1 /*
2  * intel_pstate.c: Native P state management for Intel processors
3  *
4  * (C) Copyright 2012 Intel Corporation
5  * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; version 2
10  * of the License.
11  */
12 
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 
15 #include <linux/kernel.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/module.h>
18 #include <linux/ktime.h>
19 #include <linux/hrtimer.h>
20 #include <linux/tick.h>
21 #include <linux/slab.h>
22 #include <linux/sched/cpufreq.h>
23 #include <linux/list.h>
24 #include <linux/cpu.h>
25 #include <linux/cpufreq.h>
26 #include <linux/sysfs.h>
27 #include <linux/types.h>
28 #include <linux/fs.h>
29 #include <linux/debugfs.h>
30 #include <linux/acpi.h>
31 #include <linux/vmalloc.h>
32 #include <trace/events/power.h>
33 
34 #include <asm/div64.h>
35 #include <asm/msr.h>
36 #include <asm/cpu_device_id.h>
37 #include <asm/cpufeature.h>
38 #include <asm/intel-family.h>
39 
40 #define INTEL_PSTATE_DEFAULT_SAMPLING_INTERVAL	(10 * NSEC_PER_MSEC)
41 #define INTEL_PSTATE_HWP_SAMPLING_INTERVAL	(50 * NSEC_PER_MSEC)
42 
43 #define INTEL_CPUFREQ_TRANSITION_LATENCY	20000
44 
45 #ifdef CONFIG_ACPI
46 #include <acpi/processor.h>
47 #include <acpi/cppc_acpi.h>
48 #endif
49 
50 #define FRAC_BITS 8
51 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
52 #define fp_toint(X) ((X) >> FRAC_BITS)
53 
54 #define EXT_BITS 6
55 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
56 #define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
57 #define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
58 
59 static inline int32_t mul_fp(int32_t x, int32_t y)
60 {
61 	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
62 }
63 
64 static inline int32_t div_fp(s64 x, s64 y)
65 {
66 	return div64_s64((int64_t)x << FRAC_BITS, y);
67 }
68 
69 static inline int ceiling_fp(int32_t x)
70 {
71 	int mask, ret;
72 
73 	ret = fp_toint(x);
74 	mask = (1 << FRAC_BITS) - 1;
75 	if (x & mask)
76 		ret += 1;
77 	return ret;
78 }
79 
80 static inline int32_t percent_fp(int percent)
81 {
82 	return div_fp(percent, 100);
83 }
84 
85 static inline u64 mul_ext_fp(u64 x, u64 y)
86 {
87 	return (x * y) >> EXT_FRAC_BITS;
88 }
89 
90 static inline u64 div_ext_fp(u64 x, u64 y)
91 {
92 	return div64_u64(x << EXT_FRAC_BITS, y);
93 }
94 
95 static inline int32_t percent_ext_fp(int percent)
96 {
97 	return div_ext_fp(percent, 100);
98 }
99 
100 /**
101  * struct sample -	Store performance sample
102  * @core_avg_perf:	Ratio of APERF/MPERF which is the actual average
103  *			performance during last sample period
104  * @busy_scaled:	Scaled busy value which is used to calculate next
105  *			P state. This can be different than core_avg_perf
106  *			to account for cpu idle period
107  * @aperf:		Difference of actual performance frequency clock count
108  *			read from APERF MSR between last and current sample
109  * @mperf:		Difference of maximum performance frequency clock count
110  *			read from MPERF MSR between last and current sample
111  * @tsc:		Difference of time stamp counter between last and
112  *			current sample
113  * @time:		Current time from scheduler
114  *
115  * This structure is used in the cpudata structure to store performance sample
116  * data for choosing next P State.
117  */
118 struct sample {
119 	int32_t core_avg_perf;
120 	int32_t busy_scaled;
121 	u64 aperf;
122 	u64 mperf;
123 	u64 tsc;
124 	u64 time;
125 };
126 
127 /**
128  * struct pstate_data - Store P state data
129  * @current_pstate:	Current requested P state
130  * @min_pstate:		Min P state possible for this platform
131  * @max_pstate:		Max P state possible for this platform
132  * @max_pstate_physical:This is physical Max P state for a processor
133  *			This can be higher than the max_pstate which can
134  *			be limited by platform thermal design power limits
135  * @scaling:		Scaling factor to  convert frequency to cpufreq
136  *			frequency units
137  * @turbo_pstate:	Max Turbo P state possible for this platform
138  * @max_freq:		@max_pstate frequency in cpufreq units
139  * @turbo_freq:		@turbo_pstate frequency in cpufreq units
140  *
141  * Stores the per cpu model P state limits and current P state.
142  */
143 struct pstate_data {
144 	int	current_pstate;
145 	int	min_pstate;
146 	int	max_pstate;
147 	int	max_pstate_physical;
148 	int	scaling;
149 	int	turbo_pstate;
150 	unsigned int max_freq;
151 	unsigned int turbo_freq;
152 };
153 
154 /**
155  * struct vid_data -	Stores voltage information data
156  * @min:		VID data for this platform corresponding to
157  *			the lowest P state
158  * @max:		VID data corresponding to the highest P State.
159  * @turbo:		VID data for turbo P state
160  * @ratio:		Ratio of (vid max - vid min) /
161  *			(max P state - Min P State)
162  *
163  * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
164  * This data is used in Atom platforms, where in addition to target P state,
165  * the voltage data needs to be specified to select next P State.
166  */
167 struct vid_data {
168 	int min;
169 	int max;
170 	int turbo;
171 	int32_t ratio;
172 };
173 
174 /**
175  * struct _pid -	Stores PID data
176  * @setpoint:		Target set point for busyness or performance
177  * @integral:		Storage for accumulated error values
178  * @p_gain:		PID proportional gain
179  * @i_gain:		PID integral gain
180  * @d_gain:		PID derivative gain
181  * @deadband:		PID deadband
182  * @last_err:		Last error storage for integral part of PID calculation
183  *
184  * Stores PID coefficients and last error for PID controller.
185  */
186 struct _pid {
187 	int setpoint;
188 	int32_t integral;
189 	int32_t p_gain;
190 	int32_t i_gain;
191 	int32_t d_gain;
192 	int deadband;
193 	int32_t last_err;
194 };
195 
196 /**
197  * struct global_params - Global parameters, mostly tunable via sysfs.
198  * @no_turbo:		Whether or not to use turbo P-states.
199  * @turbo_disabled:	Whethet or not turbo P-states are available at all,
200  *			based on the MSR_IA32_MISC_ENABLE value and whether or
201  *			not the maximum reported turbo P-state is different from
202  *			the maximum reported non-turbo one.
203  * @min_perf_pct:	Minimum capacity limit in percent of the maximum turbo
204  *			P-state capacity.
205  * @max_perf_pct:	Maximum capacity limit in percent of the maximum turbo
206  *			P-state capacity.
207  */
208 struct global_params {
209 	bool no_turbo;
210 	bool turbo_disabled;
211 	int max_perf_pct;
212 	int min_perf_pct;
213 };
214 
215 /**
216  * struct cpudata -	Per CPU instance data storage
217  * @cpu:		CPU number for this instance data
218  * @policy:		CPUFreq policy value
219  * @update_util:	CPUFreq utility callback information
220  * @update_util_set:	CPUFreq utility callback is set
221  * @iowait_boost:	iowait-related boost fraction
222  * @last_update:	Time of the last update.
223  * @pstate:		Stores P state limits for this CPU
224  * @vid:		Stores VID limits for this CPU
225  * @pid:		Stores PID parameters for this CPU
226  * @last_sample_time:	Last Sample time
227  * @prev_aperf:		Last APERF value read from APERF MSR
228  * @prev_mperf:		Last MPERF value read from MPERF MSR
229  * @prev_tsc:		Last timestamp counter (TSC) value
230  * @prev_cummulative_iowait: IO Wait time difference from last and
231  *			current sample
232  * @sample:		Storage for storing last Sample data
233  * @min_perf:		Minimum capacity limit as a fraction of the maximum
234  *			turbo P-state capacity.
235  * @max_perf:		Maximum capacity limit as a fraction of the maximum
236  *			turbo P-state capacity.
237  * @acpi_perf_data:	Stores ACPI perf information read from _PSS
238  * @valid_pss_table:	Set to true for valid ACPI _PSS entries found
239  * @epp_powersave:	Last saved HWP energy performance preference
240  *			(EPP) or energy performance bias (EPB),
241  *			when policy switched to performance
242  * @epp_policy:		Last saved policy used to set EPP/EPB
243  * @epp_default:	Power on default HWP energy performance
244  *			preference/bias
245  * @epp_saved:		Saved EPP/EPB during system suspend or CPU offline
246  *			operation
247  *
248  * This structure stores per CPU instance data for all CPUs.
249  */
250 struct cpudata {
251 	int cpu;
252 
253 	unsigned int policy;
254 	struct update_util_data update_util;
255 	bool   update_util_set;
256 
257 	struct pstate_data pstate;
258 	struct vid_data vid;
259 	struct _pid pid;
260 
261 	u64	last_update;
262 	u64	last_sample_time;
263 	u64	prev_aperf;
264 	u64	prev_mperf;
265 	u64	prev_tsc;
266 	u64	prev_cummulative_iowait;
267 	struct sample sample;
268 	int32_t	min_perf;
269 	int32_t	max_perf;
270 #ifdef CONFIG_ACPI
271 	struct acpi_processor_performance acpi_perf_data;
272 	bool valid_pss_table;
273 #endif
274 	unsigned int iowait_boost;
275 	s16 epp_powersave;
276 	s16 epp_policy;
277 	s16 epp_default;
278 	s16 epp_saved;
279 };
280 
281 static struct cpudata **all_cpu_data;
282 
283 /**
284  * struct pstate_adjust_policy - Stores static PID configuration data
285  * @sample_rate_ms:	PID calculation sample rate in ms
286  * @sample_rate_ns:	Sample rate calculation in ns
287  * @deadband:		PID deadband
288  * @setpoint:		PID Setpoint
289  * @p_gain_pct:		PID proportional gain
290  * @i_gain_pct:		PID integral gain
291  * @d_gain_pct:		PID derivative gain
292  *
293  * Stores per CPU model static PID configuration data.
294  */
295 struct pstate_adjust_policy {
296 	int sample_rate_ms;
297 	s64 sample_rate_ns;
298 	int deadband;
299 	int setpoint;
300 	int p_gain_pct;
301 	int d_gain_pct;
302 	int i_gain_pct;
303 };
304 
305 /**
306  * struct pstate_funcs - Per CPU model specific callbacks
307  * @get_max:		Callback to get maximum non turbo effective P state
308  * @get_max_physical:	Callback to get maximum non turbo physical P state
309  * @get_min:		Callback to get minimum P state
310  * @get_turbo:		Callback to get turbo P state
311  * @get_scaling:	Callback to get frequency scaling factor
312  * @get_val:		Callback to convert P state to actual MSR write value
313  * @get_vid:		Callback to get VID data for Atom platforms
314  * @update_util:	Active mode utilization update callback.
315  *
316  * Core and Atom CPU models have different way to get P State limits. This
317  * structure is used to store those callbacks.
318  */
319 struct pstate_funcs {
320 	int (*get_max)(void);
321 	int (*get_max_physical)(void);
322 	int (*get_min)(void);
323 	int (*get_turbo)(void);
324 	int (*get_scaling)(void);
325 	u64 (*get_val)(struct cpudata*, int pstate);
326 	void (*get_vid)(struct cpudata *);
327 	void (*update_util)(struct update_util_data *data, u64 time,
328 			    unsigned int flags);
329 };
330 
331 static struct pstate_funcs pstate_funcs __read_mostly;
332 static struct pstate_adjust_policy pid_params __read_mostly = {
333 	.sample_rate_ms = 10,
334 	.sample_rate_ns = 10 * NSEC_PER_MSEC,
335 	.deadband = 0,
336 	.setpoint = 97,
337 	.p_gain_pct = 20,
338 	.d_gain_pct = 0,
339 	.i_gain_pct = 0,
340 };
341 
342 static int hwp_active __read_mostly;
343 static bool per_cpu_limits __read_mostly;
344 
345 static struct cpufreq_driver *intel_pstate_driver __read_mostly;
346 
347 #ifdef CONFIG_ACPI
348 static bool acpi_ppc;
349 #endif
350 
351 static struct global_params global;
352 
353 static DEFINE_MUTEX(intel_pstate_driver_lock);
354 static DEFINE_MUTEX(intel_pstate_limits_lock);
355 
356 #ifdef CONFIG_ACPI
357 
358 static bool intel_pstate_get_ppc_enable_status(void)
359 {
360 	if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
361 	    acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
362 		return true;
363 
364 	return acpi_ppc;
365 }
366 
367 #ifdef CONFIG_ACPI_CPPC_LIB
368 
369 /* The work item is needed to avoid CPU hotplug locking issues */
370 static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
371 {
372 	sched_set_itmt_support();
373 }
374 
375 static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);
376 
377 static void intel_pstate_set_itmt_prio(int cpu)
378 {
379 	struct cppc_perf_caps cppc_perf;
380 	static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
381 	int ret;
382 
383 	ret = cppc_get_perf_caps(cpu, &cppc_perf);
384 	if (ret)
385 		return;
386 
387 	/*
388 	 * The priorities can be set regardless of whether or not
389 	 * sched_set_itmt_support(true) has been called and it is valid to
390 	 * update them at any time after it has been called.
391 	 */
392 	sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);
393 
394 	if (max_highest_perf <= min_highest_perf) {
395 		if (cppc_perf.highest_perf > max_highest_perf)
396 			max_highest_perf = cppc_perf.highest_perf;
397 
398 		if (cppc_perf.highest_perf < min_highest_perf)
399 			min_highest_perf = cppc_perf.highest_perf;
400 
401 		if (max_highest_perf > min_highest_perf) {
402 			/*
403 			 * This code can be run during CPU online under the
404 			 * CPU hotplug locks, so sched_set_itmt_support()
405 			 * cannot be called from here.  Queue up a work item
406 			 * to invoke it.
407 			 */
408 			schedule_work(&sched_itmt_work);
409 		}
410 	}
411 }
412 #else
413 static void intel_pstate_set_itmt_prio(int cpu)
414 {
415 }
416 #endif
417 
418 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
419 {
420 	struct cpudata *cpu;
421 	int ret;
422 	int i;
423 
424 	if (hwp_active) {
425 		intel_pstate_set_itmt_prio(policy->cpu);
426 		return;
427 	}
428 
429 	if (!intel_pstate_get_ppc_enable_status())
430 		return;
431 
432 	cpu = all_cpu_data[policy->cpu];
433 
434 	ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
435 						  policy->cpu);
436 	if (ret)
437 		return;
438 
439 	/*
440 	 * Check if the control value in _PSS is for PERF_CTL MSR, which should
441 	 * guarantee that the states returned by it map to the states in our
442 	 * list directly.
443 	 */
444 	if (cpu->acpi_perf_data.control_register.space_id !=
445 						ACPI_ADR_SPACE_FIXED_HARDWARE)
446 		goto err;
447 
448 	/*
449 	 * If there is only one entry _PSS, simply ignore _PSS and continue as
450 	 * usual without taking _PSS into account
451 	 */
452 	if (cpu->acpi_perf_data.state_count < 2)
453 		goto err;
454 
455 	pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
456 	for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
457 		pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
458 			 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
459 			 (u32) cpu->acpi_perf_data.states[i].core_frequency,
460 			 (u32) cpu->acpi_perf_data.states[i].power,
461 			 (u32) cpu->acpi_perf_data.states[i].control);
462 	}
463 
464 	/*
465 	 * The _PSS table doesn't contain whole turbo frequency range.
466 	 * This just contains +1 MHZ above the max non turbo frequency,
467 	 * with control value corresponding to max turbo ratio. But
468 	 * when cpufreq set policy is called, it will call with this
469 	 * max frequency, which will cause a reduced performance as
470 	 * this driver uses real max turbo frequency as the max
471 	 * frequency. So correct this frequency in _PSS table to
472 	 * correct max turbo frequency based on the turbo state.
473 	 * Also need to convert to MHz as _PSS freq is in MHz.
474 	 */
475 	if (!global.turbo_disabled)
476 		cpu->acpi_perf_data.states[0].core_frequency =
477 					policy->cpuinfo.max_freq / 1000;
478 	cpu->valid_pss_table = true;
479 	pr_debug("_PPC limits will be enforced\n");
480 
481 	return;
482 
483  err:
484 	cpu->valid_pss_table = false;
485 	acpi_processor_unregister_performance(policy->cpu);
486 }
487 
488 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
489 {
490 	struct cpudata *cpu;
491 
492 	cpu = all_cpu_data[policy->cpu];
493 	if (!cpu->valid_pss_table)
494 		return;
495 
496 	acpi_processor_unregister_performance(policy->cpu);
497 }
498 #else
499 static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
500 {
501 }
502 
503 static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
504 {
505 }
506 #endif
507 
508 static signed int pid_calc(struct _pid *pid, int32_t busy)
509 {
510 	signed int result;
511 	int32_t pterm, dterm, fp_error;
512 	int32_t integral_limit;
513 
514 	fp_error = pid->setpoint - busy;
515 
516 	if (abs(fp_error) <= pid->deadband)
517 		return 0;
518 
519 	pterm = mul_fp(pid->p_gain, fp_error);
520 
521 	pid->integral += fp_error;
522 
523 	/*
524 	 * We limit the integral here so that it will never
525 	 * get higher than 30.  This prevents it from becoming
526 	 * too large an input over long periods of time and allows
527 	 * it to get factored out sooner.
528 	 *
529 	 * The value of 30 was chosen through experimentation.
530 	 */
531 	integral_limit = int_tofp(30);
532 	if (pid->integral > integral_limit)
533 		pid->integral = integral_limit;
534 	if (pid->integral < -integral_limit)
535 		pid->integral = -integral_limit;
536 
537 	dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
538 	pid->last_err = fp_error;
539 
540 	result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
541 	result = result + (1 << (FRAC_BITS-1));
542 	return (signed int)fp_toint(result);
543 }
544 
545 static inline void intel_pstate_pid_reset(struct cpudata *cpu)
546 {
547 	struct _pid *pid = &cpu->pid;
548 
549 	pid->p_gain = percent_fp(pid_params.p_gain_pct);
550 	pid->d_gain = percent_fp(pid_params.d_gain_pct);
551 	pid->i_gain = percent_fp(pid_params.i_gain_pct);
552 	pid->setpoint = int_tofp(pid_params.setpoint);
553 	pid->last_err  = pid->setpoint - int_tofp(100);
554 	pid->deadband  = int_tofp(pid_params.deadband);
555 	pid->integral  = 0;
556 }
557 
558 static inline void update_turbo_state(void)
559 {
560 	u64 misc_en;
561 	struct cpudata *cpu;
562 
563 	cpu = all_cpu_data[0];
564 	rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
565 	global.turbo_disabled =
566 		(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
567 		 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
568 }
569 
570 static int min_perf_pct_min(void)
571 {
572 	struct cpudata *cpu = all_cpu_data[0];
573 
574 	return DIV_ROUND_UP(cpu->pstate.min_pstate * 100,
575 			    cpu->pstate.turbo_pstate);
576 }
577 
578 static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
579 {
580 	u64 epb;
581 	int ret;
582 
583 	if (!static_cpu_has(X86_FEATURE_EPB))
584 		return -ENXIO;
585 
586 	ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
587 	if (ret)
588 		return (s16)ret;
589 
590 	return (s16)(epb & 0x0f);
591 }
592 
593 static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
594 {
595 	s16 epp;
596 
597 	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
598 		/*
599 		 * When hwp_req_data is 0, means that caller didn't read
600 		 * MSR_HWP_REQUEST, so need to read and get EPP.
601 		 */
602 		if (!hwp_req_data) {
603 			epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
604 					    &hwp_req_data);
605 			if (epp)
606 				return epp;
607 		}
608 		epp = (hwp_req_data >> 24) & 0xff;
609 	} else {
610 		/* When there is no EPP present, HWP uses EPB settings */
611 		epp = intel_pstate_get_epb(cpu_data);
612 	}
613 
614 	return epp;
615 }
616 
617 static int intel_pstate_set_epb(int cpu, s16 pref)
618 {
619 	u64 epb;
620 	int ret;
621 
622 	if (!static_cpu_has(X86_FEATURE_EPB))
623 		return -ENXIO;
624 
625 	ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
626 	if (ret)
627 		return ret;
628 
629 	epb = (epb & ~0x0f) | pref;
630 	wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
631 
632 	return 0;
633 }
634 
635 /*
636  * EPP/EPB display strings corresponding to EPP index in the
637  * energy_perf_strings[]
638  *	index		String
639  *-------------------------------------
640  *	0		default
641  *	1		performance
642  *	2		balance_performance
643  *	3		balance_power
644  *	4		power
645  */
646 static const char * const energy_perf_strings[] = {
647 	"default",
648 	"performance",
649 	"balance_performance",
650 	"balance_power",
651 	"power",
652 	NULL
653 };
654 
655 static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data)
656 {
657 	s16 epp;
658 	int index = -EINVAL;
659 
660 	epp = intel_pstate_get_epp(cpu_data, 0);
661 	if (epp < 0)
662 		return epp;
663 
664 	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
665 		/*
666 		 * Range:
667 		 *	0x00-0x3F	:	Performance
668 		 *	0x40-0x7F	:	Balance performance
669 		 *	0x80-0xBF	:	Balance power
670 		 *	0xC0-0xFF	:	Power
671 		 * The EPP is a 8 bit value, but our ranges restrict the
672 		 * value which can be set. Here only using top two bits
673 		 * effectively.
674 		 */
675 		index = (epp >> 6) + 1;
676 	} else if (static_cpu_has(X86_FEATURE_EPB)) {
677 		/*
678 		 * Range:
679 		 *	0x00-0x03	:	Performance
680 		 *	0x04-0x07	:	Balance performance
681 		 *	0x08-0x0B	:	Balance power
682 		 *	0x0C-0x0F	:	Power
683 		 * The EPB is a 4 bit value, but our ranges restrict the
684 		 * value which can be set. Here only using top two bits
685 		 * effectively.
686 		 */
687 		index = (epp >> 2) + 1;
688 	}
689 
690 	return index;
691 }
692 
693 static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
694 					      int pref_index)
695 {
696 	int epp = -EINVAL;
697 	int ret;
698 
699 	if (!pref_index)
700 		epp = cpu_data->epp_default;
701 
702 	mutex_lock(&intel_pstate_limits_lock);
703 
704 	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
705 		u64 value;
706 
707 		ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, &value);
708 		if (ret)
709 			goto return_pref;
710 
711 		value &= ~GENMASK_ULL(31, 24);
712 
713 		/*
714 		 * If epp is not default, convert from index into
715 		 * energy_perf_strings to epp value, by shifting 6
716 		 * bits left to use only top two bits in epp.
717 		 * The resultant epp need to shifted by 24 bits to
718 		 * epp position in MSR_HWP_REQUEST.
719 		 */
720 		if (epp == -EINVAL)
721 			epp = (pref_index - 1) << 6;
722 
723 		value |= (u64)epp << 24;
724 		ret = wrmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, value);
725 	} else {
726 		if (epp == -EINVAL)
727 			epp = (pref_index - 1) << 2;
728 		ret = intel_pstate_set_epb(cpu_data->cpu, epp);
729 	}
730 return_pref:
731 	mutex_unlock(&intel_pstate_limits_lock);
732 
733 	return ret;
734 }
735 
736 static ssize_t show_energy_performance_available_preferences(
737 				struct cpufreq_policy *policy, char *buf)
738 {
739 	int i = 0;
740 	int ret = 0;
741 
742 	while (energy_perf_strings[i] != NULL)
743 		ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);
744 
745 	ret += sprintf(&buf[ret], "\n");
746 
747 	return ret;
748 }
749 
750 cpufreq_freq_attr_ro(energy_performance_available_preferences);
751 
752 static ssize_t store_energy_performance_preference(
753 		struct cpufreq_policy *policy, const char *buf, size_t count)
754 {
755 	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
756 	char str_preference[21];
757 	int ret, i = 0;
758 
759 	ret = sscanf(buf, "%20s", str_preference);
760 	if (ret != 1)
761 		return -EINVAL;
762 
763 	while (energy_perf_strings[i] != NULL) {
764 		if (!strcmp(str_preference, energy_perf_strings[i])) {
765 			intel_pstate_set_energy_pref_index(cpu_data, i);
766 			return count;
767 		}
768 		++i;
769 	}
770 
771 	return -EINVAL;
772 }
773 
774 static ssize_t show_energy_performance_preference(
775 				struct cpufreq_policy *policy, char *buf)
776 {
777 	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
778 	int preference;
779 
780 	preference = intel_pstate_get_energy_pref_index(cpu_data);
781 	if (preference < 0)
782 		return preference;
783 
784 	return  sprintf(buf, "%s\n", energy_perf_strings[preference]);
785 }
786 
787 cpufreq_freq_attr_rw(energy_performance_preference);
788 
789 static struct freq_attr *hwp_cpufreq_attrs[] = {
790 	&energy_performance_preference,
791 	&energy_performance_available_preferences,
792 	NULL,
793 };
794 
795 static void intel_pstate_hwp_set(unsigned int cpu)
796 {
797 	struct cpudata *cpu_data = all_cpu_data[cpu];
798 	int min, hw_min, max, hw_max;
799 	u64 value, cap;
800 	s16 epp;
801 
802 	rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
803 	hw_min = HWP_LOWEST_PERF(cap);
804 	if (global.no_turbo)
805 		hw_max = HWP_GUARANTEED_PERF(cap);
806 	else
807 		hw_max = HWP_HIGHEST_PERF(cap);
808 
809 	max = fp_ext_toint(hw_max * cpu_data->max_perf);
810 	if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
811 		min = max;
812 	else
813 		min = fp_ext_toint(hw_max * cpu_data->min_perf);
814 
815 	rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
816 
817 	value &= ~HWP_MIN_PERF(~0L);
818 	value |= HWP_MIN_PERF(min);
819 
820 	value &= ~HWP_MAX_PERF(~0L);
821 	value |= HWP_MAX_PERF(max);
822 
823 	if (cpu_data->epp_policy == cpu_data->policy)
824 		goto skip_epp;
825 
826 	cpu_data->epp_policy = cpu_data->policy;
827 
828 	if (cpu_data->epp_saved >= 0) {
829 		epp = cpu_data->epp_saved;
830 		cpu_data->epp_saved = -EINVAL;
831 		goto update_epp;
832 	}
833 
834 	if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
835 		epp = intel_pstate_get_epp(cpu_data, value);
836 		cpu_data->epp_powersave = epp;
837 		/* If EPP read was failed, then don't try to write */
838 		if (epp < 0)
839 			goto skip_epp;
840 
841 		epp = 0;
842 	} else {
843 		/* skip setting EPP, when saved value is invalid */
844 		if (cpu_data->epp_powersave < 0)
845 			goto skip_epp;
846 
847 		/*
848 		 * No need to restore EPP when it is not zero. This
849 		 * means:
850 		 *  - Policy is not changed
851 		 *  - user has manually changed
852 		 *  - Error reading EPB
853 		 */
854 		epp = intel_pstate_get_epp(cpu_data, value);
855 		if (epp)
856 			goto skip_epp;
857 
858 		epp = cpu_data->epp_powersave;
859 	}
860 update_epp:
861 	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
862 		value &= ~GENMASK_ULL(31, 24);
863 		value |= (u64)epp << 24;
864 	} else {
865 		intel_pstate_set_epb(cpu, epp);
866 	}
867 skip_epp:
868 	wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
869 }
870 
871 static int intel_pstate_hwp_save_state(struct cpufreq_policy *policy)
872 {
873 	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
874 
875 	if (!hwp_active)
876 		return 0;
877 
878 	cpu_data->epp_saved = intel_pstate_get_epp(cpu_data, 0);
879 
880 	return 0;
881 }
882 
883 static int intel_pstate_resume(struct cpufreq_policy *policy)
884 {
885 	if (!hwp_active)
886 		return 0;
887 
888 	mutex_lock(&intel_pstate_limits_lock);
889 
890 	all_cpu_data[policy->cpu]->epp_policy = 0;
891 	intel_pstate_hwp_set(policy->cpu);
892 
893 	mutex_unlock(&intel_pstate_limits_lock);
894 
895 	return 0;
896 }
897 
898 static void intel_pstate_update_policies(void)
899 {
900 	int cpu;
901 
902 	for_each_possible_cpu(cpu)
903 		cpufreq_update_policy(cpu);
904 }
905 
906 /************************** debugfs begin ************************/
907 static int pid_param_set(void *data, u64 val)
908 {
909 	unsigned int cpu;
910 
911 	*(u32 *)data = val;
912 	pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
913 	for_each_possible_cpu(cpu)
914 		if (all_cpu_data[cpu])
915 			intel_pstate_pid_reset(all_cpu_data[cpu]);
916 
917 	return 0;
918 }
919 
920 static int pid_param_get(void *data, u64 *val)
921 {
922 	*val = *(u32 *)data;
923 	return 0;
924 }
925 DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
926 
927 static struct dentry *debugfs_parent;
928 
929 struct pid_param {
930 	char *name;
931 	void *value;
932 	struct dentry *dentry;
933 };
934 
935 static struct pid_param pid_files[] = {
936 	{"sample_rate_ms", &pid_params.sample_rate_ms, },
937 	{"d_gain_pct", &pid_params.d_gain_pct, },
938 	{"i_gain_pct", &pid_params.i_gain_pct, },
939 	{"deadband", &pid_params.deadband, },
940 	{"setpoint", &pid_params.setpoint, },
941 	{"p_gain_pct", &pid_params.p_gain_pct, },
942 	{NULL, NULL, }
943 };
944 
945 static void intel_pstate_debug_expose_params(void)
946 {
947 	int i;
948 
949 	debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
950 	if (IS_ERR_OR_NULL(debugfs_parent))
951 		return;
952 
953 	for (i = 0; pid_files[i].name; i++) {
954 		struct dentry *dentry;
955 
956 		dentry = debugfs_create_file(pid_files[i].name, 0660,
957 					     debugfs_parent, pid_files[i].value,
958 					     &fops_pid_param);
959 		if (!IS_ERR(dentry))
960 			pid_files[i].dentry = dentry;
961 	}
962 }
963 
964 static void intel_pstate_debug_hide_params(void)
965 {
966 	int i;
967 
968 	if (IS_ERR_OR_NULL(debugfs_parent))
969 		return;
970 
971 	for (i = 0; pid_files[i].name; i++) {
972 		debugfs_remove(pid_files[i].dentry);
973 		pid_files[i].dentry = NULL;
974 	}
975 
976 	debugfs_remove(debugfs_parent);
977 	debugfs_parent = NULL;
978 }
979 
980 /************************** debugfs end ************************/
981 
982 /************************** sysfs begin ************************/
983 #define show_one(file_name, object)					\
984 	static ssize_t show_##file_name					\
985 	(struct kobject *kobj, struct attribute *attr, char *buf)	\
986 	{								\
987 		return sprintf(buf, "%u\n", global.object);		\
988 	}
989 
990 static ssize_t intel_pstate_show_status(char *buf);
991 static int intel_pstate_update_status(const char *buf, size_t size);
992 
993 static ssize_t show_status(struct kobject *kobj,
994 			   struct attribute *attr, char *buf)
995 {
996 	ssize_t ret;
997 
998 	mutex_lock(&intel_pstate_driver_lock);
999 	ret = intel_pstate_show_status(buf);
1000 	mutex_unlock(&intel_pstate_driver_lock);
1001 
1002 	return ret;
1003 }
1004 
1005 static ssize_t store_status(struct kobject *a, struct attribute *b,
1006 			    const char *buf, size_t count)
1007 {
1008 	char *p = memchr(buf, '\n', count);
1009 	int ret;
1010 
1011 	mutex_lock(&intel_pstate_driver_lock);
1012 	ret = intel_pstate_update_status(buf, p ? p - buf : count);
1013 	mutex_unlock(&intel_pstate_driver_lock);
1014 
1015 	return ret < 0 ? ret : count;
1016 }
1017 
1018 static ssize_t show_turbo_pct(struct kobject *kobj,
1019 				struct attribute *attr, char *buf)
1020 {
1021 	struct cpudata *cpu;
1022 	int total, no_turbo, turbo_pct;
1023 	uint32_t turbo_fp;
1024 
1025 	mutex_lock(&intel_pstate_driver_lock);
1026 
1027 	if (!intel_pstate_driver) {
1028 		mutex_unlock(&intel_pstate_driver_lock);
1029 		return -EAGAIN;
1030 	}
1031 
1032 	cpu = all_cpu_data[0];
1033 
1034 	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1035 	no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
1036 	turbo_fp = div_fp(no_turbo, total);
1037 	turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
1038 
1039 	mutex_unlock(&intel_pstate_driver_lock);
1040 
1041 	return sprintf(buf, "%u\n", turbo_pct);
1042 }
1043 
1044 static ssize_t show_num_pstates(struct kobject *kobj,
1045 				struct attribute *attr, char *buf)
1046 {
1047 	struct cpudata *cpu;
1048 	int total;
1049 
1050 	mutex_lock(&intel_pstate_driver_lock);
1051 
1052 	if (!intel_pstate_driver) {
1053 		mutex_unlock(&intel_pstate_driver_lock);
1054 		return -EAGAIN;
1055 	}
1056 
1057 	cpu = all_cpu_data[0];
1058 	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1059 
1060 	mutex_unlock(&intel_pstate_driver_lock);
1061 
1062 	return sprintf(buf, "%u\n", total);
1063 }
1064 
1065 static ssize_t show_no_turbo(struct kobject *kobj,
1066 			     struct attribute *attr, char *buf)
1067 {
1068 	ssize_t ret;
1069 
1070 	mutex_lock(&intel_pstate_driver_lock);
1071 
1072 	if (!intel_pstate_driver) {
1073 		mutex_unlock(&intel_pstate_driver_lock);
1074 		return -EAGAIN;
1075 	}
1076 
1077 	update_turbo_state();
1078 	if (global.turbo_disabled)
1079 		ret = sprintf(buf, "%u\n", global.turbo_disabled);
1080 	else
1081 		ret = sprintf(buf, "%u\n", global.no_turbo);
1082 
1083 	mutex_unlock(&intel_pstate_driver_lock);
1084 
1085 	return ret;
1086 }
1087 
1088 static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
1089 			      const char *buf, size_t count)
1090 {
1091 	unsigned int input;
1092 	int ret;
1093 
1094 	ret = sscanf(buf, "%u", &input);
1095 	if (ret != 1)
1096 		return -EINVAL;
1097 
1098 	mutex_lock(&intel_pstate_driver_lock);
1099 
1100 	if (!intel_pstate_driver) {
1101 		mutex_unlock(&intel_pstate_driver_lock);
1102 		return -EAGAIN;
1103 	}
1104 
1105 	mutex_lock(&intel_pstate_limits_lock);
1106 
1107 	update_turbo_state();
1108 	if (global.turbo_disabled) {
1109 		pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
1110 		mutex_unlock(&intel_pstate_limits_lock);
1111 		mutex_unlock(&intel_pstate_driver_lock);
1112 		return -EPERM;
1113 	}
1114 
1115 	global.no_turbo = clamp_t(int, input, 0, 1);
1116 
1117 	if (global.no_turbo) {
1118 		struct cpudata *cpu = all_cpu_data[0];
1119 		int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;
1120 
1121 		/* Squash the global minimum into the permitted range. */
1122 		if (global.min_perf_pct > pct)
1123 			global.min_perf_pct = pct;
1124 	}
1125 
1126 	mutex_unlock(&intel_pstate_limits_lock);
1127 
1128 	intel_pstate_update_policies();
1129 
1130 	mutex_unlock(&intel_pstate_driver_lock);
1131 
1132 	return count;
1133 }
1134 
1135 static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
1136 				  const char *buf, size_t count)
1137 {
1138 	unsigned int input;
1139 	int ret;
1140 
1141 	ret = sscanf(buf, "%u", &input);
1142 	if (ret != 1)
1143 		return -EINVAL;
1144 
1145 	mutex_lock(&intel_pstate_driver_lock);
1146 
1147 	if (!intel_pstate_driver) {
1148 		mutex_unlock(&intel_pstate_driver_lock);
1149 		return -EAGAIN;
1150 	}
1151 
1152 	mutex_lock(&intel_pstate_limits_lock);
1153 
1154 	global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
1155 
1156 	mutex_unlock(&intel_pstate_limits_lock);
1157 
1158 	intel_pstate_update_policies();
1159 
1160 	mutex_unlock(&intel_pstate_driver_lock);
1161 
1162 	return count;
1163 }
1164 
1165 static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
1166 				  const char *buf, size_t count)
1167 {
1168 	unsigned int input;
1169 	int ret;
1170 
1171 	ret = sscanf(buf, "%u", &input);
1172 	if (ret != 1)
1173 		return -EINVAL;
1174 
1175 	mutex_lock(&intel_pstate_driver_lock);
1176 
1177 	if (!intel_pstate_driver) {
1178 		mutex_unlock(&intel_pstate_driver_lock);
1179 		return -EAGAIN;
1180 	}
1181 
1182 	mutex_lock(&intel_pstate_limits_lock);
1183 
1184 	global.min_perf_pct = clamp_t(int, input,
1185 				      min_perf_pct_min(), global.max_perf_pct);
1186 
1187 	mutex_unlock(&intel_pstate_limits_lock);
1188 
1189 	intel_pstate_update_policies();
1190 
1191 	mutex_unlock(&intel_pstate_driver_lock);
1192 
1193 	return count;
1194 }
1195 
1196 show_one(max_perf_pct, max_perf_pct);
1197 show_one(min_perf_pct, min_perf_pct);
1198 
1199 define_one_global_rw(status);
1200 define_one_global_rw(no_turbo);
1201 define_one_global_rw(max_perf_pct);
1202 define_one_global_rw(min_perf_pct);
1203 define_one_global_ro(turbo_pct);
1204 define_one_global_ro(num_pstates);
1205 
1206 static struct attribute *intel_pstate_attributes[] = {
1207 	&status.attr,
1208 	&no_turbo.attr,
1209 	&turbo_pct.attr,
1210 	&num_pstates.attr,
1211 	NULL
1212 };
1213 
1214 static struct attribute_group intel_pstate_attr_group = {
1215 	.attrs = intel_pstate_attributes,
1216 };
1217 
1218 static void __init intel_pstate_sysfs_expose_params(void)
1219 {
1220 	struct kobject *intel_pstate_kobject;
1221 	int rc;
1222 
1223 	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
1224 						&cpu_subsys.dev_root->kobj);
1225 	if (WARN_ON(!intel_pstate_kobject))
1226 		return;
1227 
1228 	rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1229 	if (WARN_ON(rc))
1230 		return;
1231 
1232 	/*
1233 	 * If per cpu limits are enforced there are no global limits, so
1234 	 * return without creating max/min_perf_pct attributes
1235 	 */
1236 	if (per_cpu_limits)
1237 		return;
1238 
1239 	rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
1240 	WARN_ON(rc);
1241 
1242 	rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
1243 	WARN_ON(rc);
1244 
1245 }
1246 /************************** sysfs end ************************/
1247 
1248 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
1249 {
1250 	/* First disable HWP notification interrupt as we don't process them */
1251 	if (static_cpu_has(X86_FEATURE_HWP_NOTIFY))
1252 		wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1253 
1254 	wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1255 	cpudata->epp_policy = 0;
1256 	if (cpudata->epp_default == -EINVAL)
1257 		cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
1258 }
1259 
1260 #define MSR_IA32_POWER_CTL_BIT_EE	19
1261 
1262 /* Disable energy efficiency optimization */
1263 static void intel_pstate_disable_ee(int cpu)
1264 {
1265 	u64 power_ctl;
1266 	int ret;
1267 
1268 	ret = rdmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, &power_ctl);
1269 	if (ret)
1270 		return;
1271 
1272 	if (!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE))) {
1273 		pr_info("Disabling energy efficiency optimization\n");
1274 		power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
1275 		wrmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, power_ctl);
1276 	}
1277 }
1278 
1279 static int atom_get_min_pstate(void)
1280 {
1281 	u64 value;
1282 
1283 	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1284 	return (value >> 8) & 0x7F;
1285 }
1286 
1287 static int atom_get_max_pstate(void)
1288 {
1289 	u64 value;
1290 
1291 	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1292 	return (value >> 16) & 0x7F;
1293 }
1294 
1295 static int atom_get_turbo_pstate(void)
1296 {
1297 	u64 value;
1298 
1299 	rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
1300 	return value & 0x7F;
1301 }
1302 
1303 static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1304 {
1305 	u64 val;
1306 	int32_t vid_fp;
1307 	u32 vid;
1308 
1309 	val = (u64)pstate << 8;
1310 	if (global.no_turbo && !global.turbo_disabled)
1311 		val |= (u64)1 << 32;
1312 
1313 	vid_fp = cpudata->vid.min + mul_fp(
1314 		int_tofp(pstate - cpudata->pstate.min_pstate),
1315 		cpudata->vid.ratio);
1316 
1317 	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1318 	vid = ceiling_fp(vid_fp);
1319 
1320 	if (pstate > cpudata->pstate.max_pstate)
1321 		vid = cpudata->vid.turbo;
1322 
1323 	return val | vid;
1324 }
1325 
1326 static int silvermont_get_scaling(void)
1327 {
1328 	u64 value;
1329 	int i;
1330 	/* Defined in Table 35-6 from SDM (Sept 2015) */
1331 	static int silvermont_freq_table[] = {
1332 		83300, 100000, 133300, 116700, 80000};
1333 
1334 	rdmsrl(MSR_FSB_FREQ, value);
1335 	i = value & 0x7;
1336 	WARN_ON(i > 4);
1337 
1338 	return silvermont_freq_table[i];
1339 }
1340 
1341 static int airmont_get_scaling(void)
1342 {
1343 	u64 value;
1344 	int i;
1345 	/* Defined in Table 35-10 from SDM (Sept 2015) */
1346 	static int airmont_freq_table[] = {
1347 		83300, 100000, 133300, 116700, 80000,
1348 		93300, 90000, 88900, 87500};
1349 
1350 	rdmsrl(MSR_FSB_FREQ, value);
1351 	i = value & 0xF;
1352 	WARN_ON(i > 8);
1353 
1354 	return airmont_freq_table[i];
1355 }
1356 
1357 static void atom_get_vid(struct cpudata *cpudata)
1358 {
1359 	u64 value;
1360 
1361 	rdmsrl(MSR_ATOM_CORE_VIDS, value);
1362 	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
1363 	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1364 	cpudata->vid.ratio = div_fp(
1365 		cpudata->vid.max - cpudata->vid.min,
1366 		int_tofp(cpudata->pstate.max_pstate -
1367 			cpudata->pstate.min_pstate));
1368 
1369 	rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1370 	cpudata->vid.turbo = value & 0x7f;
1371 }
1372 
1373 static int core_get_min_pstate(void)
1374 {
1375 	u64 value;
1376 
1377 	rdmsrl(MSR_PLATFORM_INFO, value);
1378 	return (value >> 40) & 0xFF;
1379 }
1380 
1381 static int core_get_max_pstate_physical(void)
1382 {
1383 	u64 value;
1384 
1385 	rdmsrl(MSR_PLATFORM_INFO, value);
1386 	return (value >> 8) & 0xFF;
1387 }
1388 
1389 static int core_get_tdp_ratio(u64 plat_info)
1390 {
1391 	/* Check how many TDP levels present */
1392 	if (plat_info & 0x600000000) {
1393 		u64 tdp_ctrl;
1394 		u64 tdp_ratio;
1395 		int tdp_msr;
1396 		int err;
1397 
1398 		/* Get the TDP level (0, 1, 2) to get ratios */
1399 		err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
1400 		if (err)
1401 			return err;
1402 
1403 		/* TDP MSR are continuous starting at 0x648 */
1404 		tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
1405 		err = rdmsrl_safe(tdp_msr, &tdp_ratio);
1406 		if (err)
1407 			return err;
1408 
1409 		/* For level 1 and 2, bits[23:16] contain the ratio */
1410 		if (tdp_ctrl & 0x03)
1411 			tdp_ratio >>= 16;
1412 
1413 		tdp_ratio &= 0xff; /* ratios are only 8 bits long */
1414 		pr_debug("tdp_ratio %x\n", (int)tdp_ratio);
1415 
1416 		return (int)tdp_ratio;
1417 	}
1418 
1419 	return -ENXIO;
1420 }
1421 
1422 static int core_get_max_pstate(void)
1423 {
1424 	u64 tar;
1425 	u64 plat_info;
1426 	int max_pstate;
1427 	int tdp_ratio;
1428 	int err;
1429 
1430 	rdmsrl(MSR_PLATFORM_INFO, plat_info);
1431 	max_pstate = (plat_info >> 8) & 0xFF;
1432 
1433 	tdp_ratio = core_get_tdp_ratio(plat_info);
1434 	if (tdp_ratio <= 0)
1435 		return max_pstate;
1436 
1437 	if (hwp_active) {
1438 		/* Turbo activation ratio is not used on HWP platforms */
1439 		return tdp_ratio;
1440 	}
1441 
1442 	err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
1443 	if (!err) {
1444 		int tar_levels;
1445 
1446 		/* Do some sanity checking for safety */
1447 		tar_levels = tar & 0xff;
1448 		if (tdp_ratio - 1 == tar_levels) {
1449 			max_pstate = tar_levels;
1450 			pr_debug("max_pstate=TAC %x\n", max_pstate);
1451 		}
1452 	}
1453 
1454 	return max_pstate;
1455 }
1456 
1457 static int core_get_turbo_pstate(void)
1458 {
1459 	u64 value;
1460 	int nont, ret;
1461 
1462 	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1463 	nont = core_get_max_pstate();
1464 	ret = (value) & 255;
1465 	if (ret <= nont)
1466 		ret = nont;
1467 	return ret;
1468 }
1469 
1470 static inline int core_get_scaling(void)
1471 {
1472 	return 100000;
1473 }
1474 
1475 static u64 core_get_val(struct cpudata *cpudata, int pstate)
1476 {
1477 	u64 val;
1478 
1479 	val = (u64)pstate << 8;
1480 	if (global.no_turbo && !global.turbo_disabled)
1481 		val |= (u64)1 << 32;
1482 
1483 	return val;
1484 }
1485 
1486 static int knl_get_turbo_pstate(void)
1487 {
1488 	u64 value;
1489 	int nont, ret;
1490 
1491 	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1492 	nont = core_get_max_pstate();
1493 	ret = (((value) >> 8) & 0xFF);
1494 	if (ret <= nont)
1495 		ret = nont;
1496 	return ret;
1497 }
1498 
1499 static int intel_pstate_get_base_pstate(struct cpudata *cpu)
1500 {
1501 	return global.no_turbo || global.turbo_disabled ?
1502 			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1503 }
1504 
1505 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1506 {
1507 	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1508 	cpu->pstate.current_pstate = pstate;
1509 	/*
1510 	 * Generally, there is no guarantee that this code will always run on
1511 	 * the CPU being updated, so force the register update to run on the
1512 	 * right CPU.
1513 	 */
1514 	wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1515 		      pstate_funcs.get_val(cpu, pstate));
1516 }
1517 
1518 static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1519 {
1520 	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
1521 }
1522 
1523 static void intel_pstate_max_within_limits(struct cpudata *cpu)
1524 {
1525 	int pstate;
1526 
1527 	update_turbo_state();
1528 	pstate = intel_pstate_get_base_pstate(cpu);
1529 	pstate = max(cpu->pstate.min_pstate,
1530 		     fp_ext_toint(pstate * cpu->max_perf));
1531 	intel_pstate_set_pstate(cpu, pstate);
1532 }
1533 
1534 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1535 {
1536 	cpu->pstate.min_pstate = pstate_funcs.get_min();
1537 	cpu->pstate.max_pstate = pstate_funcs.get_max();
1538 	cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1539 	cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1540 	cpu->pstate.scaling = pstate_funcs.get_scaling();
1541 	cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
1542 	cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1543 
1544 	if (pstate_funcs.get_vid)
1545 		pstate_funcs.get_vid(cpu);
1546 
1547 	intel_pstate_set_min_pstate(cpu);
1548 }
1549 
1550 static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1551 {
1552 	struct sample *sample = &cpu->sample;
1553 
1554 	sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1555 }
1556 
1557 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1558 {
1559 	u64 aperf, mperf;
1560 	unsigned long flags;
1561 	u64 tsc;
1562 
1563 	local_irq_save(flags);
1564 	rdmsrl(MSR_IA32_APERF, aperf);
1565 	rdmsrl(MSR_IA32_MPERF, mperf);
1566 	tsc = rdtsc();
1567 	if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1568 		local_irq_restore(flags);
1569 		return false;
1570 	}
1571 	local_irq_restore(flags);
1572 
1573 	cpu->last_sample_time = cpu->sample.time;
1574 	cpu->sample.time = time;
1575 	cpu->sample.aperf = aperf;
1576 	cpu->sample.mperf = mperf;
1577 	cpu->sample.tsc =  tsc;
1578 	cpu->sample.aperf -= cpu->prev_aperf;
1579 	cpu->sample.mperf -= cpu->prev_mperf;
1580 	cpu->sample.tsc -= cpu->prev_tsc;
1581 
1582 	cpu->prev_aperf = aperf;
1583 	cpu->prev_mperf = mperf;
1584 	cpu->prev_tsc = tsc;
1585 	/*
1586 	 * First time this function is invoked in a given cycle, all of the
1587 	 * previous sample data fields are equal to zero or stale and they must
1588 	 * be populated with meaningful numbers for things to work, so assume
1589 	 * that sample.time will always be reset before setting the utilization
1590 	 * update hook and make the caller skip the sample then.
1591 	 */
1592 	if (cpu->last_sample_time) {
1593 		intel_pstate_calc_avg_perf(cpu);
1594 		return true;
1595 	}
1596 	return false;
1597 }
1598 
1599 static inline int32_t get_avg_frequency(struct cpudata *cpu)
1600 {
1601 	return mul_ext_fp(cpu->sample.core_avg_perf,
1602 			  cpu->pstate.max_pstate_physical * cpu->pstate.scaling);
1603 }
1604 
1605 static inline int32_t get_avg_pstate(struct cpudata *cpu)
1606 {
1607 	return mul_ext_fp(cpu->pstate.max_pstate_physical,
1608 			  cpu->sample.core_avg_perf);
1609 }
1610 
1611 static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
1612 {
1613 	struct sample *sample = &cpu->sample;
1614 	int32_t busy_frac, boost;
1615 	int target, avg_pstate;
1616 
1617 	if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE)
1618 		return cpu->pstate.turbo_pstate;
1619 
1620 	busy_frac = div_fp(sample->mperf, sample->tsc);
1621 
1622 	boost = cpu->iowait_boost;
1623 	cpu->iowait_boost >>= 1;
1624 
1625 	if (busy_frac < boost)
1626 		busy_frac = boost;
1627 
1628 	sample->busy_scaled = busy_frac * 100;
1629 
1630 	target = global.no_turbo || global.turbo_disabled ?
1631 			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1632 	target += target >> 2;
1633 	target = mul_fp(target, busy_frac);
1634 	if (target < cpu->pstate.min_pstate)
1635 		target = cpu->pstate.min_pstate;
1636 
1637 	/*
1638 	 * If the average P-state during the previous cycle was higher than the
1639 	 * current target, add 50% of the difference to the target to reduce
1640 	 * possible performance oscillations and offset possible performance
1641 	 * loss related to moving the workload from one CPU to another within
1642 	 * a package/module.
1643 	 */
1644 	avg_pstate = get_avg_pstate(cpu);
1645 	if (avg_pstate > target)
1646 		target += (avg_pstate - target) >> 1;
1647 
1648 	return target;
1649 }
1650 
1651 static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
1652 {
1653 	int32_t perf_scaled, max_pstate, current_pstate, sample_ratio;
1654 	u64 duration_ns;
1655 
1656 	if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE)
1657 		return cpu->pstate.turbo_pstate;
1658 
1659 	/*
1660 	 * perf_scaled is the ratio of the average P-state during the last
1661 	 * sampling period to the P-state requested last time (in percent).
1662 	 *
1663 	 * That measures the system's response to the previous P-state
1664 	 * selection.
1665 	 */
1666 	max_pstate = cpu->pstate.max_pstate_physical;
1667 	current_pstate = cpu->pstate.current_pstate;
1668 	perf_scaled = mul_ext_fp(cpu->sample.core_avg_perf,
1669 			       div_fp(100 * max_pstate, current_pstate));
1670 
1671 	/*
1672 	 * Since our utilization update callback will not run unless we are
1673 	 * in C0, check if the actual elapsed time is significantly greater (3x)
1674 	 * than our sample interval.  If it is, then we were idle for a long
1675 	 * enough period of time to adjust our performance metric.
1676 	 */
1677 	duration_ns = cpu->sample.time - cpu->last_sample_time;
1678 	if ((s64)duration_ns > pid_params.sample_rate_ns * 3) {
1679 		sample_ratio = div_fp(pid_params.sample_rate_ns, duration_ns);
1680 		perf_scaled = mul_fp(perf_scaled, sample_ratio);
1681 	} else {
1682 		sample_ratio = div_fp(100 * cpu->sample.mperf, cpu->sample.tsc);
1683 		if (sample_ratio < int_tofp(1))
1684 			perf_scaled = 0;
1685 	}
1686 
1687 	cpu->sample.busy_scaled = perf_scaled;
1688 	return cpu->pstate.current_pstate - pid_calc(&cpu->pid, perf_scaled);
1689 }
1690 
1691 static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
1692 {
1693 	int max_pstate = intel_pstate_get_base_pstate(cpu);
1694 	int min_pstate;
1695 
1696 	min_pstate = max(cpu->pstate.min_pstate,
1697 			 fp_ext_toint(max_pstate * cpu->min_perf));
1698 	max_pstate = max(min_pstate, fp_ext_toint(max_pstate * cpu->max_perf));
1699 	return clamp_t(int, pstate, min_pstate, max_pstate);
1700 }
1701 
1702 static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1703 {
1704 	if (pstate == cpu->pstate.current_pstate)
1705 		return;
1706 
1707 	cpu->pstate.current_pstate = pstate;
1708 	wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1709 }
1710 
1711 static void intel_pstate_adjust_pstate(struct cpudata *cpu, int target_pstate)
1712 {
1713 	int from = cpu->pstate.current_pstate;
1714 	struct sample *sample;
1715 
1716 	update_turbo_state();
1717 
1718 	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
1719 	trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
1720 	intel_pstate_update_pstate(cpu, target_pstate);
1721 
1722 	sample = &cpu->sample;
1723 	trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1724 		fp_toint(sample->busy_scaled),
1725 		from,
1726 		cpu->pstate.current_pstate,
1727 		sample->mperf,
1728 		sample->aperf,
1729 		sample->tsc,
1730 		get_avg_frequency(cpu),
1731 		fp_toint(cpu->iowait_boost * 100));
1732 }
1733 
1734 static void intel_pstate_update_util_hwp(struct update_util_data *data,
1735 					 u64 time, unsigned int flags)
1736 {
1737 	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1738 	u64 delta_ns = time - cpu->sample.time;
1739 
1740 	if ((s64)delta_ns >= INTEL_PSTATE_HWP_SAMPLING_INTERVAL)
1741 		intel_pstate_sample(cpu, time);
1742 }
1743 
1744 static void intel_pstate_update_util_pid(struct update_util_data *data,
1745 					 u64 time, unsigned int flags)
1746 {
1747 	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1748 	u64 delta_ns = time - cpu->sample.time;
1749 
1750 	if ((s64)delta_ns < pid_params.sample_rate_ns)
1751 		return;
1752 
1753 	if (intel_pstate_sample(cpu, time)) {
1754 		int target_pstate;
1755 
1756 		target_pstate = get_target_pstate_use_performance(cpu);
1757 		intel_pstate_adjust_pstate(cpu, target_pstate);
1758 	}
1759 }
1760 
1761 static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1762 				     unsigned int flags)
1763 {
1764 	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1765 	u64 delta_ns;
1766 
1767 	if (flags & SCHED_CPUFREQ_IOWAIT) {
1768 		cpu->iowait_boost = int_tofp(1);
1769 	} else if (cpu->iowait_boost) {
1770 		/* Clear iowait_boost if the CPU may have been idle. */
1771 		delta_ns = time - cpu->last_update;
1772 		if (delta_ns > TICK_NSEC)
1773 			cpu->iowait_boost = 0;
1774 	}
1775 	cpu->last_update = time;
1776 	delta_ns = time - cpu->sample.time;
1777 	if ((s64)delta_ns < INTEL_PSTATE_DEFAULT_SAMPLING_INTERVAL)
1778 		return;
1779 
1780 	if (intel_pstate_sample(cpu, time)) {
1781 		int target_pstate;
1782 
1783 		target_pstate = get_target_pstate_use_cpu_load(cpu);
1784 		intel_pstate_adjust_pstate(cpu, target_pstate);
1785 	}
1786 }
1787 
1788 static struct pstate_funcs core_funcs = {
1789 	.get_max = core_get_max_pstate,
1790 	.get_max_physical = core_get_max_pstate_physical,
1791 	.get_min = core_get_min_pstate,
1792 	.get_turbo = core_get_turbo_pstate,
1793 	.get_scaling = core_get_scaling,
1794 	.get_val = core_get_val,
1795 	.update_util = intel_pstate_update_util_pid,
1796 };
1797 
1798 static const struct pstate_funcs silvermont_funcs = {
1799 	.get_max = atom_get_max_pstate,
1800 	.get_max_physical = atom_get_max_pstate,
1801 	.get_min = atom_get_min_pstate,
1802 	.get_turbo = atom_get_turbo_pstate,
1803 	.get_val = atom_get_val,
1804 	.get_scaling = silvermont_get_scaling,
1805 	.get_vid = atom_get_vid,
1806 	.update_util = intel_pstate_update_util,
1807 };
1808 
1809 static const struct pstate_funcs airmont_funcs = {
1810 	.get_max = atom_get_max_pstate,
1811 	.get_max_physical = atom_get_max_pstate,
1812 	.get_min = atom_get_min_pstate,
1813 	.get_turbo = atom_get_turbo_pstate,
1814 	.get_val = atom_get_val,
1815 	.get_scaling = airmont_get_scaling,
1816 	.get_vid = atom_get_vid,
1817 	.update_util = intel_pstate_update_util,
1818 };
1819 
1820 static const struct pstate_funcs knl_funcs = {
1821 	.get_max = core_get_max_pstate,
1822 	.get_max_physical = core_get_max_pstate_physical,
1823 	.get_min = core_get_min_pstate,
1824 	.get_turbo = knl_get_turbo_pstate,
1825 	.get_scaling = core_get_scaling,
1826 	.get_val = core_get_val,
1827 	.update_util = intel_pstate_update_util_pid,
1828 };
1829 
1830 static const struct pstate_funcs bxt_funcs = {
1831 	.get_max = core_get_max_pstate,
1832 	.get_max_physical = core_get_max_pstate_physical,
1833 	.get_min = core_get_min_pstate,
1834 	.get_turbo = core_get_turbo_pstate,
1835 	.get_scaling = core_get_scaling,
1836 	.get_val = core_get_val,
1837 	.update_util = intel_pstate_update_util,
1838 };
1839 
1840 #define ICPU(model, policy) \
1841 	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1842 			(unsigned long)&policy }
1843 
1844 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1845 	ICPU(INTEL_FAM6_SANDYBRIDGE, 		core_funcs),
1846 	ICPU(INTEL_FAM6_SANDYBRIDGE_X,		core_funcs),
1847 	ICPU(INTEL_FAM6_ATOM_SILVERMONT1,	silvermont_funcs),
1848 	ICPU(INTEL_FAM6_IVYBRIDGE,		core_funcs),
1849 	ICPU(INTEL_FAM6_HASWELL_CORE,		core_funcs),
1850 	ICPU(INTEL_FAM6_BROADWELL_CORE,		core_funcs),
1851 	ICPU(INTEL_FAM6_IVYBRIDGE_X,		core_funcs),
1852 	ICPU(INTEL_FAM6_HASWELL_X,		core_funcs),
1853 	ICPU(INTEL_FAM6_HASWELL_ULT,		core_funcs),
1854 	ICPU(INTEL_FAM6_HASWELL_GT3E,		core_funcs),
1855 	ICPU(INTEL_FAM6_BROADWELL_GT3E,		core_funcs),
1856 	ICPU(INTEL_FAM6_ATOM_AIRMONT,		airmont_funcs),
1857 	ICPU(INTEL_FAM6_SKYLAKE_MOBILE,		core_funcs),
1858 	ICPU(INTEL_FAM6_BROADWELL_X,		core_funcs),
1859 	ICPU(INTEL_FAM6_SKYLAKE_DESKTOP,	core_funcs),
1860 	ICPU(INTEL_FAM6_BROADWELL_XEON_D,	core_funcs),
1861 	ICPU(INTEL_FAM6_XEON_PHI_KNL,		knl_funcs),
1862 	ICPU(INTEL_FAM6_XEON_PHI_KNM,		knl_funcs),
1863 	ICPU(INTEL_FAM6_ATOM_GOLDMONT,		bxt_funcs),
1864 	{}
1865 };
1866 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1867 
1868 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
1869 	ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_funcs),
1870 	ICPU(INTEL_FAM6_BROADWELL_X, core_funcs),
1871 	ICPU(INTEL_FAM6_SKYLAKE_X, core_funcs),
1872 	{}
1873 };
1874 
1875 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
1876 	ICPU(INTEL_FAM6_KABYLAKE_DESKTOP, core_funcs),
1877 	{}
1878 };
1879 
1880 static bool pid_in_use(void);
1881 
1882 static int intel_pstate_init_cpu(unsigned int cpunum)
1883 {
1884 	struct cpudata *cpu;
1885 
1886 	cpu = all_cpu_data[cpunum];
1887 
1888 	if (!cpu) {
1889 		cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
1890 		if (!cpu)
1891 			return -ENOMEM;
1892 
1893 		all_cpu_data[cpunum] = cpu;
1894 
1895 		cpu->epp_default = -EINVAL;
1896 		cpu->epp_powersave = -EINVAL;
1897 		cpu->epp_saved = -EINVAL;
1898 	}
1899 
1900 	cpu = all_cpu_data[cpunum];
1901 
1902 	cpu->cpu = cpunum;
1903 
1904 	if (hwp_active) {
1905 		const struct x86_cpu_id *id;
1906 
1907 		id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
1908 		if (id)
1909 			intel_pstate_disable_ee(cpunum);
1910 
1911 		intel_pstate_hwp_enable(cpu);
1912 	} else if (pid_in_use()) {
1913 		intel_pstate_pid_reset(cpu);
1914 	}
1915 
1916 	intel_pstate_get_cpu_pstates(cpu);
1917 
1918 	pr_debug("controlling: cpu %d\n", cpunum);
1919 
1920 	return 0;
1921 }
1922 
1923 static unsigned int intel_pstate_get(unsigned int cpu_num)
1924 {
1925 	struct cpudata *cpu = all_cpu_data[cpu_num];
1926 
1927 	return cpu ? get_avg_frequency(cpu) : 0;
1928 }
1929 
1930 static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
1931 {
1932 	struct cpudata *cpu = all_cpu_data[cpu_num];
1933 
1934 	if (cpu->update_util_set)
1935 		return;
1936 
1937 	/* Prevent intel_pstate_update_util() from using stale data. */
1938 	cpu->sample.time = 0;
1939 	cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
1940 				     pstate_funcs.update_util);
1941 	cpu->update_util_set = true;
1942 }
1943 
1944 static void intel_pstate_clear_update_util_hook(unsigned int cpu)
1945 {
1946 	struct cpudata *cpu_data = all_cpu_data[cpu];
1947 
1948 	if (!cpu_data->update_util_set)
1949 		return;
1950 
1951 	cpufreq_remove_update_util_hook(cpu);
1952 	cpu_data->update_util_set = false;
1953 	synchronize_sched();
1954 }
1955 
1956 static int intel_pstate_get_max_freq(struct cpudata *cpu)
1957 {
1958 	return global.turbo_disabled || global.no_turbo ?
1959 			cpu->pstate.max_freq : cpu->pstate.turbo_freq;
1960 }
1961 
1962 static void intel_pstate_update_perf_limits(struct cpufreq_policy *policy,
1963 					    struct cpudata *cpu)
1964 {
1965 	int max_freq = intel_pstate_get_max_freq(cpu);
1966 	int32_t max_policy_perf, min_policy_perf;
1967 
1968 	max_policy_perf = div_ext_fp(policy->max, max_freq);
1969 	max_policy_perf = clamp_t(int32_t, max_policy_perf, 0, int_ext_tofp(1));
1970 	if (policy->max == policy->min) {
1971 		min_policy_perf = max_policy_perf;
1972 	} else {
1973 		min_policy_perf = div_ext_fp(policy->min, max_freq);
1974 		min_policy_perf = clamp_t(int32_t, min_policy_perf,
1975 					  0, max_policy_perf);
1976 	}
1977 
1978 	/* Normalize user input to [min_perf, max_perf] */
1979 	if (per_cpu_limits) {
1980 		cpu->min_perf = min_policy_perf;
1981 		cpu->max_perf = max_policy_perf;
1982 	} else {
1983 		int32_t global_min, global_max;
1984 
1985 		/* Global limits are in percent of the maximum turbo P-state. */
1986 		global_max = percent_ext_fp(global.max_perf_pct);
1987 		global_min = percent_ext_fp(global.min_perf_pct);
1988 		if (max_freq != cpu->pstate.turbo_freq) {
1989 			int32_t turbo_factor;
1990 
1991 			turbo_factor = div_ext_fp(cpu->pstate.turbo_pstate,
1992 						  cpu->pstate.max_pstate);
1993 			global_min = mul_ext_fp(global_min, turbo_factor);
1994 			global_max = mul_ext_fp(global_max, turbo_factor);
1995 		}
1996 		global_min = clamp_t(int32_t, global_min, 0, global_max);
1997 
1998 		cpu->min_perf = max(min_policy_perf, global_min);
1999 		cpu->min_perf = min(cpu->min_perf, max_policy_perf);
2000 		cpu->max_perf = min(max_policy_perf, global_max);
2001 		cpu->max_perf = max(min_policy_perf, cpu->max_perf);
2002 
2003 		/* Make sure min_perf <= max_perf */
2004 		cpu->min_perf = min(cpu->min_perf, cpu->max_perf);
2005 	}
2006 
2007 	cpu->max_perf = round_up(cpu->max_perf, EXT_FRAC_BITS);
2008 	cpu->min_perf = round_up(cpu->min_perf, EXT_FRAC_BITS);
2009 
2010 	pr_debug("cpu:%d max_perf_pct:%d min_perf_pct:%d\n", policy->cpu,
2011 		 fp_ext_toint(cpu->max_perf * 100),
2012 		 fp_ext_toint(cpu->min_perf * 100));
2013 }
2014 
2015 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
2016 {
2017 	struct cpudata *cpu;
2018 
2019 	if (!policy->cpuinfo.max_freq)
2020 		return -ENODEV;
2021 
2022 	pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
2023 		 policy->cpuinfo.max_freq, policy->max);
2024 
2025 	cpu = all_cpu_data[policy->cpu];
2026 	cpu->policy = policy->policy;
2027 
2028 	mutex_lock(&intel_pstate_limits_lock);
2029 
2030 	intel_pstate_update_perf_limits(policy, cpu);
2031 
2032 	if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
2033 		/*
2034 		 * NOHZ_FULL CPUs need this as the governor callback may not
2035 		 * be invoked on them.
2036 		 */
2037 		intel_pstate_clear_update_util_hook(policy->cpu);
2038 		intel_pstate_max_within_limits(cpu);
2039 	}
2040 
2041 	intel_pstate_set_update_util_hook(policy->cpu);
2042 
2043 	if (hwp_active)
2044 		intel_pstate_hwp_set(policy->cpu);
2045 
2046 	mutex_unlock(&intel_pstate_limits_lock);
2047 
2048 	return 0;
2049 }
2050 
2051 static void intel_pstate_adjust_policy_max(struct cpufreq_policy *policy,
2052 					 struct cpudata *cpu)
2053 {
2054 	if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
2055 	    policy->max < policy->cpuinfo.max_freq &&
2056 	    policy->max > cpu->pstate.max_freq) {
2057 		pr_debug("policy->max > max non turbo frequency\n");
2058 		policy->max = policy->cpuinfo.max_freq;
2059 	}
2060 }
2061 
2062 static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
2063 {
2064 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2065 
2066 	update_turbo_state();
2067 	cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
2068 				     intel_pstate_get_max_freq(cpu));
2069 
2070 	if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
2071 	    policy->policy != CPUFREQ_POLICY_PERFORMANCE)
2072 		return -EINVAL;
2073 
2074 	intel_pstate_adjust_policy_max(policy, cpu);
2075 
2076 	return 0;
2077 }
2078 
2079 static void intel_cpufreq_stop_cpu(struct cpufreq_policy *policy)
2080 {
2081 	intel_pstate_set_min_pstate(all_cpu_data[policy->cpu]);
2082 }
2083 
2084 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
2085 {
2086 	pr_debug("CPU %d exiting\n", policy->cpu);
2087 
2088 	intel_pstate_clear_update_util_hook(policy->cpu);
2089 	if (hwp_active)
2090 		intel_pstate_hwp_save_state(policy);
2091 	else
2092 		intel_cpufreq_stop_cpu(policy);
2093 }
2094 
2095 static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
2096 {
2097 	intel_pstate_exit_perf_limits(policy);
2098 
2099 	policy->fast_switch_possible = false;
2100 
2101 	return 0;
2102 }
2103 
2104 static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2105 {
2106 	struct cpudata *cpu;
2107 	int rc;
2108 
2109 	rc = intel_pstate_init_cpu(policy->cpu);
2110 	if (rc)
2111 		return rc;
2112 
2113 	cpu = all_cpu_data[policy->cpu];
2114 
2115 	cpu->max_perf = int_ext_tofp(1);
2116 	cpu->min_perf = 0;
2117 
2118 	policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
2119 	policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
2120 
2121 	/* cpuinfo and default policy values */
2122 	policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
2123 	update_turbo_state();
2124 	policy->cpuinfo.max_freq = global.turbo_disabled ?
2125 			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2126 	policy->cpuinfo.max_freq *= cpu->pstate.scaling;
2127 
2128 	intel_pstate_init_acpi_perf_limits(policy);
2129 	cpumask_set_cpu(policy->cpu, policy->cpus);
2130 
2131 	policy->fast_switch_possible = true;
2132 
2133 	return 0;
2134 }
2135 
2136 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2137 {
2138 	int ret = __intel_pstate_cpu_init(policy);
2139 
2140 	if (ret)
2141 		return ret;
2142 
2143 	policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
2144 	if (IS_ENABLED(CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE))
2145 		policy->policy = CPUFREQ_POLICY_PERFORMANCE;
2146 	else
2147 		policy->policy = CPUFREQ_POLICY_POWERSAVE;
2148 
2149 	return 0;
2150 }
2151 
2152 static struct cpufreq_driver intel_pstate = {
2153 	.flags		= CPUFREQ_CONST_LOOPS,
2154 	.verify		= intel_pstate_verify_policy,
2155 	.setpolicy	= intel_pstate_set_policy,
2156 	.suspend	= intel_pstate_hwp_save_state,
2157 	.resume		= intel_pstate_resume,
2158 	.get		= intel_pstate_get,
2159 	.init		= intel_pstate_cpu_init,
2160 	.exit		= intel_pstate_cpu_exit,
2161 	.stop_cpu	= intel_pstate_stop_cpu,
2162 	.name		= "intel_pstate",
2163 };
2164 
2165 static int intel_cpufreq_verify_policy(struct cpufreq_policy *policy)
2166 {
2167 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2168 
2169 	update_turbo_state();
2170 	cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
2171 				     intel_pstate_get_max_freq(cpu));
2172 
2173 	intel_pstate_adjust_policy_max(policy, cpu);
2174 
2175 	intel_pstate_update_perf_limits(policy, cpu);
2176 
2177 	return 0;
2178 }
2179 
2180 static int intel_cpufreq_target(struct cpufreq_policy *policy,
2181 				unsigned int target_freq,
2182 				unsigned int relation)
2183 {
2184 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2185 	struct cpufreq_freqs freqs;
2186 	int target_pstate;
2187 
2188 	update_turbo_state();
2189 
2190 	freqs.old = policy->cur;
2191 	freqs.new = target_freq;
2192 
2193 	cpufreq_freq_transition_begin(policy, &freqs);
2194 	switch (relation) {
2195 	case CPUFREQ_RELATION_L:
2196 		target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
2197 		break;
2198 	case CPUFREQ_RELATION_H:
2199 		target_pstate = freqs.new / cpu->pstate.scaling;
2200 		break;
2201 	default:
2202 		target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
2203 		break;
2204 	}
2205 	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2206 	if (target_pstate != cpu->pstate.current_pstate) {
2207 		cpu->pstate.current_pstate = target_pstate;
2208 		wrmsrl_on_cpu(policy->cpu, MSR_IA32_PERF_CTL,
2209 			      pstate_funcs.get_val(cpu, target_pstate));
2210 	}
2211 	freqs.new = target_pstate * cpu->pstate.scaling;
2212 	cpufreq_freq_transition_end(policy, &freqs, false);
2213 
2214 	return 0;
2215 }
2216 
2217 static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
2218 					      unsigned int target_freq)
2219 {
2220 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2221 	int target_pstate;
2222 
2223 	update_turbo_state();
2224 
2225 	target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
2226 	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2227 	intel_pstate_update_pstate(cpu, target_pstate);
2228 	return target_pstate * cpu->pstate.scaling;
2229 }
2230 
2231 static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
2232 {
2233 	int ret = __intel_pstate_cpu_init(policy);
2234 
2235 	if (ret)
2236 		return ret;
2237 
2238 	policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
2239 	/* This reflects the intel_pstate_get_cpu_pstates() setting. */
2240 	policy->cur = policy->cpuinfo.min_freq;
2241 
2242 	return 0;
2243 }
2244 
2245 static struct cpufreq_driver intel_cpufreq = {
2246 	.flags		= CPUFREQ_CONST_LOOPS,
2247 	.verify		= intel_cpufreq_verify_policy,
2248 	.target		= intel_cpufreq_target,
2249 	.fast_switch	= intel_cpufreq_fast_switch,
2250 	.init		= intel_cpufreq_cpu_init,
2251 	.exit		= intel_pstate_cpu_exit,
2252 	.stop_cpu	= intel_cpufreq_stop_cpu,
2253 	.name		= "intel_cpufreq",
2254 };
2255 
2256 static struct cpufreq_driver *default_driver = &intel_pstate;
2257 
2258 static bool pid_in_use(void)
2259 {
2260 	return intel_pstate_driver == &intel_pstate &&
2261 		pstate_funcs.update_util == intel_pstate_update_util_pid;
2262 }
2263 
2264 static void intel_pstate_driver_cleanup(void)
2265 {
2266 	unsigned int cpu;
2267 
2268 	get_online_cpus();
2269 	for_each_online_cpu(cpu) {
2270 		if (all_cpu_data[cpu]) {
2271 			if (intel_pstate_driver == &intel_pstate)
2272 				intel_pstate_clear_update_util_hook(cpu);
2273 
2274 			kfree(all_cpu_data[cpu]);
2275 			all_cpu_data[cpu] = NULL;
2276 		}
2277 	}
2278 	put_online_cpus();
2279 	intel_pstate_driver = NULL;
2280 }
2281 
2282 static int intel_pstate_register_driver(struct cpufreq_driver *driver)
2283 {
2284 	int ret;
2285 
2286 	memset(&global, 0, sizeof(global));
2287 	global.max_perf_pct = 100;
2288 
2289 	intel_pstate_driver = driver;
2290 	ret = cpufreq_register_driver(intel_pstate_driver);
2291 	if (ret) {
2292 		intel_pstate_driver_cleanup();
2293 		return ret;
2294 	}
2295 
2296 	global.min_perf_pct = min_perf_pct_min();
2297 
2298 	if (pid_in_use())
2299 		intel_pstate_debug_expose_params();
2300 
2301 	return 0;
2302 }
2303 
2304 static int intel_pstate_unregister_driver(void)
2305 {
2306 	if (hwp_active)
2307 		return -EBUSY;
2308 
2309 	if (pid_in_use())
2310 		intel_pstate_debug_hide_params();
2311 
2312 	cpufreq_unregister_driver(intel_pstate_driver);
2313 	intel_pstate_driver_cleanup();
2314 
2315 	return 0;
2316 }
2317 
2318 static ssize_t intel_pstate_show_status(char *buf)
2319 {
2320 	if (!intel_pstate_driver)
2321 		return sprintf(buf, "off\n");
2322 
2323 	return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
2324 					"active" : "passive");
2325 }
2326 
2327 static int intel_pstate_update_status(const char *buf, size_t size)
2328 {
2329 	int ret;
2330 
2331 	if (size == 3 && !strncmp(buf, "off", size))
2332 		return intel_pstate_driver ?
2333 			intel_pstate_unregister_driver() : -EINVAL;
2334 
2335 	if (size == 6 && !strncmp(buf, "active", size)) {
2336 		if (intel_pstate_driver) {
2337 			if (intel_pstate_driver == &intel_pstate)
2338 				return 0;
2339 
2340 			ret = intel_pstate_unregister_driver();
2341 			if (ret)
2342 				return ret;
2343 		}
2344 
2345 		return intel_pstate_register_driver(&intel_pstate);
2346 	}
2347 
2348 	if (size == 7 && !strncmp(buf, "passive", size)) {
2349 		if (intel_pstate_driver) {
2350 			if (intel_pstate_driver == &intel_cpufreq)
2351 				return 0;
2352 
2353 			ret = intel_pstate_unregister_driver();
2354 			if (ret)
2355 				return ret;
2356 		}
2357 
2358 		return intel_pstate_register_driver(&intel_cpufreq);
2359 	}
2360 
2361 	return -EINVAL;
2362 }
2363 
2364 static int no_load __initdata;
2365 static int no_hwp __initdata;
2366 static int hwp_only __initdata;
2367 static unsigned int force_load __initdata;
2368 
2369 static int __init intel_pstate_msrs_not_valid(void)
2370 {
2371 	if (!pstate_funcs.get_max() ||
2372 	    !pstate_funcs.get_min() ||
2373 	    !pstate_funcs.get_turbo())
2374 		return -ENODEV;
2375 
2376 	return 0;
2377 }
2378 
2379 #ifdef CONFIG_ACPI
2380 static void intel_pstate_use_acpi_profile(void)
2381 {
2382 	switch (acpi_gbl_FADT.preferred_profile) {
2383 	case PM_MOBILE:
2384 	case PM_TABLET:
2385 	case PM_APPLIANCE_PC:
2386 	case PM_DESKTOP:
2387 	case PM_WORKSTATION:
2388 		pstate_funcs.update_util = intel_pstate_update_util;
2389 	}
2390 }
2391 #else
2392 static void intel_pstate_use_acpi_profile(void)
2393 {
2394 }
2395 #endif
2396 
2397 static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
2398 {
2399 	pstate_funcs.get_max   = funcs->get_max;
2400 	pstate_funcs.get_max_physical = funcs->get_max_physical;
2401 	pstate_funcs.get_min   = funcs->get_min;
2402 	pstate_funcs.get_turbo = funcs->get_turbo;
2403 	pstate_funcs.get_scaling = funcs->get_scaling;
2404 	pstate_funcs.get_val   = funcs->get_val;
2405 	pstate_funcs.get_vid   = funcs->get_vid;
2406 	pstate_funcs.update_util = funcs->update_util;
2407 
2408 	intel_pstate_use_acpi_profile();
2409 }
2410 
2411 #ifdef CONFIG_ACPI
2412 
2413 static bool __init intel_pstate_no_acpi_pss(void)
2414 {
2415 	int i;
2416 
2417 	for_each_possible_cpu(i) {
2418 		acpi_status status;
2419 		union acpi_object *pss;
2420 		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
2421 		struct acpi_processor *pr = per_cpu(processors, i);
2422 
2423 		if (!pr)
2424 			continue;
2425 
2426 		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
2427 		if (ACPI_FAILURE(status))
2428 			continue;
2429 
2430 		pss = buffer.pointer;
2431 		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
2432 			kfree(pss);
2433 			return false;
2434 		}
2435 
2436 		kfree(pss);
2437 	}
2438 
2439 	return true;
2440 }
2441 
2442 static bool __init intel_pstate_has_acpi_ppc(void)
2443 {
2444 	int i;
2445 
2446 	for_each_possible_cpu(i) {
2447 		struct acpi_processor *pr = per_cpu(processors, i);
2448 
2449 		if (!pr)
2450 			continue;
2451 		if (acpi_has_method(pr->handle, "_PPC"))
2452 			return true;
2453 	}
2454 	return false;
2455 }
2456 
2457 enum {
2458 	PSS,
2459 	PPC,
2460 };
2461 
2462 struct hw_vendor_info {
2463 	u16  valid;
2464 	char oem_id[ACPI_OEM_ID_SIZE];
2465 	char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
2466 	int  oem_pwr_table;
2467 };
2468 
2469 /* Hardware vendor-specific info that has its own power management modes */
2470 static struct hw_vendor_info vendor_info[] __initdata = {
2471 	{1, "HP    ", "ProLiant", PSS},
2472 	{1, "ORACLE", "X4-2    ", PPC},
2473 	{1, "ORACLE", "X4-2L   ", PPC},
2474 	{1, "ORACLE", "X4-2B   ", PPC},
2475 	{1, "ORACLE", "X3-2    ", PPC},
2476 	{1, "ORACLE", "X3-2L   ", PPC},
2477 	{1, "ORACLE", "X3-2B   ", PPC},
2478 	{1, "ORACLE", "X4470M2 ", PPC},
2479 	{1, "ORACLE", "X4270M3 ", PPC},
2480 	{1, "ORACLE", "X4270M2 ", PPC},
2481 	{1, "ORACLE", "X4170M2 ", PPC},
2482 	{1, "ORACLE", "X4170 M3", PPC},
2483 	{1, "ORACLE", "X4275 M3", PPC},
2484 	{1, "ORACLE", "X6-2    ", PPC},
2485 	{1, "ORACLE", "Sudbury ", PPC},
2486 	{0, "", ""},
2487 };
2488 
2489 static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
2490 {
2491 	struct acpi_table_header hdr;
2492 	struct hw_vendor_info *v_info;
2493 	const struct x86_cpu_id *id;
2494 	u64 misc_pwr;
2495 
2496 	id = x86_match_cpu(intel_pstate_cpu_oob_ids);
2497 	if (id) {
2498 		rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
2499 		if ( misc_pwr & (1 << 8))
2500 			return true;
2501 	}
2502 
2503 	if (acpi_disabled ||
2504 	    ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
2505 		return false;
2506 
2507 	for (v_info = vendor_info; v_info->valid; v_info++) {
2508 		if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
2509 			!strncmp(hdr.oem_table_id, v_info->oem_table_id,
2510 						ACPI_OEM_TABLE_ID_SIZE))
2511 			switch (v_info->oem_pwr_table) {
2512 			case PSS:
2513 				return intel_pstate_no_acpi_pss();
2514 			case PPC:
2515 				return intel_pstate_has_acpi_ppc() &&
2516 					(!force_load);
2517 			}
2518 	}
2519 
2520 	return false;
2521 }
2522 
2523 static void intel_pstate_request_control_from_smm(void)
2524 {
2525 	/*
2526 	 * It may be unsafe to request P-states control from SMM if _PPC support
2527 	 * has not been enabled.
2528 	 */
2529 	if (acpi_ppc)
2530 		acpi_processor_pstate_control();
2531 }
2532 #else /* CONFIG_ACPI not enabled */
2533 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
2534 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
2535 static inline void intel_pstate_request_control_from_smm(void) {}
2536 #endif /* CONFIG_ACPI */
2537 
2538 static const struct x86_cpu_id hwp_support_ids[] __initconst = {
2539 	{ X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
2540 	{}
2541 };
2542 
2543 static int __init intel_pstate_init(void)
2544 {
2545 	int rc;
2546 
2547 	if (no_load)
2548 		return -ENODEV;
2549 
2550 	if (x86_match_cpu(hwp_support_ids)) {
2551 		copy_cpu_funcs(&core_funcs);
2552 		if (no_hwp) {
2553 			pstate_funcs.update_util = intel_pstate_update_util;
2554 		} else {
2555 			hwp_active++;
2556 			intel_pstate.attr = hwp_cpufreq_attrs;
2557 			pstate_funcs.update_util = intel_pstate_update_util_hwp;
2558 			goto hwp_cpu_matched;
2559 		}
2560 	} else {
2561 		const struct x86_cpu_id *id;
2562 
2563 		id = x86_match_cpu(intel_pstate_cpu_ids);
2564 		if (!id)
2565 			return -ENODEV;
2566 
2567 		copy_cpu_funcs((struct pstate_funcs *)id->driver_data);
2568 	}
2569 
2570 	if (intel_pstate_msrs_not_valid())
2571 		return -ENODEV;
2572 
2573 hwp_cpu_matched:
2574 	/*
2575 	 * The Intel pstate driver will be ignored if the platform
2576 	 * firmware has its own power management modes.
2577 	 */
2578 	if (intel_pstate_platform_pwr_mgmt_exists())
2579 		return -ENODEV;
2580 
2581 	if (!hwp_active && hwp_only)
2582 		return -ENOTSUPP;
2583 
2584 	pr_info("Intel P-state driver initializing\n");
2585 
2586 	all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
2587 	if (!all_cpu_data)
2588 		return -ENOMEM;
2589 
2590 	intel_pstate_request_control_from_smm();
2591 
2592 	intel_pstate_sysfs_expose_params();
2593 
2594 	mutex_lock(&intel_pstate_driver_lock);
2595 	rc = intel_pstate_register_driver(default_driver);
2596 	mutex_unlock(&intel_pstate_driver_lock);
2597 	if (rc)
2598 		return rc;
2599 
2600 	if (hwp_active)
2601 		pr_info("HWP enabled\n");
2602 
2603 	return 0;
2604 }
2605 device_initcall(intel_pstate_init);
2606 
2607 static int __init intel_pstate_setup(char *str)
2608 {
2609 	if (!str)
2610 		return -EINVAL;
2611 
2612 	if (!strcmp(str, "disable")) {
2613 		no_load = 1;
2614 	} else if (!strcmp(str, "passive")) {
2615 		pr_info("Passive mode enabled\n");
2616 		default_driver = &intel_cpufreq;
2617 		no_hwp = 1;
2618 	}
2619 	if (!strcmp(str, "no_hwp")) {
2620 		pr_info("HWP disabled\n");
2621 		no_hwp = 1;
2622 	}
2623 	if (!strcmp(str, "force"))
2624 		force_load = 1;
2625 	if (!strcmp(str, "hwp_only"))
2626 		hwp_only = 1;
2627 	if (!strcmp(str, "per_cpu_perf_limits"))
2628 		per_cpu_limits = true;
2629 
2630 #ifdef CONFIG_ACPI
2631 	if (!strcmp(str, "support_acpi_ppc"))
2632 		acpi_ppc = true;
2633 #endif
2634 
2635 	return 0;
2636 }
2637 early_param("intel_pstate", intel_pstate_setup);
2638 
2639 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
2640 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
2641 MODULE_LICENSE("GPL");
2642