1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * intel_pstate.c: Native P state management for Intel processors
4  *
5  * (C) Copyright 2012 Intel Corporation
6  * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
7  */
8 
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 
11 #include <linux/kernel.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/module.h>
14 #include <linux/ktime.h>
15 #include <linux/hrtimer.h>
16 #include <linux/tick.h>
17 #include <linux/slab.h>
18 #include <linux/sched/cpufreq.h>
19 #include <linux/list.h>
20 #include <linux/cpu.h>
21 #include <linux/cpufreq.h>
22 #include <linux/sysfs.h>
23 #include <linux/types.h>
24 #include <linux/fs.h>
25 #include <linux/acpi.h>
26 #include <linux/vmalloc.h>
27 #include <linux/pm_qos.h>
28 #include <trace/events/power.h>
29 
30 #include <asm/div64.h>
31 #include <asm/msr.h>
32 #include <asm/cpu_device_id.h>
33 #include <asm/cpufeature.h>
34 #include <asm/intel-family.h>
35 #include "../drivers/thermal/intel/thermal_interrupt.h"
36 
37 #define INTEL_PSTATE_SAMPLING_INTERVAL	(10 * NSEC_PER_MSEC)
38 
39 #define INTEL_CPUFREQ_TRANSITION_LATENCY	20000
40 #define INTEL_CPUFREQ_TRANSITION_DELAY_HWP	5000
41 #define INTEL_CPUFREQ_TRANSITION_DELAY		500
42 
43 #ifdef CONFIG_ACPI
44 #include <acpi/processor.h>
45 #include <acpi/cppc_acpi.h>
46 #endif
47 
48 #define FRAC_BITS 8
49 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
50 #define fp_toint(X) ((X) >> FRAC_BITS)
51 
52 #define ONE_EIGHTH_FP ((int64_t)1 << (FRAC_BITS - 3))
53 
54 #define EXT_BITS 6
55 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
56 #define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
57 #define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
58 
59 static inline int32_t mul_fp(int32_t x, int32_t y)
60 {
61 	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
62 }
63 
64 static inline int32_t div_fp(s64 x, s64 y)
65 {
66 	return div64_s64((int64_t)x << FRAC_BITS, y);
67 }
68 
69 static inline int ceiling_fp(int32_t x)
70 {
71 	int mask, ret;
72 
73 	ret = fp_toint(x);
74 	mask = (1 << FRAC_BITS) - 1;
75 	if (x & mask)
76 		ret += 1;
77 	return ret;
78 }
79 
80 static inline u64 mul_ext_fp(u64 x, u64 y)
81 {
82 	return (x * y) >> EXT_FRAC_BITS;
83 }
84 
85 static inline u64 div_ext_fp(u64 x, u64 y)
86 {
87 	return div64_u64(x << EXT_FRAC_BITS, y);
88 }
89 
90 /**
91  * struct sample -	Store performance sample
92  * @core_avg_perf:	Ratio of APERF/MPERF which is the actual average
93  *			performance during last sample period
94  * @busy_scaled:	Scaled busy value which is used to calculate next
95  *			P state. This can be different than core_avg_perf
96  *			to account for cpu idle period
97  * @aperf:		Difference of actual performance frequency clock count
98  *			read from APERF MSR between last and current sample
99  * @mperf:		Difference of maximum performance frequency clock count
100  *			read from MPERF MSR between last and current sample
101  * @tsc:		Difference of time stamp counter between last and
102  *			current sample
103  * @time:		Current time from scheduler
104  *
105  * This structure is used in the cpudata structure to store performance sample
106  * data for choosing next P State.
107  */
108 struct sample {
109 	int32_t core_avg_perf;
110 	int32_t busy_scaled;
111 	u64 aperf;
112 	u64 mperf;
113 	u64 tsc;
114 	u64 time;
115 };
116 
117 /**
118  * struct pstate_data - Store P state data
119  * @current_pstate:	Current requested P state
120  * @min_pstate:		Min P state possible for this platform
121  * @max_pstate:		Max P state possible for this platform
122  * @max_pstate_physical:This is physical Max P state for a processor
123  *			This can be higher than the max_pstate which can
124  *			be limited by platform thermal design power limits
125  * @perf_ctl_scaling:	PERF_CTL P-state to frequency scaling factor
126  * @scaling:		Scaling factor between performance and frequency
127  * @turbo_pstate:	Max Turbo P state possible for this platform
128  * @min_freq:		@min_pstate frequency in cpufreq units
129  * @max_freq:		@max_pstate frequency in cpufreq units
130  * @turbo_freq:		@turbo_pstate frequency in cpufreq units
131  *
132  * Stores the per cpu model P state limits and current P state.
133  */
134 struct pstate_data {
135 	int	current_pstate;
136 	int	min_pstate;
137 	int	max_pstate;
138 	int	max_pstate_physical;
139 	int	perf_ctl_scaling;
140 	int	scaling;
141 	int	turbo_pstate;
142 	unsigned int min_freq;
143 	unsigned int max_freq;
144 	unsigned int turbo_freq;
145 };
146 
147 /**
148  * struct vid_data -	Stores voltage information data
149  * @min:		VID data for this platform corresponding to
150  *			the lowest P state
151  * @max:		VID data corresponding to the highest P State.
152  * @turbo:		VID data for turbo P state
153  * @ratio:		Ratio of (vid max - vid min) /
154  *			(max P state - Min P State)
155  *
156  * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
157  * This data is used in Atom platforms, where in addition to target P state,
158  * the voltage data needs to be specified to select next P State.
159  */
160 struct vid_data {
161 	int min;
162 	int max;
163 	int turbo;
164 	int32_t ratio;
165 };
166 
167 /**
168  * struct global_params - Global parameters, mostly tunable via sysfs.
169  * @no_turbo:		Whether or not to use turbo P-states.
170  * @turbo_disabled:	Whether or not turbo P-states are available at all,
171  *			based on the MSR_IA32_MISC_ENABLE value and whether or
172  *			not the maximum reported turbo P-state is different from
173  *			the maximum reported non-turbo one.
174  * @turbo_disabled_mf:	The @turbo_disabled value reflected by cpuinfo.max_freq.
175  * @min_perf_pct:	Minimum capacity limit in percent of the maximum turbo
176  *			P-state capacity.
177  * @max_perf_pct:	Maximum capacity limit in percent of the maximum turbo
178  *			P-state capacity.
179  */
180 struct global_params {
181 	bool no_turbo;
182 	bool turbo_disabled;
183 	bool turbo_disabled_mf;
184 	int max_perf_pct;
185 	int min_perf_pct;
186 };
187 
188 /**
189  * struct cpudata -	Per CPU instance data storage
190  * @cpu:		CPU number for this instance data
191  * @policy:		CPUFreq policy value
192  * @update_util:	CPUFreq utility callback information
193  * @update_util_set:	CPUFreq utility callback is set
194  * @iowait_boost:	iowait-related boost fraction
195  * @last_update:	Time of the last update.
196  * @pstate:		Stores P state limits for this CPU
197  * @vid:		Stores VID limits for this CPU
198  * @last_sample_time:	Last Sample time
199  * @aperf_mperf_shift:	APERF vs MPERF counting frequency difference
200  * @prev_aperf:		Last APERF value read from APERF MSR
201  * @prev_mperf:		Last MPERF value read from MPERF MSR
202  * @prev_tsc:		Last timestamp counter (TSC) value
203  * @prev_cummulative_iowait: IO Wait time difference from last and
204  *			current sample
205  * @sample:		Storage for storing last Sample data
206  * @min_perf_ratio:	Minimum capacity in terms of PERF or HWP ratios
207  * @max_perf_ratio:	Maximum capacity in terms of PERF or HWP ratios
208  * @acpi_perf_data:	Stores ACPI perf information read from _PSS
209  * @valid_pss_table:	Set to true for valid ACPI _PSS entries found
210  * @epp_powersave:	Last saved HWP energy performance preference
211  *			(EPP) or energy performance bias (EPB),
212  *			when policy switched to performance
213  * @epp_policy:		Last saved policy used to set EPP/EPB
214  * @epp_default:	Power on default HWP energy performance
215  *			preference/bias
216  * @epp_cached		Cached HWP energy-performance preference value
217  * @hwp_req_cached:	Cached value of the last HWP Request MSR
218  * @hwp_cap_cached:	Cached value of the last HWP Capabilities MSR
219  * @last_io_update:	Last time when IO wake flag was set
220  * @sched_flags:	Store scheduler flags for possible cross CPU update
221  * @hwp_boost_min:	Last HWP boosted min performance
222  * @suspended:		Whether or not the driver has been suspended.
223  * @hwp_notify_work:	workqueue for HWP notifications.
224  *
225  * This structure stores per CPU instance data for all CPUs.
226  */
227 struct cpudata {
228 	int cpu;
229 
230 	unsigned int policy;
231 	struct update_util_data update_util;
232 	bool   update_util_set;
233 
234 	struct pstate_data pstate;
235 	struct vid_data vid;
236 
237 	u64	last_update;
238 	u64	last_sample_time;
239 	u64	aperf_mperf_shift;
240 	u64	prev_aperf;
241 	u64	prev_mperf;
242 	u64	prev_tsc;
243 	u64	prev_cummulative_iowait;
244 	struct sample sample;
245 	int32_t	min_perf_ratio;
246 	int32_t	max_perf_ratio;
247 #ifdef CONFIG_ACPI
248 	struct acpi_processor_performance acpi_perf_data;
249 	bool valid_pss_table;
250 #endif
251 	unsigned int iowait_boost;
252 	s16 epp_powersave;
253 	s16 epp_policy;
254 	s16 epp_default;
255 	s16 epp_cached;
256 	u64 hwp_req_cached;
257 	u64 hwp_cap_cached;
258 	u64 last_io_update;
259 	unsigned int sched_flags;
260 	u32 hwp_boost_min;
261 	bool suspended;
262 	struct delayed_work hwp_notify_work;
263 };
264 
265 static struct cpudata **all_cpu_data;
266 
267 /**
268  * struct pstate_funcs - Per CPU model specific callbacks
269  * @get_max:		Callback to get maximum non turbo effective P state
270  * @get_max_physical:	Callback to get maximum non turbo physical P state
271  * @get_min:		Callback to get minimum P state
272  * @get_turbo:		Callback to get turbo P state
273  * @get_scaling:	Callback to get frequency scaling factor
274  * @get_cpu_scaling:	Get frequency scaling factor for a given cpu
275  * @get_aperf_mperf_shift: Callback to get the APERF vs MPERF frequency difference
276  * @get_val:		Callback to convert P state to actual MSR write value
277  * @get_vid:		Callback to get VID data for Atom platforms
278  *
279  * Core and Atom CPU models have different way to get P State limits. This
280  * structure is used to store those callbacks.
281  */
282 struct pstate_funcs {
283 	int (*get_max)(void);
284 	int (*get_max_physical)(void);
285 	int (*get_min)(void);
286 	int (*get_turbo)(void);
287 	int (*get_scaling)(void);
288 	int (*get_cpu_scaling)(int cpu);
289 	int (*get_aperf_mperf_shift)(void);
290 	u64 (*get_val)(struct cpudata*, int pstate);
291 	void (*get_vid)(struct cpudata *);
292 };
293 
294 static struct pstate_funcs pstate_funcs __read_mostly;
295 
296 static int hwp_active __read_mostly;
297 static int hwp_mode_bdw __read_mostly;
298 static bool per_cpu_limits __read_mostly;
299 static bool hwp_boost __read_mostly;
300 
301 static struct cpufreq_driver *intel_pstate_driver __read_mostly;
302 
303 #ifdef CONFIG_ACPI
304 static bool acpi_ppc;
305 #endif
306 
307 static struct global_params global;
308 
309 static DEFINE_MUTEX(intel_pstate_driver_lock);
310 static DEFINE_MUTEX(intel_pstate_limits_lock);
311 
312 #ifdef CONFIG_ACPI
313 
314 static bool intel_pstate_acpi_pm_profile_server(void)
315 {
316 	if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
317 	    acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
318 		return true;
319 
320 	return false;
321 }
322 
323 static bool intel_pstate_get_ppc_enable_status(void)
324 {
325 	if (intel_pstate_acpi_pm_profile_server())
326 		return true;
327 
328 	return acpi_ppc;
329 }
330 
331 #ifdef CONFIG_ACPI_CPPC_LIB
332 
333 /* The work item is needed to avoid CPU hotplug locking issues */
334 static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
335 {
336 	sched_set_itmt_support();
337 }
338 
339 static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);
340 
341 #define CPPC_MAX_PERF	U8_MAX
342 
343 static void intel_pstate_set_itmt_prio(int cpu)
344 {
345 	struct cppc_perf_caps cppc_perf;
346 	static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
347 	int ret;
348 
349 	ret = cppc_get_perf_caps(cpu, &cppc_perf);
350 	if (ret)
351 		return;
352 
353 	/*
354 	 * On some systems with overclocking enabled, CPPC.highest_perf is hardcoded to 0xff.
355 	 * In this case we can't use CPPC.highest_perf to enable ITMT.
356 	 * In this case we can look at MSR_HWP_CAPABILITIES bits [8:0] to decide.
357 	 */
358 	if (cppc_perf.highest_perf == CPPC_MAX_PERF)
359 		cppc_perf.highest_perf = HWP_HIGHEST_PERF(READ_ONCE(all_cpu_data[cpu]->hwp_cap_cached));
360 
361 	/*
362 	 * The priorities can be set regardless of whether or not
363 	 * sched_set_itmt_support(true) has been called and it is valid to
364 	 * update them at any time after it has been called.
365 	 */
366 	sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);
367 
368 	if (max_highest_perf <= min_highest_perf) {
369 		if (cppc_perf.highest_perf > max_highest_perf)
370 			max_highest_perf = cppc_perf.highest_perf;
371 
372 		if (cppc_perf.highest_perf < min_highest_perf)
373 			min_highest_perf = cppc_perf.highest_perf;
374 
375 		if (max_highest_perf > min_highest_perf) {
376 			/*
377 			 * This code can be run during CPU online under the
378 			 * CPU hotplug locks, so sched_set_itmt_support()
379 			 * cannot be called from here.  Queue up a work item
380 			 * to invoke it.
381 			 */
382 			schedule_work(&sched_itmt_work);
383 		}
384 	}
385 }
386 
387 static int intel_pstate_get_cppc_guaranteed(int cpu)
388 {
389 	struct cppc_perf_caps cppc_perf;
390 	int ret;
391 
392 	ret = cppc_get_perf_caps(cpu, &cppc_perf);
393 	if (ret)
394 		return ret;
395 
396 	if (cppc_perf.guaranteed_perf)
397 		return cppc_perf.guaranteed_perf;
398 
399 	return cppc_perf.nominal_perf;
400 }
401 
402 static u32 intel_pstate_cppc_nominal(int cpu)
403 {
404 	u64 nominal_perf;
405 
406 	if (cppc_get_nominal_perf(cpu, &nominal_perf))
407 		return 0;
408 
409 	return nominal_perf;
410 }
411 #else /* CONFIG_ACPI_CPPC_LIB */
412 static inline void intel_pstate_set_itmt_prio(int cpu)
413 {
414 }
415 #endif /* CONFIG_ACPI_CPPC_LIB */
416 
417 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
418 {
419 	struct cpudata *cpu;
420 	int ret;
421 	int i;
422 
423 	if (hwp_active) {
424 		intel_pstate_set_itmt_prio(policy->cpu);
425 		return;
426 	}
427 
428 	if (!intel_pstate_get_ppc_enable_status())
429 		return;
430 
431 	cpu = all_cpu_data[policy->cpu];
432 
433 	ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
434 						  policy->cpu);
435 	if (ret)
436 		return;
437 
438 	/*
439 	 * Check if the control value in _PSS is for PERF_CTL MSR, which should
440 	 * guarantee that the states returned by it map to the states in our
441 	 * list directly.
442 	 */
443 	if (cpu->acpi_perf_data.control_register.space_id !=
444 						ACPI_ADR_SPACE_FIXED_HARDWARE)
445 		goto err;
446 
447 	/*
448 	 * If there is only one entry _PSS, simply ignore _PSS and continue as
449 	 * usual without taking _PSS into account
450 	 */
451 	if (cpu->acpi_perf_data.state_count < 2)
452 		goto err;
453 
454 	pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
455 	for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
456 		pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
457 			 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
458 			 (u32) cpu->acpi_perf_data.states[i].core_frequency,
459 			 (u32) cpu->acpi_perf_data.states[i].power,
460 			 (u32) cpu->acpi_perf_data.states[i].control);
461 	}
462 
463 	/*
464 	 * The _PSS table doesn't contain whole turbo frequency range.
465 	 * This just contains +1 MHZ above the max non turbo frequency,
466 	 * with control value corresponding to max turbo ratio. But
467 	 * when cpufreq set policy is called, it will call with this
468 	 * max frequency, which will cause a reduced performance as
469 	 * this driver uses real max turbo frequency as the max
470 	 * frequency. So correct this frequency in _PSS table to
471 	 * correct max turbo frequency based on the turbo state.
472 	 * Also need to convert to MHz as _PSS freq is in MHz.
473 	 */
474 	if (!global.turbo_disabled)
475 		cpu->acpi_perf_data.states[0].core_frequency =
476 					policy->cpuinfo.max_freq / 1000;
477 	cpu->valid_pss_table = true;
478 	pr_debug("_PPC limits will be enforced\n");
479 
480 	return;
481 
482  err:
483 	cpu->valid_pss_table = false;
484 	acpi_processor_unregister_performance(policy->cpu);
485 }
486 
487 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
488 {
489 	struct cpudata *cpu;
490 
491 	cpu = all_cpu_data[policy->cpu];
492 	if (!cpu->valid_pss_table)
493 		return;
494 
495 	acpi_processor_unregister_performance(policy->cpu);
496 }
497 #else /* CONFIG_ACPI */
498 static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
499 {
500 }
501 
502 static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
503 {
504 }
505 
506 static inline bool intel_pstate_acpi_pm_profile_server(void)
507 {
508 	return false;
509 }
510 #endif /* CONFIG_ACPI */
511 
512 #ifndef CONFIG_ACPI_CPPC_LIB
513 static inline int intel_pstate_get_cppc_guaranteed(int cpu)
514 {
515 	return -ENOTSUPP;
516 }
517 #endif /* CONFIG_ACPI_CPPC_LIB */
518 
519 /**
520  * intel_pstate_hybrid_hwp_adjust - Calibrate HWP performance levels.
521  * @cpu: Target CPU.
522  *
523  * On hybrid processors, HWP may expose more performance levels than there are
524  * P-states accessible through the PERF_CTL interface.  If that happens, the
525  * scaling factor between HWP performance levels and CPU frequency will be less
526  * than the scaling factor between P-state values and CPU frequency.
527  *
528  * In that case, adjust the CPU parameters used in computations accordingly.
529  */
530 static void intel_pstate_hybrid_hwp_adjust(struct cpudata *cpu)
531 {
532 	int perf_ctl_max_phys = cpu->pstate.max_pstate_physical;
533 	int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling;
534 	int perf_ctl_turbo = pstate_funcs.get_turbo();
535 	int turbo_freq = perf_ctl_turbo * perf_ctl_scaling;
536 	int scaling = cpu->pstate.scaling;
537 
538 	pr_debug("CPU%d: perf_ctl_max_phys = %d\n", cpu->cpu, perf_ctl_max_phys);
539 	pr_debug("CPU%d: perf_ctl_max = %d\n", cpu->cpu, pstate_funcs.get_max());
540 	pr_debug("CPU%d: perf_ctl_turbo = %d\n", cpu->cpu, perf_ctl_turbo);
541 	pr_debug("CPU%d: perf_ctl_scaling = %d\n", cpu->cpu, perf_ctl_scaling);
542 	pr_debug("CPU%d: HWP_CAP guaranteed = %d\n", cpu->cpu, cpu->pstate.max_pstate);
543 	pr_debug("CPU%d: HWP_CAP highest = %d\n", cpu->cpu, cpu->pstate.turbo_pstate);
544 	pr_debug("CPU%d: HWP-to-frequency scaling factor: %d\n", cpu->cpu, scaling);
545 
546 	/*
547 	 * If the product of the HWP performance scaling factor and the HWP_CAP
548 	 * highest performance is greater than the maximum turbo frequency
549 	 * corresponding to the pstate_funcs.get_turbo() return value, the
550 	 * scaling factor is too high, so recompute it to make the HWP_CAP
551 	 * highest performance correspond to the maximum turbo frequency.
552 	 */
553 	cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * scaling;
554 	if (turbo_freq < cpu->pstate.turbo_freq) {
555 		cpu->pstate.turbo_freq = turbo_freq;
556 		scaling = DIV_ROUND_UP(turbo_freq, cpu->pstate.turbo_pstate);
557 		cpu->pstate.scaling = scaling;
558 
559 		pr_debug("CPU%d: refined HWP-to-frequency scaling factor: %d\n",
560 			 cpu->cpu, scaling);
561 	}
562 
563 	cpu->pstate.max_freq = rounddown(cpu->pstate.max_pstate * scaling,
564 					 perf_ctl_scaling);
565 
566 	cpu->pstate.max_pstate_physical =
567 			DIV_ROUND_UP(perf_ctl_max_phys * perf_ctl_scaling,
568 				     scaling);
569 
570 	cpu->pstate.min_freq = cpu->pstate.min_pstate * perf_ctl_scaling;
571 	/*
572 	 * Cast the min P-state value retrieved via pstate_funcs.get_min() to
573 	 * the effective range of HWP performance levels.
574 	 */
575 	cpu->pstate.min_pstate = DIV_ROUND_UP(cpu->pstate.min_freq, scaling);
576 }
577 
578 static inline void update_turbo_state(void)
579 {
580 	u64 misc_en;
581 	struct cpudata *cpu;
582 
583 	cpu = all_cpu_data[0];
584 	rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
585 	global.turbo_disabled =
586 		(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
587 		 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
588 }
589 
590 static int min_perf_pct_min(void)
591 {
592 	struct cpudata *cpu = all_cpu_data[0];
593 	int turbo_pstate = cpu->pstate.turbo_pstate;
594 
595 	return turbo_pstate ?
596 		(cpu->pstate.min_pstate * 100 / turbo_pstate) : 0;
597 }
598 
599 static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
600 {
601 	u64 epb;
602 	int ret;
603 
604 	if (!boot_cpu_has(X86_FEATURE_EPB))
605 		return -ENXIO;
606 
607 	ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
608 	if (ret)
609 		return (s16)ret;
610 
611 	return (s16)(epb & 0x0f);
612 }
613 
614 static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
615 {
616 	s16 epp;
617 
618 	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
619 		/*
620 		 * When hwp_req_data is 0, means that caller didn't read
621 		 * MSR_HWP_REQUEST, so need to read and get EPP.
622 		 */
623 		if (!hwp_req_data) {
624 			epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
625 					    &hwp_req_data);
626 			if (epp)
627 				return epp;
628 		}
629 		epp = (hwp_req_data >> 24) & 0xff;
630 	} else {
631 		/* When there is no EPP present, HWP uses EPB settings */
632 		epp = intel_pstate_get_epb(cpu_data);
633 	}
634 
635 	return epp;
636 }
637 
638 static int intel_pstate_set_epb(int cpu, s16 pref)
639 {
640 	u64 epb;
641 	int ret;
642 
643 	if (!boot_cpu_has(X86_FEATURE_EPB))
644 		return -ENXIO;
645 
646 	ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
647 	if (ret)
648 		return ret;
649 
650 	epb = (epb & ~0x0f) | pref;
651 	wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
652 
653 	return 0;
654 }
655 
656 /*
657  * EPP/EPB display strings corresponding to EPP index in the
658  * energy_perf_strings[]
659  *	index		String
660  *-------------------------------------
661  *	0		default
662  *	1		performance
663  *	2		balance_performance
664  *	3		balance_power
665  *	4		power
666  */
667 
668 enum energy_perf_value_index {
669 	EPP_INDEX_DEFAULT = 0,
670 	EPP_INDEX_PERFORMANCE,
671 	EPP_INDEX_BALANCE_PERFORMANCE,
672 	EPP_INDEX_BALANCE_POWERSAVE,
673 	EPP_INDEX_POWERSAVE,
674 };
675 
676 static const char * const energy_perf_strings[] = {
677 	[EPP_INDEX_DEFAULT] = "default",
678 	[EPP_INDEX_PERFORMANCE] = "performance",
679 	[EPP_INDEX_BALANCE_PERFORMANCE] = "balance_performance",
680 	[EPP_INDEX_BALANCE_POWERSAVE] = "balance_power",
681 	[EPP_INDEX_POWERSAVE] = "power",
682 	NULL
683 };
684 static unsigned int epp_values[] = {
685 	[EPP_INDEX_DEFAULT] = 0, /* Unused index */
686 	[EPP_INDEX_PERFORMANCE] = HWP_EPP_PERFORMANCE,
687 	[EPP_INDEX_BALANCE_PERFORMANCE] = HWP_EPP_BALANCE_PERFORMANCE,
688 	[EPP_INDEX_BALANCE_POWERSAVE] = HWP_EPP_BALANCE_POWERSAVE,
689 	[EPP_INDEX_POWERSAVE] = HWP_EPP_POWERSAVE,
690 };
691 
692 static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data, int *raw_epp)
693 {
694 	s16 epp;
695 	int index = -EINVAL;
696 
697 	*raw_epp = 0;
698 	epp = intel_pstate_get_epp(cpu_data, 0);
699 	if (epp < 0)
700 		return epp;
701 
702 	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
703 		if (epp == epp_values[EPP_INDEX_PERFORMANCE])
704 			return EPP_INDEX_PERFORMANCE;
705 		if (epp == epp_values[EPP_INDEX_BALANCE_PERFORMANCE])
706 			return EPP_INDEX_BALANCE_PERFORMANCE;
707 		if (epp == epp_values[EPP_INDEX_BALANCE_POWERSAVE])
708 			return EPP_INDEX_BALANCE_POWERSAVE;
709 		if (epp == epp_values[EPP_INDEX_POWERSAVE])
710 			return EPP_INDEX_POWERSAVE;
711 		*raw_epp = epp;
712 		return 0;
713 	} else if (boot_cpu_has(X86_FEATURE_EPB)) {
714 		/*
715 		 * Range:
716 		 *	0x00-0x03	:	Performance
717 		 *	0x04-0x07	:	Balance performance
718 		 *	0x08-0x0B	:	Balance power
719 		 *	0x0C-0x0F	:	Power
720 		 * The EPB is a 4 bit value, but our ranges restrict the
721 		 * value which can be set. Here only using top two bits
722 		 * effectively.
723 		 */
724 		index = (epp >> 2) + 1;
725 	}
726 
727 	return index;
728 }
729 
730 static int intel_pstate_set_epp(struct cpudata *cpu, u32 epp)
731 {
732 	int ret;
733 
734 	/*
735 	 * Use the cached HWP Request MSR value, because in the active mode the
736 	 * register itself may be updated by intel_pstate_hwp_boost_up() or
737 	 * intel_pstate_hwp_boost_down() at any time.
738 	 */
739 	u64 value = READ_ONCE(cpu->hwp_req_cached);
740 
741 	value &= ~GENMASK_ULL(31, 24);
742 	value |= (u64)epp << 24;
743 	/*
744 	 * The only other updater of hwp_req_cached in the active mode,
745 	 * intel_pstate_hwp_set(), is called under the same lock as this
746 	 * function, so it cannot run in parallel with the update below.
747 	 */
748 	WRITE_ONCE(cpu->hwp_req_cached, value);
749 	ret = wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
750 	if (!ret)
751 		cpu->epp_cached = epp;
752 
753 	return ret;
754 }
755 
756 static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
757 					      int pref_index, bool use_raw,
758 					      u32 raw_epp)
759 {
760 	int epp = -EINVAL;
761 	int ret;
762 
763 	if (!pref_index)
764 		epp = cpu_data->epp_default;
765 
766 	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
767 		if (use_raw)
768 			epp = raw_epp;
769 		else if (epp == -EINVAL)
770 			epp = epp_values[pref_index];
771 
772 		/*
773 		 * To avoid confusion, refuse to set EPP to any values different
774 		 * from 0 (performance) if the current policy is "performance",
775 		 * because those values would be overridden.
776 		 */
777 		if (epp > 0 && cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
778 			return -EBUSY;
779 
780 		ret = intel_pstate_set_epp(cpu_data, epp);
781 	} else {
782 		if (epp == -EINVAL)
783 			epp = (pref_index - 1) << 2;
784 		ret = intel_pstate_set_epb(cpu_data->cpu, epp);
785 	}
786 
787 	return ret;
788 }
789 
790 static ssize_t show_energy_performance_available_preferences(
791 				struct cpufreq_policy *policy, char *buf)
792 {
793 	int i = 0;
794 	int ret = 0;
795 
796 	while (energy_perf_strings[i] != NULL)
797 		ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);
798 
799 	ret += sprintf(&buf[ret], "\n");
800 
801 	return ret;
802 }
803 
804 cpufreq_freq_attr_ro(energy_performance_available_preferences);
805 
806 static struct cpufreq_driver intel_pstate;
807 
808 static ssize_t store_energy_performance_preference(
809 		struct cpufreq_policy *policy, const char *buf, size_t count)
810 {
811 	struct cpudata *cpu = all_cpu_data[policy->cpu];
812 	char str_preference[21];
813 	bool raw = false;
814 	ssize_t ret;
815 	u32 epp = 0;
816 
817 	ret = sscanf(buf, "%20s", str_preference);
818 	if (ret != 1)
819 		return -EINVAL;
820 
821 	ret = match_string(energy_perf_strings, -1, str_preference);
822 	if (ret < 0) {
823 		if (!boot_cpu_has(X86_FEATURE_HWP_EPP))
824 			return ret;
825 
826 		ret = kstrtouint(buf, 10, &epp);
827 		if (ret)
828 			return ret;
829 
830 		if (epp > 255)
831 			return -EINVAL;
832 
833 		raw = true;
834 	}
835 
836 	/*
837 	 * This function runs with the policy R/W semaphore held, which
838 	 * guarantees that the driver pointer will not change while it is
839 	 * running.
840 	 */
841 	if (!intel_pstate_driver)
842 		return -EAGAIN;
843 
844 	mutex_lock(&intel_pstate_limits_lock);
845 
846 	if (intel_pstate_driver == &intel_pstate) {
847 		ret = intel_pstate_set_energy_pref_index(cpu, ret, raw, epp);
848 	} else {
849 		/*
850 		 * In the passive mode the governor needs to be stopped on the
851 		 * target CPU before the EPP update and restarted after it,
852 		 * which is super-heavy-weight, so make sure it is worth doing
853 		 * upfront.
854 		 */
855 		if (!raw)
856 			epp = ret ? epp_values[ret] : cpu->epp_default;
857 
858 		if (cpu->epp_cached != epp) {
859 			int err;
860 
861 			cpufreq_stop_governor(policy);
862 			ret = intel_pstate_set_epp(cpu, epp);
863 			err = cpufreq_start_governor(policy);
864 			if (!ret)
865 				ret = err;
866 		}
867 	}
868 
869 	mutex_unlock(&intel_pstate_limits_lock);
870 
871 	return ret ?: count;
872 }
873 
874 static ssize_t show_energy_performance_preference(
875 				struct cpufreq_policy *policy, char *buf)
876 {
877 	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
878 	int preference, raw_epp;
879 
880 	preference = intel_pstate_get_energy_pref_index(cpu_data, &raw_epp);
881 	if (preference < 0)
882 		return preference;
883 
884 	if (raw_epp)
885 		return  sprintf(buf, "%d\n", raw_epp);
886 	else
887 		return  sprintf(buf, "%s\n", energy_perf_strings[preference]);
888 }
889 
890 cpufreq_freq_attr_rw(energy_performance_preference);
891 
892 static ssize_t show_base_frequency(struct cpufreq_policy *policy, char *buf)
893 {
894 	struct cpudata *cpu = all_cpu_data[policy->cpu];
895 	int ratio, freq;
896 
897 	ratio = intel_pstate_get_cppc_guaranteed(policy->cpu);
898 	if (ratio <= 0) {
899 		u64 cap;
900 
901 		rdmsrl_on_cpu(policy->cpu, MSR_HWP_CAPABILITIES, &cap);
902 		ratio = HWP_GUARANTEED_PERF(cap);
903 	}
904 
905 	freq = ratio * cpu->pstate.scaling;
906 	if (cpu->pstate.scaling != cpu->pstate.perf_ctl_scaling)
907 		freq = rounddown(freq, cpu->pstate.perf_ctl_scaling);
908 
909 	return sprintf(buf, "%d\n", freq);
910 }
911 
912 cpufreq_freq_attr_ro(base_frequency);
913 
914 static struct freq_attr *hwp_cpufreq_attrs[] = {
915 	&energy_performance_preference,
916 	&energy_performance_available_preferences,
917 	&base_frequency,
918 	NULL,
919 };
920 
921 static void __intel_pstate_get_hwp_cap(struct cpudata *cpu)
922 {
923 	u64 cap;
924 
925 	rdmsrl_on_cpu(cpu->cpu, MSR_HWP_CAPABILITIES, &cap);
926 	WRITE_ONCE(cpu->hwp_cap_cached, cap);
927 	cpu->pstate.max_pstate = HWP_GUARANTEED_PERF(cap);
928 	cpu->pstate.turbo_pstate = HWP_HIGHEST_PERF(cap);
929 }
930 
931 static void intel_pstate_get_hwp_cap(struct cpudata *cpu)
932 {
933 	int scaling = cpu->pstate.scaling;
934 
935 	__intel_pstate_get_hwp_cap(cpu);
936 
937 	cpu->pstate.max_freq = cpu->pstate.max_pstate * scaling;
938 	cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * scaling;
939 	if (scaling != cpu->pstate.perf_ctl_scaling) {
940 		int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling;
941 
942 		cpu->pstate.max_freq = rounddown(cpu->pstate.max_freq,
943 						 perf_ctl_scaling);
944 		cpu->pstate.turbo_freq = rounddown(cpu->pstate.turbo_freq,
945 						   perf_ctl_scaling);
946 	}
947 }
948 
949 static void intel_pstate_hwp_set(unsigned int cpu)
950 {
951 	struct cpudata *cpu_data = all_cpu_data[cpu];
952 	int max, min;
953 	u64 value;
954 	s16 epp;
955 
956 	max = cpu_data->max_perf_ratio;
957 	min = cpu_data->min_perf_ratio;
958 
959 	if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
960 		min = max;
961 
962 	rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
963 
964 	value &= ~HWP_MIN_PERF(~0L);
965 	value |= HWP_MIN_PERF(min);
966 
967 	value &= ~HWP_MAX_PERF(~0L);
968 	value |= HWP_MAX_PERF(max);
969 
970 	if (cpu_data->epp_policy == cpu_data->policy)
971 		goto skip_epp;
972 
973 	cpu_data->epp_policy = cpu_data->policy;
974 
975 	if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
976 		epp = intel_pstate_get_epp(cpu_data, value);
977 		cpu_data->epp_powersave = epp;
978 		/* If EPP read was failed, then don't try to write */
979 		if (epp < 0)
980 			goto skip_epp;
981 
982 		epp = 0;
983 	} else {
984 		/* skip setting EPP, when saved value is invalid */
985 		if (cpu_data->epp_powersave < 0)
986 			goto skip_epp;
987 
988 		/*
989 		 * No need to restore EPP when it is not zero. This
990 		 * means:
991 		 *  - Policy is not changed
992 		 *  - user has manually changed
993 		 *  - Error reading EPB
994 		 */
995 		epp = intel_pstate_get_epp(cpu_data, value);
996 		if (epp)
997 			goto skip_epp;
998 
999 		epp = cpu_data->epp_powersave;
1000 	}
1001 	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
1002 		value &= ~GENMASK_ULL(31, 24);
1003 		value |= (u64)epp << 24;
1004 	} else {
1005 		intel_pstate_set_epb(cpu, epp);
1006 	}
1007 skip_epp:
1008 	WRITE_ONCE(cpu_data->hwp_req_cached, value);
1009 	wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
1010 }
1011 
1012 static void intel_pstate_disable_hwp_interrupt(struct cpudata *cpudata);
1013 
1014 static void intel_pstate_hwp_offline(struct cpudata *cpu)
1015 {
1016 	u64 value = READ_ONCE(cpu->hwp_req_cached);
1017 	int min_perf;
1018 
1019 	intel_pstate_disable_hwp_interrupt(cpu);
1020 
1021 	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
1022 		/*
1023 		 * In case the EPP has been set to "performance" by the
1024 		 * active mode "performance" scaling algorithm, replace that
1025 		 * temporary value with the cached EPP one.
1026 		 */
1027 		value &= ~GENMASK_ULL(31, 24);
1028 		value |= HWP_ENERGY_PERF_PREFERENCE(cpu->epp_cached);
1029 		/*
1030 		 * However, make sure that EPP will be set to "performance" when
1031 		 * the CPU is brought back online again and the "performance"
1032 		 * scaling algorithm is still in effect.
1033 		 */
1034 		cpu->epp_policy = CPUFREQ_POLICY_UNKNOWN;
1035 	}
1036 
1037 	/*
1038 	 * Clear the desired perf field in the cached HWP request value to
1039 	 * prevent nonzero desired values from being leaked into the active
1040 	 * mode.
1041 	 */
1042 	value &= ~HWP_DESIRED_PERF(~0L);
1043 	WRITE_ONCE(cpu->hwp_req_cached, value);
1044 
1045 	value &= ~GENMASK_ULL(31, 0);
1046 	min_perf = HWP_LOWEST_PERF(READ_ONCE(cpu->hwp_cap_cached));
1047 
1048 	/* Set hwp_max = hwp_min */
1049 	value |= HWP_MAX_PERF(min_perf);
1050 	value |= HWP_MIN_PERF(min_perf);
1051 
1052 	/* Set EPP to min */
1053 	if (boot_cpu_has(X86_FEATURE_HWP_EPP))
1054 		value |= HWP_ENERGY_PERF_PREFERENCE(HWP_EPP_POWERSAVE);
1055 
1056 	wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
1057 }
1058 
1059 #define POWER_CTL_EE_ENABLE	1
1060 #define POWER_CTL_EE_DISABLE	2
1061 
1062 static int power_ctl_ee_state;
1063 
1064 static void set_power_ctl_ee_state(bool input)
1065 {
1066 	u64 power_ctl;
1067 
1068 	mutex_lock(&intel_pstate_driver_lock);
1069 	rdmsrl(MSR_IA32_POWER_CTL, power_ctl);
1070 	if (input) {
1071 		power_ctl &= ~BIT(MSR_IA32_POWER_CTL_BIT_EE);
1072 		power_ctl_ee_state = POWER_CTL_EE_ENABLE;
1073 	} else {
1074 		power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
1075 		power_ctl_ee_state = POWER_CTL_EE_DISABLE;
1076 	}
1077 	wrmsrl(MSR_IA32_POWER_CTL, power_ctl);
1078 	mutex_unlock(&intel_pstate_driver_lock);
1079 }
1080 
1081 static void intel_pstate_hwp_enable(struct cpudata *cpudata);
1082 
1083 static void intel_pstate_hwp_reenable(struct cpudata *cpu)
1084 {
1085 	intel_pstate_hwp_enable(cpu);
1086 	wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, READ_ONCE(cpu->hwp_req_cached));
1087 }
1088 
1089 static int intel_pstate_suspend(struct cpufreq_policy *policy)
1090 {
1091 	struct cpudata *cpu = all_cpu_data[policy->cpu];
1092 
1093 	pr_debug("CPU %d suspending\n", cpu->cpu);
1094 
1095 	cpu->suspended = true;
1096 
1097 	/* disable HWP interrupt and cancel any pending work */
1098 	intel_pstate_disable_hwp_interrupt(cpu);
1099 
1100 	return 0;
1101 }
1102 
1103 static int intel_pstate_resume(struct cpufreq_policy *policy)
1104 {
1105 	struct cpudata *cpu = all_cpu_data[policy->cpu];
1106 
1107 	pr_debug("CPU %d resuming\n", cpu->cpu);
1108 
1109 	/* Only restore if the system default is changed */
1110 	if (power_ctl_ee_state == POWER_CTL_EE_ENABLE)
1111 		set_power_ctl_ee_state(true);
1112 	else if (power_ctl_ee_state == POWER_CTL_EE_DISABLE)
1113 		set_power_ctl_ee_state(false);
1114 
1115 	if (cpu->suspended && hwp_active) {
1116 		mutex_lock(&intel_pstate_limits_lock);
1117 
1118 		/* Re-enable HWP, because "online" has not done that. */
1119 		intel_pstate_hwp_reenable(cpu);
1120 
1121 		mutex_unlock(&intel_pstate_limits_lock);
1122 	}
1123 
1124 	cpu->suspended = false;
1125 
1126 	return 0;
1127 }
1128 
1129 static void intel_pstate_update_policies(void)
1130 {
1131 	int cpu;
1132 
1133 	for_each_possible_cpu(cpu)
1134 		cpufreq_update_policy(cpu);
1135 }
1136 
1137 static void intel_pstate_update_max_freq(unsigned int cpu)
1138 {
1139 	struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
1140 	struct cpudata *cpudata;
1141 
1142 	if (!policy)
1143 		return;
1144 
1145 	cpudata = all_cpu_data[cpu];
1146 	policy->cpuinfo.max_freq = global.turbo_disabled_mf ?
1147 			cpudata->pstate.max_freq : cpudata->pstate.turbo_freq;
1148 
1149 	refresh_frequency_limits(policy);
1150 
1151 	cpufreq_cpu_release(policy);
1152 }
1153 
1154 static void intel_pstate_update_limits(unsigned int cpu)
1155 {
1156 	mutex_lock(&intel_pstate_driver_lock);
1157 
1158 	update_turbo_state();
1159 	/*
1160 	 * If turbo has been turned on or off globally, policy limits for
1161 	 * all CPUs need to be updated to reflect that.
1162 	 */
1163 	if (global.turbo_disabled_mf != global.turbo_disabled) {
1164 		global.turbo_disabled_mf = global.turbo_disabled;
1165 		arch_set_max_freq_ratio(global.turbo_disabled);
1166 		for_each_possible_cpu(cpu)
1167 			intel_pstate_update_max_freq(cpu);
1168 	} else {
1169 		cpufreq_update_policy(cpu);
1170 	}
1171 
1172 	mutex_unlock(&intel_pstate_driver_lock);
1173 }
1174 
1175 /************************** sysfs begin ************************/
1176 #define show_one(file_name, object)					\
1177 	static ssize_t show_##file_name					\
1178 	(struct kobject *kobj, struct kobj_attribute *attr, char *buf)	\
1179 	{								\
1180 		return sprintf(buf, "%u\n", global.object);		\
1181 	}
1182 
1183 static ssize_t intel_pstate_show_status(char *buf);
1184 static int intel_pstate_update_status(const char *buf, size_t size);
1185 
1186 static ssize_t show_status(struct kobject *kobj,
1187 			   struct kobj_attribute *attr, char *buf)
1188 {
1189 	ssize_t ret;
1190 
1191 	mutex_lock(&intel_pstate_driver_lock);
1192 	ret = intel_pstate_show_status(buf);
1193 	mutex_unlock(&intel_pstate_driver_lock);
1194 
1195 	return ret;
1196 }
1197 
1198 static ssize_t store_status(struct kobject *a, struct kobj_attribute *b,
1199 			    const char *buf, size_t count)
1200 {
1201 	char *p = memchr(buf, '\n', count);
1202 	int ret;
1203 
1204 	mutex_lock(&intel_pstate_driver_lock);
1205 	ret = intel_pstate_update_status(buf, p ? p - buf : count);
1206 	mutex_unlock(&intel_pstate_driver_lock);
1207 
1208 	return ret < 0 ? ret : count;
1209 }
1210 
1211 static ssize_t show_turbo_pct(struct kobject *kobj,
1212 				struct kobj_attribute *attr, char *buf)
1213 {
1214 	struct cpudata *cpu;
1215 	int total, no_turbo, turbo_pct;
1216 	uint32_t turbo_fp;
1217 
1218 	mutex_lock(&intel_pstate_driver_lock);
1219 
1220 	if (!intel_pstate_driver) {
1221 		mutex_unlock(&intel_pstate_driver_lock);
1222 		return -EAGAIN;
1223 	}
1224 
1225 	cpu = all_cpu_data[0];
1226 
1227 	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1228 	no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
1229 	turbo_fp = div_fp(no_turbo, total);
1230 	turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
1231 
1232 	mutex_unlock(&intel_pstate_driver_lock);
1233 
1234 	return sprintf(buf, "%u\n", turbo_pct);
1235 }
1236 
1237 static ssize_t show_num_pstates(struct kobject *kobj,
1238 				struct kobj_attribute *attr, char *buf)
1239 {
1240 	struct cpudata *cpu;
1241 	int total;
1242 
1243 	mutex_lock(&intel_pstate_driver_lock);
1244 
1245 	if (!intel_pstate_driver) {
1246 		mutex_unlock(&intel_pstate_driver_lock);
1247 		return -EAGAIN;
1248 	}
1249 
1250 	cpu = all_cpu_data[0];
1251 	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1252 
1253 	mutex_unlock(&intel_pstate_driver_lock);
1254 
1255 	return sprintf(buf, "%u\n", total);
1256 }
1257 
1258 static ssize_t show_no_turbo(struct kobject *kobj,
1259 			     struct kobj_attribute *attr, char *buf)
1260 {
1261 	ssize_t ret;
1262 
1263 	mutex_lock(&intel_pstate_driver_lock);
1264 
1265 	if (!intel_pstate_driver) {
1266 		mutex_unlock(&intel_pstate_driver_lock);
1267 		return -EAGAIN;
1268 	}
1269 
1270 	update_turbo_state();
1271 	if (global.turbo_disabled)
1272 		ret = sprintf(buf, "%u\n", global.turbo_disabled);
1273 	else
1274 		ret = sprintf(buf, "%u\n", global.no_turbo);
1275 
1276 	mutex_unlock(&intel_pstate_driver_lock);
1277 
1278 	return ret;
1279 }
1280 
1281 static ssize_t store_no_turbo(struct kobject *a, struct kobj_attribute *b,
1282 			      const char *buf, size_t count)
1283 {
1284 	unsigned int input;
1285 	int ret;
1286 
1287 	ret = sscanf(buf, "%u", &input);
1288 	if (ret != 1)
1289 		return -EINVAL;
1290 
1291 	mutex_lock(&intel_pstate_driver_lock);
1292 
1293 	if (!intel_pstate_driver) {
1294 		mutex_unlock(&intel_pstate_driver_lock);
1295 		return -EAGAIN;
1296 	}
1297 
1298 	mutex_lock(&intel_pstate_limits_lock);
1299 
1300 	update_turbo_state();
1301 	if (global.turbo_disabled) {
1302 		pr_notice_once("Turbo disabled by BIOS or unavailable on processor\n");
1303 		mutex_unlock(&intel_pstate_limits_lock);
1304 		mutex_unlock(&intel_pstate_driver_lock);
1305 		return -EPERM;
1306 	}
1307 
1308 	global.no_turbo = clamp_t(int, input, 0, 1);
1309 
1310 	if (global.no_turbo) {
1311 		struct cpudata *cpu = all_cpu_data[0];
1312 		int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;
1313 
1314 		/* Squash the global minimum into the permitted range. */
1315 		if (global.min_perf_pct > pct)
1316 			global.min_perf_pct = pct;
1317 	}
1318 
1319 	mutex_unlock(&intel_pstate_limits_lock);
1320 
1321 	intel_pstate_update_policies();
1322 
1323 	mutex_unlock(&intel_pstate_driver_lock);
1324 
1325 	return count;
1326 }
1327 
1328 static void update_qos_request(enum freq_qos_req_type type)
1329 {
1330 	struct freq_qos_request *req;
1331 	struct cpufreq_policy *policy;
1332 	int i;
1333 
1334 	for_each_possible_cpu(i) {
1335 		struct cpudata *cpu = all_cpu_data[i];
1336 		unsigned int freq, perf_pct;
1337 
1338 		policy = cpufreq_cpu_get(i);
1339 		if (!policy)
1340 			continue;
1341 
1342 		req = policy->driver_data;
1343 		cpufreq_cpu_put(policy);
1344 
1345 		if (!req)
1346 			continue;
1347 
1348 		if (hwp_active)
1349 			intel_pstate_get_hwp_cap(cpu);
1350 
1351 		if (type == FREQ_QOS_MIN) {
1352 			perf_pct = global.min_perf_pct;
1353 		} else {
1354 			req++;
1355 			perf_pct = global.max_perf_pct;
1356 		}
1357 
1358 		freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * perf_pct, 100);
1359 
1360 		if (freq_qos_update_request(req, freq) < 0)
1361 			pr_warn("Failed to update freq constraint: CPU%d\n", i);
1362 	}
1363 }
1364 
1365 static ssize_t store_max_perf_pct(struct kobject *a, struct kobj_attribute *b,
1366 				  const char *buf, size_t count)
1367 {
1368 	unsigned int input;
1369 	int ret;
1370 
1371 	ret = sscanf(buf, "%u", &input);
1372 	if (ret != 1)
1373 		return -EINVAL;
1374 
1375 	mutex_lock(&intel_pstate_driver_lock);
1376 
1377 	if (!intel_pstate_driver) {
1378 		mutex_unlock(&intel_pstate_driver_lock);
1379 		return -EAGAIN;
1380 	}
1381 
1382 	mutex_lock(&intel_pstate_limits_lock);
1383 
1384 	global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
1385 
1386 	mutex_unlock(&intel_pstate_limits_lock);
1387 
1388 	if (intel_pstate_driver == &intel_pstate)
1389 		intel_pstate_update_policies();
1390 	else
1391 		update_qos_request(FREQ_QOS_MAX);
1392 
1393 	mutex_unlock(&intel_pstate_driver_lock);
1394 
1395 	return count;
1396 }
1397 
1398 static ssize_t store_min_perf_pct(struct kobject *a, struct kobj_attribute *b,
1399 				  const char *buf, size_t count)
1400 {
1401 	unsigned int input;
1402 	int ret;
1403 
1404 	ret = sscanf(buf, "%u", &input);
1405 	if (ret != 1)
1406 		return -EINVAL;
1407 
1408 	mutex_lock(&intel_pstate_driver_lock);
1409 
1410 	if (!intel_pstate_driver) {
1411 		mutex_unlock(&intel_pstate_driver_lock);
1412 		return -EAGAIN;
1413 	}
1414 
1415 	mutex_lock(&intel_pstate_limits_lock);
1416 
1417 	global.min_perf_pct = clamp_t(int, input,
1418 				      min_perf_pct_min(), global.max_perf_pct);
1419 
1420 	mutex_unlock(&intel_pstate_limits_lock);
1421 
1422 	if (intel_pstate_driver == &intel_pstate)
1423 		intel_pstate_update_policies();
1424 	else
1425 		update_qos_request(FREQ_QOS_MIN);
1426 
1427 	mutex_unlock(&intel_pstate_driver_lock);
1428 
1429 	return count;
1430 }
1431 
1432 static ssize_t show_hwp_dynamic_boost(struct kobject *kobj,
1433 				struct kobj_attribute *attr, char *buf)
1434 {
1435 	return sprintf(buf, "%u\n", hwp_boost);
1436 }
1437 
1438 static ssize_t store_hwp_dynamic_boost(struct kobject *a,
1439 				       struct kobj_attribute *b,
1440 				       const char *buf, size_t count)
1441 {
1442 	unsigned int input;
1443 	int ret;
1444 
1445 	ret = kstrtouint(buf, 10, &input);
1446 	if (ret)
1447 		return ret;
1448 
1449 	mutex_lock(&intel_pstate_driver_lock);
1450 	hwp_boost = !!input;
1451 	intel_pstate_update_policies();
1452 	mutex_unlock(&intel_pstate_driver_lock);
1453 
1454 	return count;
1455 }
1456 
1457 static ssize_t show_energy_efficiency(struct kobject *kobj, struct kobj_attribute *attr,
1458 				      char *buf)
1459 {
1460 	u64 power_ctl;
1461 	int enable;
1462 
1463 	rdmsrl(MSR_IA32_POWER_CTL, power_ctl);
1464 	enable = !!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE));
1465 	return sprintf(buf, "%d\n", !enable);
1466 }
1467 
1468 static ssize_t store_energy_efficiency(struct kobject *a, struct kobj_attribute *b,
1469 				       const char *buf, size_t count)
1470 {
1471 	bool input;
1472 	int ret;
1473 
1474 	ret = kstrtobool(buf, &input);
1475 	if (ret)
1476 		return ret;
1477 
1478 	set_power_ctl_ee_state(input);
1479 
1480 	return count;
1481 }
1482 
1483 show_one(max_perf_pct, max_perf_pct);
1484 show_one(min_perf_pct, min_perf_pct);
1485 
1486 define_one_global_rw(status);
1487 define_one_global_rw(no_turbo);
1488 define_one_global_rw(max_perf_pct);
1489 define_one_global_rw(min_perf_pct);
1490 define_one_global_ro(turbo_pct);
1491 define_one_global_ro(num_pstates);
1492 define_one_global_rw(hwp_dynamic_boost);
1493 define_one_global_rw(energy_efficiency);
1494 
1495 static struct attribute *intel_pstate_attributes[] = {
1496 	&status.attr,
1497 	&no_turbo.attr,
1498 	NULL
1499 };
1500 
1501 static const struct attribute_group intel_pstate_attr_group = {
1502 	.attrs = intel_pstate_attributes,
1503 };
1504 
1505 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[];
1506 
1507 static struct kobject *intel_pstate_kobject;
1508 
1509 static void __init intel_pstate_sysfs_expose_params(void)
1510 {
1511 	int rc;
1512 
1513 	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
1514 						&cpu_subsys.dev_root->kobj);
1515 	if (WARN_ON(!intel_pstate_kobject))
1516 		return;
1517 
1518 	rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1519 	if (WARN_ON(rc))
1520 		return;
1521 
1522 	if (!boot_cpu_has(X86_FEATURE_HYBRID_CPU)) {
1523 		rc = sysfs_create_file(intel_pstate_kobject, &turbo_pct.attr);
1524 		WARN_ON(rc);
1525 
1526 		rc = sysfs_create_file(intel_pstate_kobject, &num_pstates.attr);
1527 		WARN_ON(rc);
1528 	}
1529 
1530 	/*
1531 	 * If per cpu limits are enforced there are no global limits, so
1532 	 * return without creating max/min_perf_pct attributes
1533 	 */
1534 	if (per_cpu_limits)
1535 		return;
1536 
1537 	rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
1538 	WARN_ON(rc);
1539 
1540 	rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
1541 	WARN_ON(rc);
1542 
1543 	if (x86_match_cpu(intel_pstate_cpu_ee_disable_ids)) {
1544 		rc = sysfs_create_file(intel_pstate_kobject, &energy_efficiency.attr);
1545 		WARN_ON(rc);
1546 	}
1547 }
1548 
1549 static void __init intel_pstate_sysfs_remove(void)
1550 {
1551 	if (!intel_pstate_kobject)
1552 		return;
1553 
1554 	sysfs_remove_group(intel_pstate_kobject, &intel_pstate_attr_group);
1555 
1556 	if (!boot_cpu_has(X86_FEATURE_HYBRID_CPU)) {
1557 		sysfs_remove_file(intel_pstate_kobject, &num_pstates.attr);
1558 		sysfs_remove_file(intel_pstate_kobject, &turbo_pct.attr);
1559 	}
1560 
1561 	if (!per_cpu_limits) {
1562 		sysfs_remove_file(intel_pstate_kobject, &max_perf_pct.attr);
1563 		sysfs_remove_file(intel_pstate_kobject, &min_perf_pct.attr);
1564 
1565 		if (x86_match_cpu(intel_pstate_cpu_ee_disable_ids))
1566 			sysfs_remove_file(intel_pstate_kobject, &energy_efficiency.attr);
1567 	}
1568 
1569 	kobject_put(intel_pstate_kobject);
1570 }
1571 
1572 static void intel_pstate_sysfs_expose_hwp_dynamic_boost(void)
1573 {
1574 	int rc;
1575 
1576 	if (!hwp_active)
1577 		return;
1578 
1579 	rc = sysfs_create_file(intel_pstate_kobject, &hwp_dynamic_boost.attr);
1580 	WARN_ON_ONCE(rc);
1581 }
1582 
1583 static void intel_pstate_sysfs_hide_hwp_dynamic_boost(void)
1584 {
1585 	if (!hwp_active)
1586 		return;
1587 
1588 	sysfs_remove_file(intel_pstate_kobject, &hwp_dynamic_boost.attr);
1589 }
1590 
1591 /************************** sysfs end ************************/
1592 
1593 static void intel_pstate_notify_work(struct work_struct *work)
1594 {
1595 	struct cpudata *cpudata =
1596 		container_of(to_delayed_work(work), struct cpudata, hwp_notify_work);
1597 
1598 	cpufreq_update_policy(cpudata->cpu);
1599 	wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_STATUS, 0);
1600 }
1601 
1602 static DEFINE_SPINLOCK(hwp_notify_lock);
1603 static cpumask_t hwp_intr_enable_mask;
1604 
1605 void notify_hwp_interrupt(void)
1606 {
1607 	unsigned int this_cpu = smp_processor_id();
1608 	struct cpudata *cpudata;
1609 	unsigned long flags;
1610 	u64 value;
1611 
1612 	if (!READ_ONCE(hwp_active) || !boot_cpu_has(X86_FEATURE_HWP_NOTIFY))
1613 		return;
1614 
1615 	rdmsrl_safe(MSR_HWP_STATUS, &value);
1616 	if (!(value & 0x01))
1617 		return;
1618 
1619 	spin_lock_irqsave(&hwp_notify_lock, flags);
1620 
1621 	if (!cpumask_test_cpu(this_cpu, &hwp_intr_enable_mask))
1622 		goto ack_intr;
1623 
1624 	/*
1625 	 * Currently we never free all_cpu_data. And we can't reach here
1626 	 * without this allocated. But for safety for future changes, added
1627 	 * check.
1628 	 */
1629 	if (unlikely(!READ_ONCE(all_cpu_data)))
1630 		goto ack_intr;
1631 
1632 	/*
1633 	 * The free is done during cleanup, when cpufreq registry is failed.
1634 	 * We wouldn't be here if it fails on init or switch status. But for
1635 	 * future changes, added check.
1636 	 */
1637 	cpudata = READ_ONCE(all_cpu_data[this_cpu]);
1638 	if (unlikely(!cpudata))
1639 		goto ack_intr;
1640 
1641 	schedule_delayed_work(&cpudata->hwp_notify_work, msecs_to_jiffies(10));
1642 
1643 	spin_unlock_irqrestore(&hwp_notify_lock, flags);
1644 
1645 	return;
1646 
1647 ack_intr:
1648 	wrmsrl_safe(MSR_HWP_STATUS, 0);
1649 	spin_unlock_irqrestore(&hwp_notify_lock, flags);
1650 }
1651 
1652 static void intel_pstate_disable_hwp_interrupt(struct cpudata *cpudata)
1653 {
1654 	unsigned long flags;
1655 
1656 	if (!boot_cpu_has(X86_FEATURE_HWP_NOTIFY))
1657 		return;
1658 
1659 	/* wrmsrl_on_cpu has to be outside spinlock as this can result in IPC */
1660 	wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1661 
1662 	spin_lock_irqsave(&hwp_notify_lock, flags);
1663 	if (cpumask_test_and_clear_cpu(cpudata->cpu, &hwp_intr_enable_mask))
1664 		cancel_delayed_work(&cpudata->hwp_notify_work);
1665 	spin_unlock_irqrestore(&hwp_notify_lock, flags);
1666 }
1667 
1668 static void intel_pstate_enable_hwp_interrupt(struct cpudata *cpudata)
1669 {
1670 	/* Enable HWP notification interrupt for guaranteed performance change */
1671 	if (boot_cpu_has(X86_FEATURE_HWP_NOTIFY)) {
1672 		unsigned long flags;
1673 
1674 		spin_lock_irqsave(&hwp_notify_lock, flags);
1675 		INIT_DELAYED_WORK(&cpudata->hwp_notify_work, intel_pstate_notify_work);
1676 		cpumask_set_cpu(cpudata->cpu, &hwp_intr_enable_mask);
1677 		spin_unlock_irqrestore(&hwp_notify_lock, flags);
1678 
1679 		/* wrmsrl_on_cpu has to be outside spinlock as this can result in IPC */
1680 		wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x01);
1681 		wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_STATUS, 0);
1682 	}
1683 }
1684 
1685 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
1686 {
1687 	/* First disable HWP notification interrupt till we activate again */
1688 	if (boot_cpu_has(X86_FEATURE_HWP_NOTIFY))
1689 		wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1690 
1691 	wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1692 
1693 	intel_pstate_enable_hwp_interrupt(cpudata);
1694 
1695 	if (cpudata->epp_default >= 0)
1696 		return;
1697 
1698 	if (epp_values[EPP_INDEX_BALANCE_PERFORMANCE] == HWP_EPP_BALANCE_PERFORMANCE) {
1699 		cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
1700 	} else {
1701 		cpudata->epp_default = epp_values[EPP_INDEX_BALANCE_PERFORMANCE];
1702 		intel_pstate_set_epp(cpudata, cpudata->epp_default);
1703 	}
1704 }
1705 
1706 static int atom_get_min_pstate(void)
1707 {
1708 	u64 value;
1709 
1710 	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1711 	return (value >> 8) & 0x7F;
1712 }
1713 
1714 static int atom_get_max_pstate(void)
1715 {
1716 	u64 value;
1717 
1718 	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1719 	return (value >> 16) & 0x7F;
1720 }
1721 
1722 static int atom_get_turbo_pstate(void)
1723 {
1724 	u64 value;
1725 
1726 	rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
1727 	return value & 0x7F;
1728 }
1729 
1730 static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1731 {
1732 	u64 val;
1733 	int32_t vid_fp;
1734 	u32 vid;
1735 
1736 	val = (u64)pstate << 8;
1737 	if (global.no_turbo && !global.turbo_disabled)
1738 		val |= (u64)1 << 32;
1739 
1740 	vid_fp = cpudata->vid.min + mul_fp(
1741 		int_tofp(pstate - cpudata->pstate.min_pstate),
1742 		cpudata->vid.ratio);
1743 
1744 	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1745 	vid = ceiling_fp(vid_fp);
1746 
1747 	if (pstate > cpudata->pstate.max_pstate)
1748 		vid = cpudata->vid.turbo;
1749 
1750 	return val | vid;
1751 }
1752 
1753 static int silvermont_get_scaling(void)
1754 {
1755 	u64 value;
1756 	int i;
1757 	/* Defined in Table 35-6 from SDM (Sept 2015) */
1758 	static int silvermont_freq_table[] = {
1759 		83300, 100000, 133300, 116700, 80000};
1760 
1761 	rdmsrl(MSR_FSB_FREQ, value);
1762 	i = value & 0x7;
1763 	WARN_ON(i > 4);
1764 
1765 	return silvermont_freq_table[i];
1766 }
1767 
1768 static int airmont_get_scaling(void)
1769 {
1770 	u64 value;
1771 	int i;
1772 	/* Defined in Table 35-10 from SDM (Sept 2015) */
1773 	static int airmont_freq_table[] = {
1774 		83300, 100000, 133300, 116700, 80000,
1775 		93300, 90000, 88900, 87500};
1776 
1777 	rdmsrl(MSR_FSB_FREQ, value);
1778 	i = value & 0xF;
1779 	WARN_ON(i > 8);
1780 
1781 	return airmont_freq_table[i];
1782 }
1783 
1784 static void atom_get_vid(struct cpudata *cpudata)
1785 {
1786 	u64 value;
1787 
1788 	rdmsrl(MSR_ATOM_CORE_VIDS, value);
1789 	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
1790 	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1791 	cpudata->vid.ratio = div_fp(
1792 		cpudata->vid.max - cpudata->vid.min,
1793 		int_tofp(cpudata->pstate.max_pstate -
1794 			cpudata->pstate.min_pstate));
1795 
1796 	rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1797 	cpudata->vid.turbo = value & 0x7f;
1798 }
1799 
1800 static int core_get_min_pstate(void)
1801 {
1802 	u64 value;
1803 
1804 	rdmsrl(MSR_PLATFORM_INFO, value);
1805 	return (value >> 40) & 0xFF;
1806 }
1807 
1808 static int core_get_max_pstate_physical(void)
1809 {
1810 	u64 value;
1811 
1812 	rdmsrl(MSR_PLATFORM_INFO, value);
1813 	return (value >> 8) & 0xFF;
1814 }
1815 
1816 static int core_get_tdp_ratio(u64 plat_info)
1817 {
1818 	/* Check how many TDP levels present */
1819 	if (plat_info & 0x600000000) {
1820 		u64 tdp_ctrl;
1821 		u64 tdp_ratio;
1822 		int tdp_msr;
1823 		int err;
1824 
1825 		/* Get the TDP level (0, 1, 2) to get ratios */
1826 		err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
1827 		if (err)
1828 			return err;
1829 
1830 		/* TDP MSR are continuous starting at 0x648 */
1831 		tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
1832 		err = rdmsrl_safe(tdp_msr, &tdp_ratio);
1833 		if (err)
1834 			return err;
1835 
1836 		/* For level 1 and 2, bits[23:16] contain the ratio */
1837 		if (tdp_ctrl & 0x03)
1838 			tdp_ratio >>= 16;
1839 
1840 		tdp_ratio &= 0xff; /* ratios are only 8 bits long */
1841 		pr_debug("tdp_ratio %x\n", (int)tdp_ratio);
1842 
1843 		return (int)tdp_ratio;
1844 	}
1845 
1846 	return -ENXIO;
1847 }
1848 
1849 static int core_get_max_pstate(void)
1850 {
1851 	u64 tar;
1852 	u64 plat_info;
1853 	int max_pstate;
1854 	int tdp_ratio;
1855 	int err;
1856 
1857 	rdmsrl(MSR_PLATFORM_INFO, plat_info);
1858 	max_pstate = (plat_info >> 8) & 0xFF;
1859 
1860 	tdp_ratio = core_get_tdp_ratio(plat_info);
1861 	if (tdp_ratio <= 0)
1862 		return max_pstate;
1863 
1864 	if (hwp_active) {
1865 		/* Turbo activation ratio is not used on HWP platforms */
1866 		return tdp_ratio;
1867 	}
1868 
1869 	err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
1870 	if (!err) {
1871 		int tar_levels;
1872 
1873 		/* Do some sanity checking for safety */
1874 		tar_levels = tar & 0xff;
1875 		if (tdp_ratio - 1 == tar_levels) {
1876 			max_pstate = tar_levels;
1877 			pr_debug("max_pstate=TAC %x\n", max_pstate);
1878 		}
1879 	}
1880 
1881 	return max_pstate;
1882 }
1883 
1884 static int core_get_turbo_pstate(void)
1885 {
1886 	u64 value;
1887 	int nont, ret;
1888 
1889 	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1890 	nont = core_get_max_pstate();
1891 	ret = (value) & 255;
1892 	if (ret <= nont)
1893 		ret = nont;
1894 	return ret;
1895 }
1896 
1897 static inline int core_get_scaling(void)
1898 {
1899 	return 100000;
1900 }
1901 
1902 static u64 core_get_val(struct cpudata *cpudata, int pstate)
1903 {
1904 	u64 val;
1905 
1906 	val = (u64)pstate << 8;
1907 	if (global.no_turbo && !global.turbo_disabled)
1908 		val |= (u64)1 << 32;
1909 
1910 	return val;
1911 }
1912 
1913 static int knl_get_aperf_mperf_shift(void)
1914 {
1915 	return 10;
1916 }
1917 
1918 static int knl_get_turbo_pstate(void)
1919 {
1920 	u64 value;
1921 	int nont, ret;
1922 
1923 	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1924 	nont = core_get_max_pstate();
1925 	ret = (((value) >> 8) & 0xFF);
1926 	if (ret <= nont)
1927 		ret = nont;
1928 	return ret;
1929 }
1930 
1931 #ifdef CONFIG_ACPI_CPPC_LIB
1932 static u32 hybrid_ref_perf;
1933 
1934 static int hybrid_get_cpu_scaling(int cpu)
1935 {
1936 	return DIV_ROUND_UP(core_get_scaling() * hybrid_ref_perf,
1937 			    intel_pstate_cppc_nominal(cpu));
1938 }
1939 
1940 static void intel_pstate_cppc_set_cpu_scaling(void)
1941 {
1942 	u32 min_nominal_perf = U32_MAX;
1943 	int cpu;
1944 
1945 	for_each_present_cpu(cpu) {
1946 		u32 nominal_perf = intel_pstate_cppc_nominal(cpu);
1947 
1948 		if (nominal_perf && nominal_perf < min_nominal_perf)
1949 			min_nominal_perf = nominal_perf;
1950 	}
1951 
1952 	if (min_nominal_perf < U32_MAX) {
1953 		hybrid_ref_perf = min_nominal_perf;
1954 		pstate_funcs.get_cpu_scaling = hybrid_get_cpu_scaling;
1955 	}
1956 }
1957 #else
1958 static inline void intel_pstate_cppc_set_cpu_scaling(void)
1959 {
1960 }
1961 #endif /* CONFIG_ACPI_CPPC_LIB */
1962 
1963 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1964 {
1965 	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1966 	cpu->pstate.current_pstate = pstate;
1967 	/*
1968 	 * Generally, there is no guarantee that this code will always run on
1969 	 * the CPU being updated, so force the register update to run on the
1970 	 * right CPU.
1971 	 */
1972 	wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1973 		      pstate_funcs.get_val(cpu, pstate));
1974 }
1975 
1976 static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1977 {
1978 	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
1979 }
1980 
1981 static void intel_pstate_max_within_limits(struct cpudata *cpu)
1982 {
1983 	int pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio);
1984 
1985 	update_turbo_state();
1986 	intel_pstate_set_pstate(cpu, pstate);
1987 }
1988 
1989 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1990 {
1991 	int perf_ctl_max_phys = pstate_funcs.get_max_physical();
1992 	int perf_ctl_scaling = pstate_funcs.get_scaling();
1993 
1994 	cpu->pstate.min_pstate = pstate_funcs.get_min();
1995 	cpu->pstate.max_pstate_physical = perf_ctl_max_phys;
1996 	cpu->pstate.perf_ctl_scaling = perf_ctl_scaling;
1997 
1998 	if (hwp_active && !hwp_mode_bdw) {
1999 		__intel_pstate_get_hwp_cap(cpu);
2000 
2001 		if (pstate_funcs.get_cpu_scaling) {
2002 			cpu->pstate.scaling = pstate_funcs.get_cpu_scaling(cpu->cpu);
2003 			if (cpu->pstate.scaling != perf_ctl_scaling)
2004 				intel_pstate_hybrid_hwp_adjust(cpu);
2005 		} else {
2006 			cpu->pstate.scaling = perf_ctl_scaling;
2007 		}
2008 	} else {
2009 		cpu->pstate.scaling = perf_ctl_scaling;
2010 		cpu->pstate.max_pstate = pstate_funcs.get_max();
2011 		cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
2012 	}
2013 
2014 	if (cpu->pstate.scaling == perf_ctl_scaling) {
2015 		cpu->pstate.min_freq = cpu->pstate.min_pstate * perf_ctl_scaling;
2016 		cpu->pstate.max_freq = cpu->pstate.max_pstate * perf_ctl_scaling;
2017 		cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * perf_ctl_scaling;
2018 	}
2019 
2020 	if (pstate_funcs.get_aperf_mperf_shift)
2021 		cpu->aperf_mperf_shift = pstate_funcs.get_aperf_mperf_shift();
2022 
2023 	if (pstate_funcs.get_vid)
2024 		pstate_funcs.get_vid(cpu);
2025 
2026 	intel_pstate_set_min_pstate(cpu);
2027 }
2028 
2029 /*
2030  * Long hold time will keep high perf limits for long time,
2031  * which negatively impacts perf/watt for some workloads,
2032  * like specpower. 3ms is based on experiements on some
2033  * workoads.
2034  */
2035 static int hwp_boost_hold_time_ns = 3 * NSEC_PER_MSEC;
2036 
2037 static inline void intel_pstate_hwp_boost_up(struct cpudata *cpu)
2038 {
2039 	u64 hwp_req = READ_ONCE(cpu->hwp_req_cached);
2040 	u64 hwp_cap = READ_ONCE(cpu->hwp_cap_cached);
2041 	u32 max_limit = (hwp_req & 0xff00) >> 8;
2042 	u32 min_limit = (hwp_req & 0xff);
2043 	u32 boost_level1;
2044 
2045 	/*
2046 	 * Cases to consider (User changes via sysfs or boot time):
2047 	 * If, P0 (Turbo max) = P1 (Guaranteed max) = min:
2048 	 *	No boost, return.
2049 	 * If, P0 (Turbo max) > P1 (Guaranteed max) = min:
2050 	 *     Should result in one level boost only for P0.
2051 	 * If, P0 (Turbo max) = P1 (Guaranteed max) > min:
2052 	 *     Should result in two level boost:
2053 	 *         (min + p1)/2 and P1.
2054 	 * If, P0 (Turbo max) > P1 (Guaranteed max) > min:
2055 	 *     Should result in three level boost:
2056 	 *        (min + p1)/2, P1 and P0.
2057 	 */
2058 
2059 	/* If max and min are equal or already at max, nothing to boost */
2060 	if (max_limit == min_limit || cpu->hwp_boost_min >= max_limit)
2061 		return;
2062 
2063 	if (!cpu->hwp_boost_min)
2064 		cpu->hwp_boost_min = min_limit;
2065 
2066 	/* level at half way mark between min and guranteed */
2067 	boost_level1 = (HWP_GUARANTEED_PERF(hwp_cap) + min_limit) >> 1;
2068 
2069 	if (cpu->hwp_boost_min < boost_level1)
2070 		cpu->hwp_boost_min = boost_level1;
2071 	else if (cpu->hwp_boost_min < HWP_GUARANTEED_PERF(hwp_cap))
2072 		cpu->hwp_boost_min = HWP_GUARANTEED_PERF(hwp_cap);
2073 	else if (cpu->hwp_boost_min == HWP_GUARANTEED_PERF(hwp_cap) &&
2074 		 max_limit != HWP_GUARANTEED_PERF(hwp_cap))
2075 		cpu->hwp_boost_min = max_limit;
2076 	else
2077 		return;
2078 
2079 	hwp_req = (hwp_req & ~GENMASK_ULL(7, 0)) | cpu->hwp_boost_min;
2080 	wrmsrl(MSR_HWP_REQUEST, hwp_req);
2081 	cpu->last_update = cpu->sample.time;
2082 }
2083 
2084 static inline void intel_pstate_hwp_boost_down(struct cpudata *cpu)
2085 {
2086 	if (cpu->hwp_boost_min) {
2087 		bool expired;
2088 
2089 		/* Check if we are idle for hold time to boost down */
2090 		expired = time_after64(cpu->sample.time, cpu->last_update +
2091 				       hwp_boost_hold_time_ns);
2092 		if (expired) {
2093 			wrmsrl(MSR_HWP_REQUEST, cpu->hwp_req_cached);
2094 			cpu->hwp_boost_min = 0;
2095 		}
2096 	}
2097 	cpu->last_update = cpu->sample.time;
2098 }
2099 
2100 static inline void intel_pstate_update_util_hwp_local(struct cpudata *cpu,
2101 						      u64 time)
2102 {
2103 	cpu->sample.time = time;
2104 
2105 	if (cpu->sched_flags & SCHED_CPUFREQ_IOWAIT) {
2106 		bool do_io = false;
2107 
2108 		cpu->sched_flags = 0;
2109 		/*
2110 		 * Set iowait_boost flag and update time. Since IO WAIT flag
2111 		 * is set all the time, we can't just conclude that there is
2112 		 * some IO bound activity is scheduled on this CPU with just
2113 		 * one occurrence. If we receive at least two in two
2114 		 * consecutive ticks, then we treat as boost candidate.
2115 		 */
2116 		if (time_before64(time, cpu->last_io_update + 2 * TICK_NSEC))
2117 			do_io = true;
2118 
2119 		cpu->last_io_update = time;
2120 
2121 		if (do_io)
2122 			intel_pstate_hwp_boost_up(cpu);
2123 
2124 	} else {
2125 		intel_pstate_hwp_boost_down(cpu);
2126 	}
2127 }
2128 
2129 static inline void intel_pstate_update_util_hwp(struct update_util_data *data,
2130 						u64 time, unsigned int flags)
2131 {
2132 	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
2133 
2134 	cpu->sched_flags |= flags;
2135 
2136 	if (smp_processor_id() == cpu->cpu)
2137 		intel_pstate_update_util_hwp_local(cpu, time);
2138 }
2139 
2140 static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
2141 {
2142 	struct sample *sample = &cpu->sample;
2143 
2144 	sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
2145 }
2146 
2147 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
2148 {
2149 	u64 aperf, mperf;
2150 	unsigned long flags;
2151 	u64 tsc;
2152 
2153 	local_irq_save(flags);
2154 	rdmsrl(MSR_IA32_APERF, aperf);
2155 	rdmsrl(MSR_IA32_MPERF, mperf);
2156 	tsc = rdtsc();
2157 	if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
2158 		local_irq_restore(flags);
2159 		return false;
2160 	}
2161 	local_irq_restore(flags);
2162 
2163 	cpu->last_sample_time = cpu->sample.time;
2164 	cpu->sample.time = time;
2165 	cpu->sample.aperf = aperf;
2166 	cpu->sample.mperf = mperf;
2167 	cpu->sample.tsc =  tsc;
2168 	cpu->sample.aperf -= cpu->prev_aperf;
2169 	cpu->sample.mperf -= cpu->prev_mperf;
2170 	cpu->sample.tsc -= cpu->prev_tsc;
2171 
2172 	cpu->prev_aperf = aperf;
2173 	cpu->prev_mperf = mperf;
2174 	cpu->prev_tsc = tsc;
2175 	/*
2176 	 * First time this function is invoked in a given cycle, all of the
2177 	 * previous sample data fields are equal to zero or stale and they must
2178 	 * be populated with meaningful numbers for things to work, so assume
2179 	 * that sample.time will always be reset before setting the utilization
2180 	 * update hook and make the caller skip the sample then.
2181 	 */
2182 	if (cpu->last_sample_time) {
2183 		intel_pstate_calc_avg_perf(cpu);
2184 		return true;
2185 	}
2186 	return false;
2187 }
2188 
2189 static inline int32_t get_avg_frequency(struct cpudata *cpu)
2190 {
2191 	return mul_ext_fp(cpu->sample.core_avg_perf, cpu_khz);
2192 }
2193 
2194 static inline int32_t get_avg_pstate(struct cpudata *cpu)
2195 {
2196 	return mul_ext_fp(cpu->pstate.max_pstate_physical,
2197 			  cpu->sample.core_avg_perf);
2198 }
2199 
2200 static inline int32_t get_target_pstate(struct cpudata *cpu)
2201 {
2202 	struct sample *sample = &cpu->sample;
2203 	int32_t busy_frac;
2204 	int target, avg_pstate;
2205 
2206 	busy_frac = div_fp(sample->mperf << cpu->aperf_mperf_shift,
2207 			   sample->tsc);
2208 
2209 	if (busy_frac < cpu->iowait_boost)
2210 		busy_frac = cpu->iowait_boost;
2211 
2212 	sample->busy_scaled = busy_frac * 100;
2213 
2214 	target = global.no_turbo || global.turbo_disabled ?
2215 			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2216 	target += target >> 2;
2217 	target = mul_fp(target, busy_frac);
2218 	if (target < cpu->pstate.min_pstate)
2219 		target = cpu->pstate.min_pstate;
2220 
2221 	/*
2222 	 * If the average P-state during the previous cycle was higher than the
2223 	 * current target, add 50% of the difference to the target to reduce
2224 	 * possible performance oscillations and offset possible performance
2225 	 * loss related to moving the workload from one CPU to another within
2226 	 * a package/module.
2227 	 */
2228 	avg_pstate = get_avg_pstate(cpu);
2229 	if (avg_pstate > target)
2230 		target += (avg_pstate - target) >> 1;
2231 
2232 	return target;
2233 }
2234 
2235 static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
2236 {
2237 	int min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio);
2238 	int max_pstate = max(min_pstate, cpu->max_perf_ratio);
2239 
2240 	return clamp_t(int, pstate, min_pstate, max_pstate);
2241 }
2242 
2243 static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
2244 {
2245 	if (pstate == cpu->pstate.current_pstate)
2246 		return;
2247 
2248 	cpu->pstate.current_pstate = pstate;
2249 	wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
2250 }
2251 
2252 static void intel_pstate_adjust_pstate(struct cpudata *cpu)
2253 {
2254 	int from = cpu->pstate.current_pstate;
2255 	struct sample *sample;
2256 	int target_pstate;
2257 
2258 	update_turbo_state();
2259 
2260 	target_pstate = get_target_pstate(cpu);
2261 	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2262 	trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
2263 	intel_pstate_update_pstate(cpu, target_pstate);
2264 
2265 	sample = &cpu->sample;
2266 	trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
2267 		fp_toint(sample->busy_scaled),
2268 		from,
2269 		cpu->pstate.current_pstate,
2270 		sample->mperf,
2271 		sample->aperf,
2272 		sample->tsc,
2273 		get_avg_frequency(cpu),
2274 		fp_toint(cpu->iowait_boost * 100));
2275 }
2276 
2277 static void intel_pstate_update_util(struct update_util_data *data, u64 time,
2278 				     unsigned int flags)
2279 {
2280 	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
2281 	u64 delta_ns;
2282 
2283 	/* Don't allow remote callbacks */
2284 	if (smp_processor_id() != cpu->cpu)
2285 		return;
2286 
2287 	delta_ns = time - cpu->last_update;
2288 	if (flags & SCHED_CPUFREQ_IOWAIT) {
2289 		/* Start over if the CPU may have been idle. */
2290 		if (delta_ns > TICK_NSEC) {
2291 			cpu->iowait_boost = ONE_EIGHTH_FP;
2292 		} else if (cpu->iowait_boost >= ONE_EIGHTH_FP) {
2293 			cpu->iowait_boost <<= 1;
2294 			if (cpu->iowait_boost > int_tofp(1))
2295 				cpu->iowait_boost = int_tofp(1);
2296 		} else {
2297 			cpu->iowait_boost = ONE_EIGHTH_FP;
2298 		}
2299 	} else if (cpu->iowait_boost) {
2300 		/* Clear iowait_boost if the CPU may have been idle. */
2301 		if (delta_ns > TICK_NSEC)
2302 			cpu->iowait_boost = 0;
2303 		else
2304 			cpu->iowait_boost >>= 1;
2305 	}
2306 	cpu->last_update = time;
2307 	delta_ns = time - cpu->sample.time;
2308 	if ((s64)delta_ns < INTEL_PSTATE_SAMPLING_INTERVAL)
2309 		return;
2310 
2311 	if (intel_pstate_sample(cpu, time))
2312 		intel_pstate_adjust_pstate(cpu);
2313 }
2314 
2315 static struct pstate_funcs core_funcs = {
2316 	.get_max = core_get_max_pstate,
2317 	.get_max_physical = core_get_max_pstate_physical,
2318 	.get_min = core_get_min_pstate,
2319 	.get_turbo = core_get_turbo_pstate,
2320 	.get_scaling = core_get_scaling,
2321 	.get_val = core_get_val,
2322 };
2323 
2324 static const struct pstate_funcs silvermont_funcs = {
2325 	.get_max = atom_get_max_pstate,
2326 	.get_max_physical = atom_get_max_pstate,
2327 	.get_min = atom_get_min_pstate,
2328 	.get_turbo = atom_get_turbo_pstate,
2329 	.get_val = atom_get_val,
2330 	.get_scaling = silvermont_get_scaling,
2331 	.get_vid = atom_get_vid,
2332 };
2333 
2334 static const struct pstate_funcs airmont_funcs = {
2335 	.get_max = atom_get_max_pstate,
2336 	.get_max_physical = atom_get_max_pstate,
2337 	.get_min = atom_get_min_pstate,
2338 	.get_turbo = atom_get_turbo_pstate,
2339 	.get_val = atom_get_val,
2340 	.get_scaling = airmont_get_scaling,
2341 	.get_vid = atom_get_vid,
2342 };
2343 
2344 static const struct pstate_funcs knl_funcs = {
2345 	.get_max = core_get_max_pstate,
2346 	.get_max_physical = core_get_max_pstate_physical,
2347 	.get_min = core_get_min_pstate,
2348 	.get_turbo = knl_get_turbo_pstate,
2349 	.get_aperf_mperf_shift = knl_get_aperf_mperf_shift,
2350 	.get_scaling = core_get_scaling,
2351 	.get_val = core_get_val,
2352 };
2353 
2354 #define X86_MATCH(model, policy)					 \
2355 	X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6, INTEL_FAM6_##model, \
2356 					   X86_FEATURE_APERFMPERF, &policy)
2357 
2358 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
2359 	X86_MATCH(SANDYBRIDGE,		core_funcs),
2360 	X86_MATCH(SANDYBRIDGE_X,	core_funcs),
2361 	X86_MATCH(ATOM_SILVERMONT,	silvermont_funcs),
2362 	X86_MATCH(IVYBRIDGE,		core_funcs),
2363 	X86_MATCH(HASWELL,		core_funcs),
2364 	X86_MATCH(BROADWELL,		core_funcs),
2365 	X86_MATCH(IVYBRIDGE_X,		core_funcs),
2366 	X86_MATCH(HASWELL_X,		core_funcs),
2367 	X86_MATCH(HASWELL_L,		core_funcs),
2368 	X86_MATCH(HASWELL_G,		core_funcs),
2369 	X86_MATCH(BROADWELL_G,		core_funcs),
2370 	X86_MATCH(ATOM_AIRMONT,		airmont_funcs),
2371 	X86_MATCH(SKYLAKE_L,		core_funcs),
2372 	X86_MATCH(BROADWELL_X,		core_funcs),
2373 	X86_MATCH(SKYLAKE,		core_funcs),
2374 	X86_MATCH(BROADWELL_D,		core_funcs),
2375 	X86_MATCH(XEON_PHI_KNL,		knl_funcs),
2376 	X86_MATCH(XEON_PHI_KNM,		knl_funcs),
2377 	X86_MATCH(ATOM_GOLDMONT,	core_funcs),
2378 	X86_MATCH(ATOM_GOLDMONT_PLUS,	core_funcs),
2379 	X86_MATCH(SKYLAKE_X,		core_funcs),
2380 	X86_MATCH(COMETLAKE,		core_funcs),
2381 	X86_MATCH(ICELAKE_X,		core_funcs),
2382 	{}
2383 };
2384 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
2385 
2386 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
2387 	X86_MATCH(BROADWELL_D,		core_funcs),
2388 	X86_MATCH(BROADWELL_X,		core_funcs),
2389 	X86_MATCH(SKYLAKE_X,		core_funcs),
2390 	X86_MATCH(ICELAKE_X,		core_funcs),
2391 	{}
2392 };
2393 
2394 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
2395 	X86_MATCH(KABYLAKE,		core_funcs),
2396 	{}
2397 };
2398 
2399 static const struct x86_cpu_id intel_pstate_hwp_boost_ids[] = {
2400 	X86_MATCH(SKYLAKE_X,		core_funcs),
2401 	X86_MATCH(SKYLAKE,		core_funcs),
2402 	{}
2403 };
2404 
2405 static int intel_pstate_init_cpu(unsigned int cpunum)
2406 {
2407 	struct cpudata *cpu;
2408 
2409 	cpu = all_cpu_data[cpunum];
2410 
2411 	if (!cpu) {
2412 		cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
2413 		if (!cpu)
2414 			return -ENOMEM;
2415 
2416 		WRITE_ONCE(all_cpu_data[cpunum], cpu);
2417 
2418 		cpu->cpu = cpunum;
2419 
2420 		cpu->epp_default = -EINVAL;
2421 
2422 		if (hwp_active) {
2423 			const struct x86_cpu_id *id;
2424 
2425 			intel_pstate_hwp_enable(cpu);
2426 
2427 			id = x86_match_cpu(intel_pstate_hwp_boost_ids);
2428 			if (id && intel_pstate_acpi_pm_profile_server())
2429 				hwp_boost = true;
2430 		}
2431 	} else if (hwp_active) {
2432 		/*
2433 		 * Re-enable HWP in case this happens after a resume from ACPI
2434 		 * S3 if the CPU was offline during the whole system/resume
2435 		 * cycle.
2436 		 */
2437 		intel_pstate_hwp_reenable(cpu);
2438 	}
2439 
2440 	cpu->epp_powersave = -EINVAL;
2441 	cpu->epp_policy = 0;
2442 
2443 	intel_pstate_get_cpu_pstates(cpu);
2444 
2445 	pr_debug("controlling: cpu %d\n", cpunum);
2446 
2447 	return 0;
2448 }
2449 
2450 static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
2451 {
2452 	struct cpudata *cpu = all_cpu_data[cpu_num];
2453 
2454 	if (hwp_active && !hwp_boost)
2455 		return;
2456 
2457 	if (cpu->update_util_set)
2458 		return;
2459 
2460 	/* Prevent intel_pstate_update_util() from using stale data. */
2461 	cpu->sample.time = 0;
2462 	cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
2463 				     (hwp_active ?
2464 				      intel_pstate_update_util_hwp :
2465 				      intel_pstate_update_util));
2466 	cpu->update_util_set = true;
2467 }
2468 
2469 static void intel_pstate_clear_update_util_hook(unsigned int cpu)
2470 {
2471 	struct cpudata *cpu_data = all_cpu_data[cpu];
2472 
2473 	if (!cpu_data->update_util_set)
2474 		return;
2475 
2476 	cpufreq_remove_update_util_hook(cpu);
2477 	cpu_data->update_util_set = false;
2478 	synchronize_rcu();
2479 }
2480 
2481 static int intel_pstate_get_max_freq(struct cpudata *cpu)
2482 {
2483 	return global.turbo_disabled || global.no_turbo ?
2484 			cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2485 }
2486 
2487 static void intel_pstate_update_perf_limits(struct cpudata *cpu,
2488 					    unsigned int policy_min,
2489 					    unsigned int policy_max)
2490 {
2491 	int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling;
2492 	int32_t max_policy_perf, min_policy_perf;
2493 
2494 	max_policy_perf = policy_max / perf_ctl_scaling;
2495 	if (policy_max == policy_min) {
2496 		min_policy_perf = max_policy_perf;
2497 	} else {
2498 		min_policy_perf = policy_min / perf_ctl_scaling;
2499 		min_policy_perf = clamp_t(int32_t, min_policy_perf,
2500 					  0, max_policy_perf);
2501 	}
2502 
2503 	/*
2504 	 * HWP needs some special consideration, because HWP_REQUEST uses
2505 	 * abstract values to represent performance rather than pure ratios.
2506 	 */
2507 	if (hwp_active && cpu->pstate.scaling != perf_ctl_scaling) {
2508 		int scaling = cpu->pstate.scaling;
2509 		int freq;
2510 
2511 		freq = max_policy_perf * perf_ctl_scaling;
2512 		max_policy_perf = DIV_ROUND_UP(freq, scaling);
2513 		freq = min_policy_perf * perf_ctl_scaling;
2514 		min_policy_perf = DIV_ROUND_UP(freq, scaling);
2515 	}
2516 
2517 	pr_debug("cpu:%d min_policy_perf:%d max_policy_perf:%d\n",
2518 		 cpu->cpu, min_policy_perf, max_policy_perf);
2519 
2520 	/* Normalize user input to [min_perf, max_perf] */
2521 	if (per_cpu_limits) {
2522 		cpu->min_perf_ratio = min_policy_perf;
2523 		cpu->max_perf_ratio = max_policy_perf;
2524 	} else {
2525 		int turbo_max = cpu->pstate.turbo_pstate;
2526 		int32_t global_min, global_max;
2527 
2528 		/* Global limits are in percent of the maximum turbo P-state. */
2529 		global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
2530 		global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
2531 		global_min = clamp_t(int32_t, global_min, 0, global_max);
2532 
2533 		pr_debug("cpu:%d global_min:%d global_max:%d\n", cpu->cpu,
2534 			 global_min, global_max);
2535 
2536 		cpu->min_perf_ratio = max(min_policy_perf, global_min);
2537 		cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf);
2538 		cpu->max_perf_ratio = min(max_policy_perf, global_max);
2539 		cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio);
2540 
2541 		/* Make sure min_perf <= max_perf */
2542 		cpu->min_perf_ratio = min(cpu->min_perf_ratio,
2543 					  cpu->max_perf_ratio);
2544 
2545 	}
2546 	pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", cpu->cpu,
2547 		 cpu->max_perf_ratio,
2548 		 cpu->min_perf_ratio);
2549 }
2550 
2551 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
2552 {
2553 	struct cpudata *cpu;
2554 
2555 	if (!policy->cpuinfo.max_freq)
2556 		return -ENODEV;
2557 
2558 	pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
2559 		 policy->cpuinfo.max_freq, policy->max);
2560 
2561 	cpu = all_cpu_data[policy->cpu];
2562 	cpu->policy = policy->policy;
2563 
2564 	mutex_lock(&intel_pstate_limits_lock);
2565 
2566 	intel_pstate_update_perf_limits(cpu, policy->min, policy->max);
2567 
2568 	if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
2569 		/*
2570 		 * NOHZ_FULL CPUs need this as the governor callback may not
2571 		 * be invoked on them.
2572 		 */
2573 		intel_pstate_clear_update_util_hook(policy->cpu);
2574 		intel_pstate_max_within_limits(cpu);
2575 	} else {
2576 		intel_pstate_set_update_util_hook(policy->cpu);
2577 	}
2578 
2579 	if (hwp_active) {
2580 		/*
2581 		 * When hwp_boost was active before and dynamically it
2582 		 * was turned off, in that case we need to clear the
2583 		 * update util hook.
2584 		 */
2585 		if (!hwp_boost)
2586 			intel_pstate_clear_update_util_hook(policy->cpu);
2587 		intel_pstate_hwp_set(policy->cpu);
2588 	}
2589 
2590 	mutex_unlock(&intel_pstate_limits_lock);
2591 
2592 	return 0;
2593 }
2594 
2595 static void intel_pstate_adjust_policy_max(struct cpudata *cpu,
2596 					   struct cpufreq_policy_data *policy)
2597 {
2598 	if (!hwp_active &&
2599 	    cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
2600 	    policy->max < policy->cpuinfo.max_freq &&
2601 	    policy->max > cpu->pstate.max_freq) {
2602 		pr_debug("policy->max > max non turbo frequency\n");
2603 		policy->max = policy->cpuinfo.max_freq;
2604 	}
2605 }
2606 
2607 static void intel_pstate_verify_cpu_policy(struct cpudata *cpu,
2608 					   struct cpufreq_policy_data *policy)
2609 {
2610 	int max_freq;
2611 
2612 	update_turbo_state();
2613 	if (hwp_active) {
2614 		intel_pstate_get_hwp_cap(cpu);
2615 		max_freq = global.no_turbo || global.turbo_disabled ?
2616 				cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2617 	} else {
2618 		max_freq = intel_pstate_get_max_freq(cpu);
2619 	}
2620 	cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq, max_freq);
2621 
2622 	intel_pstate_adjust_policy_max(cpu, policy);
2623 }
2624 
2625 static int intel_pstate_verify_policy(struct cpufreq_policy_data *policy)
2626 {
2627 	intel_pstate_verify_cpu_policy(all_cpu_data[policy->cpu], policy);
2628 
2629 	return 0;
2630 }
2631 
2632 static int intel_cpufreq_cpu_offline(struct cpufreq_policy *policy)
2633 {
2634 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2635 
2636 	pr_debug("CPU %d going offline\n", cpu->cpu);
2637 
2638 	if (cpu->suspended)
2639 		return 0;
2640 
2641 	/*
2642 	 * If the CPU is an SMT thread and it goes offline with the performance
2643 	 * settings different from the minimum, it will prevent its sibling
2644 	 * from getting to lower performance levels, so force the minimum
2645 	 * performance on CPU offline to prevent that from happening.
2646 	 */
2647 	if (hwp_active)
2648 		intel_pstate_hwp_offline(cpu);
2649 	else
2650 		intel_pstate_set_min_pstate(cpu);
2651 
2652 	intel_pstate_exit_perf_limits(policy);
2653 
2654 	return 0;
2655 }
2656 
2657 static int intel_pstate_cpu_online(struct cpufreq_policy *policy)
2658 {
2659 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2660 
2661 	pr_debug("CPU %d going online\n", cpu->cpu);
2662 
2663 	intel_pstate_init_acpi_perf_limits(policy);
2664 
2665 	if (hwp_active) {
2666 		/*
2667 		 * Re-enable HWP and clear the "suspended" flag to let "resume"
2668 		 * know that it need not do that.
2669 		 */
2670 		intel_pstate_hwp_reenable(cpu);
2671 		cpu->suspended = false;
2672 	}
2673 
2674 	return 0;
2675 }
2676 
2677 static int intel_pstate_cpu_offline(struct cpufreq_policy *policy)
2678 {
2679 	intel_pstate_clear_update_util_hook(policy->cpu);
2680 
2681 	return intel_cpufreq_cpu_offline(policy);
2682 }
2683 
2684 static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
2685 {
2686 	pr_debug("CPU %d exiting\n", policy->cpu);
2687 
2688 	policy->fast_switch_possible = false;
2689 
2690 	return 0;
2691 }
2692 
2693 static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2694 {
2695 	struct cpudata *cpu;
2696 	int rc;
2697 
2698 	rc = intel_pstate_init_cpu(policy->cpu);
2699 	if (rc)
2700 		return rc;
2701 
2702 	cpu = all_cpu_data[policy->cpu];
2703 
2704 	cpu->max_perf_ratio = 0xFF;
2705 	cpu->min_perf_ratio = 0;
2706 
2707 	/* cpuinfo and default policy values */
2708 	policy->cpuinfo.min_freq = cpu->pstate.min_freq;
2709 	update_turbo_state();
2710 	global.turbo_disabled_mf = global.turbo_disabled;
2711 	policy->cpuinfo.max_freq = global.turbo_disabled ?
2712 			cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2713 
2714 	policy->min = policy->cpuinfo.min_freq;
2715 	policy->max = policy->cpuinfo.max_freq;
2716 
2717 	intel_pstate_init_acpi_perf_limits(policy);
2718 
2719 	policy->fast_switch_possible = true;
2720 
2721 	return 0;
2722 }
2723 
2724 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2725 {
2726 	int ret = __intel_pstate_cpu_init(policy);
2727 
2728 	if (ret)
2729 		return ret;
2730 
2731 	/*
2732 	 * Set the policy to powersave to provide a valid fallback value in case
2733 	 * the default cpufreq governor is neither powersave nor performance.
2734 	 */
2735 	policy->policy = CPUFREQ_POLICY_POWERSAVE;
2736 
2737 	if (hwp_active) {
2738 		struct cpudata *cpu = all_cpu_data[policy->cpu];
2739 
2740 		cpu->epp_cached = intel_pstate_get_epp(cpu, 0);
2741 	}
2742 
2743 	return 0;
2744 }
2745 
2746 static struct cpufreq_driver intel_pstate = {
2747 	.flags		= CPUFREQ_CONST_LOOPS,
2748 	.verify		= intel_pstate_verify_policy,
2749 	.setpolicy	= intel_pstate_set_policy,
2750 	.suspend	= intel_pstate_suspend,
2751 	.resume		= intel_pstate_resume,
2752 	.init		= intel_pstate_cpu_init,
2753 	.exit		= intel_pstate_cpu_exit,
2754 	.offline	= intel_pstate_cpu_offline,
2755 	.online		= intel_pstate_cpu_online,
2756 	.update_limits	= intel_pstate_update_limits,
2757 	.name		= "intel_pstate",
2758 };
2759 
2760 static int intel_cpufreq_verify_policy(struct cpufreq_policy_data *policy)
2761 {
2762 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2763 
2764 	intel_pstate_verify_cpu_policy(cpu, policy);
2765 	intel_pstate_update_perf_limits(cpu, policy->min, policy->max);
2766 
2767 	return 0;
2768 }
2769 
2770 /* Use of trace in passive mode:
2771  *
2772  * In passive mode the trace core_busy field (also known as the
2773  * performance field, and lablelled as such on the graphs; also known as
2774  * core_avg_perf) is not needed and so is re-assigned to indicate if the
2775  * driver call was via the normal or fast switch path. Various graphs
2776  * output from the intel_pstate_tracer.py utility that include core_busy
2777  * (or performance or core_avg_perf) have a fixed y-axis from 0 to 100%,
2778  * so we use 10 to indicate the normal path through the driver, and
2779  * 90 to indicate the fast switch path through the driver.
2780  * The scaled_busy field is not used, and is set to 0.
2781  */
2782 
2783 #define	INTEL_PSTATE_TRACE_TARGET 10
2784 #define	INTEL_PSTATE_TRACE_FAST_SWITCH 90
2785 
2786 static void intel_cpufreq_trace(struct cpudata *cpu, unsigned int trace_type, int old_pstate)
2787 {
2788 	struct sample *sample;
2789 
2790 	if (!trace_pstate_sample_enabled())
2791 		return;
2792 
2793 	if (!intel_pstate_sample(cpu, ktime_get()))
2794 		return;
2795 
2796 	sample = &cpu->sample;
2797 	trace_pstate_sample(trace_type,
2798 		0,
2799 		old_pstate,
2800 		cpu->pstate.current_pstate,
2801 		sample->mperf,
2802 		sample->aperf,
2803 		sample->tsc,
2804 		get_avg_frequency(cpu),
2805 		fp_toint(cpu->iowait_boost * 100));
2806 }
2807 
2808 static void intel_cpufreq_hwp_update(struct cpudata *cpu, u32 min, u32 max,
2809 				     u32 desired, bool fast_switch)
2810 {
2811 	u64 prev = READ_ONCE(cpu->hwp_req_cached), value = prev;
2812 
2813 	value &= ~HWP_MIN_PERF(~0L);
2814 	value |= HWP_MIN_PERF(min);
2815 
2816 	value &= ~HWP_MAX_PERF(~0L);
2817 	value |= HWP_MAX_PERF(max);
2818 
2819 	value &= ~HWP_DESIRED_PERF(~0L);
2820 	value |= HWP_DESIRED_PERF(desired);
2821 
2822 	if (value == prev)
2823 		return;
2824 
2825 	WRITE_ONCE(cpu->hwp_req_cached, value);
2826 	if (fast_switch)
2827 		wrmsrl(MSR_HWP_REQUEST, value);
2828 	else
2829 		wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
2830 }
2831 
2832 static void intel_cpufreq_perf_ctl_update(struct cpudata *cpu,
2833 					  u32 target_pstate, bool fast_switch)
2834 {
2835 	if (fast_switch)
2836 		wrmsrl(MSR_IA32_PERF_CTL,
2837 		       pstate_funcs.get_val(cpu, target_pstate));
2838 	else
2839 		wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
2840 			      pstate_funcs.get_val(cpu, target_pstate));
2841 }
2842 
2843 static int intel_cpufreq_update_pstate(struct cpufreq_policy *policy,
2844 				       int target_pstate, bool fast_switch)
2845 {
2846 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2847 	int old_pstate = cpu->pstate.current_pstate;
2848 
2849 	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2850 	if (hwp_active) {
2851 		int max_pstate = policy->strict_target ?
2852 					target_pstate : cpu->max_perf_ratio;
2853 
2854 		intel_cpufreq_hwp_update(cpu, target_pstate, max_pstate, 0,
2855 					 fast_switch);
2856 	} else if (target_pstate != old_pstate) {
2857 		intel_cpufreq_perf_ctl_update(cpu, target_pstate, fast_switch);
2858 	}
2859 
2860 	cpu->pstate.current_pstate = target_pstate;
2861 
2862 	intel_cpufreq_trace(cpu, fast_switch ? INTEL_PSTATE_TRACE_FAST_SWITCH :
2863 			    INTEL_PSTATE_TRACE_TARGET, old_pstate);
2864 
2865 	return target_pstate;
2866 }
2867 
2868 static int intel_cpufreq_target(struct cpufreq_policy *policy,
2869 				unsigned int target_freq,
2870 				unsigned int relation)
2871 {
2872 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2873 	struct cpufreq_freqs freqs;
2874 	int target_pstate;
2875 
2876 	update_turbo_state();
2877 
2878 	freqs.old = policy->cur;
2879 	freqs.new = target_freq;
2880 
2881 	cpufreq_freq_transition_begin(policy, &freqs);
2882 
2883 	switch (relation) {
2884 	case CPUFREQ_RELATION_L:
2885 		target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
2886 		break;
2887 	case CPUFREQ_RELATION_H:
2888 		target_pstate = freqs.new / cpu->pstate.scaling;
2889 		break;
2890 	default:
2891 		target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
2892 		break;
2893 	}
2894 
2895 	target_pstate = intel_cpufreq_update_pstate(policy, target_pstate, false);
2896 
2897 	freqs.new = target_pstate * cpu->pstate.scaling;
2898 
2899 	cpufreq_freq_transition_end(policy, &freqs, false);
2900 
2901 	return 0;
2902 }
2903 
2904 static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
2905 					      unsigned int target_freq)
2906 {
2907 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2908 	int target_pstate;
2909 
2910 	update_turbo_state();
2911 
2912 	target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
2913 
2914 	target_pstate = intel_cpufreq_update_pstate(policy, target_pstate, true);
2915 
2916 	return target_pstate * cpu->pstate.scaling;
2917 }
2918 
2919 static void intel_cpufreq_adjust_perf(unsigned int cpunum,
2920 				      unsigned long min_perf,
2921 				      unsigned long target_perf,
2922 				      unsigned long capacity)
2923 {
2924 	struct cpudata *cpu = all_cpu_data[cpunum];
2925 	u64 hwp_cap = READ_ONCE(cpu->hwp_cap_cached);
2926 	int old_pstate = cpu->pstate.current_pstate;
2927 	int cap_pstate, min_pstate, max_pstate, target_pstate;
2928 
2929 	update_turbo_state();
2930 	cap_pstate = global.turbo_disabled ? HWP_GUARANTEED_PERF(hwp_cap) :
2931 					     HWP_HIGHEST_PERF(hwp_cap);
2932 
2933 	/* Optimization: Avoid unnecessary divisions. */
2934 
2935 	target_pstate = cap_pstate;
2936 	if (target_perf < capacity)
2937 		target_pstate = DIV_ROUND_UP(cap_pstate * target_perf, capacity);
2938 
2939 	min_pstate = cap_pstate;
2940 	if (min_perf < capacity)
2941 		min_pstate = DIV_ROUND_UP(cap_pstate * min_perf, capacity);
2942 
2943 	if (min_pstate < cpu->pstate.min_pstate)
2944 		min_pstate = cpu->pstate.min_pstate;
2945 
2946 	if (min_pstate < cpu->min_perf_ratio)
2947 		min_pstate = cpu->min_perf_ratio;
2948 
2949 	max_pstate = min(cap_pstate, cpu->max_perf_ratio);
2950 	if (max_pstate < min_pstate)
2951 		max_pstate = min_pstate;
2952 
2953 	target_pstate = clamp_t(int, target_pstate, min_pstate, max_pstate);
2954 
2955 	intel_cpufreq_hwp_update(cpu, min_pstate, max_pstate, target_pstate, true);
2956 
2957 	cpu->pstate.current_pstate = target_pstate;
2958 	intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_FAST_SWITCH, old_pstate);
2959 }
2960 
2961 static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
2962 {
2963 	struct freq_qos_request *req;
2964 	struct cpudata *cpu;
2965 	struct device *dev;
2966 	int ret, freq;
2967 
2968 	dev = get_cpu_device(policy->cpu);
2969 	if (!dev)
2970 		return -ENODEV;
2971 
2972 	ret = __intel_pstate_cpu_init(policy);
2973 	if (ret)
2974 		return ret;
2975 
2976 	policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
2977 	/* This reflects the intel_pstate_get_cpu_pstates() setting. */
2978 	policy->cur = policy->cpuinfo.min_freq;
2979 
2980 	req = kcalloc(2, sizeof(*req), GFP_KERNEL);
2981 	if (!req) {
2982 		ret = -ENOMEM;
2983 		goto pstate_exit;
2984 	}
2985 
2986 	cpu = all_cpu_data[policy->cpu];
2987 
2988 	if (hwp_active) {
2989 		u64 value;
2990 
2991 		policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY_HWP;
2992 
2993 		intel_pstate_get_hwp_cap(cpu);
2994 
2995 		rdmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, &value);
2996 		WRITE_ONCE(cpu->hwp_req_cached, value);
2997 
2998 		cpu->epp_cached = intel_pstate_get_epp(cpu, value);
2999 	} else {
3000 		policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY;
3001 	}
3002 
3003 	freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * global.min_perf_pct, 100);
3004 
3005 	ret = freq_qos_add_request(&policy->constraints, req, FREQ_QOS_MIN,
3006 				   freq);
3007 	if (ret < 0) {
3008 		dev_err(dev, "Failed to add min-freq constraint (%d)\n", ret);
3009 		goto free_req;
3010 	}
3011 
3012 	freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * global.max_perf_pct, 100);
3013 
3014 	ret = freq_qos_add_request(&policy->constraints, req + 1, FREQ_QOS_MAX,
3015 				   freq);
3016 	if (ret < 0) {
3017 		dev_err(dev, "Failed to add max-freq constraint (%d)\n", ret);
3018 		goto remove_min_req;
3019 	}
3020 
3021 	policy->driver_data = req;
3022 
3023 	return 0;
3024 
3025 remove_min_req:
3026 	freq_qos_remove_request(req);
3027 free_req:
3028 	kfree(req);
3029 pstate_exit:
3030 	intel_pstate_exit_perf_limits(policy);
3031 
3032 	return ret;
3033 }
3034 
3035 static int intel_cpufreq_cpu_exit(struct cpufreq_policy *policy)
3036 {
3037 	struct freq_qos_request *req;
3038 
3039 	req = policy->driver_data;
3040 
3041 	freq_qos_remove_request(req + 1);
3042 	freq_qos_remove_request(req);
3043 	kfree(req);
3044 
3045 	return intel_pstate_cpu_exit(policy);
3046 }
3047 
3048 static int intel_cpufreq_suspend(struct cpufreq_policy *policy)
3049 {
3050 	intel_pstate_suspend(policy);
3051 
3052 	if (hwp_active) {
3053 		struct cpudata *cpu = all_cpu_data[policy->cpu];
3054 		u64 value = READ_ONCE(cpu->hwp_req_cached);
3055 
3056 		/*
3057 		 * Clear the desired perf field in MSR_HWP_REQUEST in case
3058 		 * intel_cpufreq_adjust_perf() is in use and the last value
3059 		 * written by it may not be suitable.
3060 		 */
3061 		value &= ~HWP_DESIRED_PERF(~0L);
3062 		wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
3063 		WRITE_ONCE(cpu->hwp_req_cached, value);
3064 	}
3065 
3066 	return 0;
3067 }
3068 
3069 static struct cpufreq_driver intel_cpufreq = {
3070 	.flags		= CPUFREQ_CONST_LOOPS,
3071 	.verify		= intel_cpufreq_verify_policy,
3072 	.target		= intel_cpufreq_target,
3073 	.fast_switch	= intel_cpufreq_fast_switch,
3074 	.init		= intel_cpufreq_cpu_init,
3075 	.exit		= intel_cpufreq_cpu_exit,
3076 	.offline	= intel_cpufreq_cpu_offline,
3077 	.online		= intel_pstate_cpu_online,
3078 	.suspend	= intel_cpufreq_suspend,
3079 	.resume		= intel_pstate_resume,
3080 	.update_limits	= intel_pstate_update_limits,
3081 	.name		= "intel_cpufreq",
3082 };
3083 
3084 static struct cpufreq_driver *default_driver;
3085 
3086 static void intel_pstate_driver_cleanup(void)
3087 {
3088 	unsigned int cpu;
3089 
3090 	cpus_read_lock();
3091 	for_each_online_cpu(cpu) {
3092 		if (all_cpu_data[cpu]) {
3093 			if (intel_pstate_driver == &intel_pstate)
3094 				intel_pstate_clear_update_util_hook(cpu);
3095 
3096 			spin_lock(&hwp_notify_lock);
3097 			kfree(all_cpu_data[cpu]);
3098 			WRITE_ONCE(all_cpu_data[cpu], NULL);
3099 			spin_unlock(&hwp_notify_lock);
3100 		}
3101 	}
3102 	cpus_read_unlock();
3103 
3104 	intel_pstate_driver = NULL;
3105 }
3106 
3107 static int intel_pstate_register_driver(struct cpufreq_driver *driver)
3108 {
3109 	int ret;
3110 
3111 	if (driver == &intel_pstate)
3112 		intel_pstate_sysfs_expose_hwp_dynamic_boost();
3113 
3114 	memset(&global, 0, sizeof(global));
3115 	global.max_perf_pct = 100;
3116 
3117 	intel_pstate_driver = driver;
3118 	ret = cpufreq_register_driver(intel_pstate_driver);
3119 	if (ret) {
3120 		intel_pstate_driver_cleanup();
3121 		return ret;
3122 	}
3123 
3124 	global.min_perf_pct = min_perf_pct_min();
3125 
3126 	return 0;
3127 }
3128 
3129 static ssize_t intel_pstate_show_status(char *buf)
3130 {
3131 	if (!intel_pstate_driver)
3132 		return sprintf(buf, "off\n");
3133 
3134 	return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
3135 					"active" : "passive");
3136 }
3137 
3138 static int intel_pstate_update_status(const char *buf, size_t size)
3139 {
3140 	if (size == 3 && !strncmp(buf, "off", size)) {
3141 		if (!intel_pstate_driver)
3142 			return -EINVAL;
3143 
3144 		if (hwp_active)
3145 			return -EBUSY;
3146 
3147 		cpufreq_unregister_driver(intel_pstate_driver);
3148 		intel_pstate_driver_cleanup();
3149 		return 0;
3150 	}
3151 
3152 	if (size == 6 && !strncmp(buf, "active", size)) {
3153 		if (intel_pstate_driver) {
3154 			if (intel_pstate_driver == &intel_pstate)
3155 				return 0;
3156 
3157 			cpufreq_unregister_driver(intel_pstate_driver);
3158 		}
3159 
3160 		return intel_pstate_register_driver(&intel_pstate);
3161 	}
3162 
3163 	if (size == 7 && !strncmp(buf, "passive", size)) {
3164 		if (intel_pstate_driver) {
3165 			if (intel_pstate_driver == &intel_cpufreq)
3166 				return 0;
3167 
3168 			cpufreq_unregister_driver(intel_pstate_driver);
3169 			intel_pstate_sysfs_hide_hwp_dynamic_boost();
3170 		}
3171 
3172 		return intel_pstate_register_driver(&intel_cpufreq);
3173 	}
3174 
3175 	return -EINVAL;
3176 }
3177 
3178 static int no_load __initdata;
3179 static int no_hwp __initdata;
3180 static int hwp_only __initdata;
3181 static unsigned int force_load __initdata;
3182 
3183 static int __init intel_pstate_msrs_not_valid(void)
3184 {
3185 	if (!pstate_funcs.get_max() ||
3186 	    !pstate_funcs.get_min() ||
3187 	    !pstate_funcs.get_turbo())
3188 		return -ENODEV;
3189 
3190 	return 0;
3191 }
3192 
3193 static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
3194 {
3195 	pstate_funcs.get_max   = funcs->get_max;
3196 	pstate_funcs.get_max_physical = funcs->get_max_physical;
3197 	pstate_funcs.get_min   = funcs->get_min;
3198 	pstate_funcs.get_turbo = funcs->get_turbo;
3199 	pstate_funcs.get_scaling = funcs->get_scaling;
3200 	pstate_funcs.get_val   = funcs->get_val;
3201 	pstate_funcs.get_vid   = funcs->get_vid;
3202 	pstate_funcs.get_aperf_mperf_shift = funcs->get_aperf_mperf_shift;
3203 }
3204 
3205 #ifdef CONFIG_ACPI
3206 
3207 static bool __init intel_pstate_no_acpi_pss(void)
3208 {
3209 	int i;
3210 
3211 	for_each_possible_cpu(i) {
3212 		acpi_status status;
3213 		union acpi_object *pss;
3214 		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
3215 		struct acpi_processor *pr = per_cpu(processors, i);
3216 
3217 		if (!pr)
3218 			continue;
3219 
3220 		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
3221 		if (ACPI_FAILURE(status))
3222 			continue;
3223 
3224 		pss = buffer.pointer;
3225 		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
3226 			kfree(pss);
3227 			return false;
3228 		}
3229 
3230 		kfree(pss);
3231 	}
3232 
3233 	pr_debug("ACPI _PSS not found\n");
3234 	return true;
3235 }
3236 
3237 static bool __init intel_pstate_no_acpi_pcch(void)
3238 {
3239 	acpi_status status;
3240 	acpi_handle handle;
3241 
3242 	status = acpi_get_handle(NULL, "\\_SB", &handle);
3243 	if (ACPI_FAILURE(status))
3244 		goto not_found;
3245 
3246 	if (acpi_has_method(handle, "PCCH"))
3247 		return false;
3248 
3249 not_found:
3250 	pr_debug("ACPI PCCH not found\n");
3251 	return true;
3252 }
3253 
3254 static bool __init intel_pstate_has_acpi_ppc(void)
3255 {
3256 	int i;
3257 
3258 	for_each_possible_cpu(i) {
3259 		struct acpi_processor *pr = per_cpu(processors, i);
3260 
3261 		if (!pr)
3262 			continue;
3263 		if (acpi_has_method(pr->handle, "_PPC"))
3264 			return true;
3265 	}
3266 	pr_debug("ACPI _PPC not found\n");
3267 	return false;
3268 }
3269 
3270 enum {
3271 	PSS,
3272 	PPC,
3273 };
3274 
3275 /* Hardware vendor-specific info that has its own power management modes */
3276 static struct acpi_platform_list plat_info[] __initdata = {
3277 	{"HP    ", "ProLiant", 0, ACPI_SIG_FADT, all_versions, NULL, PSS},
3278 	{"ORACLE", "X4-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3279 	{"ORACLE", "X4-2L   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3280 	{"ORACLE", "X4-2B   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3281 	{"ORACLE", "X3-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3282 	{"ORACLE", "X3-2L   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3283 	{"ORACLE", "X3-2B   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3284 	{"ORACLE", "X4470M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3285 	{"ORACLE", "X4270M3 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3286 	{"ORACLE", "X4270M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3287 	{"ORACLE", "X4170M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3288 	{"ORACLE", "X4170 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3289 	{"ORACLE", "X4275 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3290 	{"ORACLE", "X6-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3291 	{"ORACLE", "Sudbury ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3292 	{ } /* End */
3293 };
3294 
3295 #define BITMASK_OOB	(BIT(8) | BIT(18))
3296 
3297 static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
3298 {
3299 	const struct x86_cpu_id *id;
3300 	u64 misc_pwr;
3301 	int idx;
3302 
3303 	id = x86_match_cpu(intel_pstate_cpu_oob_ids);
3304 	if (id) {
3305 		rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
3306 		if (misc_pwr & BITMASK_OOB) {
3307 			pr_debug("Bit 8 or 18 in the MISC_PWR_MGMT MSR set\n");
3308 			pr_debug("P states are controlled in Out of Band mode by the firmware/hardware\n");
3309 			return true;
3310 		}
3311 	}
3312 
3313 	idx = acpi_match_platform_list(plat_info);
3314 	if (idx < 0)
3315 		return false;
3316 
3317 	switch (plat_info[idx].data) {
3318 	case PSS:
3319 		if (!intel_pstate_no_acpi_pss())
3320 			return false;
3321 
3322 		return intel_pstate_no_acpi_pcch();
3323 	case PPC:
3324 		return intel_pstate_has_acpi_ppc() && !force_load;
3325 	}
3326 
3327 	return false;
3328 }
3329 
3330 static void intel_pstate_request_control_from_smm(void)
3331 {
3332 	/*
3333 	 * It may be unsafe to request P-states control from SMM if _PPC support
3334 	 * has not been enabled.
3335 	 */
3336 	if (acpi_ppc)
3337 		acpi_processor_pstate_control();
3338 }
3339 #else /* CONFIG_ACPI not enabled */
3340 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
3341 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
3342 static inline void intel_pstate_request_control_from_smm(void) {}
3343 #endif /* CONFIG_ACPI */
3344 
3345 #define INTEL_PSTATE_HWP_BROADWELL	0x01
3346 
3347 #define X86_MATCH_HWP(model, hwp_mode)					\
3348 	X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6, INTEL_FAM6_##model, \
3349 					   X86_FEATURE_HWP, hwp_mode)
3350 
3351 static const struct x86_cpu_id hwp_support_ids[] __initconst = {
3352 	X86_MATCH_HWP(BROADWELL_X,	INTEL_PSTATE_HWP_BROADWELL),
3353 	X86_MATCH_HWP(BROADWELL_D,	INTEL_PSTATE_HWP_BROADWELL),
3354 	X86_MATCH_HWP(ANY,		0),
3355 	{}
3356 };
3357 
3358 static bool intel_pstate_hwp_is_enabled(void)
3359 {
3360 	u64 value;
3361 
3362 	rdmsrl(MSR_PM_ENABLE, value);
3363 	return !!(value & 0x1);
3364 }
3365 
3366 static const struct x86_cpu_id intel_epp_balance_perf[] = {
3367 	/*
3368 	 * Set EPP value as 102, this is the max suggested EPP
3369 	 * which can result in one core turbo frequency for
3370 	 * AlderLake Mobile CPUs.
3371 	 */
3372 	X86_MATCH_INTEL_FAM6_MODEL(ALDERLAKE_L, 102),
3373 	{}
3374 };
3375 
3376 static int __init intel_pstate_init(void)
3377 {
3378 	static struct cpudata **_all_cpu_data;
3379 	const struct x86_cpu_id *id;
3380 	int rc;
3381 
3382 	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
3383 		return -ENODEV;
3384 
3385 	id = x86_match_cpu(hwp_support_ids);
3386 	if (id) {
3387 		bool hwp_forced = intel_pstate_hwp_is_enabled();
3388 
3389 		if (hwp_forced)
3390 			pr_info("HWP enabled by BIOS\n");
3391 		else if (no_load)
3392 			return -ENODEV;
3393 
3394 		copy_cpu_funcs(&core_funcs);
3395 		/*
3396 		 * Avoid enabling HWP for processors without EPP support,
3397 		 * because that means incomplete HWP implementation which is a
3398 		 * corner case and supporting it is generally problematic.
3399 		 *
3400 		 * If HWP is enabled already, though, there is no choice but to
3401 		 * deal with it.
3402 		 */
3403 		if ((!no_hwp && boot_cpu_has(X86_FEATURE_HWP_EPP)) || hwp_forced) {
3404 			WRITE_ONCE(hwp_active, 1);
3405 			hwp_mode_bdw = id->driver_data;
3406 			intel_pstate.attr = hwp_cpufreq_attrs;
3407 			intel_cpufreq.attr = hwp_cpufreq_attrs;
3408 			intel_cpufreq.flags |= CPUFREQ_NEED_UPDATE_LIMITS;
3409 			intel_cpufreq.adjust_perf = intel_cpufreq_adjust_perf;
3410 			if (!default_driver)
3411 				default_driver = &intel_pstate;
3412 
3413 			if (boot_cpu_has(X86_FEATURE_HYBRID_CPU))
3414 				intel_pstate_cppc_set_cpu_scaling();
3415 
3416 			goto hwp_cpu_matched;
3417 		}
3418 		pr_info("HWP not enabled\n");
3419 	} else {
3420 		if (no_load)
3421 			return -ENODEV;
3422 
3423 		id = x86_match_cpu(intel_pstate_cpu_ids);
3424 		if (!id) {
3425 			pr_info("CPU model not supported\n");
3426 			return -ENODEV;
3427 		}
3428 
3429 		copy_cpu_funcs((struct pstate_funcs *)id->driver_data);
3430 	}
3431 
3432 	if (intel_pstate_msrs_not_valid()) {
3433 		pr_info("Invalid MSRs\n");
3434 		return -ENODEV;
3435 	}
3436 	/* Without HWP start in the passive mode. */
3437 	if (!default_driver)
3438 		default_driver = &intel_cpufreq;
3439 
3440 hwp_cpu_matched:
3441 	/*
3442 	 * The Intel pstate driver will be ignored if the platform
3443 	 * firmware has its own power management modes.
3444 	 */
3445 	if (intel_pstate_platform_pwr_mgmt_exists()) {
3446 		pr_info("P-states controlled by the platform\n");
3447 		return -ENODEV;
3448 	}
3449 
3450 	if (!hwp_active && hwp_only)
3451 		return -ENOTSUPP;
3452 
3453 	pr_info("Intel P-state driver initializing\n");
3454 
3455 	_all_cpu_data = vzalloc(array_size(sizeof(void *), num_possible_cpus()));
3456 	if (!_all_cpu_data)
3457 		return -ENOMEM;
3458 
3459 	WRITE_ONCE(all_cpu_data, _all_cpu_data);
3460 
3461 	intel_pstate_request_control_from_smm();
3462 
3463 	intel_pstate_sysfs_expose_params();
3464 
3465 	if (hwp_active) {
3466 		const struct x86_cpu_id *id = x86_match_cpu(intel_epp_balance_perf);
3467 
3468 		if (id)
3469 			epp_values[EPP_INDEX_BALANCE_PERFORMANCE] = id->driver_data;
3470 	}
3471 
3472 	mutex_lock(&intel_pstate_driver_lock);
3473 	rc = intel_pstate_register_driver(default_driver);
3474 	mutex_unlock(&intel_pstate_driver_lock);
3475 	if (rc) {
3476 		intel_pstate_sysfs_remove();
3477 		return rc;
3478 	}
3479 
3480 	if (hwp_active) {
3481 		const struct x86_cpu_id *id;
3482 
3483 		id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
3484 		if (id) {
3485 			set_power_ctl_ee_state(false);
3486 			pr_info("Disabling energy efficiency optimization\n");
3487 		}
3488 
3489 		pr_info("HWP enabled\n");
3490 	} else if (boot_cpu_has(X86_FEATURE_HYBRID_CPU)) {
3491 		pr_warn("Problematic setup: Hybrid processor with disabled HWP\n");
3492 	}
3493 
3494 	return 0;
3495 }
3496 device_initcall(intel_pstate_init);
3497 
3498 static int __init intel_pstate_setup(char *str)
3499 {
3500 	if (!str)
3501 		return -EINVAL;
3502 
3503 	if (!strcmp(str, "disable"))
3504 		no_load = 1;
3505 	else if (!strcmp(str, "active"))
3506 		default_driver = &intel_pstate;
3507 	else if (!strcmp(str, "passive"))
3508 		default_driver = &intel_cpufreq;
3509 
3510 	if (!strcmp(str, "no_hwp"))
3511 		no_hwp = 1;
3512 
3513 	if (!strcmp(str, "force"))
3514 		force_load = 1;
3515 	if (!strcmp(str, "hwp_only"))
3516 		hwp_only = 1;
3517 	if (!strcmp(str, "per_cpu_perf_limits"))
3518 		per_cpu_limits = true;
3519 
3520 #ifdef CONFIG_ACPI
3521 	if (!strcmp(str, "support_acpi_ppc"))
3522 		acpi_ppc = true;
3523 #endif
3524 
3525 	return 0;
3526 }
3527 early_param("intel_pstate", intel_pstate_setup);
3528 
3529 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
3530 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
3531 MODULE_LICENSE("GPL");
3532