1 /*
2  * intel_pstate.c: Native P state management for Intel processors
3  *
4  * (C) Copyright 2012 Intel Corporation
5  * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; version 2
10  * of the License.
11  */
12 
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 
15 #include <linux/kernel.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/module.h>
18 #include <linux/ktime.h>
19 #include <linux/hrtimer.h>
20 #include <linux/tick.h>
21 #include <linux/slab.h>
22 #include <linux/sched/cpufreq.h>
23 #include <linux/list.h>
24 #include <linux/cpu.h>
25 #include <linux/cpufreq.h>
26 #include <linux/sysfs.h>
27 #include <linux/types.h>
28 #include <linux/fs.h>
29 #include <linux/debugfs.h>
30 #include <linux/acpi.h>
31 #include <linux/vmalloc.h>
32 #include <trace/events/power.h>
33 
34 #include <asm/div64.h>
35 #include <asm/msr.h>
36 #include <asm/cpu_device_id.h>
37 #include <asm/cpufeature.h>
38 #include <asm/intel-family.h>
39 
40 #define INTEL_CPUFREQ_TRANSITION_LATENCY	20000
41 
42 #ifdef CONFIG_ACPI
43 #include <acpi/processor.h>
44 #include <acpi/cppc_acpi.h>
45 #endif
46 
47 #define FRAC_BITS 8
48 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
49 #define fp_toint(X) ((X) >> FRAC_BITS)
50 
51 #define EXT_BITS 6
52 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
53 #define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
54 #define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
55 
56 static inline int32_t mul_fp(int32_t x, int32_t y)
57 {
58 	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
59 }
60 
61 static inline int32_t div_fp(s64 x, s64 y)
62 {
63 	return div64_s64((int64_t)x << FRAC_BITS, y);
64 }
65 
66 static inline int ceiling_fp(int32_t x)
67 {
68 	int mask, ret;
69 
70 	ret = fp_toint(x);
71 	mask = (1 << FRAC_BITS) - 1;
72 	if (x & mask)
73 		ret += 1;
74 	return ret;
75 }
76 
77 static inline u64 mul_ext_fp(u64 x, u64 y)
78 {
79 	return (x * y) >> EXT_FRAC_BITS;
80 }
81 
82 static inline u64 div_ext_fp(u64 x, u64 y)
83 {
84 	return div64_u64(x << EXT_FRAC_BITS, y);
85 }
86 
87 /**
88  * struct sample -	Store performance sample
89  * @core_avg_perf:	Ratio of APERF/MPERF which is the actual average
90  *			performance during last sample period
91  * @busy_scaled:	Scaled busy value which is used to calculate next
92  *			P state. This can be different than core_avg_perf
93  *			to account for cpu idle period
94  * @aperf:		Difference of actual performance frequency clock count
95  *			read from APERF MSR between last and current sample
96  * @mperf:		Difference of maximum performance frequency clock count
97  *			read from MPERF MSR between last and current sample
98  * @tsc:		Difference of time stamp counter between last and
99  *			current sample
100  * @time:		Current time from scheduler
101  *
102  * This structure is used in the cpudata structure to store performance sample
103  * data for choosing next P State.
104  */
105 struct sample {
106 	int32_t core_avg_perf;
107 	int32_t busy_scaled;
108 	u64 aperf;
109 	u64 mperf;
110 	u64 tsc;
111 	u64 time;
112 };
113 
114 /**
115  * struct pstate_data - Store P state data
116  * @current_pstate:	Current requested P state
117  * @min_pstate:		Min P state possible for this platform
118  * @max_pstate:		Max P state possible for this platform
119  * @max_pstate_physical:This is physical Max P state for a processor
120  *			This can be higher than the max_pstate which can
121  *			be limited by platform thermal design power limits
122  * @scaling:		Scaling factor to  convert frequency to cpufreq
123  *			frequency units
124  * @turbo_pstate:	Max Turbo P state possible for this platform
125  * @max_freq:		@max_pstate frequency in cpufreq units
126  * @turbo_freq:		@turbo_pstate frequency in cpufreq units
127  *
128  * Stores the per cpu model P state limits and current P state.
129  */
130 struct pstate_data {
131 	int	current_pstate;
132 	int	min_pstate;
133 	int	max_pstate;
134 	int	max_pstate_physical;
135 	int	scaling;
136 	int	turbo_pstate;
137 	unsigned int max_freq;
138 	unsigned int turbo_freq;
139 };
140 
141 /**
142  * struct vid_data -	Stores voltage information data
143  * @min:		VID data for this platform corresponding to
144  *			the lowest P state
145  * @max:		VID data corresponding to the highest P State.
146  * @turbo:		VID data for turbo P state
147  * @ratio:		Ratio of (vid max - vid min) /
148  *			(max P state - Min P State)
149  *
150  * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
151  * This data is used in Atom platforms, where in addition to target P state,
152  * the voltage data needs to be specified to select next P State.
153  */
154 struct vid_data {
155 	int min;
156 	int max;
157 	int turbo;
158 	int32_t ratio;
159 };
160 
161 /**
162  * struct _pid -	Stores PID data
163  * @setpoint:		Target set point for busyness or performance
164  * @integral:		Storage for accumulated error values
165  * @p_gain:		PID proportional gain
166  * @i_gain:		PID integral gain
167  * @d_gain:		PID derivative gain
168  * @deadband:		PID deadband
169  * @last_err:		Last error storage for integral part of PID calculation
170  *
171  * Stores PID coefficients and last error for PID controller.
172  */
173 struct _pid {
174 	int setpoint;
175 	int32_t integral;
176 	int32_t p_gain;
177 	int32_t i_gain;
178 	int32_t d_gain;
179 	int deadband;
180 	int32_t last_err;
181 };
182 
183 /**
184  * struct perf_limits - Store user and policy limits
185  * @no_turbo:		User requested turbo state from intel_pstate sysfs
186  * @turbo_disabled:	Platform turbo status either from msr
187  *			MSR_IA32_MISC_ENABLE or when maximum available pstate
188  *			matches the maximum turbo pstate
189  * @max_perf_pct:	Effective maximum performance limit in percentage, this
190  *			is minimum of either limits enforced by cpufreq policy
191  *			or limits from user set limits via intel_pstate sysfs
192  * @min_perf_pct:	Effective minimum performance limit in percentage, this
193  *			is maximum of either limits enforced by cpufreq policy
194  *			or limits from user set limits via intel_pstate sysfs
195  * @max_perf:		This is a scaled value between 0 to 255 for max_perf_pct
196  *			This value is used to limit max pstate
197  * @min_perf:		This is a scaled value between 0 to 255 for min_perf_pct
198  *			This value is used to limit min pstate
199  * @max_policy_pct:	The maximum performance in percentage enforced by
200  *			cpufreq setpolicy interface
201  * @max_sysfs_pct:	The maximum performance in percentage enforced by
202  *			intel pstate sysfs interface, unused when per cpu
203  *			controls are enforced
204  * @min_policy_pct:	The minimum performance in percentage enforced by
205  *			cpufreq setpolicy interface
206  * @min_sysfs_pct:	The minimum performance in percentage enforced by
207  *			intel pstate sysfs interface, unused when per cpu
208  *			controls are enforced
209  *
210  * Storage for user and policy defined limits.
211  */
212 struct perf_limits {
213 	int no_turbo;
214 	int turbo_disabled;
215 	int max_perf_pct;
216 	int min_perf_pct;
217 	int32_t max_perf;
218 	int32_t min_perf;
219 	int max_policy_pct;
220 	int max_sysfs_pct;
221 	int min_policy_pct;
222 	int min_sysfs_pct;
223 };
224 
225 /**
226  * struct cpudata -	Per CPU instance data storage
227  * @cpu:		CPU number for this instance data
228  * @policy:		CPUFreq policy value
229  * @update_util:	CPUFreq utility callback information
230  * @update_util_set:	CPUFreq utility callback is set
231  * @iowait_boost:	iowait-related boost fraction
232  * @last_update:	Time of the last update.
233  * @pstate:		Stores P state limits for this CPU
234  * @vid:		Stores VID limits for this CPU
235  * @pid:		Stores PID parameters for this CPU
236  * @last_sample_time:	Last Sample time
237  * @prev_aperf:		Last APERF value read from APERF MSR
238  * @prev_mperf:		Last MPERF value read from MPERF MSR
239  * @prev_tsc:		Last timestamp counter (TSC) value
240  * @prev_cummulative_iowait: IO Wait time difference from last and
241  *			current sample
242  * @sample:		Storage for storing last Sample data
243  * @perf_limits:	Pointer to perf_limit unique to this CPU
244  *			Not all field in the structure are applicable
245  *			when per cpu controls are enforced
246  * @acpi_perf_data:	Stores ACPI perf information read from _PSS
247  * @valid_pss_table:	Set to true for valid ACPI _PSS entries found
248  * @epp_powersave:	Last saved HWP energy performance preference
249  *			(EPP) or energy performance bias (EPB),
250  *			when policy switched to performance
251  * @epp_policy:		Last saved policy used to set EPP/EPB
252  * @epp_default:	Power on default HWP energy performance
253  *			preference/bias
254  * @epp_saved:		Saved EPP/EPB during system suspend or CPU offline
255  *			operation
256  *
257  * This structure stores per CPU instance data for all CPUs.
258  */
259 struct cpudata {
260 	int cpu;
261 
262 	unsigned int policy;
263 	struct update_util_data update_util;
264 	bool   update_util_set;
265 
266 	struct pstate_data pstate;
267 	struct vid_data vid;
268 	struct _pid pid;
269 
270 	u64	last_update;
271 	u64	last_sample_time;
272 	u64	prev_aperf;
273 	u64	prev_mperf;
274 	u64	prev_tsc;
275 	u64	prev_cummulative_iowait;
276 	struct sample sample;
277 	struct perf_limits *perf_limits;
278 #ifdef CONFIG_ACPI
279 	struct acpi_processor_performance acpi_perf_data;
280 	bool valid_pss_table;
281 #endif
282 	unsigned int iowait_boost;
283 	s16 epp_powersave;
284 	s16 epp_policy;
285 	s16 epp_default;
286 	s16 epp_saved;
287 };
288 
289 static struct cpudata **all_cpu_data;
290 
291 /**
292  * struct pstate_adjust_policy - Stores static PID configuration data
293  * @sample_rate_ms:	PID calculation sample rate in ms
294  * @sample_rate_ns:	Sample rate calculation in ns
295  * @deadband:		PID deadband
296  * @setpoint:		PID Setpoint
297  * @p_gain_pct:		PID proportional gain
298  * @i_gain_pct:		PID integral gain
299  * @d_gain_pct:		PID derivative gain
300  *
301  * Stores per CPU model static PID configuration data.
302  */
303 struct pstate_adjust_policy {
304 	int sample_rate_ms;
305 	s64 sample_rate_ns;
306 	int deadband;
307 	int setpoint;
308 	int p_gain_pct;
309 	int d_gain_pct;
310 	int i_gain_pct;
311 };
312 
313 /**
314  * struct pstate_funcs - Per CPU model specific callbacks
315  * @get_max:		Callback to get maximum non turbo effective P state
316  * @get_max_physical:	Callback to get maximum non turbo physical P state
317  * @get_min:		Callback to get minimum P state
318  * @get_turbo:		Callback to get turbo P state
319  * @get_scaling:	Callback to get frequency scaling factor
320  * @get_val:		Callback to convert P state to actual MSR write value
321  * @get_vid:		Callback to get VID data for Atom platforms
322  * @get_target_pstate:	Callback to a function to calculate next P state to use
323  *
324  * Core and Atom CPU models have different way to get P State limits. This
325  * structure is used to store those callbacks.
326  */
327 struct pstate_funcs {
328 	int (*get_max)(void);
329 	int (*get_max_physical)(void);
330 	int (*get_min)(void);
331 	int (*get_turbo)(void);
332 	int (*get_scaling)(void);
333 	u64 (*get_val)(struct cpudata*, int pstate);
334 	void (*get_vid)(struct cpudata *);
335 	int32_t (*get_target_pstate)(struct cpudata *);
336 };
337 
338 /**
339  * struct cpu_defaults- Per CPU model default config data
340  * @pid_policy:	PID config data
341  * @funcs:		Callback function data
342  */
343 struct cpu_defaults {
344 	struct pstate_adjust_policy pid_policy;
345 	struct pstate_funcs funcs;
346 };
347 
348 static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu);
349 static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu);
350 
351 static struct pstate_adjust_policy pid_params __read_mostly;
352 static struct pstate_funcs pstate_funcs __read_mostly;
353 static int hwp_active __read_mostly;
354 static bool per_cpu_limits __read_mostly;
355 
356 static bool driver_registered __read_mostly;
357 
358 #ifdef CONFIG_ACPI
359 static bool acpi_ppc;
360 #endif
361 
362 static struct perf_limits performance_limits;
363 static struct perf_limits powersave_limits;
364 static struct perf_limits *limits;
365 
366 static void intel_pstate_init_limits(struct perf_limits *limits)
367 {
368 	memset(limits, 0, sizeof(*limits));
369 	limits->max_perf_pct = 100;
370 	limits->max_perf = int_ext_tofp(1);
371 	limits->max_policy_pct = 100;
372 	limits->max_sysfs_pct = 100;
373 }
374 
375 static void intel_pstate_set_performance_limits(struct perf_limits *limits)
376 {
377 	intel_pstate_init_limits(limits);
378 	limits->min_perf_pct = 100;
379 	limits->min_perf = int_ext_tofp(1);
380 }
381 
382 static DEFINE_MUTEX(intel_pstate_driver_lock);
383 static DEFINE_MUTEX(intel_pstate_limits_lock);
384 
385 #ifdef CONFIG_ACPI
386 
387 static bool intel_pstate_get_ppc_enable_status(void)
388 {
389 	if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
390 	    acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
391 		return true;
392 
393 	return acpi_ppc;
394 }
395 
396 #ifdef CONFIG_ACPI_CPPC_LIB
397 
398 /* The work item is needed to avoid CPU hotplug locking issues */
399 static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
400 {
401 	sched_set_itmt_support();
402 }
403 
404 static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);
405 
406 static void intel_pstate_set_itmt_prio(int cpu)
407 {
408 	struct cppc_perf_caps cppc_perf;
409 	static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
410 	int ret;
411 
412 	ret = cppc_get_perf_caps(cpu, &cppc_perf);
413 	if (ret)
414 		return;
415 
416 	/*
417 	 * The priorities can be set regardless of whether or not
418 	 * sched_set_itmt_support(true) has been called and it is valid to
419 	 * update them at any time after it has been called.
420 	 */
421 	sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);
422 
423 	if (max_highest_perf <= min_highest_perf) {
424 		if (cppc_perf.highest_perf > max_highest_perf)
425 			max_highest_perf = cppc_perf.highest_perf;
426 
427 		if (cppc_perf.highest_perf < min_highest_perf)
428 			min_highest_perf = cppc_perf.highest_perf;
429 
430 		if (max_highest_perf > min_highest_perf) {
431 			/*
432 			 * This code can be run during CPU online under the
433 			 * CPU hotplug locks, so sched_set_itmt_support()
434 			 * cannot be called from here.  Queue up a work item
435 			 * to invoke it.
436 			 */
437 			schedule_work(&sched_itmt_work);
438 		}
439 	}
440 }
441 #else
442 static void intel_pstate_set_itmt_prio(int cpu)
443 {
444 }
445 #endif
446 
447 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
448 {
449 	struct cpudata *cpu;
450 	int ret;
451 	int i;
452 
453 	if (hwp_active) {
454 		intel_pstate_set_itmt_prio(policy->cpu);
455 		return;
456 	}
457 
458 	if (!intel_pstate_get_ppc_enable_status())
459 		return;
460 
461 	cpu = all_cpu_data[policy->cpu];
462 
463 	ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
464 						  policy->cpu);
465 	if (ret)
466 		return;
467 
468 	/*
469 	 * Check if the control value in _PSS is for PERF_CTL MSR, which should
470 	 * guarantee that the states returned by it map to the states in our
471 	 * list directly.
472 	 */
473 	if (cpu->acpi_perf_data.control_register.space_id !=
474 						ACPI_ADR_SPACE_FIXED_HARDWARE)
475 		goto err;
476 
477 	/*
478 	 * If there is only one entry _PSS, simply ignore _PSS and continue as
479 	 * usual without taking _PSS into account
480 	 */
481 	if (cpu->acpi_perf_data.state_count < 2)
482 		goto err;
483 
484 	pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
485 	for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
486 		pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
487 			 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
488 			 (u32) cpu->acpi_perf_data.states[i].core_frequency,
489 			 (u32) cpu->acpi_perf_data.states[i].power,
490 			 (u32) cpu->acpi_perf_data.states[i].control);
491 	}
492 
493 	/*
494 	 * The _PSS table doesn't contain whole turbo frequency range.
495 	 * This just contains +1 MHZ above the max non turbo frequency,
496 	 * with control value corresponding to max turbo ratio. But
497 	 * when cpufreq set policy is called, it will call with this
498 	 * max frequency, which will cause a reduced performance as
499 	 * this driver uses real max turbo frequency as the max
500 	 * frequency. So correct this frequency in _PSS table to
501 	 * correct max turbo frequency based on the turbo state.
502 	 * Also need to convert to MHz as _PSS freq is in MHz.
503 	 */
504 	if (!limits->turbo_disabled)
505 		cpu->acpi_perf_data.states[0].core_frequency =
506 					policy->cpuinfo.max_freq / 1000;
507 	cpu->valid_pss_table = true;
508 	pr_debug("_PPC limits will be enforced\n");
509 
510 	return;
511 
512  err:
513 	cpu->valid_pss_table = false;
514 	acpi_processor_unregister_performance(policy->cpu);
515 }
516 
517 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
518 {
519 	struct cpudata *cpu;
520 
521 	cpu = all_cpu_data[policy->cpu];
522 	if (!cpu->valid_pss_table)
523 		return;
524 
525 	acpi_processor_unregister_performance(policy->cpu);
526 }
527 #else
528 static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
529 {
530 }
531 
532 static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
533 {
534 }
535 #endif
536 
537 static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
538 			     int deadband, int integral) {
539 	pid->setpoint = int_tofp(setpoint);
540 	pid->deadband  = int_tofp(deadband);
541 	pid->integral  = int_tofp(integral);
542 	pid->last_err  = int_tofp(setpoint) - int_tofp(busy);
543 }
544 
545 static inline void pid_p_gain_set(struct _pid *pid, int percent)
546 {
547 	pid->p_gain = div_fp(percent, 100);
548 }
549 
550 static inline void pid_i_gain_set(struct _pid *pid, int percent)
551 {
552 	pid->i_gain = div_fp(percent, 100);
553 }
554 
555 static inline void pid_d_gain_set(struct _pid *pid, int percent)
556 {
557 	pid->d_gain = div_fp(percent, 100);
558 }
559 
560 static signed int pid_calc(struct _pid *pid, int32_t busy)
561 {
562 	signed int result;
563 	int32_t pterm, dterm, fp_error;
564 	int32_t integral_limit;
565 
566 	fp_error = pid->setpoint - busy;
567 
568 	if (abs(fp_error) <= pid->deadband)
569 		return 0;
570 
571 	pterm = mul_fp(pid->p_gain, fp_error);
572 
573 	pid->integral += fp_error;
574 
575 	/*
576 	 * We limit the integral here so that it will never
577 	 * get higher than 30.  This prevents it from becoming
578 	 * too large an input over long periods of time and allows
579 	 * it to get factored out sooner.
580 	 *
581 	 * The value of 30 was chosen through experimentation.
582 	 */
583 	integral_limit = int_tofp(30);
584 	if (pid->integral > integral_limit)
585 		pid->integral = integral_limit;
586 	if (pid->integral < -integral_limit)
587 		pid->integral = -integral_limit;
588 
589 	dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
590 	pid->last_err = fp_error;
591 
592 	result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
593 	result = result + (1 << (FRAC_BITS-1));
594 	return (signed int)fp_toint(result);
595 }
596 
597 static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
598 {
599 	pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
600 	pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
601 	pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
602 
603 	pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
604 }
605 
606 static inline void intel_pstate_reset_all_pid(void)
607 {
608 	unsigned int cpu;
609 
610 	for_each_online_cpu(cpu) {
611 		if (all_cpu_data[cpu])
612 			intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
613 	}
614 }
615 
616 static inline void update_turbo_state(void)
617 {
618 	u64 misc_en;
619 	struct cpudata *cpu;
620 
621 	cpu = all_cpu_data[0];
622 	rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
623 	limits->turbo_disabled =
624 		(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
625 		 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
626 }
627 
628 static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
629 {
630 	u64 epb;
631 	int ret;
632 
633 	if (!static_cpu_has(X86_FEATURE_EPB))
634 		return -ENXIO;
635 
636 	ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
637 	if (ret)
638 		return (s16)ret;
639 
640 	return (s16)(epb & 0x0f);
641 }
642 
643 static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
644 {
645 	s16 epp;
646 
647 	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
648 		/*
649 		 * When hwp_req_data is 0, means that caller didn't read
650 		 * MSR_HWP_REQUEST, so need to read and get EPP.
651 		 */
652 		if (!hwp_req_data) {
653 			epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
654 					    &hwp_req_data);
655 			if (epp)
656 				return epp;
657 		}
658 		epp = (hwp_req_data >> 24) & 0xff;
659 	} else {
660 		/* When there is no EPP present, HWP uses EPB settings */
661 		epp = intel_pstate_get_epb(cpu_data);
662 	}
663 
664 	return epp;
665 }
666 
667 static int intel_pstate_set_epb(int cpu, s16 pref)
668 {
669 	u64 epb;
670 	int ret;
671 
672 	if (!static_cpu_has(X86_FEATURE_EPB))
673 		return -ENXIO;
674 
675 	ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
676 	if (ret)
677 		return ret;
678 
679 	epb = (epb & ~0x0f) | pref;
680 	wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
681 
682 	return 0;
683 }
684 
685 /*
686  * EPP/EPB display strings corresponding to EPP index in the
687  * energy_perf_strings[]
688  *	index		String
689  *-------------------------------------
690  *	0		default
691  *	1		performance
692  *	2		balance_performance
693  *	3		balance_power
694  *	4		power
695  */
696 static const char * const energy_perf_strings[] = {
697 	"default",
698 	"performance",
699 	"balance_performance",
700 	"balance_power",
701 	"power",
702 	NULL
703 };
704 
705 static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data)
706 {
707 	s16 epp;
708 	int index = -EINVAL;
709 
710 	epp = intel_pstate_get_epp(cpu_data, 0);
711 	if (epp < 0)
712 		return epp;
713 
714 	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
715 		/*
716 		 * Range:
717 		 *	0x00-0x3F	:	Performance
718 		 *	0x40-0x7F	:	Balance performance
719 		 *	0x80-0xBF	:	Balance power
720 		 *	0xC0-0xFF	:	Power
721 		 * The EPP is a 8 bit value, but our ranges restrict the
722 		 * value which can be set. Here only using top two bits
723 		 * effectively.
724 		 */
725 		index = (epp >> 6) + 1;
726 	} else if (static_cpu_has(X86_FEATURE_EPB)) {
727 		/*
728 		 * Range:
729 		 *	0x00-0x03	:	Performance
730 		 *	0x04-0x07	:	Balance performance
731 		 *	0x08-0x0B	:	Balance power
732 		 *	0x0C-0x0F	:	Power
733 		 * The EPB is a 4 bit value, but our ranges restrict the
734 		 * value which can be set. Here only using top two bits
735 		 * effectively.
736 		 */
737 		index = (epp >> 2) + 1;
738 	}
739 
740 	return index;
741 }
742 
743 static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
744 					      int pref_index)
745 {
746 	int epp = -EINVAL;
747 	int ret;
748 
749 	if (!pref_index)
750 		epp = cpu_data->epp_default;
751 
752 	mutex_lock(&intel_pstate_limits_lock);
753 
754 	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
755 		u64 value;
756 
757 		ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, &value);
758 		if (ret)
759 			goto return_pref;
760 
761 		value &= ~GENMASK_ULL(31, 24);
762 
763 		/*
764 		 * If epp is not default, convert from index into
765 		 * energy_perf_strings to epp value, by shifting 6
766 		 * bits left to use only top two bits in epp.
767 		 * The resultant epp need to shifted by 24 bits to
768 		 * epp position in MSR_HWP_REQUEST.
769 		 */
770 		if (epp == -EINVAL)
771 			epp = (pref_index - 1) << 6;
772 
773 		value |= (u64)epp << 24;
774 		ret = wrmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, value);
775 	} else {
776 		if (epp == -EINVAL)
777 			epp = (pref_index - 1) << 2;
778 		ret = intel_pstate_set_epb(cpu_data->cpu, epp);
779 	}
780 return_pref:
781 	mutex_unlock(&intel_pstate_limits_lock);
782 
783 	return ret;
784 }
785 
786 static ssize_t show_energy_performance_available_preferences(
787 				struct cpufreq_policy *policy, char *buf)
788 {
789 	int i = 0;
790 	int ret = 0;
791 
792 	while (energy_perf_strings[i] != NULL)
793 		ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);
794 
795 	ret += sprintf(&buf[ret], "\n");
796 
797 	return ret;
798 }
799 
800 cpufreq_freq_attr_ro(energy_performance_available_preferences);
801 
802 static ssize_t store_energy_performance_preference(
803 		struct cpufreq_policy *policy, const char *buf, size_t count)
804 {
805 	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
806 	char str_preference[21];
807 	int ret, i = 0;
808 
809 	ret = sscanf(buf, "%20s", str_preference);
810 	if (ret != 1)
811 		return -EINVAL;
812 
813 	while (energy_perf_strings[i] != NULL) {
814 		if (!strcmp(str_preference, energy_perf_strings[i])) {
815 			intel_pstate_set_energy_pref_index(cpu_data, i);
816 			return count;
817 		}
818 		++i;
819 	}
820 
821 	return -EINVAL;
822 }
823 
824 static ssize_t show_energy_performance_preference(
825 				struct cpufreq_policy *policy, char *buf)
826 {
827 	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
828 	int preference;
829 
830 	preference = intel_pstate_get_energy_pref_index(cpu_data);
831 	if (preference < 0)
832 		return preference;
833 
834 	return  sprintf(buf, "%s\n", energy_perf_strings[preference]);
835 }
836 
837 cpufreq_freq_attr_rw(energy_performance_preference);
838 
839 static struct freq_attr *hwp_cpufreq_attrs[] = {
840 	&energy_performance_preference,
841 	&energy_performance_available_preferences,
842 	NULL,
843 };
844 
845 static void intel_pstate_hwp_set(struct cpufreq_policy *policy)
846 {
847 	int min, hw_min, max, hw_max, cpu, range, adj_range;
848 	struct perf_limits *perf_limits = limits;
849 	u64 value, cap;
850 
851 	for_each_cpu(cpu, policy->cpus) {
852 		int max_perf_pct, min_perf_pct;
853 		struct cpudata *cpu_data = all_cpu_data[cpu];
854 		s16 epp;
855 
856 		if (per_cpu_limits)
857 			perf_limits = all_cpu_data[cpu]->perf_limits;
858 
859 		rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
860 		hw_min = HWP_LOWEST_PERF(cap);
861 		if (limits->no_turbo)
862 			hw_max = HWP_GUARANTEED_PERF(cap);
863 		else
864 			hw_max = HWP_HIGHEST_PERF(cap);
865 		range = hw_max - hw_min;
866 
867 		max_perf_pct = perf_limits->max_perf_pct;
868 		min_perf_pct = perf_limits->min_perf_pct;
869 
870 		rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
871 		adj_range = min_perf_pct * range / 100;
872 		min = hw_min + adj_range;
873 		value &= ~HWP_MIN_PERF(~0L);
874 		value |= HWP_MIN_PERF(min);
875 
876 		adj_range = max_perf_pct * range / 100;
877 		max = hw_min + adj_range;
878 
879 		value &= ~HWP_MAX_PERF(~0L);
880 		value |= HWP_MAX_PERF(max);
881 
882 		if (cpu_data->epp_policy == cpu_data->policy)
883 			goto skip_epp;
884 
885 		cpu_data->epp_policy = cpu_data->policy;
886 
887 		if (cpu_data->epp_saved >= 0) {
888 			epp = cpu_data->epp_saved;
889 			cpu_data->epp_saved = -EINVAL;
890 			goto update_epp;
891 		}
892 
893 		if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
894 			epp = intel_pstate_get_epp(cpu_data, value);
895 			cpu_data->epp_powersave = epp;
896 			/* If EPP read was failed, then don't try to write */
897 			if (epp < 0)
898 				goto skip_epp;
899 
900 
901 			epp = 0;
902 		} else {
903 			/* skip setting EPP, when saved value is invalid */
904 			if (cpu_data->epp_powersave < 0)
905 				goto skip_epp;
906 
907 			/*
908 			 * No need to restore EPP when it is not zero. This
909 			 * means:
910 			 *  - Policy is not changed
911 			 *  - user has manually changed
912 			 *  - Error reading EPB
913 			 */
914 			epp = intel_pstate_get_epp(cpu_data, value);
915 			if (epp)
916 				goto skip_epp;
917 
918 			epp = cpu_data->epp_powersave;
919 		}
920 update_epp:
921 		if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
922 			value &= ~GENMASK_ULL(31, 24);
923 			value |= (u64)epp << 24;
924 		} else {
925 			intel_pstate_set_epb(cpu, epp);
926 		}
927 skip_epp:
928 		wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
929 	}
930 }
931 
932 static int intel_pstate_hwp_set_policy(struct cpufreq_policy *policy)
933 {
934 	if (hwp_active)
935 		intel_pstate_hwp_set(policy);
936 
937 	return 0;
938 }
939 
940 static int intel_pstate_hwp_save_state(struct cpufreq_policy *policy)
941 {
942 	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
943 
944 	if (!hwp_active)
945 		return 0;
946 
947 	cpu_data->epp_saved = intel_pstate_get_epp(cpu_data, 0);
948 
949 	return 0;
950 }
951 
952 static int intel_pstate_resume(struct cpufreq_policy *policy)
953 {
954 	int ret;
955 
956 	if (!hwp_active)
957 		return 0;
958 
959 	mutex_lock(&intel_pstate_limits_lock);
960 
961 	all_cpu_data[policy->cpu]->epp_policy = 0;
962 
963 	ret = intel_pstate_hwp_set_policy(policy);
964 
965 	mutex_unlock(&intel_pstate_limits_lock);
966 
967 	return ret;
968 }
969 
970 static void intel_pstate_update_policies(void)
971 {
972 	int cpu;
973 
974 	for_each_possible_cpu(cpu)
975 		cpufreq_update_policy(cpu);
976 }
977 
978 /************************** debugfs begin ************************/
979 static int pid_param_set(void *data, u64 val)
980 {
981 	*(u32 *)data = val;
982 	intel_pstate_reset_all_pid();
983 	return 0;
984 }
985 
986 static int pid_param_get(void *data, u64 *val)
987 {
988 	*val = *(u32 *)data;
989 	return 0;
990 }
991 DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
992 
993 static struct dentry *debugfs_parent;
994 
995 struct pid_param {
996 	char *name;
997 	void *value;
998 	struct dentry *dentry;
999 };
1000 
1001 static struct pid_param pid_files[] = {
1002 	{"sample_rate_ms", &pid_params.sample_rate_ms, },
1003 	{"d_gain_pct", &pid_params.d_gain_pct, },
1004 	{"i_gain_pct", &pid_params.i_gain_pct, },
1005 	{"deadband", &pid_params.deadband, },
1006 	{"setpoint", &pid_params.setpoint, },
1007 	{"p_gain_pct", &pid_params.p_gain_pct, },
1008 	{NULL, NULL, }
1009 };
1010 
1011 static void intel_pstate_debug_expose_params(void)
1012 {
1013 	int i;
1014 
1015 	debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
1016 	if (IS_ERR_OR_NULL(debugfs_parent))
1017 		return;
1018 
1019 	for (i = 0; pid_files[i].name; i++) {
1020 		struct dentry *dentry;
1021 
1022 		dentry = debugfs_create_file(pid_files[i].name, 0660,
1023 					     debugfs_parent, pid_files[i].value,
1024 					     &fops_pid_param);
1025 		if (!IS_ERR(dentry))
1026 			pid_files[i].dentry = dentry;
1027 	}
1028 }
1029 
1030 static void intel_pstate_debug_hide_params(void)
1031 {
1032 	int i;
1033 
1034 	if (IS_ERR_OR_NULL(debugfs_parent))
1035 		return;
1036 
1037 	for (i = 0; pid_files[i].name; i++) {
1038 		debugfs_remove(pid_files[i].dentry);
1039 		pid_files[i].dentry = NULL;
1040 	}
1041 
1042 	debugfs_remove(debugfs_parent);
1043 	debugfs_parent = NULL;
1044 }
1045 
1046 /************************** debugfs end ************************/
1047 
1048 /************************** sysfs begin ************************/
1049 #define show_one(file_name, object)					\
1050 	static ssize_t show_##file_name					\
1051 	(struct kobject *kobj, struct attribute *attr, char *buf)	\
1052 	{								\
1053 		return sprintf(buf, "%u\n", limits->object);		\
1054 	}
1055 
1056 static ssize_t intel_pstate_show_status(char *buf);
1057 static int intel_pstate_update_status(const char *buf, size_t size);
1058 
1059 static ssize_t show_status(struct kobject *kobj,
1060 			   struct attribute *attr, char *buf)
1061 {
1062 	ssize_t ret;
1063 
1064 	mutex_lock(&intel_pstate_driver_lock);
1065 	ret = intel_pstate_show_status(buf);
1066 	mutex_unlock(&intel_pstate_driver_lock);
1067 
1068 	return ret;
1069 }
1070 
1071 static ssize_t store_status(struct kobject *a, struct attribute *b,
1072 			    const char *buf, size_t count)
1073 {
1074 	char *p = memchr(buf, '\n', count);
1075 	int ret;
1076 
1077 	mutex_lock(&intel_pstate_driver_lock);
1078 	ret = intel_pstate_update_status(buf, p ? p - buf : count);
1079 	mutex_unlock(&intel_pstate_driver_lock);
1080 
1081 	return ret < 0 ? ret : count;
1082 }
1083 
1084 static ssize_t show_turbo_pct(struct kobject *kobj,
1085 				struct attribute *attr, char *buf)
1086 {
1087 	struct cpudata *cpu;
1088 	int total, no_turbo, turbo_pct;
1089 	uint32_t turbo_fp;
1090 
1091 	mutex_lock(&intel_pstate_driver_lock);
1092 
1093 	if (!driver_registered) {
1094 		mutex_unlock(&intel_pstate_driver_lock);
1095 		return -EAGAIN;
1096 	}
1097 
1098 	cpu = all_cpu_data[0];
1099 
1100 	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1101 	no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
1102 	turbo_fp = div_fp(no_turbo, total);
1103 	turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
1104 
1105 	mutex_unlock(&intel_pstate_driver_lock);
1106 
1107 	return sprintf(buf, "%u\n", turbo_pct);
1108 }
1109 
1110 static ssize_t show_num_pstates(struct kobject *kobj,
1111 				struct attribute *attr, char *buf)
1112 {
1113 	struct cpudata *cpu;
1114 	int total;
1115 
1116 	mutex_lock(&intel_pstate_driver_lock);
1117 
1118 	if (!driver_registered) {
1119 		mutex_unlock(&intel_pstate_driver_lock);
1120 		return -EAGAIN;
1121 	}
1122 
1123 	cpu = all_cpu_data[0];
1124 	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1125 
1126 	mutex_unlock(&intel_pstate_driver_lock);
1127 
1128 	return sprintf(buf, "%u\n", total);
1129 }
1130 
1131 static ssize_t show_no_turbo(struct kobject *kobj,
1132 			     struct attribute *attr, char *buf)
1133 {
1134 	ssize_t ret;
1135 
1136 	mutex_lock(&intel_pstate_driver_lock);
1137 
1138 	if (!driver_registered) {
1139 		mutex_unlock(&intel_pstate_driver_lock);
1140 		return -EAGAIN;
1141 	}
1142 
1143 	update_turbo_state();
1144 	if (limits->turbo_disabled)
1145 		ret = sprintf(buf, "%u\n", limits->turbo_disabled);
1146 	else
1147 		ret = sprintf(buf, "%u\n", limits->no_turbo);
1148 
1149 	mutex_unlock(&intel_pstate_driver_lock);
1150 
1151 	return ret;
1152 }
1153 
1154 static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
1155 			      const char *buf, size_t count)
1156 {
1157 	unsigned int input;
1158 	int ret;
1159 
1160 	ret = sscanf(buf, "%u", &input);
1161 	if (ret != 1)
1162 		return -EINVAL;
1163 
1164 	mutex_lock(&intel_pstate_driver_lock);
1165 
1166 	if (!driver_registered) {
1167 		mutex_unlock(&intel_pstate_driver_lock);
1168 		return -EAGAIN;
1169 	}
1170 
1171 	mutex_lock(&intel_pstate_limits_lock);
1172 
1173 	update_turbo_state();
1174 	if (limits->turbo_disabled) {
1175 		pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
1176 		mutex_unlock(&intel_pstate_limits_lock);
1177 		mutex_unlock(&intel_pstate_driver_lock);
1178 		return -EPERM;
1179 	}
1180 
1181 	limits->no_turbo = clamp_t(int, input, 0, 1);
1182 
1183 	mutex_unlock(&intel_pstate_limits_lock);
1184 
1185 	intel_pstate_update_policies();
1186 
1187 	mutex_unlock(&intel_pstate_driver_lock);
1188 
1189 	return count;
1190 }
1191 
1192 static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
1193 				  const char *buf, size_t count)
1194 {
1195 	unsigned int input;
1196 	int ret;
1197 
1198 	ret = sscanf(buf, "%u", &input);
1199 	if (ret != 1)
1200 		return -EINVAL;
1201 
1202 	mutex_lock(&intel_pstate_driver_lock);
1203 
1204 	if (!driver_registered) {
1205 		mutex_unlock(&intel_pstate_driver_lock);
1206 		return -EAGAIN;
1207 	}
1208 
1209 	mutex_lock(&intel_pstate_limits_lock);
1210 
1211 	limits->max_sysfs_pct = clamp_t(int, input, 0 , 100);
1212 	limits->max_perf_pct = min(limits->max_policy_pct,
1213 				   limits->max_sysfs_pct);
1214 	limits->max_perf_pct = max(limits->min_policy_pct,
1215 				   limits->max_perf_pct);
1216 	limits->max_perf_pct = max(limits->min_perf_pct,
1217 				   limits->max_perf_pct);
1218 	limits->max_perf = div_ext_fp(limits->max_perf_pct, 100);
1219 
1220 	mutex_unlock(&intel_pstate_limits_lock);
1221 
1222 	intel_pstate_update_policies();
1223 
1224 	mutex_unlock(&intel_pstate_driver_lock);
1225 
1226 	return count;
1227 }
1228 
1229 static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
1230 				  const char *buf, size_t count)
1231 {
1232 	unsigned int input;
1233 	int ret;
1234 
1235 	ret = sscanf(buf, "%u", &input);
1236 	if (ret != 1)
1237 		return -EINVAL;
1238 
1239 	mutex_lock(&intel_pstate_driver_lock);
1240 
1241 	if (!driver_registered) {
1242 		mutex_unlock(&intel_pstate_driver_lock);
1243 		return -EAGAIN;
1244 	}
1245 
1246 	mutex_lock(&intel_pstate_limits_lock);
1247 
1248 	limits->min_sysfs_pct = clamp_t(int, input, 0 , 100);
1249 	limits->min_perf_pct = max(limits->min_policy_pct,
1250 				   limits->min_sysfs_pct);
1251 	limits->min_perf_pct = min(limits->max_policy_pct,
1252 				   limits->min_perf_pct);
1253 	limits->min_perf_pct = min(limits->max_perf_pct,
1254 				   limits->min_perf_pct);
1255 	limits->min_perf = div_ext_fp(limits->min_perf_pct, 100);
1256 
1257 	mutex_unlock(&intel_pstate_limits_lock);
1258 
1259 	intel_pstate_update_policies();
1260 
1261 	mutex_unlock(&intel_pstate_driver_lock);
1262 
1263 	return count;
1264 }
1265 
1266 show_one(max_perf_pct, max_perf_pct);
1267 show_one(min_perf_pct, min_perf_pct);
1268 
1269 define_one_global_rw(status);
1270 define_one_global_rw(no_turbo);
1271 define_one_global_rw(max_perf_pct);
1272 define_one_global_rw(min_perf_pct);
1273 define_one_global_ro(turbo_pct);
1274 define_one_global_ro(num_pstates);
1275 
1276 static struct attribute *intel_pstate_attributes[] = {
1277 	&status.attr,
1278 	&no_turbo.attr,
1279 	&turbo_pct.attr,
1280 	&num_pstates.attr,
1281 	NULL
1282 };
1283 
1284 static struct attribute_group intel_pstate_attr_group = {
1285 	.attrs = intel_pstate_attributes,
1286 };
1287 
1288 static void __init intel_pstate_sysfs_expose_params(void)
1289 {
1290 	struct kobject *intel_pstate_kobject;
1291 	int rc;
1292 
1293 	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
1294 						&cpu_subsys.dev_root->kobj);
1295 	if (WARN_ON(!intel_pstate_kobject))
1296 		return;
1297 
1298 	rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1299 	if (WARN_ON(rc))
1300 		return;
1301 
1302 	/*
1303 	 * If per cpu limits are enforced there are no global limits, so
1304 	 * return without creating max/min_perf_pct attributes
1305 	 */
1306 	if (per_cpu_limits)
1307 		return;
1308 
1309 	rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
1310 	WARN_ON(rc);
1311 
1312 	rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
1313 	WARN_ON(rc);
1314 
1315 }
1316 /************************** sysfs end ************************/
1317 
1318 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
1319 {
1320 	/* First disable HWP notification interrupt as we don't process them */
1321 	if (static_cpu_has(X86_FEATURE_HWP_NOTIFY))
1322 		wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1323 
1324 	wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1325 	cpudata->epp_policy = 0;
1326 	if (cpudata->epp_default == -EINVAL)
1327 		cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
1328 }
1329 
1330 #define MSR_IA32_POWER_CTL_BIT_EE	19
1331 
1332 /* Disable energy efficiency optimization */
1333 static void intel_pstate_disable_ee(int cpu)
1334 {
1335 	u64 power_ctl;
1336 	int ret;
1337 
1338 	ret = rdmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, &power_ctl);
1339 	if (ret)
1340 		return;
1341 
1342 	if (!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE))) {
1343 		pr_info("Disabling energy efficiency optimization\n");
1344 		power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
1345 		wrmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, power_ctl);
1346 	}
1347 }
1348 
1349 static int atom_get_min_pstate(void)
1350 {
1351 	u64 value;
1352 
1353 	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1354 	return (value >> 8) & 0x7F;
1355 }
1356 
1357 static int atom_get_max_pstate(void)
1358 {
1359 	u64 value;
1360 
1361 	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1362 	return (value >> 16) & 0x7F;
1363 }
1364 
1365 static int atom_get_turbo_pstate(void)
1366 {
1367 	u64 value;
1368 
1369 	rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
1370 	return value & 0x7F;
1371 }
1372 
1373 static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1374 {
1375 	u64 val;
1376 	int32_t vid_fp;
1377 	u32 vid;
1378 
1379 	val = (u64)pstate << 8;
1380 	if (limits->no_turbo && !limits->turbo_disabled)
1381 		val |= (u64)1 << 32;
1382 
1383 	vid_fp = cpudata->vid.min + mul_fp(
1384 		int_tofp(pstate - cpudata->pstate.min_pstate),
1385 		cpudata->vid.ratio);
1386 
1387 	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1388 	vid = ceiling_fp(vid_fp);
1389 
1390 	if (pstate > cpudata->pstate.max_pstate)
1391 		vid = cpudata->vid.turbo;
1392 
1393 	return val | vid;
1394 }
1395 
1396 static int silvermont_get_scaling(void)
1397 {
1398 	u64 value;
1399 	int i;
1400 	/* Defined in Table 35-6 from SDM (Sept 2015) */
1401 	static int silvermont_freq_table[] = {
1402 		83300, 100000, 133300, 116700, 80000};
1403 
1404 	rdmsrl(MSR_FSB_FREQ, value);
1405 	i = value & 0x7;
1406 	WARN_ON(i > 4);
1407 
1408 	return silvermont_freq_table[i];
1409 }
1410 
1411 static int airmont_get_scaling(void)
1412 {
1413 	u64 value;
1414 	int i;
1415 	/* Defined in Table 35-10 from SDM (Sept 2015) */
1416 	static int airmont_freq_table[] = {
1417 		83300, 100000, 133300, 116700, 80000,
1418 		93300, 90000, 88900, 87500};
1419 
1420 	rdmsrl(MSR_FSB_FREQ, value);
1421 	i = value & 0xF;
1422 	WARN_ON(i > 8);
1423 
1424 	return airmont_freq_table[i];
1425 }
1426 
1427 static void atom_get_vid(struct cpudata *cpudata)
1428 {
1429 	u64 value;
1430 
1431 	rdmsrl(MSR_ATOM_CORE_VIDS, value);
1432 	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
1433 	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1434 	cpudata->vid.ratio = div_fp(
1435 		cpudata->vid.max - cpudata->vid.min,
1436 		int_tofp(cpudata->pstate.max_pstate -
1437 			cpudata->pstate.min_pstate));
1438 
1439 	rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1440 	cpudata->vid.turbo = value & 0x7f;
1441 }
1442 
1443 static int core_get_min_pstate(void)
1444 {
1445 	u64 value;
1446 
1447 	rdmsrl(MSR_PLATFORM_INFO, value);
1448 	return (value >> 40) & 0xFF;
1449 }
1450 
1451 static int core_get_max_pstate_physical(void)
1452 {
1453 	u64 value;
1454 
1455 	rdmsrl(MSR_PLATFORM_INFO, value);
1456 	return (value >> 8) & 0xFF;
1457 }
1458 
1459 static int core_get_tdp_ratio(u64 plat_info)
1460 {
1461 	/* Check how many TDP levels present */
1462 	if (plat_info & 0x600000000) {
1463 		u64 tdp_ctrl;
1464 		u64 tdp_ratio;
1465 		int tdp_msr;
1466 		int err;
1467 
1468 		/* Get the TDP level (0, 1, 2) to get ratios */
1469 		err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
1470 		if (err)
1471 			return err;
1472 
1473 		/* TDP MSR are continuous starting at 0x648 */
1474 		tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
1475 		err = rdmsrl_safe(tdp_msr, &tdp_ratio);
1476 		if (err)
1477 			return err;
1478 
1479 		/* For level 1 and 2, bits[23:16] contain the ratio */
1480 		if (tdp_ctrl & 0x03)
1481 			tdp_ratio >>= 16;
1482 
1483 		tdp_ratio &= 0xff; /* ratios are only 8 bits long */
1484 		pr_debug("tdp_ratio %x\n", (int)tdp_ratio);
1485 
1486 		return (int)tdp_ratio;
1487 	}
1488 
1489 	return -ENXIO;
1490 }
1491 
1492 static int core_get_max_pstate(void)
1493 {
1494 	u64 tar;
1495 	u64 plat_info;
1496 	int max_pstate;
1497 	int tdp_ratio;
1498 	int err;
1499 
1500 	rdmsrl(MSR_PLATFORM_INFO, plat_info);
1501 	max_pstate = (plat_info >> 8) & 0xFF;
1502 
1503 	tdp_ratio = core_get_tdp_ratio(plat_info);
1504 	if (tdp_ratio <= 0)
1505 		return max_pstate;
1506 
1507 	if (hwp_active) {
1508 		/* Turbo activation ratio is not used on HWP platforms */
1509 		return tdp_ratio;
1510 	}
1511 
1512 	err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
1513 	if (!err) {
1514 		int tar_levels;
1515 
1516 		/* Do some sanity checking for safety */
1517 		tar_levels = tar & 0xff;
1518 		if (tdp_ratio - 1 == tar_levels) {
1519 			max_pstate = tar_levels;
1520 			pr_debug("max_pstate=TAC %x\n", max_pstate);
1521 		}
1522 	}
1523 
1524 	return max_pstate;
1525 }
1526 
1527 static int core_get_turbo_pstate(void)
1528 {
1529 	u64 value;
1530 	int nont, ret;
1531 
1532 	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1533 	nont = core_get_max_pstate();
1534 	ret = (value) & 255;
1535 	if (ret <= nont)
1536 		ret = nont;
1537 	return ret;
1538 }
1539 
1540 static inline int core_get_scaling(void)
1541 {
1542 	return 100000;
1543 }
1544 
1545 static u64 core_get_val(struct cpudata *cpudata, int pstate)
1546 {
1547 	u64 val;
1548 
1549 	val = (u64)pstate << 8;
1550 	if (limits->no_turbo && !limits->turbo_disabled)
1551 		val |= (u64)1 << 32;
1552 
1553 	return val;
1554 }
1555 
1556 static int knl_get_turbo_pstate(void)
1557 {
1558 	u64 value;
1559 	int nont, ret;
1560 
1561 	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1562 	nont = core_get_max_pstate();
1563 	ret = (((value) >> 8) & 0xFF);
1564 	if (ret <= nont)
1565 		ret = nont;
1566 	return ret;
1567 }
1568 
1569 static struct cpu_defaults core_params = {
1570 	.pid_policy = {
1571 		.sample_rate_ms = 10,
1572 		.deadband = 0,
1573 		.setpoint = 97,
1574 		.p_gain_pct = 20,
1575 		.d_gain_pct = 0,
1576 		.i_gain_pct = 0,
1577 	},
1578 	.funcs = {
1579 		.get_max = core_get_max_pstate,
1580 		.get_max_physical = core_get_max_pstate_physical,
1581 		.get_min = core_get_min_pstate,
1582 		.get_turbo = core_get_turbo_pstate,
1583 		.get_scaling = core_get_scaling,
1584 		.get_val = core_get_val,
1585 		.get_target_pstate = get_target_pstate_use_performance,
1586 	},
1587 };
1588 
1589 static const struct cpu_defaults silvermont_params = {
1590 	.pid_policy = {
1591 		.sample_rate_ms = 10,
1592 		.deadband = 0,
1593 		.setpoint = 60,
1594 		.p_gain_pct = 14,
1595 		.d_gain_pct = 0,
1596 		.i_gain_pct = 4,
1597 	},
1598 	.funcs = {
1599 		.get_max = atom_get_max_pstate,
1600 		.get_max_physical = atom_get_max_pstate,
1601 		.get_min = atom_get_min_pstate,
1602 		.get_turbo = atom_get_turbo_pstate,
1603 		.get_val = atom_get_val,
1604 		.get_scaling = silvermont_get_scaling,
1605 		.get_vid = atom_get_vid,
1606 		.get_target_pstate = get_target_pstate_use_cpu_load,
1607 	},
1608 };
1609 
1610 static const struct cpu_defaults airmont_params = {
1611 	.pid_policy = {
1612 		.sample_rate_ms = 10,
1613 		.deadband = 0,
1614 		.setpoint = 60,
1615 		.p_gain_pct = 14,
1616 		.d_gain_pct = 0,
1617 		.i_gain_pct = 4,
1618 	},
1619 	.funcs = {
1620 		.get_max = atom_get_max_pstate,
1621 		.get_max_physical = atom_get_max_pstate,
1622 		.get_min = atom_get_min_pstate,
1623 		.get_turbo = atom_get_turbo_pstate,
1624 		.get_val = atom_get_val,
1625 		.get_scaling = airmont_get_scaling,
1626 		.get_vid = atom_get_vid,
1627 		.get_target_pstate = get_target_pstate_use_cpu_load,
1628 	},
1629 };
1630 
1631 static const struct cpu_defaults knl_params = {
1632 	.pid_policy = {
1633 		.sample_rate_ms = 10,
1634 		.deadband = 0,
1635 		.setpoint = 97,
1636 		.p_gain_pct = 20,
1637 		.d_gain_pct = 0,
1638 		.i_gain_pct = 0,
1639 	},
1640 	.funcs = {
1641 		.get_max = core_get_max_pstate,
1642 		.get_max_physical = core_get_max_pstate_physical,
1643 		.get_min = core_get_min_pstate,
1644 		.get_turbo = knl_get_turbo_pstate,
1645 		.get_scaling = core_get_scaling,
1646 		.get_val = core_get_val,
1647 		.get_target_pstate = get_target_pstate_use_performance,
1648 	},
1649 };
1650 
1651 static const struct cpu_defaults bxt_params = {
1652 	.pid_policy = {
1653 		.sample_rate_ms = 10,
1654 		.deadband = 0,
1655 		.setpoint = 60,
1656 		.p_gain_pct = 14,
1657 		.d_gain_pct = 0,
1658 		.i_gain_pct = 4,
1659 	},
1660 	.funcs = {
1661 		.get_max = core_get_max_pstate,
1662 		.get_max_physical = core_get_max_pstate_physical,
1663 		.get_min = core_get_min_pstate,
1664 		.get_turbo = core_get_turbo_pstate,
1665 		.get_scaling = core_get_scaling,
1666 		.get_val = core_get_val,
1667 		.get_target_pstate = get_target_pstate_use_cpu_load,
1668 	},
1669 };
1670 
1671 static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
1672 {
1673 	int max_perf = cpu->pstate.turbo_pstate;
1674 	int max_perf_adj;
1675 	int min_perf;
1676 	struct perf_limits *perf_limits = limits;
1677 
1678 	if (limits->no_turbo || limits->turbo_disabled)
1679 		max_perf = cpu->pstate.max_pstate;
1680 
1681 	if (per_cpu_limits)
1682 		perf_limits = cpu->perf_limits;
1683 
1684 	/*
1685 	 * performance can be limited by user through sysfs, by cpufreq
1686 	 * policy, or by cpu specific default values determined through
1687 	 * experimentation.
1688 	 */
1689 	max_perf_adj = fp_ext_toint(max_perf * perf_limits->max_perf);
1690 	*max = clamp_t(int, max_perf_adj,
1691 			cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
1692 
1693 	min_perf = fp_ext_toint(max_perf * perf_limits->min_perf);
1694 	*min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
1695 }
1696 
1697 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1698 {
1699 	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1700 	cpu->pstate.current_pstate = pstate;
1701 	/*
1702 	 * Generally, there is no guarantee that this code will always run on
1703 	 * the CPU being updated, so force the register update to run on the
1704 	 * right CPU.
1705 	 */
1706 	wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1707 		      pstate_funcs.get_val(cpu, pstate));
1708 }
1709 
1710 static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1711 {
1712 	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
1713 }
1714 
1715 static void intel_pstate_max_within_limits(struct cpudata *cpu)
1716 {
1717 	int min_pstate, max_pstate;
1718 
1719 	update_turbo_state();
1720 	intel_pstate_get_min_max(cpu, &min_pstate, &max_pstate);
1721 	intel_pstate_set_pstate(cpu, max_pstate);
1722 }
1723 
1724 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1725 {
1726 	cpu->pstate.min_pstate = pstate_funcs.get_min();
1727 	cpu->pstate.max_pstate = pstate_funcs.get_max();
1728 	cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1729 	cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1730 	cpu->pstate.scaling = pstate_funcs.get_scaling();
1731 	cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
1732 	cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1733 
1734 	if (pstate_funcs.get_vid)
1735 		pstate_funcs.get_vid(cpu);
1736 
1737 	intel_pstate_set_min_pstate(cpu);
1738 }
1739 
1740 static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1741 {
1742 	struct sample *sample = &cpu->sample;
1743 
1744 	sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1745 }
1746 
1747 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1748 {
1749 	u64 aperf, mperf;
1750 	unsigned long flags;
1751 	u64 tsc;
1752 
1753 	local_irq_save(flags);
1754 	rdmsrl(MSR_IA32_APERF, aperf);
1755 	rdmsrl(MSR_IA32_MPERF, mperf);
1756 	tsc = rdtsc();
1757 	if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1758 		local_irq_restore(flags);
1759 		return false;
1760 	}
1761 	local_irq_restore(flags);
1762 
1763 	cpu->last_sample_time = cpu->sample.time;
1764 	cpu->sample.time = time;
1765 	cpu->sample.aperf = aperf;
1766 	cpu->sample.mperf = mperf;
1767 	cpu->sample.tsc =  tsc;
1768 	cpu->sample.aperf -= cpu->prev_aperf;
1769 	cpu->sample.mperf -= cpu->prev_mperf;
1770 	cpu->sample.tsc -= cpu->prev_tsc;
1771 
1772 	cpu->prev_aperf = aperf;
1773 	cpu->prev_mperf = mperf;
1774 	cpu->prev_tsc = tsc;
1775 	/*
1776 	 * First time this function is invoked in a given cycle, all of the
1777 	 * previous sample data fields are equal to zero or stale and they must
1778 	 * be populated with meaningful numbers for things to work, so assume
1779 	 * that sample.time will always be reset before setting the utilization
1780 	 * update hook and make the caller skip the sample then.
1781 	 */
1782 	return !!cpu->last_sample_time;
1783 }
1784 
1785 static inline int32_t get_avg_frequency(struct cpudata *cpu)
1786 {
1787 	return mul_ext_fp(cpu->sample.core_avg_perf,
1788 			  cpu->pstate.max_pstate_physical * cpu->pstate.scaling);
1789 }
1790 
1791 static inline int32_t get_avg_pstate(struct cpudata *cpu)
1792 {
1793 	return mul_ext_fp(cpu->pstate.max_pstate_physical,
1794 			  cpu->sample.core_avg_perf);
1795 }
1796 
1797 static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
1798 {
1799 	struct sample *sample = &cpu->sample;
1800 	int32_t busy_frac, boost;
1801 	int target, avg_pstate;
1802 
1803 	busy_frac = div_fp(sample->mperf, sample->tsc);
1804 
1805 	boost = cpu->iowait_boost;
1806 	cpu->iowait_boost >>= 1;
1807 
1808 	if (busy_frac < boost)
1809 		busy_frac = boost;
1810 
1811 	sample->busy_scaled = busy_frac * 100;
1812 
1813 	target = limits->no_turbo || limits->turbo_disabled ?
1814 			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1815 	target += target >> 2;
1816 	target = mul_fp(target, busy_frac);
1817 	if (target < cpu->pstate.min_pstate)
1818 		target = cpu->pstate.min_pstate;
1819 
1820 	/*
1821 	 * If the average P-state during the previous cycle was higher than the
1822 	 * current target, add 50% of the difference to the target to reduce
1823 	 * possible performance oscillations and offset possible performance
1824 	 * loss related to moving the workload from one CPU to another within
1825 	 * a package/module.
1826 	 */
1827 	avg_pstate = get_avg_pstate(cpu);
1828 	if (avg_pstate > target)
1829 		target += (avg_pstate - target) >> 1;
1830 
1831 	return target;
1832 }
1833 
1834 static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
1835 {
1836 	int32_t perf_scaled, max_pstate, current_pstate, sample_ratio;
1837 	u64 duration_ns;
1838 
1839 	/*
1840 	 * perf_scaled is the ratio of the average P-state during the last
1841 	 * sampling period to the P-state requested last time (in percent).
1842 	 *
1843 	 * That measures the system's response to the previous P-state
1844 	 * selection.
1845 	 */
1846 	max_pstate = cpu->pstate.max_pstate_physical;
1847 	current_pstate = cpu->pstate.current_pstate;
1848 	perf_scaled = mul_ext_fp(cpu->sample.core_avg_perf,
1849 			       div_fp(100 * max_pstate, current_pstate));
1850 
1851 	/*
1852 	 * Since our utilization update callback will not run unless we are
1853 	 * in C0, check if the actual elapsed time is significantly greater (3x)
1854 	 * than our sample interval.  If it is, then we were idle for a long
1855 	 * enough period of time to adjust our performance metric.
1856 	 */
1857 	duration_ns = cpu->sample.time - cpu->last_sample_time;
1858 	if ((s64)duration_ns > pid_params.sample_rate_ns * 3) {
1859 		sample_ratio = div_fp(pid_params.sample_rate_ns, duration_ns);
1860 		perf_scaled = mul_fp(perf_scaled, sample_ratio);
1861 	} else {
1862 		sample_ratio = div_fp(100 * cpu->sample.mperf, cpu->sample.tsc);
1863 		if (sample_ratio < int_tofp(1))
1864 			perf_scaled = 0;
1865 	}
1866 
1867 	cpu->sample.busy_scaled = perf_scaled;
1868 	return cpu->pstate.current_pstate - pid_calc(&cpu->pid, perf_scaled);
1869 }
1870 
1871 static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
1872 {
1873 	int max_perf, min_perf;
1874 
1875 	intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
1876 	pstate = clamp_t(int, pstate, min_perf, max_perf);
1877 	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1878 	return pstate;
1879 }
1880 
1881 static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1882 {
1883 	pstate = intel_pstate_prepare_request(cpu, pstate);
1884 	if (pstate == cpu->pstate.current_pstate)
1885 		return;
1886 
1887 	cpu->pstate.current_pstate = pstate;
1888 	wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1889 }
1890 
1891 static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
1892 {
1893 	int from, target_pstate;
1894 	struct sample *sample;
1895 
1896 	from = cpu->pstate.current_pstate;
1897 
1898 	target_pstate = cpu->policy == CPUFREQ_POLICY_PERFORMANCE ?
1899 		cpu->pstate.turbo_pstate : pstate_funcs.get_target_pstate(cpu);
1900 
1901 	update_turbo_state();
1902 
1903 	intel_pstate_update_pstate(cpu, target_pstate);
1904 
1905 	sample = &cpu->sample;
1906 	trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1907 		fp_toint(sample->busy_scaled),
1908 		from,
1909 		cpu->pstate.current_pstate,
1910 		sample->mperf,
1911 		sample->aperf,
1912 		sample->tsc,
1913 		get_avg_frequency(cpu),
1914 		fp_toint(cpu->iowait_boost * 100));
1915 }
1916 
1917 static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1918 				     unsigned int flags)
1919 {
1920 	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1921 	u64 delta_ns;
1922 
1923 	if (pstate_funcs.get_target_pstate == get_target_pstate_use_cpu_load) {
1924 		if (flags & SCHED_CPUFREQ_IOWAIT) {
1925 			cpu->iowait_boost = int_tofp(1);
1926 		} else if (cpu->iowait_boost) {
1927 			/* Clear iowait_boost if the CPU may have been idle. */
1928 			delta_ns = time - cpu->last_update;
1929 			if (delta_ns > TICK_NSEC)
1930 				cpu->iowait_boost = 0;
1931 		}
1932 		cpu->last_update = time;
1933 	}
1934 
1935 	delta_ns = time - cpu->sample.time;
1936 	if ((s64)delta_ns >= pid_params.sample_rate_ns) {
1937 		bool sample_taken = intel_pstate_sample(cpu, time);
1938 
1939 		if (sample_taken) {
1940 			intel_pstate_calc_avg_perf(cpu);
1941 			if (!hwp_active)
1942 				intel_pstate_adjust_busy_pstate(cpu);
1943 		}
1944 	}
1945 }
1946 
1947 #define ICPU(model, policy) \
1948 	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1949 			(unsigned long)&policy }
1950 
1951 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1952 	ICPU(INTEL_FAM6_SANDYBRIDGE, 		core_params),
1953 	ICPU(INTEL_FAM6_SANDYBRIDGE_X,		core_params),
1954 	ICPU(INTEL_FAM6_ATOM_SILVERMONT1,	silvermont_params),
1955 	ICPU(INTEL_FAM6_IVYBRIDGE,		core_params),
1956 	ICPU(INTEL_FAM6_HASWELL_CORE,		core_params),
1957 	ICPU(INTEL_FAM6_BROADWELL_CORE,		core_params),
1958 	ICPU(INTEL_FAM6_IVYBRIDGE_X,		core_params),
1959 	ICPU(INTEL_FAM6_HASWELL_X,		core_params),
1960 	ICPU(INTEL_FAM6_HASWELL_ULT,		core_params),
1961 	ICPU(INTEL_FAM6_HASWELL_GT3E,		core_params),
1962 	ICPU(INTEL_FAM6_BROADWELL_GT3E,		core_params),
1963 	ICPU(INTEL_FAM6_ATOM_AIRMONT,		airmont_params),
1964 	ICPU(INTEL_FAM6_SKYLAKE_MOBILE,		core_params),
1965 	ICPU(INTEL_FAM6_BROADWELL_X,		core_params),
1966 	ICPU(INTEL_FAM6_SKYLAKE_DESKTOP,	core_params),
1967 	ICPU(INTEL_FAM6_BROADWELL_XEON_D,	core_params),
1968 	ICPU(INTEL_FAM6_XEON_PHI_KNL,		knl_params),
1969 	ICPU(INTEL_FAM6_XEON_PHI_KNM,		knl_params),
1970 	ICPU(INTEL_FAM6_ATOM_GOLDMONT,		bxt_params),
1971 	{}
1972 };
1973 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1974 
1975 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
1976 	ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_params),
1977 	ICPU(INTEL_FAM6_BROADWELL_X, core_params),
1978 	ICPU(INTEL_FAM6_SKYLAKE_X, core_params),
1979 	{}
1980 };
1981 
1982 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
1983 	ICPU(INTEL_FAM6_KABYLAKE_DESKTOP, core_params),
1984 	{}
1985 };
1986 
1987 static int intel_pstate_init_cpu(unsigned int cpunum)
1988 {
1989 	struct cpudata *cpu;
1990 
1991 	cpu = all_cpu_data[cpunum];
1992 
1993 	if (!cpu) {
1994 		unsigned int size = sizeof(struct cpudata);
1995 
1996 		if (per_cpu_limits)
1997 			size += sizeof(struct perf_limits);
1998 
1999 		cpu = kzalloc(size, GFP_KERNEL);
2000 		if (!cpu)
2001 			return -ENOMEM;
2002 
2003 		all_cpu_data[cpunum] = cpu;
2004 		if (per_cpu_limits)
2005 			cpu->perf_limits = (struct perf_limits *)(cpu + 1);
2006 
2007 		cpu->epp_default = -EINVAL;
2008 		cpu->epp_powersave = -EINVAL;
2009 		cpu->epp_saved = -EINVAL;
2010 	}
2011 
2012 	cpu = all_cpu_data[cpunum];
2013 
2014 	cpu->cpu = cpunum;
2015 
2016 	if (hwp_active) {
2017 		const struct x86_cpu_id *id;
2018 
2019 		id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
2020 		if (id)
2021 			intel_pstate_disable_ee(cpunum);
2022 
2023 		intel_pstate_hwp_enable(cpu);
2024 		pid_params.sample_rate_ms = 50;
2025 		pid_params.sample_rate_ns = 50 * NSEC_PER_MSEC;
2026 	}
2027 
2028 	intel_pstate_get_cpu_pstates(cpu);
2029 
2030 	intel_pstate_busy_pid_reset(cpu);
2031 
2032 	pr_debug("controlling: cpu %d\n", cpunum);
2033 
2034 	return 0;
2035 }
2036 
2037 static unsigned int intel_pstate_get(unsigned int cpu_num)
2038 {
2039 	struct cpudata *cpu = all_cpu_data[cpu_num];
2040 
2041 	return cpu ? get_avg_frequency(cpu) : 0;
2042 }
2043 
2044 static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
2045 {
2046 	struct cpudata *cpu = all_cpu_data[cpu_num];
2047 
2048 	if (cpu->update_util_set)
2049 		return;
2050 
2051 	/* Prevent intel_pstate_update_util() from using stale data. */
2052 	cpu->sample.time = 0;
2053 	cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
2054 				     intel_pstate_update_util);
2055 	cpu->update_util_set = true;
2056 }
2057 
2058 static void intel_pstate_clear_update_util_hook(unsigned int cpu)
2059 {
2060 	struct cpudata *cpu_data = all_cpu_data[cpu];
2061 
2062 	if (!cpu_data->update_util_set)
2063 		return;
2064 
2065 	cpufreq_remove_update_util_hook(cpu);
2066 	cpu_data->update_util_set = false;
2067 	synchronize_sched();
2068 }
2069 
2070 static void intel_pstate_update_perf_limits(struct cpufreq_policy *policy,
2071 					    struct perf_limits *limits)
2072 {
2073 
2074 	limits->max_policy_pct = DIV_ROUND_UP(policy->max * 100,
2075 					      policy->cpuinfo.max_freq);
2076 	limits->max_policy_pct = clamp_t(int, limits->max_policy_pct, 0, 100);
2077 	if (policy->max == policy->min) {
2078 		limits->min_policy_pct = limits->max_policy_pct;
2079 	} else {
2080 		limits->min_policy_pct = DIV_ROUND_UP(policy->min * 100,
2081 						      policy->cpuinfo.max_freq);
2082 		limits->min_policy_pct = clamp_t(int, limits->min_policy_pct,
2083 						 0, 100);
2084 	}
2085 
2086 	/* Normalize user input to [min_policy_pct, max_policy_pct] */
2087 	limits->min_perf_pct = max(limits->min_policy_pct,
2088 				   limits->min_sysfs_pct);
2089 	limits->min_perf_pct = min(limits->max_policy_pct,
2090 				   limits->min_perf_pct);
2091 	limits->max_perf_pct = min(limits->max_policy_pct,
2092 				   limits->max_sysfs_pct);
2093 	limits->max_perf_pct = max(limits->min_policy_pct,
2094 				   limits->max_perf_pct);
2095 
2096 	/* Make sure min_perf_pct <= max_perf_pct */
2097 	limits->min_perf_pct = min(limits->max_perf_pct, limits->min_perf_pct);
2098 
2099 	limits->min_perf = div_ext_fp(limits->min_perf_pct, 100);
2100 	limits->max_perf = div_ext_fp(limits->max_perf_pct, 100);
2101 	limits->max_perf = round_up(limits->max_perf, EXT_FRAC_BITS);
2102 	limits->min_perf = round_up(limits->min_perf, EXT_FRAC_BITS);
2103 
2104 	pr_debug("cpu:%d max_perf_pct:%d min_perf_pct:%d\n", policy->cpu,
2105 		 limits->max_perf_pct, limits->min_perf_pct);
2106 }
2107 
2108 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
2109 {
2110 	struct cpudata *cpu;
2111 	struct perf_limits *perf_limits = NULL;
2112 
2113 	if (!policy->cpuinfo.max_freq)
2114 		return -ENODEV;
2115 
2116 	pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
2117 		 policy->cpuinfo.max_freq, policy->max);
2118 
2119 	cpu = all_cpu_data[policy->cpu];
2120 	cpu->policy = policy->policy;
2121 
2122 	if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
2123 	    policy->max < policy->cpuinfo.max_freq &&
2124 	    policy->max > cpu->pstate.max_pstate * cpu->pstate.scaling) {
2125 		pr_debug("policy->max > max non turbo frequency\n");
2126 		policy->max = policy->cpuinfo.max_freq;
2127 	}
2128 
2129 	if (per_cpu_limits)
2130 		perf_limits = cpu->perf_limits;
2131 
2132 	mutex_lock(&intel_pstate_limits_lock);
2133 
2134 	if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) {
2135 		if (!perf_limits) {
2136 			limits = &performance_limits;
2137 			perf_limits = limits;
2138 		}
2139 		if (policy->max >= policy->cpuinfo.max_freq &&
2140 		    !limits->no_turbo) {
2141 			pr_debug("set performance\n");
2142 			intel_pstate_set_performance_limits(perf_limits);
2143 			goto out;
2144 		}
2145 	} else {
2146 		pr_debug("set powersave\n");
2147 		if (!perf_limits) {
2148 			limits = &powersave_limits;
2149 			perf_limits = limits;
2150 		}
2151 
2152 	}
2153 
2154 	intel_pstate_update_perf_limits(policy, perf_limits);
2155  out:
2156 	if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
2157 		/*
2158 		 * NOHZ_FULL CPUs need this as the governor callback may not
2159 		 * be invoked on them.
2160 		 */
2161 		intel_pstate_clear_update_util_hook(policy->cpu);
2162 		intel_pstate_max_within_limits(cpu);
2163 	}
2164 
2165 	intel_pstate_set_update_util_hook(policy->cpu);
2166 
2167 	intel_pstate_hwp_set_policy(policy);
2168 
2169 	mutex_unlock(&intel_pstate_limits_lock);
2170 
2171 	return 0;
2172 }
2173 
2174 static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
2175 {
2176 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2177 	struct perf_limits *perf_limits;
2178 
2179 	if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
2180 		perf_limits = &performance_limits;
2181 	else
2182 		perf_limits = &powersave_limits;
2183 
2184 	update_turbo_state();
2185 	policy->cpuinfo.max_freq = perf_limits->turbo_disabled ||
2186 					perf_limits->no_turbo ?
2187 					cpu->pstate.max_freq :
2188 					cpu->pstate.turbo_freq;
2189 
2190 	cpufreq_verify_within_cpu_limits(policy);
2191 
2192 	if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
2193 	    policy->policy != CPUFREQ_POLICY_PERFORMANCE)
2194 		return -EINVAL;
2195 
2196 	/* When per-CPU limits are used, sysfs limits are not used */
2197 	if (!per_cpu_limits) {
2198 		unsigned int max_freq, min_freq;
2199 
2200 		max_freq = policy->cpuinfo.max_freq *
2201 						limits->max_sysfs_pct / 100;
2202 		min_freq = policy->cpuinfo.max_freq *
2203 						limits->min_sysfs_pct / 100;
2204 		cpufreq_verify_within_limits(policy, min_freq, max_freq);
2205 	}
2206 
2207 	return 0;
2208 }
2209 
2210 static void intel_cpufreq_stop_cpu(struct cpufreq_policy *policy)
2211 {
2212 	intel_pstate_set_min_pstate(all_cpu_data[policy->cpu]);
2213 }
2214 
2215 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
2216 {
2217 	pr_debug("CPU %d exiting\n", policy->cpu);
2218 
2219 	intel_pstate_clear_update_util_hook(policy->cpu);
2220 	if (hwp_active)
2221 		intel_pstate_hwp_save_state(policy);
2222 	else
2223 		intel_cpufreq_stop_cpu(policy);
2224 }
2225 
2226 static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
2227 {
2228 	intel_pstate_exit_perf_limits(policy);
2229 
2230 	policy->fast_switch_possible = false;
2231 
2232 	return 0;
2233 }
2234 
2235 static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2236 {
2237 	struct cpudata *cpu;
2238 	int rc;
2239 
2240 	rc = intel_pstate_init_cpu(policy->cpu);
2241 	if (rc)
2242 		return rc;
2243 
2244 	cpu = all_cpu_data[policy->cpu];
2245 
2246 	/*
2247 	 * We need sane value in the cpu->perf_limits, so inherit from global
2248 	 * perf_limits limits, which are seeded with values based on the
2249 	 * CONFIG_CPU_FREQ_DEFAULT_GOV_*, during boot up.
2250 	 */
2251 	if (per_cpu_limits)
2252 		memcpy(cpu->perf_limits, limits, sizeof(struct perf_limits));
2253 
2254 	policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
2255 	policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
2256 
2257 	/* cpuinfo and default policy values */
2258 	policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
2259 	update_turbo_state();
2260 	policy->cpuinfo.max_freq = limits->turbo_disabled ?
2261 			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2262 	policy->cpuinfo.max_freq *= cpu->pstate.scaling;
2263 
2264 	intel_pstate_init_acpi_perf_limits(policy);
2265 	cpumask_set_cpu(policy->cpu, policy->cpus);
2266 
2267 	policy->fast_switch_possible = true;
2268 
2269 	return 0;
2270 }
2271 
2272 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2273 {
2274 	int ret = __intel_pstate_cpu_init(policy);
2275 
2276 	if (ret)
2277 		return ret;
2278 
2279 	policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
2280 	if (limits->min_perf_pct == 100 && limits->max_perf_pct == 100)
2281 		policy->policy = CPUFREQ_POLICY_PERFORMANCE;
2282 	else
2283 		policy->policy = CPUFREQ_POLICY_POWERSAVE;
2284 
2285 	return 0;
2286 }
2287 
2288 static struct cpufreq_driver intel_pstate = {
2289 	.flags		= CPUFREQ_CONST_LOOPS,
2290 	.verify		= intel_pstate_verify_policy,
2291 	.setpolicy	= intel_pstate_set_policy,
2292 	.suspend	= intel_pstate_hwp_save_state,
2293 	.resume		= intel_pstate_resume,
2294 	.get		= intel_pstate_get,
2295 	.init		= intel_pstate_cpu_init,
2296 	.exit		= intel_pstate_cpu_exit,
2297 	.stop_cpu	= intel_pstate_stop_cpu,
2298 	.name		= "intel_pstate",
2299 };
2300 
2301 static int intel_cpufreq_verify_policy(struct cpufreq_policy *policy)
2302 {
2303 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2304 	struct perf_limits *perf_limits = limits;
2305 
2306 	update_turbo_state();
2307 	policy->cpuinfo.max_freq = limits->turbo_disabled ?
2308 			cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2309 
2310 	cpufreq_verify_within_cpu_limits(policy);
2311 
2312 	if (per_cpu_limits)
2313 		perf_limits = cpu->perf_limits;
2314 
2315 	mutex_lock(&intel_pstate_limits_lock);
2316 
2317 	intel_pstate_update_perf_limits(policy, perf_limits);
2318 
2319 	mutex_unlock(&intel_pstate_limits_lock);
2320 
2321 	return 0;
2322 }
2323 
2324 static unsigned int intel_cpufreq_turbo_update(struct cpudata *cpu,
2325 					       struct cpufreq_policy *policy,
2326 					       unsigned int target_freq)
2327 {
2328 	unsigned int max_freq;
2329 
2330 	update_turbo_state();
2331 
2332 	max_freq = limits->no_turbo || limits->turbo_disabled ?
2333 			cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2334 	policy->cpuinfo.max_freq = max_freq;
2335 	if (policy->max > max_freq)
2336 		policy->max = max_freq;
2337 
2338 	if (target_freq > max_freq)
2339 		target_freq = max_freq;
2340 
2341 	return target_freq;
2342 }
2343 
2344 static int intel_cpufreq_target(struct cpufreq_policy *policy,
2345 				unsigned int target_freq,
2346 				unsigned int relation)
2347 {
2348 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2349 	struct cpufreq_freqs freqs;
2350 	int target_pstate;
2351 
2352 	freqs.old = policy->cur;
2353 	freqs.new = intel_cpufreq_turbo_update(cpu, policy, target_freq);
2354 
2355 	cpufreq_freq_transition_begin(policy, &freqs);
2356 	switch (relation) {
2357 	case CPUFREQ_RELATION_L:
2358 		target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
2359 		break;
2360 	case CPUFREQ_RELATION_H:
2361 		target_pstate = freqs.new / cpu->pstate.scaling;
2362 		break;
2363 	default:
2364 		target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
2365 		break;
2366 	}
2367 	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2368 	if (target_pstate != cpu->pstate.current_pstate) {
2369 		cpu->pstate.current_pstate = target_pstate;
2370 		wrmsrl_on_cpu(policy->cpu, MSR_IA32_PERF_CTL,
2371 			      pstate_funcs.get_val(cpu, target_pstate));
2372 	}
2373 	cpufreq_freq_transition_end(policy, &freqs, false);
2374 
2375 	return 0;
2376 }
2377 
2378 static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
2379 					      unsigned int target_freq)
2380 {
2381 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2382 	int target_pstate;
2383 
2384 	target_freq = intel_cpufreq_turbo_update(cpu, policy, target_freq);
2385 	target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
2386 	intel_pstate_update_pstate(cpu, target_pstate);
2387 	return target_freq;
2388 }
2389 
2390 static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
2391 {
2392 	int ret = __intel_pstate_cpu_init(policy);
2393 
2394 	if (ret)
2395 		return ret;
2396 
2397 	policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
2398 	/* This reflects the intel_pstate_get_cpu_pstates() setting. */
2399 	policy->cur = policy->cpuinfo.min_freq;
2400 
2401 	return 0;
2402 }
2403 
2404 static struct cpufreq_driver intel_cpufreq = {
2405 	.flags		= CPUFREQ_CONST_LOOPS,
2406 	.verify		= intel_cpufreq_verify_policy,
2407 	.target		= intel_cpufreq_target,
2408 	.fast_switch	= intel_cpufreq_fast_switch,
2409 	.init		= intel_cpufreq_cpu_init,
2410 	.exit		= intel_pstate_cpu_exit,
2411 	.stop_cpu	= intel_cpufreq_stop_cpu,
2412 	.name		= "intel_cpufreq",
2413 };
2414 
2415 static struct cpufreq_driver *intel_pstate_driver = &intel_pstate;
2416 
2417 static void intel_pstate_driver_cleanup(void)
2418 {
2419 	unsigned int cpu;
2420 
2421 	get_online_cpus();
2422 	for_each_online_cpu(cpu) {
2423 		if (all_cpu_data[cpu]) {
2424 			if (intel_pstate_driver == &intel_pstate)
2425 				intel_pstate_clear_update_util_hook(cpu);
2426 
2427 			kfree(all_cpu_data[cpu]);
2428 			all_cpu_data[cpu] = NULL;
2429 		}
2430 	}
2431 	put_online_cpus();
2432 }
2433 
2434 static int intel_pstate_register_driver(void)
2435 {
2436 	int ret;
2437 
2438 	intel_pstate_init_limits(&powersave_limits);
2439 	intel_pstate_set_performance_limits(&performance_limits);
2440 	limits = IS_ENABLED(CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE) ?
2441 			&performance_limits : &powersave_limits;
2442 
2443 	ret = cpufreq_register_driver(intel_pstate_driver);
2444 	if (ret) {
2445 		intel_pstate_driver_cleanup();
2446 		return ret;
2447 	}
2448 
2449 	mutex_lock(&intel_pstate_limits_lock);
2450 	driver_registered = true;
2451 	mutex_unlock(&intel_pstate_limits_lock);
2452 
2453 	if (intel_pstate_driver == &intel_pstate && !hwp_active &&
2454 	    pstate_funcs.get_target_pstate != get_target_pstate_use_cpu_load)
2455 		intel_pstate_debug_expose_params();
2456 
2457 	return 0;
2458 }
2459 
2460 static int intel_pstate_unregister_driver(void)
2461 {
2462 	if (hwp_active)
2463 		return -EBUSY;
2464 
2465 	if (intel_pstate_driver == &intel_pstate && !hwp_active &&
2466 	    pstate_funcs.get_target_pstate != get_target_pstate_use_cpu_load)
2467 		intel_pstate_debug_hide_params();
2468 
2469 	mutex_lock(&intel_pstate_limits_lock);
2470 	driver_registered = false;
2471 	mutex_unlock(&intel_pstate_limits_lock);
2472 
2473 	cpufreq_unregister_driver(intel_pstate_driver);
2474 	intel_pstate_driver_cleanup();
2475 
2476 	return 0;
2477 }
2478 
2479 static ssize_t intel_pstate_show_status(char *buf)
2480 {
2481 	if (!driver_registered)
2482 		return sprintf(buf, "off\n");
2483 
2484 	return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
2485 					"active" : "passive");
2486 }
2487 
2488 static int intel_pstate_update_status(const char *buf, size_t size)
2489 {
2490 	int ret;
2491 
2492 	if (size == 3 && !strncmp(buf, "off", size))
2493 		return driver_registered ?
2494 			intel_pstate_unregister_driver() : -EINVAL;
2495 
2496 	if (size == 6 && !strncmp(buf, "active", size)) {
2497 		if (driver_registered) {
2498 			if (intel_pstate_driver == &intel_pstate)
2499 				return 0;
2500 
2501 			ret = intel_pstate_unregister_driver();
2502 			if (ret)
2503 				return ret;
2504 		}
2505 
2506 		intel_pstate_driver = &intel_pstate;
2507 		return intel_pstate_register_driver();
2508 	}
2509 
2510 	if (size == 7 && !strncmp(buf, "passive", size)) {
2511 		if (driver_registered) {
2512 			if (intel_pstate_driver != &intel_pstate)
2513 				return 0;
2514 
2515 			ret = intel_pstate_unregister_driver();
2516 			if (ret)
2517 				return ret;
2518 		}
2519 
2520 		intel_pstate_driver = &intel_cpufreq;
2521 		return intel_pstate_register_driver();
2522 	}
2523 
2524 	return -EINVAL;
2525 }
2526 
2527 static int no_load __initdata;
2528 static int no_hwp __initdata;
2529 static int hwp_only __initdata;
2530 static unsigned int force_load __initdata;
2531 
2532 static int __init intel_pstate_msrs_not_valid(void)
2533 {
2534 	if (!pstate_funcs.get_max() ||
2535 	    !pstate_funcs.get_min() ||
2536 	    !pstate_funcs.get_turbo())
2537 		return -ENODEV;
2538 
2539 	return 0;
2540 }
2541 
2542 static void __init copy_pid_params(struct pstate_adjust_policy *policy)
2543 {
2544 	pid_params.sample_rate_ms = policy->sample_rate_ms;
2545 	pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
2546 	pid_params.p_gain_pct = policy->p_gain_pct;
2547 	pid_params.i_gain_pct = policy->i_gain_pct;
2548 	pid_params.d_gain_pct = policy->d_gain_pct;
2549 	pid_params.deadband = policy->deadband;
2550 	pid_params.setpoint = policy->setpoint;
2551 }
2552 
2553 #ifdef CONFIG_ACPI
2554 static void intel_pstate_use_acpi_profile(void)
2555 {
2556 	if (acpi_gbl_FADT.preferred_profile == PM_MOBILE)
2557 		pstate_funcs.get_target_pstate =
2558 				get_target_pstate_use_cpu_load;
2559 }
2560 #else
2561 static void intel_pstate_use_acpi_profile(void)
2562 {
2563 }
2564 #endif
2565 
2566 static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
2567 {
2568 	pstate_funcs.get_max   = funcs->get_max;
2569 	pstate_funcs.get_max_physical = funcs->get_max_physical;
2570 	pstate_funcs.get_min   = funcs->get_min;
2571 	pstate_funcs.get_turbo = funcs->get_turbo;
2572 	pstate_funcs.get_scaling = funcs->get_scaling;
2573 	pstate_funcs.get_val   = funcs->get_val;
2574 	pstate_funcs.get_vid   = funcs->get_vid;
2575 	pstate_funcs.get_target_pstate = funcs->get_target_pstate;
2576 
2577 	intel_pstate_use_acpi_profile();
2578 }
2579 
2580 #ifdef CONFIG_ACPI
2581 
2582 static bool __init intel_pstate_no_acpi_pss(void)
2583 {
2584 	int i;
2585 
2586 	for_each_possible_cpu(i) {
2587 		acpi_status status;
2588 		union acpi_object *pss;
2589 		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
2590 		struct acpi_processor *pr = per_cpu(processors, i);
2591 
2592 		if (!pr)
2593 			continue;
2594 
2595 		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
2596 		if (ACPI_FAILURE(status))
2597 			continue;
2598 
2599 		pss = buffer.pointer;
2600 		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
2601 			kfree(pss);
2602 			return false;
2603 		}
2604 
2605 		kfree(pss);
2606 	}
2607 
2608 	return true;
2609 }
2610 
2611 static bool __init intel_pstate_has_acpi_ppc(void)
2612 {
2613 	int i;
2614 
2615 	for_each_possible_cpu(i) {
2616 		struct acpi_processor *pr = per_cpu(processors, i);
2617 
2618 		if (!pr)
2619 			continue;
2620 		if (acpi_has_method(pr->handle, "_PPC"))
2621 			return true;
2622 	}
2623 	return false;
2624 }
2625 
2626 enum {
2627 	PSS,
2628 	PPC,
2629 };
2630 
2631 struct hw_vendor_info {
2632 	u16  valid;
2633 	char oem_id[ACPI_OEM_ID_SIZE];
2634 	char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
2635 	int  oem_pwr_table;
2636 };
2637 
2638 /* Hardware vendor-specific info that has its own power management modes */
2639 static struct hw_vendor_info vendor_info[] __initdata = {
2640 	{1, "HP    ", "ProLiant", PSS},
2641 	{1, "ORACLE", "X4-2    ", PPC},
2642 	{1, "ORACLE", "X4-2L   ", PPC},
2643 	{1, "ORACLE", "X4-2B   ", PPC},
2644 	{1, "ORACLE", "X3-2    ", PPC},
2645 	{1, "ORACLE", "X3-2L   ", PPC},
2646 	{1, "ORACLE", "X3-2B   ", PPC},
2647 	{1, "ORACLE", "X4470M2 ", PPC},
2648 	{1, "ORACLE", "X4270M3 ", PPC},
2649 	{1, "ORACLE", "X4270M2 ", PPC},
2650 	{1, "ORACLE", "X4170M2 ", PPC},
2651 	{1, "ORACLE", "X4170 M3", PPC},
2652 	{1, "ORACLE", "X4275 M3", PPC},
2653 	{1, "ORACLE", "X6-2    ", PPC},
2654 	{1, "ORACLE", "Sudbury ", PPC},
2655 	{0, "", ""},
2656 };
2657 
2658 static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
2659 {
2660 	struct acpi_table_header hdr;
2661 	struct hw_vendor_info *v_info;
2662 	const struct x86_cpu_id *id;
2663 	u64 misc_pwr;
2664 
2665 	id = x86_match_cpu(intel_pstate_cpu_oob_ids);
2666 	if (id) {
2667 		rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
2668 		if ( misc_pwr & (1 << 8))
2669 			return true;
2670 	}
2671 
2672 	if (acpi_disabled ||
2673 	    ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
2674 		return false;
2675 
2676 	for (v_info = vendor_info; v_info->valid; v_info++) {
2677 		if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
2678 			!strncmp(hdr.oem_table_id, v_info->oem_table_id,
2679 						ACPI_OEM_TABLE_ID_SIZE))
2680 			switch (v_info->oem_pwr_table) {
2681 			case PSS:
2682 				return intel_pstate_no_acpi_pss();
2683 			case PPC:
2684 				return intel_pstate_has_acpi_ppc() &&
2685 					(!force_load);
2686 			}
2687 	}
2688 
2689 	return false;
2690 }
2691 
2692 static void intel_pstate_request_control_from_smm(void)
2693 {
2694 	/*
2695 	 * It may be unsafe to request P-states control from SMM if _PPC support
2696 	 * has not been enabled.
2697 	 */
2698 	if (acpi_ppc)
2699 		acpi_processor_pstate_control();
2700 }
2701 #else /* CONFIG_ACPI not enabled */
2702 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
2703 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
2704 static inline void intel_pstate_request_control_from_smm(void) {}
2705 #endif /* CONFIG_ACPI */
2706 
2707 static const struct x86_cpu_id hwp_support_ids[] __initconst = {
2708 	{ X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
2709 	{}
2710 };
2711 
2712 static int __init intel_pstate_init(void)
2713 {
2714 	const struct x86_cpu_id *id;
2715 	struct cpu_defaults *cpu_def;
2716 	int rc = 0;
2717 
2718 	if (no_load)
2719 		return -ENODEV;
2720 
2721 	if (x86_match_cpu(hwp_support_ids) && !no_hwp) {
2722 		copy_cpu_funcs(&core_params.funcs);
2723 		hwp_active++;
2724 		intel_pstate.attr = hwp_cpufreq_attrs;
2725 		goto hwp_cpu_matched;
2726 	}
2727 
2728 	id = x86_match_cpu(intel_pstate_cpu_ids);
2729 	if (!id)
2730 		return -ENODEV;
2731 
2732 	cpu_def = (struct cpu_defaults *)id->driver_data;
2733 
2734 	copy_pid_params(&cpu_def->pid_policy);
2735 	copy_cpu_funcs(&cpu_def->funcs);
2736 
2737 	if (intel_pstate_msrs_not_valid())
2738 		return -ENODEV;
2739 
2740 hwp_cpu_matched:
2741 	/*
2742 	 * The Intel pstate driver will be ignored if the platform
2743 	 * firmware has its own power management modes.
2744 	 */
2745 	if (intel_pstate_platform_pwr_mgmt_exists())
2746 		return -ENODEV;
2747 
2748 	if (!hwp_active && hwp_only)
2749 		return -ENOTSUPP;
2750 
2751 	pr_info("Intel P-state driver initializing\n");
2752 
2753 	all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
2754 	if (!all_cpu_data)
2755 		return -ENOMEM;
2756 
2757 	intel_pstate_request_control_from_smm();
2758 
2759 	intel_pstate_sysfs_expose_params();
2760 
2761 	mutex_lock(&intel_pstate_driver_lock);
2762 	rc = intel_pstate_register_driver();
2763 	mutex_unlock(&intel_pstate_driver_lock);
2764 	if (rc)
2765 		return rc;
2766 
2767 	if (hwp_active)
2768 		pr_info("HWP enabled\n");
2769 
2770 	return 0;
2771 }
2772 device_initcall(intel_pstate_init);
2773 
2774 static int __init intel_pstate_setup(char *str)
2775 {
2776 	if (!str)
2777 		return -EINVAL;
2778 
2779 	if (!strcmp(str, "disable")) {
2780 		no_load = 1;
2781 	} else if (!strcmp(str, "passive")) {
2782 		pr_info("Passive mode enabled\n");
2783 		intel_pstate_driver = &intel_cpufreq;
2784 		no_hwp = 1;
2785 	}
2786 	if (!strcmp(str, "no_hwp")) {
2787 		pr_info("HWP disabled\n");
2788 		no_hwp = 1;
2789 	}
2790 	if (!strcmp(str, "force"))
2791 		force_load = 1;
2792 	if (!strcmp(str, "hwp_only"))
2793 		hwp_only = 1;
2794 	if (!strcmp(str, "per_cpu_perf_limits"))
2795 		per_cpu_limits = true;
2796 
2797 #ifdef CONFIG_ACPI
2798 	if (!strcmp(str, "support_acpi_ppc"))
2799 		acpi_ppc = true;
2800 #endif
2801 
2802 	return 0;
2803 }
2804 early_param("intel_pstate", intel_pstate_setup);
2805 
2806 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
2807 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
2808 MODULE_LICENSE("GPL");
2809