_set_policy(struct cpufreq_policy *policy) 2261 { 2262 struct cpudata *cpu; 2263 2264 if (!policy->cpuinfo.max_freq) 2265 return -ENODEV; 2266 2267 pr_debug("set_policy cpuinfo.max %u policy->max %u\n", 2268 policy->cpuinfo.max_freq, policy->max); 2269 2270 cpu = all_cpu_data[policy->cpu]; 2271 cpu->policy = policy->policy; 2272 2273 mutex_lock(&intel_pstate_limits_lock); 2274 2275 intel_pstate_update_perf_limits(cpu, policy->min, policy->max); 2276 2277 if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) { 2278 /* 2279 * NOHZ_FULL CPUs need this as the governor callback may not 2280 * be invoked on them. 2281 */ 2282 intel_pstate_clear_update_util_hook(policy->cpu); 2283 intel_pstate_max_within_limits(cpu); 2284 } else { 2285 intel_pstate_set_update_util_hook(policy->cpu); 2286 } 2287 2288 if (hwp_active) { 2289 /* 2290 * When hwp_boost was active before and dynamically it 2291 * was turned off, in that case we need to clear the 2292 * update util hook. 2293 */ 2294 if (!hwp_boost) 2295 intel_pstate_clear_update_util_hook(policy->cpu); 2296 intel_pstate_hwp_set(policy->cpu); 2297 } 2298 2299 mutex_unlock(&intel_pstate_limits_lock); 2300 2301 return 0; 2302 } 2303 2304 static void intel_pstate_adjust_policy_max(struct cpudata *cpu, 2305 struct cpufreq_policy_data *policy) 2306 { 2307 if (!hwp_active && 2308 cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate && 2309 policy->max < policy->cpuinfo.max_freq && 2310 policy->max > cpu->pstate.max_freq) { 2311 pr_debug("policy->max > max non turbo frequency\n"); 2312 policy->max = policy->cpuinfo.max_freq; 2313 } 2314 } 2315 2316 static void intel_pstate_verify_cpu_policy(struct cpudata *cpu, 2317 struct cpufreq_policy_data *policy) 2318 { 2319 int max_freq; 2320 2321 update_turbo_state(); 2322 if (hwp_active) { 2323 int max_state, turbo_max; 2324 2325 intel_pstate_get_hwp_max(cpu->cpu, &turbo_max, &max_state); 2326 max_freq = max_state * cpu->pstate.scaling; 2327 } else { 2328 max_freq = intel_pstate_get_max_freq(cpu); 2329 } 2330 cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq, max_freq); 2331 2332 intel_pstate_adjust_policy_max(cpu, policy); 2333 } 2334 2335 static int intel_pstate_verify_policy(struct cpufreq_policy_data *policy) 2336 { 2337 intel_pstate_verify_cpu_policy(all_cpu_data[policy->cpu], policy); 2338 2339 return 0; 2340 } 2341 2342 static int intel_pstate_cpu_offline(struct cpufreq_policy *policy) 2343 { 2344 struct cpudata *cpu = all_cpu_data[policy->cpu]; 2345 2346 pr_debug("CPU %d going offline\n", cpu->cpu); 2347 2348 if (cpu->suspended) 2349 return 0; 2350 2351 /* 2352 * If the CPU is an SMT thread and it goes offline with the performance 2353 * settings different from the minimum, it will prevent its sibling 2354 * from getting to lower performance levels, so force the minimum 2355 * performance on CPU offline to prevent that from happening. 2356 */ 2357 if (hwp_active) 2358 intel_pstate_hwp_offline(cpu); 2359 else 2360 intel_pstate_set_min_pstate(cpu); 2361 2362 intel_pstate_exit_perf_limits(policy); 2363 2364 return 0; 2365 } 2366 2367 static int intel_pstate_cpu_online(struct cpufreq_policy *policy) 2368 { 2369 struct cpudata *cpu = all_cpu_data[policy->cpu]; 2370 2371 pr_debug("CPU %d going online\n", cpu->cpu); 2372 2373 intel_pstate_init_acpi_perf_limits(policy); 2374 2375 if (hwp_active) { 2376 /* 2377 * Re-enable HWP and clear the "suspended" flag to let "resume" 2378 * know that it need not do that. 2379 */ 2380 intel_pstate_hwp_reenable(cpu); 2381 cpu->suspended = false; 2382 } 2383 2384 return 0; 2385 } 2386 2387 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy) 2388 { 2389 pr_debug("CPU %d stopping\n", policy->cpu); 2390 2391 intel_pstate_clear_update_util_hook(policy->cpu); 2392 } 2393 2394 static int intel_pstate_cpu_exit(struct cpufreq_policy *policy) 2395 { 2396 pr_debug("CPU %d exiting\n", policy->cpu); 2397 2398 policy->fast_switch_possible = false; 2399 2400 return 0; 2401 } 2402 2403 static int __intel_pstate_cpu_init(struct cpufreq_policy *policy) 2404 { 2405 struct cpudata *cpu; 2406 int rc; 2407 2408 rc = intel_pstate_init_cpu(policy->cpu); 2409 if (rc) 2410 return rc; 2411 2412 cpu = all_cpu_data[policy->cpu]; 2413 2414 cpu->max_perf_ratio = 0xFF; 2415 cpu->min_perf_ratio = 0; 2416 2417 policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling; 2418 policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling; 2419 2420 /* cpuinfo and default policy values */ 2421 policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling; 2422 update_turbo_state(); 2423 global.turbo_disabled_mf = global.turbo_disabled; 2424 policy->cpuinfo.max_freq = global.turbo_disabled ? 2425 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate; 2426 policy->cpuinfo.max_freq *= cpu->pstate.scaling; 2427 2428 if (hwp_active) { 2429 unsigned int max_freq; 2430 2431 max_freq = global.turbo_disabled ? 2432 cpu->pstate.max_freq : cpu->pstate.turbo_freq; 2433 if (max_freq < policy->cpuinfo.max_freq) 2434 policy->cpuinfo.max_freq = max_freq; 2435 } 2436 2437 intel_pstate_init_acpi_perf_limits(policy); 2438 2439 policy->fast_switch_possible = true; 2440 2441 return 0; 2442 } 2443 2444 static int intel_pstate_cpu_init(struct cpufreq_policy *policy) 2445 { 2446 int ret = __intel_pstate_cpu_init(policy); 2447 2448 if (ret) 2449 return ret; 2450 2451 /* 2452 * Set the policy to powersave to provide a valid fallback value in case 2453 * the default cpufreq governor is neither powersave nor performance. 2454 */ 2455 policy->policy = CPUFREQ_POLICY_POWERSAVE; 2456 2457 if (hwp_active) { 2458 struct cpudata *cpu = all_cpu_data[policy->cpu]; 2459 2460 cpu->epp_cached = intel_pstate_get_epp(cpu, 0); 2461 } 2462 2463 return 0; 2464 } 2465 2466 static struct cpufreq_driver intel_pstate = { 2467 .flags = CPUFREQ_CONST_LOOPS, 2468 .verify = intel_pstate_verify_policy, 2469 .setpolicy = intel_pstate_set_policy, 2470 .suspend = intel_pstate_suspend, 2471 .resume = intel_pstate_resume, 2472 .init = intel_pstate_cpu_init, 2473 .exit = intel_pstate_cpu_exit, 2474 .stop_cpu = intel_pstate_stop_cpu, 2475 .offline = intel_pstate_cpu_offline, 2476 .online = intel_pstate_cpu_online, 2477 .update_limits = intel_pstate_update_limits, 2478 .name = "intel_pstate", 2479 }; 2480 2481 static int intel_cpufreq_verify_policy(struct cpufreq_policy_data *policy) 2482 { 2483 struct cpudata *cpu = all_cpu_data[policy->cpu]; 2484 2485 intel_pstate_verify_cpu_policy(cpu, policy); 2486 intel_pstate_update_perf_limits(cpu, policy->min, policy->max); 2487 2488 return 0; 2489 } 2490 2491 /* Use of trace in passive mode: 2492 * 2493 * In passive mode the trace core_busy field (also known as the 2494 * performance field, and lablelled as such on the graphs; also known as 2495 * core_avg_perf) is not needed and so is re-assigned to indicate if the 2496 * driver call was via the normal or fast switch path. Various graphs 2497 * output from the intel_pstate_tracer.py utility that include core_busy 2498 * (or performance or core_avg_perf) have a fixed y-axis from 0 to 100%, 2499 * so we use 10 to indicate the the normal path through the driver, and 2500 * 90 to indicate the fast switch path through the driver. 2501 * The scaled_busy field is not used, and is set to 0. 2502 */ 2503 2504 #define INTEL_PSTATE_TRACE_TARGET 10 2505 #define INTEL_PSTATE_TRACE_FAST_SWITCH 90 2506 2507 static void intel_cpufreq_trace(struct cpudata *cpu, unsigned int trace_type, int old_pstate) 2508 { 2509 struct sample *sample; 2510 2511 if (!trace_pstate_sample_enabled()) 2512 return; 2513 2514 if (!intel_pstate_sample(cpu, ktime_get())) 2515 return; 2516 2517 sample = &cpu->sample; 2518 trace_pstate_sample(trace_type, 2519 0, 2520 old_pstate, 2521 cpu->pstate.current_pstate, 2522 sample->mperf, 2523 sample->aperf, 2524 sample->tsc, 2525 get_avg_frequency(cpu), 2526 fp_toint(cpu->iowait_boost * 100)); 2527 } 2528 2529 static void intel_cpufreq_adjust_hwp(struct cpudata *cpu, u32 min, u32 max, 2530 u32 desired, bool fast_switch) 2531 { 2532 u64 prev = READ_ONCE(cpu->hwp_req_cached), value = prev; 2533 2534 value &= ~HWP_MIN_PERF(~0L); 2535 value |= HWP_MIN_PERF(min); 2536 2537 value &= ~HWP_MAX_PERF(~0L); 2538 value |= HWP_MAX_PERF(max); 2539 2540 value &= ~HWP_DESIRED_PERF(~0L); 2541 value |= HWP_DESIRED_PERF(desired); 2542 2543 if (value == prev) 2544 return; 2545 2546 WRITE_ONCE(cpu->hwp_req_cached, value); 2547 if (fast_switch) 2548 wrmsrl(MSR_HWP_REQUEST, value); 2549 else 2550 wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value); 2551 } 2552 2553 static void intel_cpufreq_adjust_perf_ctl(struct cpudata *cpu, 2554 u32 target_pstate, bool fast_switch) 2555 { 2556 if (fast_switch) 2557 wrmsrl(MSR_IA32_PERF_CTL, 2558 pstate_funcs.get_val(cpu, target_pstate)); 2559 else 2560 wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL, 2561 pstate_funcs.get_val(cpu, target_pstate)); 2562 } 2563 2564 static int intel_cpufreq_update_pstate(struct cpufreq_policy *policy, 2565 int target_pstate, bool fast_switch) 2566 { 2567 struct cpudata *cpu = all_cpu_data[policy->cpu]; 2568 int old_pstate = cpu->pstate.current_pstate; 2569 2570 target_pstate = intel_pstate_prepare_request(cpu, target_pstate); 2571 if (hwp_active) { 2572 int max_pstate = policy->strict_target ? 2573 target_pstate : cpu->max_perf_ratio; 2574 2575 intel_cpufreq_adjust_hwp(cpu, target_pstate, max_pstate, 0, 2576 fast_switch); 2577 } else if (target_pstate != old_pstate) { 2578 intel_cpufreq_adjust_perf_ctl(cpu, target_pstate, fast_switch); 2579 } 2580 2581 cpu->pstate.current_pstate = target_pstate; 2582 2583 intel_cpufreq_trace(cpu, fast_switch ? INTEL_PSTATE_TRACE_FAST_SWITCH : 2584 INTEL_PSTATE_TRACE_TARGET, old_pstate); 2585 2586 return target_pstate; 2587 } 2588 2589 static int intel_cpufreq_target(struct cpufreq_policy *policy, 2590 unsigned int target_freq, 2591 unsigned int relation) 2592 { 2593 struct cpudata *cpu = all_cpu_data[policy->cpu]; 2594 struct cpufreq_freqs freqs; 2595 int target_pstate; 2596 2597 update_turbo_state(); 2598 2599 freqs.old = policy->cur; 2600 freqs.new = target_freq; 2601 2602 cpufreq_freq_transition_begin(policy, &freqs); 2603 2604 switch (relation) { 2605 case CPUFREQ_RELATION_L: 2606 target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling); 2607 break; 2608 case CPUFREQ_RELATION_H: 2609 target_pstate = freqs.new / cpu->pstate.scaling; 2610 break; 2611 default: 2612 target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling); 2613 break; 2614 } 2615 2616 target_pstate = intel_cpufreq_update_pstate(policy, target_pstate, false); 2617 2618 freqs.new = target_pstate * cpu->pstate.scaling; 2619 2620 cpufreq_freq_transition_end(policy, &freqs, false); 2621 2622 return 0; 2623 } 2624 2625 static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy, 2626 unsigned int target_freq) 2627 { 2628 struct cpudata *cpu = all_cpu_data[policy->cpu]; 2629 int target_pstate; 2630 2631 update_turbo_state(); 2632 2633 target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling); 2634 2635 target_pstate = intel_cpufreq_update_pstate(policy, target_pstate, true); 2636 2637 return target_pstate * cpu->pstate.scaling; 2638 } 2639 2640 static void intel_cpufreq_adjust_perf(unsigned int cpunum, 2641 unsigned long min_perf, 2642 unsigned long target_perf, 2643 unsigned long capacity) 2644 { 2645 struct cpudata *cpu = all_cpu_data[cpunum]; 2646 u64 hwp_cap = READ_ONCE(cpu->hwp_cap_cached); 2647 int old_pstate = cpu->pstate.current_pstate; 2648 int cap_pstate, min_pstate, max_pstate, target_pstate; 2649 2650 update_turbo_state(); 2651 cap_pstate = global.turbo_disabled ? HWP_GUARANTEED_PERF(hwp_cap) : 2652 HWP_HIGHEST_PERF(hwp_cap); 2653 2654 /* Optimization: Avoid unnecessary divisions. */ 2655 2656 target_pstate = cap_pstate; 2657 if (target_perf < capacity) 2658 target_pstate = DIV_ROUND_UP(cap_pstate * target_perf, capacity); 2659 2660 min_pstate = cap_pstate; 2661 if (min_perf < capacity) 2662 min_pstate = DIV_ROUND_UP(cap_pstate * min_perf, capacity); 2663 2664 if (min_pstate < cpu->pstate.min_pstate) 2665 min_pstate = cpu->pstate.min_pstate; 2666 2667 if (min_pstate < cpu->min_perf_ratio) 2668 min_pstate = cpu->min_perf_ratio; 2669 2670 max_pstate = min(cap_pstate, cpu->max_perf_ratio); 2671 if (max_pstate < min_pstate) 2672 max_pstate = min_pstate; 2673 2674 target_pstate = clamp_t(int, target_pstate, min_pstate, max_pstate); 2675 2676 intel_cpufreq_adjust_hwp(cpu, min_pstate, max_pstate, target_pstate, true); 2677 2678 cpu->pstate.current_pstate = target_pstate; 2679 intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_FAST_SWITCH, old_pstate); 2680 } 2681 2682 static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy) 2683 { 2684 int max_state, turbo_max, min_freq, max_freq, ret; 2685 struct freq_qos_request *req; 2686 struct cpudata *cpu; 2687 struct device *dev; 2688 2689 dev = get_cpu_device(policy->cpu); 2690 if (!dev) 2691 return -ENODEV; 2692 2693 ret = __intel_pstate_cpu_init(policy); 2694 if (ret) 2695 return ret; 2696 2697 policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY; 2698 /* This reflects the intel_pstate_get_cpu_pstates() setting. */ 2699 policy->cur = policy->cpuinfo.min_freq; 2700 2701 req = kcalloc(2, sizeof(*req), GFP_KERNEL); 2702 if (!req) { 2703 ret = -ENOMEM; 2704 goto pstate_exit; 2705 } 2706 2707 cpu = all_cpu_data[policy->cpu]; 2708 2709 if (hwp_active) { 2710 u64 value; 2711 2712 intel_pstate_get_hwp_max(policy->cpu, &turbo_max, &max_state); 2713 policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY_HWP; 2714 rdmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, &value); 2715 WRITE_ONCE(cpu->hwp_req_cached, value); 2716 cpu->epp_cached = intel_pstate_get_epp(cpu, value); 2717 } else { 2718 turbo_max = cpu->pstate.turbo_pstate; 2719 policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY; 2720 } 2721 2722 min_freq = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100); 2723 min_freq *= cpu->pstate.scaling; 2724 max_freq = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100); 2725 max_freq *= cpu->pstate.scaling; 2726 2727 ret = freq_qos_add_request(&policy->constraints, req, FREQ_QOS_MIN, 2728 min_freq); 2729 if (ret < 0) { 2730 dev_err(dev, "Failed to add min-freq constraint (%d)\n", ret); 2731 goto free_req; 2732 } 2733 2734 ret = freq_qos_add_request(&policy->constraints, req + 1, FREQ_QOS_MAX, 2735 max_freq); 2736 if (ret < 0) { 2737 dev_err(dev, "Failed to add max-freq constraint (%d)\n", ret); 2738 goto remove_min_req; 2739 } 2740 2741 policy->driver_data = req; 2742 2743 return 0; 2744 2745 remove_min_req: 2746 freq_qos_remove_request(req); 2747 free_req: 2748 kfree(req); 2749 pstate_exit: 2750 intel_pstate_exit_perf_limits(policy); 2751 2752 return ret; 2753 } 2754 2755 static int intel_cpufreq_cpu_exit(struct cpufreq_policy *policy) 2756 { 2757 struct freq_qos_request *req; 2758 2759 req = policy->driver_data; 2760 2761 freq_qos_remove_request(req + 1); 2762 freq_qos_remove_request(req); 2763 kfree(req); 2764 2765 return intel_pstate_cpu_exit(policy); 2766 } 2767 2768 static struct cpufreq_driver intel_cpufreq = { 2769 .flags = CPUFREQ_CONST_LOOPS, 2770 .verify = intel_cpufreq_verify_policy, 2771 .target = intel_cpufreq_target, 2772 .fast_switch = intel_cpufreq_fast_switch, 2773 .init = intel_cpufreq_cpu_init, 2774 .exit = intel_cpufreq_cpu_exit, 2775 .offline = intel_pstate_cpu_offline, 2776 .online = intel_pstate_cpu_online, 2777 .suspend = intel_pstate_suspend, 2778 .resume = intel_pstate_resume, 2779 .update_limits = intel_pstate_update_limits, 2780 .name = "intel_cpufreq", 2781 }; 2782 2783 static struct cpufreq_driver *default_driver; 2784 2785 static void intel_pstate_driver_cleanup(void) 2786 { 2787 unsigned int cpu; 2788 2789 get_online_cpus(); 2790 for_each_online_cpu(cpu) { 2791 if (all_cpu_data[cpu]) { 2792 if (intel_pstate_driver == &intel_pstate) 2793 intel_pstate_clear_update_util_hook(cpu); 2794 2795 kfree(all_cpu_data[cpu]); 2796 all_cpu_data[cpu] = NULL; 2797 } 2798 } 2799 put_online_cpus(); 2800 2801 intel_pstate_driver = NULL; 2802 } 2803 2804 static int intel_pstate_register_driver(struct cpufreq_driver *driver) 2805 { 2806 int ret; 2807 2808 if (driver == &intel_pstate) 2809 intel_pstate_sysfs_expose_hwp_dynamic_boost(); 2810 2811 memset(&global, 0, sizeof(global)); 2812 global.max_perf_pct = 100; 2813 2814 intel_pstate_driver = driver; 2815 ret = cpufreq_register_driver(intel_pstate_driver); 2816 if (ret) { 2817 intel_pstate_driver_cleanup(); 2818 return ret; 2819 } 2820 2821 global.min_perf_pct = min_perf_pct_min(); 2822 2823 return 0; 2824 } 2825 2826 static ssize_t intel_pstate_show_status(char *buf) 2827 { 2828 if (!intel_pstate_driver) 2829 return sprintf(buf, "off\n"); 2830 2831 return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ? 2832 "active" : "passive"); 2833 } 2834 2835 static int intel_pstate_update_status(const char *buf, size_t size) 2836 { 2837 if (size == 3 && !strncmp(buf, "off", size)) { 2838 if (!intel_pstate_driver) 2839 return -EINVAL; 2840 2841 if (hwp_active) 2842 return -EBUSY; 2843 2844 cpufreq_unregister_driver(intel_pstate_driver); 2845 intel_pstate_driver_cleanup(); 2846 return 0; 2847 } 2848 2849 if (size == 6 && !strncmp(buf, "active", size)) { 2850 if (intel_pstate_driver) { 2851 if (intel_pstate_driver == &intel_pstate) 2852 return 0; 2853 2854 cpufreq_unregister_driver(intel_pstate_driver); 2855 } 2856 2857 return intel_pstate_register_driver(&intel_pstate); 2858 } 2859 2860 if (size == 7 && !strncmp(buf, "passive", size)) { 2861 if (intel_pstate_driver) { 2862 if (intel_pstate_driver == &intel_cpufreq) 2863 return 0; 2864 2865 cpufreq_unregister_driver(intel_pstate_driver); 2866 intel_pstate_sysfs_hide_hwp_dynamic_boost(); 2867 } 2868 2869 return intel_pstate_register_driver(&intel_cpufreq); 2870 } 2871 2872 return -EINVAL; 2873 } 2874 2875 static int no_load __initdata; 2876 static int no_hwp __initdata; 2877 static int hwp_only __initdata; 2878 static unsigned int force_load __initdata; 2879 2880 static int __init intel_pstate_msrs_not_valid(void) 2881 { 2882 if (!pstate_funcs.get_max() || 2883 !pstate_funcs.get_min() || 2884 !pstate_funcs.get_turbo()) 2885 return -ENODEV; 2886 2887 return 0; 2888 } 2889 2890 static void __init copy_cpu_funcs(struct pstate_funcs *funcs) 2891 { 2892 pstate_funcs.get_max = funcs->get_max; 2893 pstate_funcs.get_max_physical = funcs->get_max_physical; 2894 pstate_funcs.get_min = funcs->get_min; 2895 pstate_funcs.get_turbo = funcs->get_turbo; 2896 pstate_funcs.get_scaling = funcs->get_scaling; 2897 pstate_funcs.get_val = funcs->get_val; 2898 pstate_funcs.get_vid = funcs->get_vid; 2899 pstate_funcs.get_aperf_mperf_shift = funcs->get_aperf_mperf_shift; 2900 } 2901 2902 #ifdef CONFIG_ACPI 2903 2904 static bool __init intel_pstate_no_acpi_pss(void) 2905 { 2906 int i; 2907 2908 for_each_possible_cpu(i) { 2909 acpi_status status; 2910 union acpi_object *pss; 2911 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL }; 2912 struct acpi_processor *pr = per_cpu(processors, i); 2913 2914 if (!pr) 2915 continue; 2916 2917 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer); 2918 if (ACPI_FAILURE(status)) 2919 continue; 2920 2921 pss = buffer.pointer; 2922 if (pss && pss->type == ACPI_TYPE_PACKAGE) { 2923 kfree(pss); 2924 return false; 2925 } 2926 2927 kfree(pss); 2928 } 2929 2930 pr_debug("ACPI _PSS not found\n"); 2931 return true; 2932 } 2933 2934 static bool __init intel_pstate_no_acpi_pcch(void) 2935 { 2936 acpi_status status; 2937 acpi_handle handle; 2938 2939 status = acpi_get_handle(NULL, "\\_SB", &handle); 2940 if (ACPI_FAILURE(status)) 2941 goto not_found; 2942 2943 if (acpi_has_method(handle, "PCCH")) 2944 return false; 2945 2946 not_found: 2947 pr_debug("ACPI PCCH not found\n"); 2948 return true; 2949 } 2950 2951 static bool __init intel_pstate_has_acpi_ppc(void) 2952 { 2953 int i; 2954 2955 for_each_possible_cpu(i) { 2956 struct acpi_processor *pr = per_cpu(processors, i); 2957 2958 if (!pr) 2959 continue; 2960 if (acpi_has_method(pr->handle, "_PPC")) 2961 return true; 2962 } 2963 pr_debug("ACPI _PPC not found\n"); 2964 return false; 2965 } 2966 2967 enum { 2968 PSS, 2969 PPC, 2970 }; 2971 2972 /* Hardware vendor-specific info that has its own power management modes */ 2973 static struct acpi_platform_list plat_info[] __initdata = { 2974 {"HP ", "ProLiant", 0, ACPI_SIG_FADT, all_versions, NULL, PSS}, 2975 {"ORACLE", "X4-2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 2976 {"ORACLE", "X4-2L ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 2977 {"ORACLE", "X4-2B ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 2978 {"ORACLE", "X3-2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 2979 {"ORACLE", "X3-2L ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 2980 {"ORACLE", "X3-2B ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 2981 {"ORACLE", "X4470M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 2982 {"ORACLE", "X4270M3 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 2983 {"ORACLE", "X4270M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 2984 {"ORACLE", "X4170M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 2985 {"ORACLE", "X4170 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 2986 {"ORACLE", "X4275 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 2987 {"ORACLE", "X6-2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 2988 {"ORACLE", "Sudbury ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 2989 { } /* End */ 2990 }; 2991 2992 #define BITMASK_OOB (BIT(8) | BIT(18)) 2993 2994 static bool __init intel_pstate_platform_pwr_mgmt_exists(void) 2995 { 2996 const struct x86_cpu_id *id; 2997 u64 misc_pwr; 2998 int idx; 2999 3000 id = x86_match_cpu(intel_pstate_cpu_oob_ids); 3001 if (id) { 3002 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr); 3003 if (misc_pwr & BITMASK_OOB) { 3004 pr_debug("Bit 8 or 18 in the MISC_PWR_MGMT MSR set\n"); 3005 pr_debug("P states are controlled in Out of Band mode by the firmware/hardware\n"); 3006 return true; 3007 } 3008 } 3009 3010 idx = acpi_match_platform_list(plat_info); 3011 if (idx < 0) 3012 return false; 3013 3014 switch (plat_info[idx].data) { 3015 case PSS: 3016 if (!intel_pstate_no_acpi_pss()) 3017 return false; 3018 3019 return intel_pstate_no_acpi_pcch(); 3020 case PPC: 3021 return intel_pstate_has_acpi_ppc() && !force_load; 3022 } 3023 3024 return false; 3025 } 3026 3027 static void intel_pstate_request_control_from_smm(void) 3028 { 3029 /* 3030 * It may be unsafe to request P-states control from SMM if _PPC support 3031 * has not been enabled. 3032 */ 3033 if (acpi_ppc) 3034 acpi_processor_pstate_control(); 3035 } 3036 #else /* CONFIG_ACPI not enabled */ 3037 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; } 3038 static inline bool intel_pstate_has_acpi_ppc(void) { return false; } 3039 static inline void intel_pstate_request_control_from_smm(void) {} 3040 #endif /* CONFIG_ACPI */ 3041 3042 #define INTEL_PSTATE_HWP_BROADWELL 0x01 3043 3044 #define X86_MATCH_HWP(model, hwp_mode) \ 3045 X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6, INTEL_FAM6_##model, \ 3046 X86_FEATURE_HWP, hwp_mode) 3047 3048 static const struct x86_cpu_id hwp_support_ids[] __initconst = { 3049 X86_MATCH_HWP(BROADWELL_X, INTEL_PSTATE_HWP_BROADWELL), 3050 X86_MATCH_HWP(BROADWELL_D, INTEL_PSTATE_HWP_BROADWELL), 3051 X86_MATCH_HWP(ANY, 0), 3052 {} 3053 }; 3054 3055 static int __init intel_pstate_init(void) 3056 { 3057 const struct x86_cpu_id *id; 3058 int rc; 3059 3060 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) 3061 return -ENODEV; 3062 3063 if (no_load) 3064 return -ENODEV; 3065 3066 id = x86_match_cpu(hwp_support_ids); 3067 if (id) { 3068 copy_cpu_funcs(&core_funcs); 3069 /* 3070 * Avoid enabling HWP for processors without EPP support, 3071 * because that means incomplete HWP implementation which is a 3072 * corner case and supporting it is generally problematic. 3073 */ 3074 if (!no_hwp && boot_cpu_has(X86_FEATURE_HWP_EPP)) { 3075 hwp_active++; 3076 hwp_mode_bdw = id->driver_data; 3077 intel_pstate.attr = hwp_cpufreq_attrs; 3078 intel_cpufreq.attr = hwp_cpufreq_attrs; 3079 intel_cpufreq.flags |= CPUFREQ_NEED_UPDATE_LIMITS; 3080 intel_cpufreq.adjust_perf = intel_cpufreq_adjust_perf; 3081 if (!default_driver) 3082 default_driver = &intel_pstate; 3083 3084 goto hwp_cpu_matched; 3085 } 3086 } else { 3087 id = x86_match_cpu(intel_pstate_cpu_ids); 3088 if (!id) { 3089 pr_info("CPU model not supported\n"); 3090 return -ENODEV; 3091 } 3092 3093 copy_cpu_funcs((struct pstate_funcs *)id->driver_data); 3094 } 3095 3096 if (intel_pstate_msrs_not_valid()) { 3097 pr_info("Invalid MSRs\n"); 3098 return -ENODEV; 3099 } 3100 /* Without HWP start in the passive mode. */ 3101 if (!default_driver) 3102 default_driver = &intel_cpufreq; 3103 3104 hwp_cpu_matched: 3105 /* 3106 * The Intel pstate driver will be ignored if the platform 3107 * firmware has its own power management modes. 3108 */ 3109 if (intel_pstate_platform_pwr_mgmt_exists()) { 3110 pr_info("P-states controlled by the platform\n"); 3111 return -ENODEV; 3112 } 3113 3114 if (!hwp_active && hwp_only) 3115 return -ENOTSUPP; 3116 3117 pr_info("Intel P-state driver initializing\n"); 3118 3119 all_cpu_data = vzalloc(array_size(sizeof(void *), num_possible_cpus())); 3120 if (!all_cpu_data) 3121 return -ENOMEM; 3122 3123 intel_pstate_request_control_from_smm(); 3124 3125 intel_pstate_sysfs_expose_params(); 3126 3127 mutex_lock(&intel_pstate_driver_lock); 3128 rc = intel_pstate_register_driver(default_driver); 3129 mutex_unlock(&intel_pstate_driver_lock); 3130 if (rc) { 3131 intel_pstate_sysfs_remove(); 3132 return rc; 3133 } 3134 3135 if (hwp_active) { 3136 const struct x86_cpu_id *id; 3137 3138 id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids); 3139 if (id) { 3140 set_power_ctl_ee_state(false); 3141 pr_info("Disabling energy efficiency optimization\n"); 3142 } 3143 3144 pr_info("HWP enabled\n"); 3145 } 3146 3147 return 0; 3148 } 3149 device_initcall(intel_pstate_init); 3150 3151 static int __init intel_pstate_setup(char *str) 3152 { 3153 if (!str) 3154 return -EINVAL; 3155 3156 if (!strcmp(str, "disable")) 3157 no_load = 1; 3158 else if (!strcmp(str, "active")) 3159 default_driver = &intel_pstate; 3160 else if (!strcmp(str, "passive")) 3161 default_driver = &intel_cpufreq; 3162 3163 if (!strcmp(str, "no_hwp")) { 3164 pr_info("HWP disabled\n"); 3165 no_hwp = 1; 3166 } 3167 if (!strcmp(str, "force")) 3168 force_load = 1; 3169 if (!strcmp(str, "hwp_only")) 3170 hwp_only = 1; 3171 if (!strcmp(str, "per_cpu_perf_limits")) 3172 per_cpu_limits = true; 3173 3174 #ifdef CONFIG_ACPI 3175 if (!strcmp(str, "support_acpi_ppc")) 3176 acpi_ppc = true; 3177 #endif 3178 3179 return 0; 3180 } 3181 early_param("intel_pstate", intel_pstate_setup); 3182 3183 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>"); 3184 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors"); 3185 MODULE_LICENSE("GPL"); 3186