1 /* 2 * intel_pstate.c: Native P state management for Intel processors 3 * 4 * (C) Copyright 2012 Intel Corporation 5 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com> 6 * 7 * This program is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU General Public License 9 * as published by the Free Software Foundation; version 2 10 * of the License. 11 */ 12 13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 14 15 #include <linux/kernel.h> 16 #include <linux/kernel_stat.h> 17 #include <linux/module.h> 18 #include <linux/ktime.h> 19 #include <linux/hrtimer.h> 20 #include <linux/tick.h> 21 #include <linux/slab.h> 22 #include <linux/sched/cpufreq.h> 23 #include <linux/list.h> 24 #include <linux/cpu.h> 25 #include <linux/cpufreq.h> 26 #include <linux/sysfs.h> 27 #include <linux/types.h> 28 #include <linux/fs.h> 29 #include <linux/debugfs.h> 30 #include <linux/acpi.h> 31 #include <linux/vmalloc.h> 32 #include <trace/events/power.h> 33 34 #include <asm/div64.h> 35 #include <asm/msr.h> 36 #include <asm/cpu_device_id.h> 37 #include <asm/cpufeature.h> 38 #include <asm/intel-family.h> 39 40 #define INTEL_CPUFREQ_TRANSITION_LATENCY 20000 41 42 #ifdef CONFIG_ACPI 43 #include <acpi/processor.h> 44 #include <acpi/cppc_acpi.h> 45 #endif 46 47 #define FRAC_BITS 8 48 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS) 49 #define fp_toint(X) ((X) >> FRAC_BITS) 50 51 #define EXT_BITS 6 52 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS) 53 #define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS) 54 #define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS) 55 56 static inline int32_t mul_fp(int32_t x, int32_t y) 57 { 58 return ((int64_t)x * (int64_t)y) >> FRAC_BITS; 59 } 60 61 static inline int32_t div_fp(s64 x, s64 y) 62 { 63 return div64_s64((int64_t)x << FRAC_BITS, y); 64 } 65 66 static inline int ceiling_fp(int32_t x) 67 { 68 int mask, ret; 69 70 ret = fp_toint(x); 71 mask = (1 << FRAC_BITS) - 1; 72 if (x & mask) 73 ret += 1; 74 return ret; 75 } 76 77 static inline u64 mul_ext_fp(u64 x, u64 y) 78 { 79 return (x * y) >> EXT_FRAC_BITS; 80 } 81 82 static inline u64 div_ext_fp(u64 x, u64 y) 83 { 84 return div64_u64(x << EXT_FRAC_BITS, y); 85 } 86 87 /** 88 * struct sample - Store performance sample 89 * @core_avg_perf: Ratio of APERF/MPERF which is the actual average 90 * performance during last sample period 91 * @busy_scaled: Scaled busy value which is used to calculate next 92 * P state. This can be different than core_avg_perf 93 * to account for cpu idle period 94 * @aperf: Difference of actual performance frequency clock count 95 * read from APERF MSR between last and current sample 96 * @mperf: Difference of maximum performance frequency clock count 97 * read from MPERF MSR between last and current sample 98 * @tsc: Difference of time stamp counter between last and 99 * current sample 100 * @time: Current time from scheduler 101 * 102 * This structure is used in the cpudata structure to store performance sample 103 * data for choosing next P State. 104 */ 105 struct sample { 106 int32_t core_avg_perf; 107 int32_t busy_scaled; 108 u64 aperf; 109 u64 mperf; 110 u64 tsc; 111 u64 time; 112 }; 113 114 /** 115 * struct pstate_data - Store P state data 116 * @current_pstate: Current requested P state 117 * @min_pstate: Min P state possible for this platform 118 * @max_pstate: Max P state possible for this platform 119 * @max_pstate_physical:This is physical Max P state for a processor 120 * This can be higher than the max_pstate which can 121 * be limited by platform thermal design power limits 122 * @scaling: Scaling factor to convert frequency to cpufreq 123 * frequency units 124 * @turbo_pstate: Max Turbo P state possible for this platform 125 * @max_freq: @max_pstate frequency in cpufreq units 126 * @turbo_freq: @turbo_pstate frequency in cpufreq units 127 * 128 * Stores the per cpu model P state limits and current P state. 129 */ 130 struct pstate_data { 131 int current_pstate; 132 int min_pstate; 133 int max_pstate; 134 int max_pstate_physical; 135 int scaling; 136 int turbo_pstate; 137 unsigned int max_freq; 138 unsigned int turbo_freq; 139 }; 140 141 /** 142 * struct vid_data - Stores voltage information data 143 * @min: VID data for this platform corresponding to 144 * the lowest P state 145 * @max: VID data corresponding to the highest P State. 146 * @turbo: VID data for turbo P state 147 * @ratio: Ratio of (vid max - vid min) / 148 * (max P state - Min P State) 149 * 150 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling) 151 * This data is used in Atom platforms, where in addition to target P state, 152 * the voltage data needs to be specified to select next P State. 153 */ 154 struct vid_data { 155 int min; 156 int max; 157 int turbo; 158 int32_t ratio; 159 }; 160 161 /** 162 * struct _pid - Stores PID data 163 * @setpoint: Target set point for busyness or performance 164 * @integral: Storage for accumulated error values 165 * @p_gain: PID proportional gain 166 * @i_gain: PID integral gain 167 * @d_gain: PID derivative gain 168 * @deadband: PID deadband 169 * @last_err: Last error storage for integral part of PID calculation 170 * 171 * Stores PID coefficients and last error for PID controller. 172 */ 173 struct _pid { 174 int setpoint; 175 int32_t integral; 176 int32_t p_gain; 177 int32_t i_gain; 178 int32_t d_gain; 179 int deadband; 180 int32_t last_err; 181 }; 182 183 /** 184 * struct perf_limits - Store user and policy limits 185 * @no_turbo: User requested turbo state from intel_pstate sysfs 186 * @turbo_disabled: Platform turbo status either from msr 187 * MSR_IA32_MISC_ENABLE or when maximum available pstate 188 * matches the maximum turbo pstate 189 * @max_perf_pct: Effective maximum performance limit in percentage, this 190 * is minimum of either limits enforced by cpufreq policy 191 * or limits from user set limits via intel_pstate sysfs 192 * @min_perf_pct: Effective minimum performance limit in percentage, this 193 * is maximum of either limits enforced by cpufreq policy 194 * or limits from user set limits via intel_pstate sysfs 195 * @max_perf: This is a scaled value between 0 to 255 for max_perf_pct 196 * This value is used to limit max pstate 197 * @min_perf: This is a scaled value between 0 to 255 for min_perf_pct 198 * This value is used to limit min pstate 199 * @max_policy_pct: The maximum performance in percentage enforced by 200 * cpufreq setpolicy interface 201 * @max_sysfs_pct: The maximum performance in percentage enforced by 202 * intel pstate sysfs interface, unused when per cpu 203 * controls are enforced 204 * @min_policy_pct: The minimum performance in percentage enforced by 205 * cpufreq setpolicy interface 206 * @min_sysfs_pct: The minimum performance in percentage enforced by 207 * intel pstate sysfs interface, unused when per cpu 208 * controls are enforced 209 * 210 * Storage for user and policy defined limits. 211 */ 212 struct perf_limits { 213 int no_turbo; 214 int turbo_disabled; 215 int max_perf_pct; 216 int min_perf_pct; 217 int32_t max_perf; 218 int32_t min_perf; 219 int max_policy_pct; 220 int max_sysfs_pct; 221 int min_policy_pct; 222 int min_sysfs_pct; 223 }; 224 225 /** 226 * struct cpudata - Per CPU instance data storage 227 * @cpu: CPU number for this instance data 228 * @policy: CPUFreq policy value 229 * @update_util: CPUFreq utility callback information 230 * @update_util_set: CPUFreq utility callback is set 231 * @iowait_boost: iowait-related boost fraction 232 * @last_update: Time of the last update. 233 * @pstate: Stores P state limits for this CPU 234 * @vid: Stores VID limits for this CPU 235 * @pid: Stores PID parameters for this CPU 236 * @last_sample_time: Last Sample time 237 * @prev_aperf: Last APERF value read from APERF MSR 238 * @prev_mperf: Last MPERF value read from MPERF MSR 239 * @prev_tsc: Last timestamp counter (TSC) value 240 * @prev_cummulative_iowait: IO Wait time difference from last and 241 * current sample 242 * @sample: Storage for storing last Sample data 243 * @perf_limits: Pointer to perf_limit unique to this CPU 244 * Not all field in the structure are applicable 245 * when per cpu controls are enforced 246 * @acpi_perf_data: Stores ACPI perf information read from _PSS 247 * @valid_pss_table: Set to true for valid ACPI _PSS entries found 248 * @epp_powersave: Last saved HWP energy performance preference 249 * (EPP) or energy performance bias (EPB), 250 * when policy switched to performance 251 * @epp_policy: Last saved policy used to set EPP/EPB 252 * @epp_default: Power on default HWP energy performance 253 * preference/bias 254 * @epp_saved: Saved EPP/EPB during system suspend or CPU offline 255 * operation 256 * 257 * This structure stores per CPU instance data for all CPUs. 258 */ 259 struct cpudata { 260 int cpu; 261 262 unsigned int policy; 263 struct update_util_data update_util; 264 bool update_util_set; 265 266 struct pstate_data pstate; 267 struct vid_data vid; 268 struct _pid pid; 269 270 u64 last_update; 271 u64 last_sample_time; 272 u64 prev_aperf; 273 u64 prev_mperf; 274 u64 prev_tsc; 275 u64 prev_cummulative_iowait; 276 struct sample sample; 277 struct perf_limits *perf_limits; 278 #ifdef CONFIG_ACPI 279 struct acpi_processor_performance acpi_perf_data; 280 bool valid_pss_table; 281 #endif 282 unsigned int iowait_boost; 283 s16 epp_powersave; 284 s16 epp_policy; 285 s16 epp_default; 286 s16 epp_saved; 287 }; 288 289 static struct cpudata **all_cpu_data; 290 291 /** 292 * struct pstate_adjust_policy - Stores static PID configuration data 293 * @sample_rate_ms: PID calculation sample rate in ms 294 * @sample_rate_ns: Sample rate calculation in ns 295 * @deadband: PID deadband 296 * @setpoint: PID Setpoint 297 * @p_gain_pct: PID proportional gain 298 * @i_gain_pct: PID integral gain 299 * @d_gain_pct: PID derivative gain 300 * 301 * Stores per CPU model static PID configuration data. 302 */ 303 struct pstate_adjust_policy { 304 int sample_rate_ms; 305 s64 sample_rate_ns; 306 int deadband; 307 int setpoint; 308 int p_gain_pct; 309 int d_gain_pct; 310 int i_gain_pct; 311 }; 312 313 /** 314 * struct pstate_funcs - Per CPU model specific callbacks 315 * @get_max: Callback to get maximum non turbo effective P state 316 * @get_max_physical: Callback to get maximum non turbo physical P state 317 * @get_min: Callback to get minimum P state 318 * @get_turbo: Callback to get turbo P state 319 * @get_scaling: Callback to get frequency scaling factor 320 * @get_val: Callback to convert P state to actual MSR write value 321 * @get_vid: Callback to get VID data for Atom platforms 322 * @get_target_pstate: Callback to a function to calculate next P state to use 323 * 324 * Core and Atom CPU models have different way to get P State limits. This 325 * structure is used to store those callbacks. 326 */ 327 struct pstate_funcs { 328 int (*get_max)(void); 329 int (*get_max_physical)(void); 330 int (*get_min)(void); 331 int (*get_turbo)(void); 332 int (*get_scaling)(void); 333 u64 (*get_val)(struct cpudata*, int pstate); 334 void (*get_vid)(struct cpudata *); 335 int32_t (*get_target_pstate)(struct cpudata *); 336 }; 337 338 /** 339 * struct cpu_defaults- Per CPU model default config data 340 * @pid_policy: PID config data 341 * @funcs: Callback function data 342 */ 343 struct cpu_defaults { 344 struct pstate_adjust_policy pid_policy; 345 struct pstate_funcs funcs; 346 }; 347 348 static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu); 349 static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu); 350 351 static struct pstate_adjust_policy pid_params __read_mostly; 352 static struct pstate_funcs pstate_funcs __read_mostly; 353 static int hwp_active __read_mostly; 354 static bool per_cpu_limits __read_mostly; 355 356 static bool driver_registered __read_mostly; 357 358 #ifdef CONFIG_ACPI 359 static bool acpi_ppc; 360 #endif 361 362 static struct perf_limits performance_limits; 363 static struct perf_limits powersave_limits; 364 static struct perf_limits *limits; 365 366 static void intel_pstate_init_limits(struct perf_limits *limits) 367 { 368 memset(limits, 0, sizeof(*limits)); 369 limits->max_perf_pct = 100; 370 limits->max_perf = int_ext_tofp(1); 371 limits->max_policy_pct = 100; 372 limits->max_sysfs_pct = 100; 373 } 374 375 static void intel_pstate_set_performance_limits(struct perf_limits *limits) 376 { 377 intel_pstate_init_limits(limits); 378 limits->min_perf_pct = 100; 379 limits->min_perf = int_ext_tofp(1); 380 } 381 382 static DEFINE_MUTEX(intel_pstate_driver_lock); 383 static DEFINE_MUTEX(intel_pstate_limits_lock); 384 385 #ifdef CONFIG_ACPI 386 387 static bool intel_pstate_get_ppc_enable_status(void) 388 { 389 if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER || 390 acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER) 391 return true; 392 393 return acpi_ppc; 394 } 395 396 #ifdef CONFIG_ACPI_CPPC_LIB 397 398 /* The work item is needed to avoid CPU hotplug locking issues */ 399 static void intel_pstste_sched_itmt_work_fn(struct work_struct *work) 400 { 401 sched_set_itmt_support(); 402 } 403 404 static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn); 405 406 static void intel_pstate_set_itmt_prio(int cpu) 407 { 408 struct cppc_perf_caps cppc_perf; 409 static u32 max_highest_perf = 0, min_highest_perf = U32_MAX; 410 int ret; 411 412 ret = cppc_get_perf_caps(cpu, &cppc_perf); 413 if (ret) 414 return; 415 416 /* 417 * The priorities can be set regardless of whether or not 418 * sched_set_itmt_support(true) has been called and it is valid to 419 * update them at any time after it has been called. 420 */ 421 sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu); 422 423 if (max_highest_perf <= min_highest_perf) { 424 if (cppc_perf.highest_perf > max_highest_perf) 425 max_highest_perf = cppc_perf.highest_perf; 426 427 if (cppc_perf.highest_perf < min_highest_perf) 428 min_highest_perf = cppc_perf.highest_perf; 429 430 if (max_highest_perf > min_highest_perf) { 431 /* 432 * This code can be run during CPU online under the 433 * CPU hotplug locks, so sched_set_itmt_support() 434 * cannot be called from here. Queue up a work item 435 * to invoke it. 436 */ 437 schedule_work(&sched_itmt_work); 438 } 439 } 440 } 441 #else 442 static void intel_pstate_set_itmt_prio(int cpu) 443 { 444 } 445 #endif 446 447 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy) 448 { 449 struct cpudata *cpu; 450 int ret; 451 int i; 452 453 if (hwp_active) { 454 intel_pstate_set_itmt_prio(policy->cpu); 455 return; 456 } 457 458 if (!intel_pstate_get_ppc_enable_status()) 459 return; 460 461 cpu = all_cpu_data[policy->cpu]; 462 463 ret = acpi_processor_register_performance(&cpu->acpi_perf_data, 464 policy->cpu); 465 if (ret) 466 return; 467 468 /* 469 * Check if the control value in _PSS is for PERF_CTL MSR, which should 470 * guarantee that the states returned by it map to the states in our 471 * list directly. 472 */ 473 if (cpu->acpi_perf_data.control_register.space_id != 474 ACPI_ADR_SPACE_FIXED_HARDWARE) 475 goto err; 476 477 /* 478 * If there is only one entry _PSS, simply ignore _PSS and continue as 479 * usual without taking _PSS into account 480 */ 481 if (cpu->acpi_perf_data.state_count < 2) 482 goto err; 483 484 pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu); 485 for (i = 0; i < cpu->acpi_perf_data.state_count; i++) { 486 pr_debug(" %cP%d: %u MHz, %u mW, 0x%x\n", 487 (i == cpu->acpi_perf_data.state ? '*' : ' '), i, 488 (u32) cpu->acpi_perf_data.states[i].core_frequency, 489 (u32) cpu->acpi_perf_data.states[i].power, 490 (u32) cpu->acpi_perf_data.states[i].control); 491 } 492 493 /* 494 * The _PSS table doesn't contain whole turbo frequency range. 495 * This just contains +1 MHZ above the max non turbo frequency, 496 * with control value corresponding to max turbo ratio. But 497 * when cpufreq set policy is called, it will call with this 498 * max frequency, which will cause a reduced performance as 499 * this driver uses real max turbo frequency as the max 500 * frequency. So correct this frequency in _PSS table to 501 * correct max turbo frequency based on the turbo state. 502 * Also need to convert to MHz as _PSS freq is in MHz. 503 */ 504 if (!limits->turbo_disabled) 505 cpu->acpi_perf_data.states[0].core_frequency = 506 policy->cpuinfo.max_freq / 1000; 507 cpu->valid_pss_table = true; 508 pr_debug("_PPC limits will be enforced\n"); 509 510 return; 511 512 err: 513 cpu->valid_pss_table = false; 514 acpi_processor_unregister_performance(policy->cpu); 515 } 516 517 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy) 518 { 519 struct cpudata *cpu; 520 521 cpu = all_cpu_data[policy->cpu]; 522 if (!cpu->valid_pss_table) 523 return; 524 525 acpi_processor_unregister_performance(policy->cpu); 526 } 527 #else 528 static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy) 529 { 530 } 531 532 static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy) 533 { 534 } 535 #endif 536 537 static inline void pid_reset(struct _pid *pid, int setpoint, int busy, 538 int deadband, int integral) { 539 pid->setpoint = int_tofp(setpoint); 540 pid->deadband = int_tofp(deadband); 541 pid->integral = int_tofp(integral); 542 pid->last_err = int_tofp(setpoint) - int_tofp(busy); 543 } 544 545 static inline void pid_p_gain_set(struct _pid *pid, int percent) 546 { 547 pid->p_gain = div_fp(percent, 100); 548 } 549 550 static inline void pid_i_gain_set(struct _pid *pid, int percent) 551 { 552 pid->i_gain = div_fp(percent, 100); 553 } 554 555 static inline void pid_d_gain_set(struct _pid *pid, int percent) 556 { 557 pid->d_gain = div_fp(percent, 100); 558 } 559 560 static signed int pid_calc(struct _pid *pid, int32_t busy) 561 { 562 signed int result; 563 int32_t pterm, dterm, fp_error; 564 int32_t integral_limit; 565 566 fp_error = pid->setpoint - busy; 567 568 if (abs(fp_error) <= pid->deadband) 569 return 0; 570 571 pterm = mul_fp(pid->p_gain, fp_error); 572 573 pid->integral += fp_error; 574 575 /* 576 * We limit the integral here so that it will never 577 * get higher than 30. This prevents it from becoming 578 * too large an input over long periods of time and allows 579 * it to get factored out sooner. 580 * 581 * The value of 30 was chosen through experimentation. 582 */ 583 integral_limit = int_tofp(30); 584 if (pid->integral > integral_limit) 585 pid->integral = integral_limit; 586 if (pid->integral < -integral_limit) 587 pid->integral = -integral_limit; 588 589 dterm = mul_fp(pid->d_gain, fp_error - pid->last_err); 590 pid->last_err = fp_error; 591 592 result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm; 593 result = result + (1 << (FRAC_BITS-1)); 594 return (signed int)fp_toint(result); 595 } 596 597 static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu) 598 { 599 pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct); 600 pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct); 601 pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct); 602 603 pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0); 604 } 605 606 static inline void intel_pstate_reset_all_pid(void) 607 { 608 unsigned int cpu; 609 610 for_each_online_cpu(cpu) { 611 if (all_cpu_data[cpu]) 612 intel_pstate_busy_pid_reset(all_cpu_data[cpu]); 613 } 614 } 615 616 static inline void update_turbo_state(void) 617 { 618 u64 misc_en; 619 struct cpudata *cpu; 620 621 cpu = all_cpu_data[0]; 622 rdmsrl(MSR_IA32_MISC_ENABLE, misc_en); 623 limits->turbo_disabled = 624 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE || 625 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate); 626 } 627 628 static s16 intel_pstate_get_epb(struct cpudata *cpu_data) 629 { 630 u64 epb; 631 int ret; 632 633 if (!static_cpu_has(X86_FEATURE_EPB)) 634 return -ENXIO; 635 636 ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb); 637 if (ret) 638 return (s16)ret; 639 640 return (s16)(epb & 0x0f); 641 } 642 643 static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data) 644 { 645 s16 epp; 646 647 if (static_cpu_has(X86_FEATURE_HWP_EPP)) { 648 /* 649 * When hwp_req_data is 0, means that caller didn't read 650 * MSR_HWP_REQUEST, so need to read and get EPP. 651 */ 652 if (!hwp_req_data) { 653 epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, 654 &hwp_req_data); 655 if (epp) 656 return epp; 657 } 658 epp = (hwp_req_data >> 24) & 0xff; 659 } else { 660 /* When there is no EPP present, HWP uses EPB settings */ 661 epp = intel_pstate_get_epb(cpu_data); 662 } 663 664 return epp; 665 } 666 667 static int intel_pstate_set_epb(int cpu, s16 pref) 668 { 669 u64 epb; 670 int ret; 671 672 if (!static_cpu_has(X86_FEATURE_EPB)) 673 return -ENXIO; 674 675 ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb); 676 if (ret) 677 return ret; 678 679 epb = (epb & ~0x0f) | pref; 680 wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb); 681 682 return 0; 683 } 684 685 /* 686 * EPP/EPB display strings corresponding to EPP index in the 687 * energy_perf_strings[] 688 * index String 689 *------------------------------------- 690 * 0 default 691 * 1 performance 692 * 2 balance_performance 693 * 3 balance_power 694 * 4 power 695 */ 696 static const char * const energy_perf_strings[] = { 697 "default", 698 "performance", 699 "balance_performance", 700 "balance_power", 701 "power", 702 NULL 703 }; 704 705 static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data) 706 { 707 s16 epp; 708 int index = -EINVAL; 709 710 epp = intel_pstate_get_epp(cpu_data, 0); 711 if (epp < 0) 712 return epp; 713 714 if (static_cpu_has(X86_FEATURE_HWP_EPP)) { 715 /* 716 * Range: 717 * 0x00-0x3F : Performance 718 * 0x40-0x7F : Balance performance 719 * 0x80-0xBF : Balance power 720 * 0xC0-0xFF : Power 721 * The EPP is a 8 bit value, but our ranges restrict the 722 * value which can be set. Here only using top two bits 723 * effectively. 724 */ 725 index = (epp >> 6) + 1; 726 } else if (static_cpu_has(X86_FEATURE_EPB)) { 727 /* 728 * Range: 729 * 0x00-0x03 : Performance 730 * 0x04-0x07 : Balance performance 731 * 0x08-0x0B : Balance power 732 * 0x0C-0x0F : Power 733 * The EPB is a 4 bit value, but our ranges restrict the 734 * value which can be set. Here only using top two bits 735 * effectively. 736 */ 737 index = (epp >> 2) + 1; 738 } 739 740 return index; 741 } 742 743 static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data, 744 int pref_index) 745 { 746 int epp = -EINVAL; 747 int ret; 748 749 if (!pref_index) 750 epp = cpu_data->epp_default; 751 752 mutex_lock(&intel_pstate_limits_lock); 753 754 if (static_cpu_has(X86_FEATURE_HWP_EPP)) { 755 u64 value; 756 757 ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, &value); 758 if (ret) 759 goto return_pref; 760 761 value &= ~GENMASK_ULL(31, 24); 762 763 /* 764 * If epp is not default, convert from index into 765 * energy_perf_strings to epp value, by shifting 6 766 * bits left to use only top two bits in epp. 767 * The resultant epp need to shifted by 24 bits to 768 * epp position in MSR_HWP_REQUEST. 769 */ 770 if (epp == -EINVAL) 771 epp = (pref_index - 1) << 6; 772 773 value |= (u64)epp << 24; 774 ret = wrmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, value); 775 } else { 776 if (epp == -EINVAL) 777 epp = (pref_index - 1) << 2; 778 ret = intel_pstate_set_epb(cpu_data->cpu, epp); 779 } 780 return_pref: 781 mutex_unlock(&intel_pstate_limits_lock); 782 783 return ret; 784 } 785 786 static ssize_t show_energy_performance_available_preferences( 787 struct cpufreq_policy *policy, char *buf) 788 { 789 int i = 0; 790 int ret = 0; 791 792 while (energy_perf_strings[i] != NULL) 793 ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]); 794 795 ret += sprintf(&buf[ret], "\n"); 796 797 return ret; 798 } 799 800 cpufreq_freq_attr_ro(energy_performance_available_preferences); 801 802 static ssize_t store_energy_performance_preference( 803 struct cpufreq_policy *policy, const char *buf, size_t count) 804 { 805 struct cpudata *cpu_data = all_cpu_data[policy->cpu]; 806 char str_preference[21]; 807 int ret, i = 0; 808 809 ret = sscanf(buf, "%20s", str_preference); 810 if (ret != 1) 811 return -EINVAL; 812 813 while (energy_perf_strings[i] != NULL) { 814 if (!strcmp(str_preference, energy_perf_strings[i])) { 815 intel_pstate_set_energy_pref_index(cpu_data, i); 816 return count; 817 } 818 ++i; 819 } 820 821 return -EINVAL; 822 } 823 824 static ssize_t show_energy_performance_preference( 825 struct cpufreq_policy *policy, char *buf) 826 { 827 struct cpudata *cpu_data = all_cpu_data[policy->cpu]; 828 int preference; 829 830 preference = intel_pstate_get_energy_pref_index(cpu_data); 831 if (preference < 0) 832 return preference; 833 834 return sprintf(buf, "%s\n", energy_perf_strings[preference]); 835 } 836 837 cpufreq_freq_attr_rw(energy_performance_preference); 838 839 static struct freq_attr *hwp_cpufreq_attrs[] = { 840 &energy_performance_preference, 841 &energy_performance_available_preferences, 842 NULL, 843 }; 844 845 static void intel_pstate_hwp_set(struct cpufreq_policy *policy) 846 { 847 int min, hw_min, max, hw_max, cpu, range, adj_range; 848 struct perf_limits *perf_limits = limits; 849 u64 value, cap; 850 851 for_each_cpu(cpu, policy->cpus) { 852 int max_perf_pct, min_perf_pct; 853 struct cpudata *cpu_data = all_cpu_data[cpu]; 854 s16 epp; 855 856 if (per_cpu_limits) 857 perf_limits = all_cpu_data[cpu]->perf_limits; 858 859 rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap); 860 hw_min = HWP_LOWEST_PERF(cap); 861 if (limits->no_turbo) 862 hw_max = HWP_GUARANTEED_PERF(cap); 863 else 864 hw_max = HWP_HIGHEST_PERF(cap); 865 range = hw_max - hw_min; 866 867 max_perf_pct = perf_limits->max_perf_pct; 868 min_perf_pct = perf_limits->min_perf_pct; 869 870 rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value); 871 adj_range = min_perf_pct * range / 100; 872 min = hw_min + adj_range; 873 value &= ~HWP_MIN_PERF(~0L); 874 value |= HWP_MIN_PERF(min); 875 876 adj_range = max_perf_pct * range / 100; 877 max = hw_min + adj_range; 878 879 value &= ~HWP_MAX_PERF(~0L); 880 value |= HWP_MAX_PERF(max); 881 882 if (cpu_data->epp_policy == cpu_data->policy) 883 goto skip_epp; 884 885 cpu_data->epp_policy = cpu_data->policy; 886 887 if (cpu_data->epp_saved >= 0) { 888 epp = cpu_data->epp_saved; 889 cpu_data->epp_saved = -EINVAL; 890 goto update_epp; 891 } 892 893 if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) { 894 epp = intel_pstate_get_epp(cpu_data, value); 895 cpu_data->epp_powersave = epp; 896 /* If EPP read was failed, then don't try to write */ 897 if (epp < 0) 898 goto skip_epp; 899 900 901 epp = 0; 902 } else { 903 /* skip setting EPP, when saved value is invalid */ 904 if (cpu_data->epp_powersave < 0) 905 goto skip_epp; 906 907 /* 908 * No need to restore EPP when it is not zero. This 909 * means: 910 * - Policy is not changed 911 * - user has manually changed 912 * - Error reading EPB 913 */ 914 epp = intel_pstate_get_epp(cpu_data, value); 915 if (epp) 916 goto skip_epp; 917 918 epp = cpu_data->epp_powersave; 919 } 920 update_epp: 921 if (static_cpu_has(X86_FEATURE_HWP_EPP)) { 922 value &= ~GENMASK_ULL(31, 24); 923 value |= (u64)epp << 24; 924 } else { 925 intel_pstate_set_epb(cpu, epp); 926 } 927 skip_epp: 928 wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value); 929 } 930 } 931 932 static int intel_pstate_hwp_set_policy(struct cpufreq_policy *policy) 933 { 934 if (hwp_active) 935 intel_pstate_hwp_set(policy); 936 937 return 0; 938 } 939 940 static int intel_pstate_hwp_save_state(struct cpufreq_policy *policy) 941 { 942 struct cpudata *cpu_data = all_cpu_data[policy->cpu]; 943 944 if (!hwp_active) 945 return 0; 946 947 cpu_data->epp_saved = intel_pstate_get_epp(cpu_data, 0); 948 949 return 0; 950 } 951 952 static int intel_pstate_resume(struct cpufreq_policy *policy) 953 { 954 int ret; 955 956 if (!hwp_active) 957 return 0; 958 959 mutex_lock(&intel_pstate_limits_lock); 960 961 all_cpu_data[policy->cpu]->epp_policy = 0; 962 963 ret = intel_pstate_hwp_set_policy(policy); 964 965 mutex_unlock(&intel_pstate_limits_lock); 966 967 return ret; 968 } 969 970 static void intel_pstate_update_policies(void) 971 { 972 int cpu; 973 974 for_each_possible_cpu(cpu) 975 cpufreq_update_policy(cpu); 976 } 977 978 /************************** debugfs begin ************************/ 979 static int pid_param_set(void *data, u64 val) 980 { 981 *(u32 *)data = val; 982 intel_pstate_reset_all_pid(); 983 return 0; 984 } 985 986 static int pid_param_get(void *data, u64 *val) 987 { 988 *val = *(u32 *)data; 989 return 0; 990 } 991 DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n"); 992 993 static struct dentry *debugfs_parent; 994 995 struct pid_param { 996 char *name; 997 void *value; 998 struct dentry *dentry; 999 }; 1000 1001 static struct pid_param pid_files[] = { 1002 {"sample_rate_ms", &pid_params.sample_rate_ms, }, 1003 {"d_gain_pct", &pid_params.d_gain_pct, }, 1004 {"i_gain_pct", &pid_params.i_gain_pct, }, 1005 {"deadband", &pid_params.deadband, }, 1006 {"setpoint", &pid_params.setpoint, }, 1007 {"p_gain_pct", &pid_params.p_gain_pct, }, 1008 {NULL, NULL, } 1009 }; 1010 1011 static void intel_pstate_debug_expose_params(void) 1012 { 1013 int i; 1014 1015 debugfs_parent = debugfs_create_dir("pstate_snb", NULL); 1016 if (IS_ERR_OR_NULL(debugfs_parent)) 1017 return; 1018 1019 for (i = 0; pid_files[i].name; i++) { 1020 struct dentry *dentry; 1021 1022 dentry = debugfs_create_file(pid_files[i].name, 0660, 1023 debugfs_parent, pid_files[i].value, 1024 &fops_pid_param); 1025 if (!IS_ERR(dentry)) 1026 pid_files[i].dentry = dentry; 1027 } 1028 } 1029 1030 static void intel_pstate_debug_hide_params(void) 1031 { 1032 int i; 1033 1034 if (IS_ERR_OR_NULL(debugfs_parent)) 1035 return; 1036 1037 for (i = 0; pid_files[i].name; i++) { 1038 debugfs_remove(pid_files[i].dentry); 1039 pid_files[i].dentry = NULL; 1040 } 1041 1042 debugfs_remove(debugfs_parent); 1043 debugfs_parent = NULL; 1044 } 1045 1046 /************************** debugfs end ************************/ 1047 1048 /************************** sysfs begin ************************/ 1049 #define show_one(file_name, object) \ 1050 static ssize_t show_##file_name \ 1051 (struct kobject *kobj, struct attribute *attr, char *buf) \ 1052 { \ 1053 return sprintf(buf, "%u\n", limits->object); \ 1054 } 1055 1056 static ssize_t intel_pstate_show_status(char *buf); 1057 static int intel_pstate_update_status(const char *buf, size_t size); 1058 1059 static ssize_t show_status(struct kobject *kobj, 1060 struct attribute *attr, char *buf) 1061 { 1062 ssize_t ret; 1063 1064 mutex_lock(&intel_pstate_driver_lock); 1065 ret = intel_pstate_show_status(buf); 1066 mutex_unlock(&intel_pstate_driver_lock); 1067 1068 return ret; 1069 } 1070 1071 static ssize_t store_status(struct kobject *a, struct attribute *b, 1072 const char *buf, size_t count) 1073 { 1074 char *p = memchr(buf, '\n', count); 1075 int ret; 1076 1077 mutex_lock(&intel_pstate_driver_lock); 1078 ret = intel_pstate_update_status(buf, p ? p - buf : count); 1079 mutex_unlock(&intel_pstate_driver_lock); 1080 1081 return ret < 0 ? ret : count; 1082 } 1083 1084 static ssize_t show_turbo_pct(struct kobject *kobj, 1085 struct attribute *attr, char *buf) 1086 { 1087 struct cpudata *cpu; 1088 int total, no_turbo, turbo_pct; 1089 uint32_t turbo_fp; 1090 1091 mutex_lock(&intel_pstate_driver_lock); 1092 1093 if (!driver_registered) { 1094 mutex_unlock(&intel_pstate_driver_lock); 1095 return -EAGAIN; 1096 } 1097 1098 cpu = all_cpu_data[0]; 1099 1100 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1; 1101 no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1; 1102 turbo_fp = div_fp(no_turbo, total); 1103 turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100))); 1104 1105 mutex_unlock(&intel_pstate_driver_lock); 1106 1107 return sprintf(buf, "%u\n", turbo_pct); 1108 } 1109 1110 static ssize_t show_num_pstates(struct kobject *kobj, 1111 struct attribute *attr, char *buf) 1112 { 1113 struct cpudata *cpu; 1114 int total; 1115 1116 mutex_lock(&intel_pstate_driver_lock); 1117 1118 if (!driver_registered) { 1119 mutex_unlock(&intel_pstate_driver_lock); 1120 return -EAGAIN; 1121 } 1122 1123 cpu = all_cpu_data[0]; 1124 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1; 1125 1126 mutex_unlock(&intel_pstate_driver_lock); 1127 1128 return sprintf(buf, "%u\n", total); 1129 } 1130 1131 static ssize_t show_no_turbo(struct kobject *kobj, 1132 struct attribute *attr, char *buf) 1133 { 1134 ssize_t ret; 1135 1136 mutex_lock(&intel_pstate_driver_lock); 1137 1138 if (!driver_registered) { 1139 mutex_unlock(&intel_pstate_driver_lock); 1140 return -EAGAIN; 1141 } 1142 1143 update_turbo_state(); 1144 if (limits->turbo_disabled) 1145 ret = sprintf(buf, "%u\n", limits->turbo_disabled); 1146 else 1147 ret = sprintf(buf, "%u\n", limits->no_turbo); 1148 1149 mutex_unlock(&intel_pstate_driver_lock); 1150 1151 return ret; 1152 } 1153 1154 static ssize_t store_no_turbo(struct kobject *a, struct attribute *b, 1155 const char *buf, size_t count) 1156 { 1157 unsigned int input; 1158 int ret; 1159 1160 ret = sscanf(buf, "%u", &input); 1161 if (ret != 1) 1162 return -EINVAL; 1163 1164 mutex_lock(&intel_pstate_driver_lock); 1165 1166 if (!driver_registered) { 1167 mutex_unlock(&intel_pstate_driver_lock); 1168 return -EAGAIN; 1169 } 1170 1171 mutex_lock(&intel_pstate_limits_lock); 1172 1173 update_turbo_state(); 1174 if (limits->turbo_disabled) { 1175 pr_warn("Turbo disabled by BIOS or unavailable on processor\n"); 1176 mutex_unlock(&intel_pstate_limits_lock); 1177 mutex_unlock(&intel_pstate_driver_lock); 1178 return -EPERM; 1179 } 1180 1181 limits->no_turbo = clamp_t(int, input, 0, 1); 1182 1183 mutex_unlock(&intel_pstate_limits_lock); 1184 1185 intel_pstate_update_policies(); 1186 1187 mutex_unlock(&intel_pstate_driver_lock); 1188 1189 return count; 1190 } 1191 1192 static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b, 1193 const char *buf, size_t count) 1194 { 1195 unsigned int input; 1196 int ret; 1197 1198 ret = sscanf(buf, "%u", &input); 1199 if (ret != 1) 1200 return -EINVAL; 1201 1202 mutex_lock(&intel_pstate_driver_lock); 1203 1204 if (!driver_registered) { 1205 mutex_unlock(&intel_pstate_driver_lock); 1206 return -EAGAIN; 1207 } 1208 1209 mutex_lock(&intel_pstate_limits_lock); 1210 1211 limits->max_sysfs_pct = clamp_t(int, input, 0 , 100); 1212 limits->max_perf_pct = min(limits->max_policy_pct, 1213 limits->max_sysfs_pct); 1214 limits->max_perf_pct = max(limits->min_policy_pct, 1215 limits->max_perf_pct); 1216 limits->max_perf_pct = max(limits->min_perf_pct, 1217 limits->max_perf_pct); 1218 limits->max_perf = div_ext_fp(limits->max_perf_pct, 100); 1219 1220 mutex_unlock(&intel_pstate_limits_lock); 1221 1222 intel_pstate_update_policies(); 1223 1224 mutex_unlock(&intel_pstate_driver_lock); 1225 1226 return count; 1227 } 1228 1229 static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b, 1230 const char *buf, size_t count) 1231 { 1232 unsigned int input; 1233 int ret; 1234 1235 ret = sscanf(buf, "%u", &input); 1236 if (ret != 1) 1237 return -EINVAL; 1238 1239 mutex_lock(&intel_pstate_driver_lock); 1240 1241 if (!driver_registered) { 1242 mutex_unlock(&intel_pstate_driver_lock); 1243 return -EAGAIN; 1244 } 1245 1246 mutex_lock(&intel_pstate_limits_lock); 1247 1248 limits->min_sysfs_pct = clamp_t(int, input, 0 , 100); 1249 limits->min_perf_pct = max(limits->min_policy_pct, 1250 limits->min_sysfs_pct); 1251 limits->min_perf_pct = min(limits->max_policy_pct, 1252 limits->min_perf_pct); 1253 limits->min_perf_pct = min(limits->max_perf_pct, 1254 limits->min_perf_pct); 1255 limits->min_perf = div_ext_fp(limits->min_perf_pct, 100); 1256 1257 mutex_unlock(&intel_pstate_limits_lock); 1258 1259 intel_pstate_update_policies(); 1260 1261 mutex_unlock(&intel_pstate_driver_lock); 1262 1263 return count; 1264 } 1265 1266 show_one(max_perf_pct, max_perf_pct); 1267 show_one(min_perf_pct, min_perf_pct); 1268 1269 define_one_global_rw(status); 1270 define_one_global_rw(no_turbo); 1271 define_one_global_rw(max_perf_pct); 1272 define_one_global_rw(min_perf_pct); 1273 define_one_global_ro(turbo_pct); 1274 define_one_global_ro(num_pstates); 1275 1276 static struct attribute *intel_pstate_attributes[] = { 1277 &status.attr, 1278 &no_turbo.attr, 1279 &turbo_pct.attr, 1280 &num_pstates.attr, 1281 NULL 1282 }; 1283 1284 static struct attribute_group intel_pstate_attr_group = { 1285 .attrs = intel_pstate_attributes, 1286 }; 1287 1288 static void __init intel_pstate_sysfs_expose_params(void) 1289 { 1290 struct kobject *intel_pstate_kobject; 1291 int rc; 1292 1293 intel_pstate_kobject = kobject_create_and_add("intel_pstate", 1294 &cpu_subsys.dev_root->kobj); 1295 if (WARN_ON(!intel_pstate_kobject)) 1296 return; 1297 1298 rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group); 1299 if (WARN_ON(rc)) 1300 return; 1301 1302 /* 1303 * If per cpu limits are enforced there are no global limits, so 1304 * return without creating max/min_perf_pct attributes 1305 */ 1306 if (per_cpu_limits) 1307 return; 1308 1309 rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr); 1310 WARN_ON(rc); 1311 1312 rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr); 1313 WARN_ON(rc); 1314 1315 } 1316 /************************** sysfs end ************************/ 1317 1318 static void intel_pstate_hwp_enable(struct cpudata *cpudata) 1319 { 1320 /* First disable HWP notification interrupt as we don't process them */ 1321 if (static_cpu_has(X86_FEATURE_HWP_NOTIFY)) 1322 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00); 1323 1324 wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1); 1325 cpudata->epp_policy = 0; 1326 if (cpudata->epp_default == -EINVAL) 1327 cpudata->epp_default = intel_pstate_get_epp(cpudata, 0); 1328 } 1329 1330 #define MSR_IA32_POWER_CTL_BIT_EE 19 1331 1332 /* Disable energy efficiency optimization */ 1333 static void intel_pstate_disable_ee(int cpu) 1334 { 1335 u64 power_ctl; 1336 int ret; 1337 1338 ret = rdmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, &power_ctl); 1339 if (ret) 1340 return; 1341 1342 if (!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE))) { 1343 pr_info("Disabling energy efficiency optimization\n"); 1344 power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE); 1345 wrmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, power_ctl); 1346 } 1347 } 1348 1349 static int atom_get_min_pstate(void) 1350 { 1351 u64 value; 1352 1353 rdmsrl(MSR_ATOM_CORE_RATIOS, value); 1354 return (value >> 8) & 0x7F; 1355 } 1356 1357 static int atom_get_max_pstate(void) 1358 { 1359 u64 value; 1360 1361 rdmsrl(MSR_ATOM_CORE_RATIOS, value); 1362 return (value >> 16) & 0x7F; 1363 } 1364 1365 static int atom_get_turbo_pstate(void) 1366 { 1367 u64 value; 1368 1369 rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value); 1370 return value & 0x7F; 1371 } 1372 1373 static u64 atom_get_val(struct cpudata *cpudata, int pstate) 1374 { 1375 u64 val; 1376 int32_t vid_fp; 1377 u32 vid; 1378 1379 val = (u64)pstate << 8; 1380 if (limits->no_turbo && !limits->turbo_disabled) 1381 val |= (u64)1 << 32; 1382 1383 vid_fp = cpudata->vid.min + mul_fp( 1384 int_tofp(pstate - cpudata->pstate.min_pstate), 1385 cpudata->vid.ratio); 1386 1387 vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max); 1388 vid = ceiling_fp(vid_fp); 1389 1390 if (pstate > cpudata->pstate.max_pstate) 1391 vid = cpudata->vid.turbo; 1392 1393 return val | vid; 1394 } 1395 1396 static int silvermont_get_scaling(void) 1397 { 1398 u64 value; 1399 int i; 1400 /* Defined in Table 35-6 from SDM (Sept 2015) */ 1401 static int silvermont_freq_table[] = { 1402 83300, 100000, 133300, 116700, 80000}; 1403 1404 rdmsrl(MSR_FSB_FREQ, value); 1405 i = value & 0x7; 1406 WARN_ON(i > 4); 1407 1408 return silvermont_freq_table[i]; 1409 } 1410 1411 static int airmont_get_scaling(void) 1412 { 1413 u64 value; 1414 int i; 1415 /* Defined in Table 35-10 from SDM (Sept 2015) */ 1416 static int airmont_freq_table[] = { 1417 83300, 100000, 133300, 116700, 80000, 1418 93300, 90000, 88900, 87500}; 1419 1420 rdmsrl(MSR_FSB_FREQ, value); 1421 i = value & 0xF; 1422 WARN_ON(i > 8); 1423 1424 return airmont_freq_table[i]; 1425 } 1426 1427 static void atom_get_vid(struct cpudata *cpudata) 1428 { 1429 u64 value; 1430 1431 rdmsrl(MSR_ATOM_CORE_VIDS, value); 1432 cpudata->vid.min = int_tofp((value >> 8) & 0x7f); 1433 cpudata->vid.max = int_tofp((value >> 16) & 0x7f); 1434 cpudata->vid.ratio = div_fp( 1435 cpudata->vid.max - cpudata->vid.min, 1436 int_tofp(cpudata->pstate.max_pstate - 1437 cpudata->pstate.min_pstate)); 1438 1439 rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value); 1440 cpudata->vid.turbo = value & 0x7f; 1441 } 1442 1443 static int core_get_min_pstate(void) 1444 { 1445 u64 value; 1446 1447 rdmsrl(MSR_PLATFORM_INFO, value); 1448 return (value >> 40) & 0xFF; 1449 } 1450 1451 static int core_get_max_pstate_physical(void) 1452 { 1453 u64 value; 1454 1455 rdmsrl(MSR_PLATFORM_INFO, value); 1456 return (value >> 8) & 0xFF; 1457 } 1458 1459 static int core_get_tdp_ratio(u64 plat_info) 1460 { 1461 /* Check how many TDP levels present */ 1462 if (plat_info & 0x600000000) { 1463 u64 tdp_ctrl; 1464 u64 tdp_ratio; 1465 int tdp_msr; 1466 int err; 1467 1468 /* Get the TDP level (0, 1, 2) to get ratios */ 1469 err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl); 1470 if (err) 1471 return err; 1472 1473 /* TDP MSR are continuous starting at 0x648 */ 1474 tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03); 1475 err = rdmsrl_safe(tdp_msr, &tdp_ratio); 1476 if (err) 1477 return err; 1478 1479 /* For level 1 and 2, bits[23:16] contain the ratio */ 1480 if (tdp_ctrl & 0x03) 1481 tdp_ratio >>= 16; 1482 1483 tdp_ratio &= 0xff; /* ratios are only 8 bits long */ 1484 pr_debug("tdp_ratio %x\n", (int)tdp_ratio); 1485 1486 return (int)tdp_ratio; 1487 } 1488 1489 return -ENXIO; 1490 } 1491 1492 static int core_get_max_pstate(void) 1493 { 1494 u64 tar; 1495 u64 plat_info; 1496 int max_pstate; 1497 int tdp_ratio; 1498 int err; 1499 1500 rdmsrl(MSR_PLATFORM_INFO, plat_info); 1501 max_pstate = (plat_info >> 8) & 0xFF; 1502 1503 tdp_ratio = core_get_tdp_ratio(plat_info); 1504 if (tdp_ratio <= 0) 1505 return max_pstate; 1506 1507 if (hwp_active) { 1508 /* Turbo activation ratio is not used on HWP platforms */ 1509 return tdp_ratio; 1510 } 1511 1512 err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar); 1513 if (!err) { 1514 int tar_levels; 1515 1516 /* Do some sanity checking for safety */ 1517 tar_levels = tar & 0xff; 1518 if (tdp_ratio - 1 == tar_levels) { 1519 max_pstate = tar_levels; 1520 pr_debug("max_pstate=TAC %x\n", max_pstate); 1521 } 1522 } 1523 1524 return max_pstate; 1525 } 1526 1527 static int core_get_turbo_pstate(void) 1528 { 1529 u64 value; 1530 int nont, ret; 1531 1532 rdmsrl(MSR_TURBO_RATIO_LIMIT, value); 1533 nont = core_get_max_pstate(); 1534 ret = (value) & 255; 1535 if (ret <= nont) 1536 ret = nont; 1537 return ret; 1538 } 1539 1540 static inline int core_get_scaling(void) 1541 { 1542 return 100000; 1543 } 1544 1545 static u64 core_get_val(struct cpudata *cpudata, int pstate) 1546 { 1547 u64 val; 1548 1549 val = (u64)pstate << 8; 1550 if (limits->no_turbo && !limits->turbo_disabled) 1551 val |= (u64)1 << 32; 1552 1553 return val; 1554 } 1555 1556 static int knl_get_turbo_pstate(void) 1557 { 1558 u64 value; 1559 int nont, ret; 1560 1561 rdmsrl(MSR_TURBO_RATIO_LIMIT, value); 1562 nont = core_get_max_pstate(); 1563 ret = (((value) >> 8) & 0xFF); 1564 if (ret <= nont) 1565 ret = nont; 1566 return ret; 1567 } 1568 1569 static struct cpu_defaults core_params = { 1570 .pid_policy = { 1571 .sample_rate_ms = 10, 1572 .deadband = 0, 1573 .setpoint = 97, 1574 .p_gain_pct = 20, 1575 .d_gain_pct = 0, 1576 .i_gain_pct = 0, 1577 }, 1578 .funcs = { 1579 .get_max = core_get_max_pstate, 1580 .get_max_physical = core_get_max_pstate_physical, 1581 .get_min = core_get_min_pstate, 1582 .get_turbo = core_get_turbo_pstate, 1583 .get_scaling = core_get_scaling, 1584 .get_val = core_get_val, 1585 .get_target_pstate = get_target_pstate_use_performance, 1586 }, 1587 }; 1588 1589 static const struct cpu_defaults silvermont_params = { 1590 .pid_policy = { 1591 .sample_rate_ms = 10, 1592 .deadband = 0, 1593 .setpoint = 60, 1594 .p_gain_pct = 14, 1595 .d_gain_pct = 0, 1596 .i_gain_pct = 4, 1597 }, 1598 .funcs = { 1599 .get_max = atom_get_max_pstate, 1600 .get_max_physical = atom_get_max_pstate, 1601 .get_min = atom_get_min_pstate, 1602 .get_turbo = atom_get_turbo_pstate, 1603 .get_val = atom_get_val, 1604 .get_scaling = silvermont_get_scaling, 1605 .get_vid = atom_get_vid, 1606 .get_target_pstate = get_target_pstate_use_cpu_load, 1607 }, 1608 }; 1609 1610 static const struct cpu_defaults airmont_params = { 1611 .pid_policy = { 1612 .sample_rate_ms = 10, 1613 .deadband = 0, 1614 .setpoint = 60, 1615 .p_gain_pct = 14, 1616 .d_gain_pct = 0, 1617 .i_gain_pct = 4, 1618 }, 1619 .funcs = { 1620 .get_max = atom_get_max_pstate, 1621 .get_max_physical = atom_get_max_pstate, 1622 .get_min = atom_get_min_pstate, 1623 .get_turbo = atom_get_turbo_pstate, 1624 .get_val = atom_get_val, 1625 .get_scaling = airmont_get_scaling, 1626 .get_vid = atom_get_vid, 1627 .get_target_pstate = get_target_pstate_use_cpu_load, 1628 }, 1629 }; 1630 1631 static const struct cpu_defaults knl_params = { 1632 .pid_policy = { 1633 .sample_rate_ms = 10, 1634 .deadband = 0, 1635 .setpoint = 97, 1636 .p_gain_pct = 20, 1637 .d_gain_pct = 0, 1638 .i_gain_pct = 0, 1639 }, 1640 .funcs = { 1641 .get_max = core_get_max_pstate, 1642 .get_max_physical = core_get_max_pstate_physical, 1643 .get_min = core_get_min_pstate, 1644 .get_turbo = knl_get_turbo_pstate, 1645 .get_scaling = core_get_scaling, 1646 .get_val = core_get_val, 1647 .get_target_pstate = get_target_pstate_use_performance, 1648 }, 1649 }; 1650 1651 static const struct cpu_defaults bxt_params = { 1652 .pid_policy = { 1653 .sample_rate_ms = 10, 1654 .deadband = 0, 1655 .setpoint = 60, 1656 .p_gain_pct = 14, 1657 .d_gain_pct = 0, 1658 .i_gain_pct = 4, 1659 }, 1660 .funcs = { 1661 .get_max = core_get_max_pstate, 1662 .get_max_physical = core_get_max_pstate_physical, 1663 .get_min = core_get_min_pstate, 1664 .get_turbo = core_get_turbo_pstate, 1665 .get_scaling = core_get_scaling, 1666 .get_val = core_get_val, 1667 .get_target_pstate = get_target_pstate_use_cpu_load, 1668 }, 1669 }; 1670 1671 static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max) 1672 { 1673 int max_perf = cpu->pstate.turbo_pstate; 1674 int max_perf_adj; 1675 int min_perf; 1676 struct perf_limits *perf_limits = limits; 1677 1678 if (limits->no_turbo || limits->turbo_disabled) 1679 max_perf = cpu->pstate.max_pstate; 1680 1681 if (per_cpu_limits) 1682 perf_limits = cpu->perf_limits; 1683 1684 /* 1685 * performance can be limited by user through sysfs, by cpufreq 1686 * policy, or by cpu specific default values determined through 1687 * experimentation. 1688 */ 1689 max_perf_adj = fp_ext_toint(max_perf * perf_limits->max_perf); 1690 *max = clamp_t(int, max_perf_adj, 1691 cpu->pstate.min_pstate, cpu->pstate.turbo_pstate); 1692 1693 min_perf = fp_ext_toint(max_perf * perf_limits->min_perf); 1694 *min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf); 1695 } 1696 1697 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate) 1698 { 1699 trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu); 1700 cpu->pstate.current_pstate = pstate; 1701 /* 1702 * Generally, there is no guarantee that this code will always run on 1703 * the CPU being updated, so force the register update to run on the 1704 * right CPU. 1705 */ 1706 wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL, 1707 pstate_funcs.get_val(cpu, pstate)); 1708 } 1709 1710 static void intel_pstate_set_min_pstate(struct cpudata *cpu) 1711 { 1712 intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate); 1713 } 1714 1715 static void intel_pstate_max_within_limits(struct cpudata *cpu) 1716 { 1717 int min_pstate, max_pstate; 1718 1719 update_turbo_state(); 1720 intel_pstate_get_min_max(cpu, &min_pstate, &max_pstate); 1721 intel_pstate_set_pstate(cpu, max_pstate); 1722 } 1723 1724 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu) 1725 { 1726 cpu->pstate.min_pstate = pstate_funcs.get_min(); 1727 cpu->pstate.max_pstate = pstate_funcs.get_max(); 1728 cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical(); 1729 cpu->pstate.turbo_pstate = pstate_funcs.get_turbo(); 1730 cpu->pstate.scaling = pstate_funcs.get_scaling(); 1731 cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling; 1732 cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling; 1733 1734 if (pstate_funcs.get_vid) 1735 pstate_funcs.get_vid(cpu); 1736 1737 intel_pstate_set_min_pstate(cpu); 1738 } 1739 1740 static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu) 1741 { 1742 struct sample *sample = &cpu->sample; 1743 1744 sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf); 1745 } 1746 1747 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time) 1748 { 1749 u64 aperf, mperf; 1750 unsigned long flags; 1751 u64 tsc; 1752 1753 local_irq_save(flags); 1754 rdmsrl(MSR_IA32_APERF, aperf); 1755 rdmsrl(MSR_IA32_MPERF, mperf); 1756 tsc = rdtsc(); 1757 if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) { 1758 local_irq_restore(flags); 1759 return false; 1760 } 1761 local_irq_restore(flags); 1762 1763 cpu->last_sample_time = cpu->sample.time; 1764 cpu->sample.time = time; 1765 cpu->sample.aperf = aperf; 1766 cpu->sample.mperf = mperf; 1767 cpu->sample.tsc = tsc; 1768 cpu->sample.aperf -= cpu->prev_aperf; 1769 cpu->sample.mperf -= cpu->prev_mperf; 1770 cpu->sample.tsc -= cpu->prev_tsc; 1771 1772 cpu->prev_aperf = aperf; 1773 cpu->prev_mperf = mperf; 1774 cpu->prev_tsc = tsc; 1775 /* 1776 * First time this function is invoked in a given cycle, all of the 1777 * previous sample data fields are equal to zero or stale and they must 1778 * be populated with meaningful numbers for things to work, so assume 1779 * that sample.time will always be reset before setting the utilization 1780 * update hook and make the caller skip the sample then. 1781 */ 1782 return !!cpu->last_sample_time; 1783 } 1784 1785 static inline int32_t get_avg_frequency(struct cpudata *cpu) 1786 { 1787 return mul_ext_fp(cpu->sample.core_avg_perf, 1788 cpu->pstate.max_pstate_physical * cpu->pstate.scaling); 1789 } 1790 1791 static inline int32_t get_avg_pstate(struct cpudata *cpu) 1792 { 1793 return mul_ext_fp(cpu->pstate.max_pstate_physical, 1794 cpu->sample.core_avg_perf); 1795 } 1796 1797 static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu) 1798 { 1799 struct sample *sample = &cpu->sample; 1800 int32_t busy_frac, boost; 1801 int target, avg_pstate; 1802 1803 busy_frac = div_fp(sample->mperf, sample->tsc); 1804 1805 boost = cpu->iowait_boost; 1806 cpu->iowait_boost >>= 1; 1807 1808 if (busy_frac < boost) 1809 busy_frac = boost; 1810 1811 sample->busy_scaled = busy_frac * 100; 1812 1813 target = limits->no_turbo || limits->turbo_disabled ? 1814 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate; 1815 target += target >> 2; 1816 target = mul_fp(target, busy_frac); 1817 if (target < cpu->pstate.min_pstate) 1818 target = cpu->pstate.min_pstate; 1819 1820 /* 1821 * If the average P-state during the previous cycle was higher than the 1822 * current target, add 50% of the difference to the target to reduce 1823 * possible performance oscillations and offset possible performance 1824 * loss related to moving the workload from one CPU to another within 1825 * a package/module. 1826 */ 1827 avg_pstate = get_avg_pstate(cpu); 1828 if (avg_pstate > target) 1829 target += (avg_pstate - target) >> 1; 1830 1831 return target; 1832 } 1833 1834 static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu) 1835 { 1836 int32_t perf_scaled, max_pstate, current_pstate, sample_ratio; 1837 u64 duration_ns; 1838 1839 /* 1840 * perf_scaled is the ratio of the average P-state during the last 1841 * sampling period to the P-state requested last time (in percent). 1842 * 1843 * That measures the system's response to the previous P-state 1844 * selection. 1845 */ 1846 max_pstate = cpu->pstate.max_pstate_physical; 1847 current_pstate = cpu->pstate.current_pstate; 1848 perf_scaled = mul_ext_fp(cpu->sample.core_avg_perf, 1849 div_fp(100 * max_pstate, current_pstate)); 1850 1851 /* 1852 * Since our utilization update callback will not run unless we are 1853 * in C0, check if the actual elapsed time is significantly greater (3x) 1854 * than our sample interval. If it is, then we were idle for a long 1855 * enough period of time to adjust our performance metric. 1856 */ 1857 duration_ns = cpu->sample.time - cpu->last_sample_time; 1858 if ((s64)duration_ns > pid_params.sample_rate_ns * 3) { 1859 sample_ratio = div_fp(pid_params.sample_rate_ns, duration_ns); 1860 perf_scaled = mul_fp(perf_scaled, sample_ratio); 1861 } else { 1862 sample_ratio = div_fp(100 * cpu->sample.mperf, cpu->sample.tsc); 1863 if (sample_ratio < int_tofp(1)) 1864 perf_scaled = 0; 1865 } 1866 1867 cpu->sample.busy_scaled = perf_scaled; 1868 return cpu->pstate.current_pstate - pid_calc(&cpu->pid, perf_scaled); 1869 } 1870 1871 static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate) 1872 { 1873 int max_perf, min_perf; 1874 1875 intel_pstate_get_min_max(cpu, &min_perf, &max_perf); 1876 pstate = clamp_t(int, pstate, min_perf, max_perf); 1877 trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu); 1878 return pstate; 1879 } 1880 1881 static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate) 1882 { 1883 pstate = intel_pstate_prepare_request(cpu, pstate); 1884 if (pstate == cpu->pstate.current_pstate) 1885 return; 1886 1887 cpu->pstate.current_pstate = pstate; 1888 wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate)); 1889 } 1890 1891 static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu) 1892 { 1893 int from, target_pstate; 1894 struct sample *sample; 1895 1896 from = cpu->pstate.current_pstate; 1897 1898 target_pstate = cpu->policy == CPUFREQ_POLICY_PERFORMANCE ? 1899 cpu->pstate.turbo_pstate : pstate_funcs.get_target_pstate(cpu); 1900 1901 update_turbo_state(); 1902 1903 intel_pstate_update_pstate(cpu, target_pstate); 1904 1905 sample = &cpu->sample; 1906 trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf), 1907 fp_toint(sample->busy_scaled), 1908 from, 1909 cpu->pstate.current_pstate, 1910 sample->mperf, 1911 sample->aperf, 1912 sample->tsc, 1913 get_avg_frequency(cpu), 1914 fp_toint(cpu->iowait_boost * 100)); 1915 } 1916 1917 static void intel_pstate_update_util(struct update_util_data *data, u64 time, 1918 unsigned int flags) 1919 { 1920 struct cpudata *cpu = container_of(data, struct cpudata, update_util); 1921 u64 delta_ns; 1922 1923 if (pstate_funcs.get_target_pstate == get_target_pstate_use_cpu_load) { 1924 if (flags & SCHED_CPUFREQ_IOWAIT) { 1925 cpu->iowait_boost = int_tofp(1); 1926 } else if (cpu->iowait_boost) { 1927 /* Clear iowait_boost if the CPU may have been idle. */ 1928 delta_ns = time - cpu->last_update; 1929 if (delta_ns > TICK_NSEC) 1930 cpu->iowait_boost = 0; 1931 } 1932 cpu->last_update = time; 1933 } 1934 1935 delta_ns = time - cpu->sample.time; 1936 if ((s64)delta_ns >= pid_params.sample_rate_ns) { 1937 bool sample_taken = intel_pstate_sample(cpu, time); 1938 1939 if (sample_taken) { 1940 intel_pstate_calc_avg_perf(cpu); 1941 if (!hwp_active) 1942 intel_pstate_adjust_busy_pstate(cpu); 1943 } 1944 } 1945 } 1946 1947 #define ICPU(model, policy) \ 1948 { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\ 1949 (unsigned long)&policy } 1950 1951 static const struct x86_cpu_id intel_pstate_cpu_ids[] = { 1952 ICPU(INTEL_FAM6_SANDYBRIDGE, core_params), 1953 ICPU(INTEL_FAM6_SANDYBRIDGE_X, core_params), 1954 ICPU(INTEL_FAM6_ATOM_SILVERMONT1, silvermont_params), 1955 ICPU(INTEL_FAM6_IVYBRIDGE, core_params), 1956 ICPU(INTEL_FAM6_HASWELL_CORE, core_params), 1957 ICPU(INTEL_FAM6_BROADWELL_CORE, core_params), 1958 ICPU(INTEL_FAM6_IVYBRIDGE_X, core_params), 1959 ICPU(INTEL_FAM6_HASWELL_X, core_params), 1960 ICPU(INTEL_FAM6_HASWELL_ULT, core_params), 1961 ICPU(INTEL_FAM6_HASWELL_GT3E, core_params), 1962 ICPU(INTEL_FAM6_BROADWELL_GT3E, core_params), 1963 ICPU(INTEL_FAM6_ATOM_AIRMONT, airmont_params), 1964 ICPU(INTEL_FAM6_SKYLAKE_MOBILE, core_params), 1965 ICPU(INTEL_FAM6_BROADWELL_X, core_params), 1966 ICPU(INTEL_FAM6_SKYLAKE_DESKTOP, core_params), 1967 ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_params), 1968 ICPU(INTEL_FAM6_XEON_PHI_KNL, knl_params), 1969 ICPU(INTEL_FAM6_XEON_PHI_KNM, knl_params), 1970 ICPU(INTEL_FAM6_ATOM_GOLDMONT, bxt_params), 1971 {} 1972 }; 1973 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids); 1974 1975 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = { 1976 ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_params), 1977 ICPU(INTEL_FAM6_BROADWELL_X, core_params), 1978 ICPU(INTEL_FAM6_SKYLAKE_X, core_params), 1979 {} 1980 }; 1981 1982 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = { 1983 ICPU(INTEL_FAM6_KABYLAKE_DESKTOP, core_params), 1984 {} 1985 }; 1986 1987 static int intel_pstate_init_cpu(unsigned int cpunum) 1988 { 1989 struct cpudata *cpu; 1990 1991 cpu = all_cpu_data[cpunum]; 1992 1993 if (!cpu) { 1994 unsigned int size = sizeof(struct cpudata); 1995 1996 if (per_cpu_limits) 1997 size += sizeof(struct perf_limits); 1998 1999 cpu = kzalloc(size, GFP_KERNEL); 2000 if (!cpu) 2001 return -ENOMEM; 2002 2003 all_cpu_data[cpunum] = cpu; 2004 if (per_cpu_limits) 2005 cpu->perf_limits = (struct perf_limits *)(cpu + 1); 2006 2007 cpu->epp_default = -EINVAL; 2008 cpu->epp_powersave = -EINVAL; 2009 cpu->epp_saved = -EINVAL; 2010 } 2011 2012 cpu = all_cpu_data[cpunum]; 2013 2014 cpu->cpu = cpunum; 2015 2016 if (hwp_active) { 2017 const struct x86_cpu_id *id; 2018 2019 id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids); 2020 if (id) 2021 intel_pstate_disable_ee(cpunum); 2022 2023 intel_pstate_hwp_enable(cpu); 2024 pid_params.sample_rate_ms = 50; 2025 pid_params.sample_rate_ns = 50 * NSEC_PER_MSEC; 2026 } 2027 2028 intel_pstate_get_cpu_pstates(cpu); 2029 2030 intel_pstate_busy_pid_reset(cpu); 2031 2032 pr_debug("controlling: cpu %d\n", cpunum); 2033 2034 return 0; 2035 } 2036 2037 static unsigned int intel_pstate_get(unsigned int cpu_num) 2038 { 2039 struct cpudata *cpu = all_cpu_data[cpu_num]; 2040 2041 return cpu ? get_avg_frequency(cpu) : 0; 2042 } 2043 2044 static void intel_pstate_set_update_util_hook(unsigned int cpu_num) 2045 { 2046 struct cpudata *cpu = all_cpu_data[cpu_num]; 2047 2048 if (cpu->update_util_set) 2049 return; 2050 2051 /* Prevent intel_pstate_update_util() from using stale data. */ 2052 cpu->sample.time = 0; 2053 cpufreq_add_update_util_hook(cpu_num, &cpu->update_util, 2054 intel_pstate_update_util); 2055 cpu->update_util_set = true; 2056 } 2057 2058 static void intel_pstate_clear_update_util_hook(unsigned int cpu) 2059 { 2060 struct cpudata *cpu_data = all_cpu_data[cpu]; 2061 2062 if (!cpu_data->update_util_set) 2063 return; 2064 2065 cpufreq_remove_update_util_hook(cpu); 2066 cpu_data->update_util_set = false; 2067 synchronize_sched(); 2068 } 2069 2070 static void intel_pstate_update_perf_limits(struct cpufreq_policy *policy, 2071 struct perf_limits *limits) 2072 { 2073 2074 limits->max_policy_pct = DIV_ROUND_UP(policy->max * 100, 2075 policy->cpuinfo.max_freq); 2076 limits->max_policy_pct = clamp_t(int, limits->max_policy_pct, 0, 100); 2077 if (policy->max == policy->min) { 2078 limits->min_policy_pct = limits->max_policy_pct; 2079 } else { 2080 limits->min_policy_pct = DIV_ROUND_UP(policy->min * 100, 2081 policy->cpuinfo.max_freq); 2082 limits->min_policy_pct = clamp_t(int, limits->min_policy_pct, 2083 0, 100); 2084 } 2085 2086 /* Normalize user input to [min_policy_pct, max_policy_pct] */ 2087 limits->min_perf_pct = max(limits->min_policy_pct, 2088 limits->min_sysfs_pct); 2089 limits->min_perf_pct = min(limits->max_policy_pct, 2090 limits->min_perf_pct); 2091 limits->max_perf_pct = min(limits->max_policy_pct, 2092 limits->max_sysfs_pct); 2093 limits->max_perf_pct = max(limits->min_policy_pct, 2094 limits->max_perf_pct); 2095 2096 /* Make sure min_perf_pct <= max_perf_pct */ 2097 limits->min_perf_pct = min(limits->max_perf_pct, limits->min_perf_pct); 2098 2099 limits->min_perf = div_ext_fp(limits->min_perf_pct, 100); 2100 limits->max_perf = div_ext_fp(limits->max_perf_pct, 100); 2101 limits->max_perf = round_up(limits->max_perf, EXT_FRAC_BITS); 2102 limits->min_perf = round_up(limits->min_perf, EXT_FRAC_BITS); 2103 2104 pr_debug("cpu:%d max_perf_pct:%d min_perf_pct:%d\n", policy->cpu, 2105 limits->max_perf_pct, limits->min_perf_pct); 2106 } 2107 2108 static int intel_pstate_set_policy(struct cpufreq_policy *policy) 2109 { 2110 struct cpudata *cpu; 2111 struct perf_limits *perf_limits = NULL; 2112 2113 if (!policy->cpuinfo.max_freq) 2114 return -ENODEV; 2115 2116 pr_debug("set_policy cpuinfo.max %u policy->max %u\n", 2117 policy->cpuinfo.max_freq, policy->max); 2118 2119 cpu = all_cpu_data[policy->cpu]; 2120 cpu->policy = policy->policy; 2121 2122 if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate && 2123 policy->max < policy->cpuinfo.max_freq && 2124 policy->max > cpu->pstate.max_pstate * cpu->pstate.scaling) { 2125 pr_debug("policy->max > max non turbo frequency\n"); 2126 policy->max = policy->cpuinfo.max_freq; 2127 } 2128 2129 if (per_cpu_limits) 2130 perf_limits = cpu->perf_limits; 2131 2132 mutex_lock(&intel_pstate_limits_lock); 2133 2134 if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) { 2135 if (!perf_limits) { 2136 limits = &performance_limits; 2137 perf_limits = limits; 2138 } 2139 if (policy->max >= policy->cpuinfo.max_freq && 2140 !limits->no_turbo) { 2141 pr_debug("set performance\n"); 2142 intel_pstate_set_performance_limits(perf_limits); 2143 goto out; 2144 } 2145 } else { 2146 pr_debug("set powersave\n"); 2147 if (!perf_limits) { 2148 limits = &powersave_limits; 2149 perf_limits = limits; 2150 } 2151 2152 } 2153 2154 intel_pstate_update_perf_limits(policy, perf_limits); 2155 out: 2156 if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) { 2157 /* 2158 * NOHZ_FULL CPUs need this as the governor callback may not 2159 * be invoked on them. 2160 */ 2161 intel_pstate_clear_update_util_hook(policy->cpu); 2162 intel_pstate_max_within_limits(cpu); 2163 } 2164 2165 intel_pstate_set_update_util_hook(policy->cpu); 2166 2167 intel_pstate_hwp_set_policy(policy); 2168 2169 mutex_unlock(&intel_pstate_limits_lock); 2170 2171 return 0; 2172 } 2173 2174 static int intel_pstate_verify_policy(struct cpufreq_policy *policy) 2175 { 2176 struct cpudata *cpu = all_cpu_data[policy->cpu]; 2177 struct perf_limits *perf_limits; 2178 2179 if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) 2180 perf_limits = &performance_limits; 2181 else 2182 perf_limits = &powersave_limits; 2183 2184 update_turbo_state(); 2185 policy->cpuinfo.max_freq = perf_limits->turbo_disabled || 2186 perf_limits->no_turbo ? 2187 cpu->pstate.max_freq : 2188 cpu->pstate.turbo_freq; 2189 2190 cpufreq_verify_within_cpu_limits(policy); 2191 2192 if (policy->policy != CPUFREQ_POLICY_POWERSAVE && 2193 policy->policy != CPUFREQ_POLICY_PERFORMANCE) 2194 return -EINVAL; 2195 2196 /* When per-CPU limits are used, sysfs limits are not used */ 2197 if (!per_cpu_limits) { 2198 unsigned int max_freq, min_freq; 2199 2200 max_freq = policy->cpuinfo.max_freq * 2201 limits->max_sysfs_pct / 100; 2202 min_freq = policy->cpuinfo.max_freq * 2203 limits->min_sysfs_pct / 100; 2204 cpufreq_verify_within_limits(policy, min_freq, max_freq); 2205 } 2206 2207 return 0; 2208 } 2209 2210 static void intel_cpufreq_stop_cpu(struct cpufreq_policy *policy) 2211 { 2212 intel_pstate_set_min_pstate(all_cpu_data[policy->cpu]); 2213 } 2214 2215 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy) 2216 { 2217 pr_debug("CPU %d exiting\n", policy->cpu); 2218 2219 intel_pstate_clear_update_util_hook(policy->cpu); 2220 if (hwp_active) 2221 intel_pstate_hwp_save_state(policy); 2222 else 2223 intel_cpufreq_stop_cpu(policy); 2224 } 2225 2226 static int intel_pstate_cpu_exit(struct cpufreq_policy *policy) 2227 { 2228 intel_pstate_exit_perf_limits(policy); 2229 2230 policy->fast_switch_possible = false; 2231 2232 return 0; 2233 } 2234 2235 static int __intel_pstate_cpu_init(struct cpufreq_policy *policy) 2236 { 2237 struct cpudata *cpu; 2238 int rc; 2239 2240 rc = intel_pstate_init_cpu(policy->cpu); 2241 if (rc) 2242 return rc; 2243 2244 cpu = all_cpu_data[policy->cpu]; 2245 2246 /* 2247 * We need sane value in the cpu->perf_limits, so inherit from global 2248 * perf_limits limits, which are seeded with values based on the 2249 * CONFIG_CPU_FREQ_DEFAULT_GOV_*, during boot up. 2250 */ 2251 if (per_cpu_limits) 2252 memcpy(cpu->perf_limits, limits, sizeof(struct perf_limits)); 2253 2254 policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling; 2255 policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling; 2256 2257 /* cpuinfo and default policy values */ 2258 policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling; 2259 update_turbo_state(); 2260 policy->cpuinfo.max_freq = limits->turbo_disabled ? 2261 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate; 2262 policy->cpuinfo.max_freq *= cpu->pstate.scaling; 2263 2264 intel_pstate_init_acpi_perf_limits(policy); 2265 cpumask_set_cpu(policy->cpu, policy->cpus); 2266 2267 policy->fast_switch_possible = true; 2268 2269 return 0; 2270 } 2271 2272 static int intel_pstate_cpu_init(struct cpufreq_policy *policy) 2273 { 2274 int ret = __intel_pstate_cpu_init(policy); 2275 2276 if (ret) 2277 return ret; 2278 2279 policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL; 2280 if (limits->min_perf_pct == 100 && limits->max_perf_pct == 100) 2281 policy->policy = CPUFREQ_POLICY_PERFORMANCE; 2282 else 2283 policy->policy = CPUFREQ_POLICY_POWERSAVE; 2284 2285 return 0; 2286 } 2287 2288 static struct cpufreq_driver intel_pstate = { 2289 .flags = CPUFREQ_CONST_LOOPS, 2290 .verify = intel_pstate_verify_policy, 2291 .setpolicy = intel_pstate_set_policy, 2292 .suspend = intel_pstate_hwp_save_state, 2293 .resume = intel_pstate_resume, 2294 .get = intel_pstate_get, 2295 .init = intel_pstate_cpu_init, 2296 .exit = intel_pstate_cpu_exit, 2297 .stop_cpu = intel_pstate_stop_cpu, 2298 .name = "intel_pstate", 2299 }; 2300 2301 static int intel_cpufreq_verify_policy(struct cpufreq_policy *policy) 2302 { 2303 struct cpudata *cpu = all_cpu_data[policy->cpu]; 2304 struct perf_limits *perf_limits = limits; 2305 2306 update_turbo_state(); 2307 policy->cpuinfo.max_freq = limits->turbo_disabled ? 2308 cpu->pstate.max_freq : cpu->pstate.turbo_freq; 2309 2310 cpufreq_verify_within_cpu_limits(policy); 2311 2312 if (per_cpu_limits) 2313 perf_limits = cpu->perf_limits; 2314 2315 mutex_lock(&intel_pstate_limits_lock); 2316 2317 intel_pstate_update_perf_limits(policy, perf_limits); 2318 2319 mutex_unlock(&intel_pstate_limits_lock); 2320 2321 return 0; 2322 } 2323 2324 static unsigned int intel_cpufreq_turbo_update(struct cpudata *cpu, 2325 struct cpufreq_policy *policy, 2326 unsigned int target_freq) 2327 { 2328 unsigned int max_freq; 2329 2330 update_turbo_state(); 2331 2332 max_freq = limits->no_turbo || limits->turbo_disabled ? 2333 cpu->pstate.max_freq : cpu->pstate.turbo_freq; 2334 policy->cpuinfo.max_freq = max_freq; 2335 if (policy->max > max_freq) 2336 policy->max = max_freq; 2337 2338 if (target_freq > max_freq) 2339 target_freq = max_freq; 2340 2341 return target_freq; 2342 } 2343 2344 static int intel_cpufreq_target(struct cpufreq_policy *policy, 2345 unsigned int target_freq, 2346 unsigned int relation) 2347 { 2348 struct cpudata *cpu = all_cpu_data[policy->cpu]; 2349 struct cpufreq_freqs freqs; 2350 int target_pstate; 2351 2352 freqs.old = policy->cur; 2353 freqs.new = intel_cpufreq_turbo_update(cpu, policy, target_freq); 2354 2355 cpufreq_freq_transition_begin(policy, &freqs); 2356 switch (relation) { 2357 case CPUFREQ_RELATION_L: 2358 target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling); 2359 break; 2360 case CPUFREQ_RELATION_H: 2361 target_pstate = freqs.new / cpu->pstate.scaling; 2362 break; 2363 default: 2364 target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling); 2365 break; 2366 } 2367 target_pstate = intel_pstate_prepare_request(cpu, target_pstate); 2368 if (target_pstate != cpu->pstate.current_pstate) { 2369 cpu->pstate.current_pstate = target_pstate; 2370 wrmsrl_on_cpu(policy->cpu, MSR_IA32_PERF_CTL, 2371 pstate_funcs.get_val(cpu, target_pstate)); 2372 } 2373 cpufreq_freq_transition_end(policy, &freqs, false); 2374 2375 return 0; 2376 } 2377 2378 static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy, 2379 unsigned int target_freq) 2380 { 2381 struct cpudata *cpu = all_cpu_data[policy->cpu]; 2382 int target_pstate; 2383 2384 target_freq = intel_cpufreq_turbo_update(cpu, policy, target_freq); 2385 target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling); 2386 intel_pstate_update_pstate(cpu, target_pstate); 2387 return target_freq; 2388 } 2389 2390 static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy) 2391 { 2392 int ret = __intel_pstate_cpu_init(policy); 2393 2394 if (ret) 2395 return ret; 2396 2397 policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY; 2398 /* This reflects the intel_pstate_get_cpu_pstates() setting. */ 2399 policy->cur = policy->cpuinfo.min_freq; 2400 2401 return 0; 2402 } 2403 2404 static struct cpufreq_driver intel_cpufreq = { 2405 .flags = CPUFREQ_CONST_LOOPS, 2406 .verify = intel_cpufreq_verify_policy, 2407 .target = intel_cpufreq_target, 2408 .fast_switch = intel_cpufreq_fast_switch, 2409 .init = intel_cpufreq_cpu_init, 2410 .exit = intel_pstate_cpu_exit, 2411 .stop_cpu = intel_cpufreq_stop_cpu, 2412 .name = "intel_cpufreq", 2413 }; 2414 2415 static struct cpufreq_driver *intel_pstate_driver = &intel_pstate; 2416 2417 static void intel_pstate_driver_cleanup(void) 2418 { 2419 unsigned int cpu; 2420 2421 get_online_cpus(); 2422 for_each_online_cpu(cpu) { 2423 if (all_cpu_data[cpu]) { 2424 if (intel_pstate_driver == &intel_pstate) 2425 intel_pstate_clear_update_util_hook(cpu); 2426 2427 kfree(all_cpu_data[cpu]); 2428 all_cpu_data[cpu] = NULL; 2429 } 2430 } 2431 put_online_cpus(); 2432 } 2433 2434 static int intel_pstate_register_driver(void) 2435 { 2436 int ret; 2437 2438 intel_pstate_init_limits(&powersave_limits); 2439 intel_pstate_set_performance_limits(&performance_limits); 2440 limits = IS_ENABLED(CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE) ? 2441 &performance_limits : &powersave_limits; 2442 2443 ret = cpufreq_register_driver(intel_pstate_driver); 2444 if (ret) { 2445 intel_pstate_driver_cleanup(); 2446 return ret; 2447 } 2448 2449 mutex_lock(&intel_pstate_limits_lock); 2450 driver_registered = true; 2451 mutex_unlock(&intel_pstate_limits_lock); 2452 2453 if (intel_pstate_driver == &intel_pstate && !hwp_active && 2454 pstate_funcs.get_target_pstate != get_target_pstate_use_cpu_load) 2455 intel_pstate_debug_expose_params(); 2456 2457 return 0; 2458 } 2459 2460 static int intel_pstate_unregister_driver(void) 2461 { 2462 if (hwp_active) 2463 return -EBUSY; 2464 2465 if (intel_pstate_driver == &intel_pstate && !hwp_active && 2466 pstate_funcs.get_target_pstate != get_target_pstate_use_cpu_load) 2467 intel_pstate_debug_hide_params(); 2468 2469 mutex_lock(&intel_pstate_limits_lock); 2470 driver_registered = false; 2471 mutex_unlock(&intel_pstate_limits_lock); 2472 2473 cpufreq_unregister_driver(intel_pstate_driver); 2474 intel_pstate_driver_cleanup(); 2475 2476 return 0; 2477 } 2478 2479 static ssize_t intel_pstate_show_status(char *buf) 2480 { 2481 if (!driver_registered) 2482 return sprintf(buf, "off\n"); 2483 2484 return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ? 2485 "active" : "passive"); 2486 } 2487 2488 static int intel_pstate_update_status(const char *buf, size_t size) 2489 { 2490 int ret; 2491 2492 if (size == 3 && !strncmp(buf, "off", size)) 2493 return driver_registered ? 2494 intel_pstate_unregister_driver() : -EINVAL; 2495 2496 if (size == 6 && !strncmp(buf, "active", size)) { 2497 if (driver_registered) { 2498 if (intel_pstate_driver == &intel_pstate) 2499 return 0; 2500 2501 ret = intel_pstate_unregister_driver(); 2502 if (ret) 2503 return ret; 2504 } 2505 2506 intel_pstate_driver = &intel_pstate; 2507 return intel_pstate_register_driver(); 2508 } 2509 2510 if (size == 7 && !strncmp(buf, "passive", size)) { 2511 if (driver_registered) { 2512 if (intel_pstate_driver != &intel_pstate) 2513 return 0; 2514 2515 ret = intel_pstate_unregister_driver(); 2516 if (ret) 2517 return ret; 2518 } 2519 2520 intel_pstate_driver = &intel_cpufreq; 2521 return intel_pstate_register_driver(); 2522 } 2523 2524 return -EINVAL; 2525 } 2526 2527 static int no_load __initdata; 2528 static int no_hwp __initdata; 2529 static int hwp_only __initdata; 2530 static unsigned int force_load __initdata; 2531 2532 static int __init intel_pstate_msrs_not_valid(void) 2533 { 2534 if (!pstate_funcs.get_max() || 2535 !pstate_funcs.get_min() || 2536 !pstate_funcs.get_turbo()) 2537 return -ENODEV; 2538 2539 return 0; 2540 } 2541 2542 static void __init copy_pid_params(struct pstate_adjust_policy *policy) 2543 { 2544 pid_params.sample_rate_ms = policy->sample_rate_ms; 2545 pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC; 2546 pid_params.p_gain_pct = policy->p_gain_pct; 2547 pid_params.i_gain_pct = policy->i_gain_pct; 2548 pid_params.d_gain_pct = policy->d_gain_pct; 2549 pid_params.deadband = policy->deadband; 2550 pid_params.setpoint = policy->setpoint; 2551 } 2552 2553 #ifdef CONFIG_ACPI 2554 static void intel_pstate_use_acpi_profile(void) 2555 { 2556 if (acpi_gbl_FADT.preferred_profile == PM_MOBILE) 2557 pstate_funcs.get_target_pstate = 2558 get_target_pstate_use_cpu_load; 2559 } 2560 #else 2561 static void intel_pstate_use_acpi_profile(void) 2562 { 2563 } 2564 #endif 2565 2566 static void __init copy_cpu_funcs(struct pstate_funcs *funcs) 2567 { 2568 pstate_funcs.get_max = funcs->get_max; 2569 pstate_funcs.get_max_physical = funcs->get_max_physical; 2570 pstate_funcs.get_min = funcs->get_min; 2571 pstate_funcs.get_turbo = funcs->get_turbo; 2572 pstate_funcs.get_scaling = funcs->get_scaling; 2573 pstate_funcs.get_val = funcs->get_val; 2574 pstate_funcs.get_vid = funcs->get_vid; 2575 pstate_funcs.get_target_pstate = funcs->get_target_pstate; 2576 2577 intel_pstate_use_acpi_profile(); 2578 } 2579 2580 #ifdef CONFIG_ACPI 2581 2582 static bool __init intel_pstate_no_acpi_pss(void) 2583 { 2584 int i; 2585 2586 for_each_possible_cpu(i) { 2587 acpi_status status; 2588 union acpi_object *pss; 2589 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL }; 2590 struct acpi_processor *pr = per_cpu(processors, i); 2591 2592 if (!pr) 2593 continue; 2594 2595 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer); 2596 if (ACPI_FAILURE(status)) 2597 continue; 2598 2599 pss = buffer.pointer; 2600 if (pss && pss->type == ACPI_TYPE_PACKAGE) { 2601 kfree(pss); 2602 return false; 2603 } 2604 2605 kfree(pss); 2606 } 2607 2608 return true; 2609 } 2610 2611 static bool __init intel_pstate_has_acpi_ppc(void) 2612 { 2613 int i; 2614 2615 for_each_possible_cpu(i) { 2616 struct acpi_processor *pr = per_cpu(processors, i); 2617 2618 if (!pr) 2619 continue; 2620 if (acpi_has_method(pr->handle, "_PPC")) 2621 return true; 2622 } 2623 return false; 2624 } 2625 2626 enum { 2627 PSS, 2628 PPC, 2629 }; 2630 2631 struct hw_vendor_info { 2632 u16 valid; 2633 char oem_id[ACPI_OEM_ID_SIZE]; 2634 char oem_table_id[ACPI_OEM_TABLE_ID_SIZE]; 2635 int oem_pwr_table; 2636 }; 2637 2638 /* Hardware vendor-specific info that has its own power management modes */ 2639 static struct hw_vendor_info vendor_info[] __initdata = { 2640 {1, "HP ", "ProLiant", PSS}, 2641 {1, "ORACLE", "X4-2 ", PPC}, 2642 {1, "ORACLE", "X4-2L ", PPC}, 2643 {1, "ORACLE", "X4-2B ", PPC}, 2644 {1, "ORACLE", "X3-2 ", PPC}, 2645 {1, "ORACLE", "X3-2L ", PPC}, 2646 {1, "ORACLE", "X3-2B ", PPC}, 2647 {1, "ORACLE", "X4470M2 ", PPC}, 2648 {1, "ORACLE", "X4270M3 ", PPC}, 2649 {1, "ORACLE", "X4270M2 ", PPC}, 2650 {1, "ORACLE", "X4170M2 ", PPC}, 2651 {1, "ORACLE", "X4170 M3", PPC}, 2652 {1, "ORACLE", "X4275 M3", PPC}, 2653 {1, "ORACLE", "X6-2 ", PPC}, 2654 {1, "ORACLE", "Sudbury ", PPC}, 2655 {0, "", ""}, 2656 }; 2657 2658 static bool __init intel_pstate_platform_pwr_mgmt_exists(void) 2659 { 2660 struct acpi_table_header hdr; 2661 struct hw_vendor_info *v_info; 2662 const struct x86_cpu_id *id; 2663 u64 misc_pwr; 2664 2665 id = x86_match_cpu(intel_pstate_cpu_oob_ids); 2666 if (id) { 2667 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr); 2668 if ( misc_pwr & (1 << 8)) 2669 return true; 2670 } 2671 2672 if (acpi_disabled || 2673 ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr))) 2674 return false; 2675 2676 for (v_info = vendor_info; v_info->valid; v_info++) { 2677 if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) && 2678 !strncmp(hdr.oem_table_id, v_info->oem_table_id, 2679 ACPI_OEM_TABLE_ID_SIZE)) 2680 switch (v_info->oem_pwr_table) { 2681 case PSS: 2682 return intel_pstate_no_acpi_pss(); 2683 case PPC: 2684 return intel_pstate_has_acpi_ppc() && 2685 (!force_load); 2686 } 2687 } 2688 2689 return false; 2690 } 2691 2692 static void intel_pstate_request_control_from_smm(void) 2693 { 2694 /* 2695 * It may be unsafe to request P-states control from SMM if _PPC support 2696 * has not been enabled. 2697 */ 2698 if (acpi_ppc) 2699 acpi_processor_pstate_control(); 2700 } 2701 #else /* CONFIG_ACPI not enabled */ 2702 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; } 2703 static inline bool intel_pstate_has_acpi_ppc(void) { return false; } 2704 static inline void intel_pstate_request_control_from_smm(void) {} 2705 #endif /* CONFIG_ACPI */ 2706 2707 static const struct x86_cpu_id hwp_support_ids[] __initconst = { 2708 { X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP }, 2709 {} 2710 }; 2711 2712 static int __init intel_pstate_init(void) 2713 { 2714 const struct x86_cpu_id *id; 2715 struct cpu_defaults *cpu_def; 2716 int rc = 0; 2717 2718 if (no_load) 2719 return -ENODEV; 2720 2721 if (x86_match_cpu(hwp_support_ids) && !no_hwp) { 2722 copy_cpu_funcs(&core_params.funcs); 2723 hwp_active++; 2724 intel_pstate.attr = hwp_cpufreq_attrs; 2725 goto hwp_cpu_matched; 2726 } 2727 2728 id = x86_match_cpu(intel_pstate_cpu_ids); 2729 if (!id) 2730 return -ENODEV; 2731 2732 cpu_def = (struct cpu_defaults *)id->driver_data; 2733 2734 copy_pid_params(&cpu_def->pid_policy); 2735 copy_cpu_funcs(&cpu_def->funcs); 2736 2737 if (intel_pstate_msrs_not_valid()) 2738 return -ENODEV; 2739 2740 hwp_cpu_matched: 2741 /* 2742 * The Intel pstate driver will be ignored if the platform 2743 * firmware has its own power management modes. 2744 */ 2745 if (intel_pstate_platform_pwr_mgmt_exists()) 2746 return -ENODEV; 2747 2748 if (!hwp_active && hwp_only) 2749 return -ENOTSUPP; 2750 2751 pr_info("Intel P-state driver initializing\n"); 2752 2753 all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus()); 2754 if (!all_cpu_data) 2755 return -ENOMEM; 2756 2757 intel_pstate_request_control_from_smm(); 2758 2759 intel_pstate_sysfs_expose_params(); 2760 2761 mutex_lock(&intel_pstate_driver_lock); 2762 rc = intel_pstate_register_driver(); 2763 mutex_unlock(&intel_pstate_driver_lock); 2764 if (rc) 2765 return rc; 2766 2767 if (hwp_active) 2768 pr_info("HWP enabled\n"); 2769 2770 return 0; 2771 } 2772 device_initcall(intel_pstate_init); 2773 2774 static int __init intel_pstate_setup(char *str) 2775 { 2776 if (!str) 2777 return -EINVAL; 2778 2779 if (!strcmp(str, "disable")) { 2780 no_load = 1; 2781 } else if (!strcmp(str, "passive")) { 2782 pr_info("Passive mode enabled\n"); 2783 intel_pstate_driver = &intel_cpufreq; 2784 no_hwp = 1; 2785 } 2786 if (!strcmp(str, "no_hwp")) { 2787 pr_info("HWP disabled\n"); 2788 no_hwp = 1; 2789 } 2790 if (!strcmp(str, "force")) 2791 force_load = 1; 2792 if (!strcmp(str, "hwp_only")) 2793 hwp_only = 1; 2794 if (!strcmp(str, "per_cpu_perf_limits")) 2795 per_cpu_limits = true; 2796 2797 #ifdef CONFIG_ACPI 2798 if (!strcmp(str, "support_acpi_ppc")) 2799 acpi_ppc = true; 2800 #endif 2801 2802 return 0; 2803 } 2804 early_param("intel_pstate", intel_pstate_setup); 2805 2806 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>"); 2807 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors"); 2808 MODULE_LICENSE("GPL"); 2809