1 /*
2  * intel_pstate.c: Native P state management for Intel processors
3  *
4  * (C) Copyright 2012 Intel Corporation
5  * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; version 2
10  * of the License.
11  */
12 
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 
15 #include <linux/kernel.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/module.h>
18 #include <linux/ktime.h>
19 #include <linux/hrtimer.h>
20 #include <linux/tick.h>
21 #include <linux/slab.h>
22 #include <linux/sched/cpufreq.h>
23 #include <linux/list.h>
24 #include <linux/cpu.h>
25 #include <linux/cpufreq.h>
26 #include <linux/sysfs.h>
27 #include <linux/types.h>
28 #include <linux/fs.h>
29 #include <linux/acpi.h>
30 #include <linux/vmalloc.h>
31 #include <trace/events/power.h>
32 
33 #include <asm/div64.h>
34 #include <asm/msr.h>
35 #include <asm/cpu_device_id.h>
36 #include <asm/cpufeature.h>
37 #include <asm/intel-family.h>
38 
39 #define INTEL_PSTATE_SAMPLING_INTERVAL	(10 * NSEC_PER_MSEC)
40 
41 #define INTEL_CPUFREQ_TRANSITION_LATENCY	20000
42 #define INTEL_CPUFREQ_TRANSITION_DELAY		500
43 
44 #ifdef CONFIG_ACPI
45 #include <acpi/processor.h>
46 #include <acpi/cppc_acpi.h>
47 #endif
48 
49 #define FRAC_BITS 8
50 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
51 #define fp_toint(X) ((X) >> FRAC_BITS)
52 
53 #define EXT_BITS 6
54 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
55 #define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
56 #define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
57 
58 static inline int32_t mul_fp(int32_t x, int32_t y)
59 {
60 	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
61 }
62 
63 static inline int32_t div_fp(s64 x, s64 y)
64 {
65 	return div64_s64((int64_t)x << FRAC_BITS, y);
66 }
67 
68 static inline int ceiling_fp(int32_t x)
69 {
70 	int mask, ret;
71 
72 	ret = fp_toint(x);
73 	mask = (1 << FRAC_BITS) - 1;
74 	if (x & mask)
75 		ret += 1;
76 	return ret;
77 }
78 
79 static inline int32_t percent_fp(int percent)
80 {
81 	return div_fp(percent, 100);
82 }
83 
84 static inline u64 mul_ext_fp(u64 x, u64 y)
85 {
86 	return (x * y) >> EXT_FRAC_BITS;
87 }
88 
89 static inline u64 div_ext_fp(u64 x, u64 y)
90 {
91 	return div64_u64(x << EXT_FRAC_BITS, y);
92 }
93 
94 static inline int32_t percent_ext_fp(int percent)
95 {
96 	return div_ext_fp(percent, 100);
97 }
98 
99 /**
100  * struct sample -	Store performance sample
101  * @core_avg_perf:	Ratio of APERF/MPERF which is the actual average
102  *			performance during last sample period
103  * @busy_scaled:	Scaled busy value which is used to calculate next
104  *			P state. This can be different than core_avg_perf
105  *			to account for cpu idle period
106  * @aperf:		Difference of actual performance frequency clock count
107  *			read from APERF MSR between last and current sample
108  * @mperf:		Difference of maximum performance frequency clock count
109  *			read from MPERF MSR between last and current sample
110  * @tsc:		Difference of time stamp counter between last and
111  *			current sample
112  * @time:		Current time from scheduler
113  *
114  * This structure is used in the cpudata structure to store performance sample
115  * data for choosing next P State.
116  */
117 struct sample {
118 	int32_t core_avg_perf;
119 	int32_t busy_scaled;
120 	u64 aperf;
121 	u64 mperf;
122 	u64 tsc;
123 	u64 time;
124 };
125 
126 /**
127  * struct pstate_data - Store P state data
128  * @current_pstate:	Current requested P state
129  * @min_pstate:		Min P state possible for this platform
130  * @max_pstate:		Max P state possible for this platform
131  * @max_pstate_physical:This is physical Max P state for a processor
132  *			This can be higher than the max_pstate which can
133  *			be limited by platform thermal design power limits
134  * @scaling:		Scaling factor to  convert frequency to cpufreq
135  *			frequency units
136  * @turbo_pstate:	Max Turbo P state possible for this platform
137  * @max_freq:		@max_pstate frequency in cpufreq units
138  * @turbo_freq:		@turbo_pstate frequency in cpufreq units
139  *
140  * Stores the per cpu model P state limits and current P state.
141  */
142 struct pstate_data {
143 	int	current_pstate;
144 	int	min_pstate;
145 	int	max_pstate;
146 	int	max_pstate_physical;
147 	int	scaling;
148 	int	turbo_pstate;
149 	unsigned int max_freq;
150 	unsigned int turbo_freq;
151 };
152 
153 /**
154  * struct vid_data -	Stores voltage information data
155  * @min:		VID data for this platform corresponding to
156  *			the lowest P state
157  * @max:		VID data corresponding to the highest P State.
158  * @turbo:		VID data for turbo P state
159  * @ratio:		Ratio of (vid max - vid min) /
160  *			(max P state - Min P State)
161  *
162  * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
163  * This data is used in Atom platforms, where in addition to target P state,
164  * the voltage data needs to be specified to select next P State.
165  */
166 struct vid_data {
167 	int min;
168 	int max;
169 	int turbo;
170 	int32_t ratio;
171 };
172 
173 /**
174  * struct global_params - Global parameters, mostly tunable via sysfs.
175  * @no_turbo:		Whether or not to use turbo P-states.
176  * @turbo_disabled:	Whethet or not turbo P-states are available at all,
177  *			based on the MSR_IA32_MISC_ENABLE value and whether or
178  *			not the maximum reported turbo P-state is different from
179  *			the maximum reported non-turbo one.
180  * @min_perf_pct:	Minimum capacity limit in percent of the maximum turbo
181  *			P-state capacity.
182  * @max_perf_pct:	Maximum capacity limit in percent of the maximum turbo
183  *			P-state capacity.
184  */
185 struct global_params {
186 	bool no_turbo;
187 	bool turbo_disabled;
188 	int max_perf_pct;
189 	int min_perf_pct;
190 };
191 
192 /**
193  * struct cpudata -	Per CPU instance data storage
194  * @cpu:		CPU number for this instance data
195  * @policy:		CPUFreq policy value
196  * @update_util:	CPUFreq utility callback information
197  * @update_util_set:	CPUFreq utility callback is set
198  * @iowait_boost:	iowait-related boost fraction
199  * @last_update:	Time of the last update.
200  * @pstate:		Stores P state limits for this CPU
201  * @vid:		Stores VID limits for this CPU
202  * @last_sample_time:	Last Sample time
203  * @aperf_mperf_shift:	Number of clock cycles after aperf, merf is incremented
204  *			This shift is a multiplier to mperf delta to
205  *			calculate CPU busy.
206  * @prev_aperf:		Last APERF value read from APERF MSR
207  * @prev_mperf:		Last MPERF value read from MPERF MSR
208  * @prev_tsc:		Last timestamp counter (TSC) value
209  * @prev_cummulative_iowait: IO Wait time difference from last and
210  *			current sample
211  * @sample:		Storage for storing last Sample data
212  * @min_perf_ratio:	Minimum capacity in terms of PERF or HWP ratios
213  * @max_perf_ratio:	Maximum capacity in terms of PERF or HWP ratios
214  * @acpi_perf_data:	Stores ACPI perf information read from _PSS
215  * @valid_pss_table:	Set to true for valid ACPI _PSS entries found
216  * @epp_powersave:	Last saved HWP energy performance preference
217  *			(EPP) or energy performance bias (EPB),
218  *			when policy switched to performance
219  * @epp_policy:		Last saved policy used to set EPP/EPB
220  * @epp_default:	Power on default HWP energy performance
221  *			preference/bias
222  * @epp_saved:		Saved EPP/EPB during system suspend or CPU offline
223  *			operation
224  *
225  * This structure stores per CPU instance data for all CPUs.
226  */
227 struct cpudata {
228 	int cpu;
229 
230 	unsigned int policy;
231 	struct update_util_data update_util;
232 	bool   update_util_set;
233 
234 	struct pstate_data pstate;
235 	struct vid_data vid;
236 
237 	u64	last_update;
238 	u64	last_sample_time;
239 	u64	aperf_mperf_shift;
240 	u64	prev_aperf;
241 	u64	prev_mperf;
242 	u64	prev_tsc;
243 	u64	prev_cummulative_iowait;
244 	struct sample sample;
245 	int32_t	min_perf_ratio;
246 	int32_t	max_perf_ratio;
247 #ifdef CONFIG_ACPI
248 	struct acpi_processor_performance acpi_perf_data;
249 	bool valid_pss_table;
250 #endif
251 	unsigned int iowait_boost;
252 	s16 epp_powersave;
253 	s16 epp_policy;
254 	s16 epp_default;
255 	s16 epp_saved;
256 };
257 
258 static struct cpudata **all_cpu_data;
259 
260 /**
261  * struct pstate_funcs - Per CPU model specific callbacks
262  * @get_max:		Callback to get maximum non turbo effective P state
263  * @get_max_physical:	Callback to get maximum non turbo physical P state
264  * @get_min:		Callback to get minimum P state
265  * @get_turbo:		Callback to get turbo P state
266  * @get_scaling:	Callback to get frequency scaling factor
267  * @get_val:		Callback to convert P state to actual MSR write value
268  * @get_vid:		Callback to get VID data for Atom platforms
269  *
270  * Core and Atom CPU models have different way to get P State limits. This
271  * structure is used to store those callbacks.
272  */
273 struct pstate_funcs {
274 	int (*get_max)(void);
275 	int (*get_max_physical)(void);
276 	int (*get_min)(void);
277 	int (*get_turbo)(void);
278 	int (*get_scaling)(void);
279 	int (*get_aperf_mperf_shift)(void);
280 	u64 (*get_val)(struct cpudata*, int pstate);
281 	void (*get_vid)(struct cpudata *);
282 };
283 
284 static struct pstate_funcs pstate_funcs __read_mostly;
285 
286 static int hwp_active __read_mostly;
287 static bool per_cpu_limits __read_mostly;
288 
289 static struct cpufreq_driver *intel_pstate_driver __read_mostly;
290 
291 #ifdef CONFIG_ACPI
292 static bool acpi_ppc;
293 #endif
294 
295 static struct global_params global;
296 
297 static DEFINE_MUTEX(intel_pstate_driver_lock);
298 static DEFINE_MUTEX(intel_pstate_limits_lock);
299 
300 #ifdef CONFIG_ACPI
301 
302 static bool intel_pstate_get_ppc_enable_status(void)
303 {
304 	if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
305 	    acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
306 		return true;
307 
308 	return acpi_ppc;
309 }
310 
311 #ifdef CONFIG_ACPI_CPPC_LIB
312 
313 /* The work item is needed to avoid CPU hotplug locking issues */
314 static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
315 {
316 	sched_set_itmt_support();
317 }
318 
319 static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);
320 
321 static void intel_pstate_set_itmt_prio(int cpu)
322 {
323 	struct cppc_perf_caps cppc_perf;
324 	static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
325 	int ret;
326 
327 	ret = cppc_get_perf_caps(cpu, &cppc_perf);
328 	if (ret)
329 		return;
330 
331 	/*
332 	 * The priorities can be set regardless of whether or not
333 	 * sched_set_itmt_support(true) has been called and it is valid to
334 	 * update them at any time after it has been called.
335 	 */
336 	sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);
337 
338 	if (max_highest_perf <= min_highest_perf) {
339 		if (cppc_perf.highest_perf > max_highest_perf)
340 			max_highest_perf = cppc_perf.highest_perf;
341 
342 		if (cppc_perf.highest_perf < min_highest_perf)
343 			min_highest_perf = cppc_perf.highest_perf;
344 
345 		if (max_highest_perf > min_highest_perf) {
346 			/*
347 			 * This code can be run during CPU online under the
348 			 * CPU hotplug locks, so sched_set_itmt_support()
349 			 * cannot be called from here.  Queue up a work item
350 			 * to invoke it.
351 			 */
352 			schedule_work(&sched_itmt_work);
353 		}
354 	}
355 }
356 #else
357 static void intel_pstate_set_itmt_prio(int cpu)
358 {
359 }
360 #endif
361 
362 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
363 {
364 	struct cpudata *cpu;
365 	int ret;
366 	int i;
367 
368 	if (hwp_active) {
369 		intel_pstate_set_itmt_prio(policy->cpu);
370 		return;
371 	}
372 
373 	if (!intel_pstate_get_ppc_enable_status())
374 		return;
375 
376 	cpu = all_cpu_data[policy->cpu];
377 
378 	ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
379 						  policy->cpu);
380 	if (ret)
381 		return;
382 
383 	/*
384 	 * Check if the control value in _PSS is for PERF_CTL MSR, which should
385 	 * guarantee that the states returned by it map to the states in our
386 	 * list directly.
387 	 */
388 	if (cpu->acpi_perf_data.control_register.space_id !=
389 						ACPI_ADR_SPACE_FIXED_HARDWARE)
390 		goto err;
391 
392 	/*
393 	 * If there is only one entry _PSS, simply ignore _PSS and continue as
394 	 * usual without taking _PSS into account
395 	 */
396 	if (cpu->acpi_perf_data.state_count < 2)
397 		goto err;
398 
399 	pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
400 	for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
401 		pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
402 			 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
403 			 (u32) cpu->acpi_perf_data.states[i].core_frequency,
404 			 (u32) cpu->acpi_perf_data.states[i].power,
405 			 (u32) cpu->acpi_perf_data.states[i].control);
406 	}
407 
408 	/*
409 	 * The _PSS table doesn't contain whole turbo frequency range.
410 	 * This just contains +1 MHZ above the max non turbo frequency,
411 	 * with control value corresponding to max turbo ratio. But
412 	 * when cpufreq set policy is called, it will call with this
413 	 * max frequency, which will cause a reduced performance as
414 	 * this driver uses real max turbo frequency as the max
415 	 * frequency. So correct this frequency in _PSS table to
416 	 * correct max turbo frequency based on the turbo state.
417 	 * Also need to convert to MHz as _PSS freq is in MHz.
418 	 */
419 	if (!global.turbo_disabled)
420 		cpu->acpi_perf_data.states[0].core_frequency =
421 					policy->cpuinfo.max_freq / 1000;
422 	cpu->valid_pss_table = true;
423 	pr_debug("_PPC limits will be enforced\n");
424 
425 	return;
426 
427  err:
428 	cpu->valid_pss_table = false;
429 	acpi_processor_unregister_performance(policy->cpu);
430 }
431 
432 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
433 {
434 	struct cpudata *cpu;
435 
436 	cpu = all_cpu_data[policy->cpu];
437 	if (!cpu->valid_pss_table)
438 		return;
439 
440 	acpi_processor_unregister_performance(policy->cpu);
441 }
442 #else
443 static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
444 {
445 }
446 
447 static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
448 {
449 }
450 #endif
451 
452 static inline void update_turbo_state(void)
453 {
454 	u64 misc_en;
455 	struct cpudata *cpu;
456 
457 	cpu = all_cpu_data[0];
458 	rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
459 	global.turbo_disabled =
460 		(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
461 		 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
462 }
463 
464 static int min_perf_pct_min(void)
465 {
466 	struct cpudata *cpu = all_cpu_data[0];
467 	int turbo_pstate = cpu->pstate.turbo_pstate;
468 
469 	return turbo_pstate ?
470 		(cpu->pstate.min_pstate * 100 / turbo_pstate) : 0;
471 }
472 
473 static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
474 {
475 	u64 epb;
476 	int ret;
477 
478 	if (!static_cpu_has(X86_FEATURE_EPB))
479 		return -ENXIO;
480 
481 	ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
482 	if (ret)
483 		return (s16)ret;
484 
485 	return (s16)(epb & 0x0f);
486 }
487 
488 static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
489 {
490 	s16 epp;
491 
492 	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
493 		/*
494 		 * When hwp_req_data is 0, means that caller didn't read
495 		 * MSR_HWP_REQUEST, so need to read and get EPP.
496 		 */
497 		if (!hwp_req_data) {
498 			epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
499 					    &hwp_req_data);
500 			if (epp)
501 				return epp;
502 		}
503 		epp = (hwp_req_data >> 24) & 0xff;
504 	} else {
505 		/* When there is no EPP present, HWP uses EPB settings */
506 		epp = intel_pstate_get_epb(cpu_data);
507 	}
508 
509 	return epp;
510 }
511 
512 static int intel_pstate_set_epb(int cpu, s16 pref)
513 {
514 	u64 epb;
515 	int ret;
516 
517 	if (!static_cpu_has(X86_FEATURE_EPB))
518 		return -ENXIO;
519 
520 	ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
521 	if (ret)
522 		return ret;
523 
524 	epb = (epb & ~0x0f) | pref;
525 	wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
526 
527 	return 0;
528 }
529 
530 /*
531  * EPP/EPB display strings corresponding to EPP index in the
532  * energy_perf_strings[]
533  *	index		String
534  *-------------------------------------
535  *	0		default
536  *	1		performance
537  *	2		balance_performance
538  *	3		balance_power
539  *	4		power
540  */
541 static const char * const energy_perf_strings[] = {
542 	"default",
543 	"performance",
544 	"balance_performance",
545 	"balance_power",
546 	"power",
547 	NULL
548 };
549 static const unsigned int epp_values[] = {
550 	HWP_EPP_PERFORMANCE,
551 	HWP_EPP_BALANCE_PERFORMANCE,
552 	HWP_EPP_BALANCE_POWERSAVE,
553 	HWP_EPP_POWERSAVE
554 };
555 
556 static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data)
557 {
558 	s16 epp;
559 	int index = -EINVAL;
560 
561 	epp = intel_pstate_get_epp(cpu_data, 0);
562 	if (epp < 0)
563 		return epp;
564 
565 	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
566 		if (epp == HWP_EPP_PERFORMANCE)
567 			return 1;
568 		if (epp <= HWP_EPP_BALANCE_PERFORMANCE)
569 			return 2;
570 		if (epp <= HWP_EPP_BALANCE_POWERSAVE)
571 			return 3;
572 		else
573 			return 4;
574 	} else if (static_cpu_has(X86_FEATURE_EPB)) {
575 		/*
576 		 * Range:
577 		 *	0x00-0x03	:	Performance
578 		 *	0x04-0x07	:	Balance performance
579 		 *	0x08-0x0B	:	Balance power
580 		 *	0x0C-0x0F	:	Power
581 		 * The EPB is a 4 bit value, but our ranges restrict the
582 		 * value which can be set. Here only using top two bits
583 		 * effectively.
584 		 */
585 		index = (epp >> 2) + 1;
586 	}
587 
588 	return index;
589 }
590 
591 static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
592 					      int pref_index)
593 {
594 	int epp = -EINVAL;
595 	int ret;
596 
597 	if (!pref_index)
598 		epp = cpu_data->epp_default;
599 
600 	mutex_lock(&intel_pstate_limits_lock);
601 
602 	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
603 		u64 value;
604 
605 		ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, &value);
606 		if (ret)
607 			goto return_pref;
608 
609 		value &= ~GENMASK_ULL(31, 24);
610 
611 		if (epp == -EINVAL)
612 			epp = epp_values[pref_index - 1];
613 
614 		value |= (u64)epp << 24;
615 		ret = wrmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, value);
616 	} else {
617 		if (epp == -EINVAL)
618 			epp = (pref_index - 1) << 2;
619 		ret = intel_pstate_set_epb(cpu_data->cpu, epp);
620 	}
621 return_pref:
622 	mutex_unlock(&intel_pstate_limits_lock);
623 
624 	return ret;
625 }
626 
627 static ssize_t show_energy_performance_available_preferences(
628 				struct cpufreq_policy *policy, char *buf)
629 {
630 	int i = 0;
631 	int ret = 0;
632 
633 	while (energy_perf_strings[i] != NULL)
634 		ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);
635 
636 	ret += sprintf(&buf[ret], "\n");
637 
638 	return ret;
639 }
640 
641 cpufreq_freq_attr_ro(energy_performance_available_preferences);
642 
643 static ssize_t store_energy_performance_preference(
644 		struct cpufreq_policy *policy, const char *buf, size_t count)
645 {
646 	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
647 	char str_preference[21];
648 	int ret, i = 0;
649 
650 	ret = sscanf(buf, "%20s", str_preference);
651 	if (ret != 1)
652 		return -EINVAL;
653 
654 	while (energy_perf_strings[i] != NULL) {
655 		if (!strcmp(str_preference, energy_perf_strings[i])) {
656 			intel_pstate_set_energy_pref_index(cpu_data, i);
657 			return count;
658 		}
659 		++i;
660 	}
661 
662 	return -EINVAL;
663 }
664 
665 static ssize_t show_energy_performance_preference(
666 				struct cpufreq_policy *policy, char *buf)
667 {
668 	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
669 	int preference;
670 
671 	preference = intel_pstate_get_energy_pref_index(cpu_data);
672 	if (preference < 0)
673 		return preference;
674 
675 	return  sprintf(buf, "%s\n", energy_perf_strings[preference]);
676 }
677 
678 cpufreq_freq_attr_rw(energy_performance_preference);
679 
680 static struct freq_attr *hwp_cpufreq_attrs[] = {
681 	&energy_performance_preference,
682 	&energy_performance_available_preferences,
683 	NULL,
684 };
685 
686 static void intel_pstate_get_hwp_max(unsigned int cpu, int *phy_max,
687 				     int *current_max)
688 {
689 	u64 cap;
690 
691 	rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
692 	if (global.no_turbo)
693 		*current_max = HWP_GUARANTEED_PERF(cap);
694 	else
695 		*current_max = HWP_HIGHEST_PERF(cap);
696 
697 	*phy_max = HWP_HIGHEST_PERF(cap);
698 }
699 
700 static void intel_pstate_hwp_set(unsigned int cpu)
701 {
702 	struct cpudata *cpu_data = all_cpu_data[cpu];
703 	int max, min;
704 	u64 value;
705 	s16 epp;
706 
707 	max = cpu_data->max_perf_ratio;
708 	min = cpu_data->min_perf_ratio;
709 
710 	if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
711 		min = max;
712 
713 	rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
714 
715 	value &= ~HWP_MIN_PERF(~0L);
716 	value |= HWP_MIN_PERF(min);
717 
718 	value &= ~HWP_MAX_PERF(~0L);
719 	value |= HWP_MAX_PERF(max);
720 
721 	if (cpu_data->epp_policy == cpu_data->policy)
722 		goto skip_epp;
723 
724 	cpu_data->epp_policy = cpu_data->policy;
725 
726 	if (cpu_data->epp_saved >= 0) {
727 		epp = cpu_data->epp_saved;
728 		cpu_data->epp_saved = -EINVAL;
729 		goto update_epp;
730 	}
731 
732 	if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
733 		epp = intel_pstate_get_epp(cpu_data, value);
734 		cpu_data->epp_powersave = epp;
735 		/* If EPP read was failed, then don't try to write */
736 		if (epp < 0)
737 			goto skip_epp;
738 
739 		epp = 0;
740 	} else {
741 		/* skip setting EPP, when saved value is invalid */
742 		if (cpu_data->epp_powersave < 0)
743 			goto skip_epp;
744 
745 		/*
746 		 * No need to restore EPP when it is not zero. This
747 		 * means:
748 		 *  - Policy is not changed
749 		 *  - user has manually changed
750 		 *  - Error reading EPB
751 		 */
752 		epp = intel_pstate_get_epp(cpu_data, value);
753 		if (epp)
754 			goto skip_epp;
755 
756 		epp = cpu_data->epp_powersave;
757 	}
758 update_epp:
759 	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
760 		value &= ~GENMASK_ULL(31, 24);
761 		value |= (u64)epp << 24;
762 	} else {
763 		intel_pstate_set_epb(cpu, epp);
764 	}
765 skip_epp:
766 	wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
767 }
768 
769 static int intel_pstate_hwp_save_state(struct cpufreq_policy *policy)
770 {
771 	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
772 
773 	if (!hwp_active)
774 		return 0;
775 
776 	cpu_data->epp_saved = intel_pstate_get_epp(cpu_data, 0);
777 
778 	return 0;
779 }
780 
781 static void intel_pstate_hwp_enable(struct cpudata *cpudata);
782 
783 static int intel_pstate_resume(struct cpufreq_policy *policy)
784 {
785 	if (!hwp_active)
786 		return 0;
787 
788 	mutex_lock(&intel_pstate_limits_lock);
789 
790 	if (policy->cpu == 0)
791 		intel_pstate_hwp_enable(all_cpu_data[policy->cpu]);
792 
793 	all_cpu_data[policy->cpu]->epp_policy = 0;
794 	intel_pstate_hwp_set(policy->cpu);
795 
796 	mutex_unlock(&intel_pstate_limits_lock);
797 
798 	return 0;
799 }
800 
801 static void intel_pstate_update_policies(void)
802 {
803 	int cpu;
804 
805 	for_each_possible_cpu(cpu)
806 		cpufreq_update_policy(cpu);
807 }
808 
809 /************************** sysfs begin ************************/
810 #define show_one(file_name, object)					\
811 	static ssize_t show_##file_name					\
812 	(struct kobject *kobj, struct attribute *attr, char *buf)	\
813 	{								\
814 		return sprintf(buf, "%u\n", global.object);		\
815 	}
816 
817 static ssize_t intel_pstate_show_status(char *buf);
818 static int intel_pstate_update_status(const char *buf, size_t size);
819 
820 static ssize_t show_status(struct kobject *kobj,
821 			   struct attribute *attr, char *buf)
822 {
823 	ssize_t ret;
824 
825 	mutex_lock(&intel_pstate_driver_lock);
826 	ret = intel_pstate_show_status(buf);
827 	mutex_unlock(&intel_pstate_driver_lock);
828 
829 	return ret;
830 }
831 
832 static ssize_t store_status(struct kobject *a, struct attribute *b,
833 			    const char *buf, size_t count)
834 {
835 	char *p = memchr(buf, '\n', count);
836 	int ret;
837 
838 	mutex_lock(&intel_pstate_driver_lock);
839 	ret = intel_pstate_update_status(buf, p ? p - buf : count);
840 	mutex_unlock(&intel_pstate_driver_lock);
841 
842 	return ret < 0 ? ret : count;
843 }
844 
845 static ssize_t show_turbo_pct(struct kobject *kobj,
846 				struct attribute *attr, char *buf)
847 {
848 	struct cpudata *cpu;
849 	int total, no_turbo, turbo_pct;
850 	uint32_t turbo_fp;
851 
852 	mutex_lock(&intel_pstate_driver_lock);
853 
854 	if (!intel_pstate_driver) {
855 		mutex_unlock(&intel_pstate_driver_lock);
856 		return -EAGAIN;
857 	}
858 
859 	cpu = all_cpu_data[0];
860 
861 	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
862 	no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
863 	turbo_fp = div_fp(no_turbo, total);
864 	turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
865 
866 	mutex_unlock(&intel_pstate_driver_lock);
867 
868 	return sprintf(buf, "%u\n", turbo_pct);
869 }
870 
871 static ssize_t show_num_pstates(struct kobject *kobj,
872 				struct attribute *attr, char *buf)
873 {
874 	struct cpudata *cpu;
875 	int total;
876 
877 	mutex_lock(&intel_pstate_driver_lock);
878 
879 	if (!intel_pstate_driver) {
880 		mutex_unlock(&intel_pstate_driver_lock);
881 		return -EAGAIN;
882 	}
883 
884 	cpu = all_cpu_data[0];
885 	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
886 
887 	mutex_unlock(&intel_pstate_driver_lock);
888 
889 	return sprintf(buf, "%u\n", total);
890 }
891 
892 static ssize_t show_no_turbo(struct kobject *kobj,
893 			     struct attribute *attr, char *buf)
894 {
895 	ssize_t ret;
896 
897 	mutex_lock(&intel_pstate_driver_lock);
898 
899 	if (!intel_pstate_driver) {
900 		mutex_unlock(&intel_pstate_driver_lock);
901 		return -EAGAIN;
902 	}
903 
904 	update_turbo_state();
905 	if (global.turbo_disabled)
906 		ret = sprintf(buf, "%u\n", global.turbo_disabled);
907 	else
908 		ret = sprintf(buf, "%u\n", global.no_turbo);
909 
910 	mutex_unlock(&intel_pstate_driver_lock);
911 
912 	return ret;
913 }
914 
915 static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
916 			      const char *buf, size_t count)
917 {
918 	unsigned int input;
919 	int ret;
920 
921 	ret = sscanf(buf, "%u", &input);
922 	if (ret != 1)
923 		return -EINVAL;
924 
925 	mutex_lock(&intel_pstate_driver_lock);
926 
927 	if (!intel_pstate_driver) {
928 		mutex_unlock(&intel_pstate_driver_lock);
929 		return -EAGAIN;
930 	}
931 
932 	mutex_lock(&intel_pstate_limits_lock);
933 
934 	update_turbo_state();
935 	if (global.turbo_disabled) {
936 		pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
937 		mutex_unlock(&intel_pstate_limits_lock);
938 		mutex_unlock(&intel_pstate_driver_lock);
939 		return -EPERM;
940 	}
941 
942 	global.no_turbo = clamp_t(int, input, 0, 1);
943 
944 	if (global.no_turbo) {
945 		struct cpudata *cpu = all_cpu_data[0];
946 		int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;
947 
948 		/* Squash the global minimum into the permitted range. */
949 		if (global.min_perf_pct > pct)
950 			global.min_perf_pct = pct;
951 	}
952 
953 	mutex_unlock(&intel_pstate_limits_lock);
954 
955 	intel_pstate_update_policies();
956 
957 	mutex_unlock(&intel_pstate_driver_lock);
958 
959 	return count;
960 }
961 
962 static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
963 				  const char *buf, size_t count)
964 {
965 	unsigned int input;
966 	int ret;
967 
968 	ret = sscanf(buf, "%u", &input);
969 	if (ret != 1)
970 		return -EINVAL;
971 
972 	mutex_lock(&intel_pstate_driver_lock);
973 
974 	if (!intel_pstate_driver) {
975 		mutex_unlock(&intel_pstate_driver_lock);
976 		return -EAGAIN;
977 	}
978 
979 	mutex_lock(&intel_pstate_limits_lock);
980 
981 	global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
982 
983 	mutex_unlock(&intel_pstate_limits_lock);
984 
985 	intel_pstate_update_policies();
986 
987 	mutex_unlock(&intel_pstate_driver_lock);
988 
989 	return count;
990 }
991 
992 static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
993 				  const char *buf, size_t count)
994 {
995 	unsigned int input;
996 	int ret;
997 
998 	ret = sscanf(buf, "%u", &input);
999 	if (ret != 1)
1000 		return -EINVAL;
1001 
1002 	mutex_lock(&intel_pstate_driver_lock);
1003 
1004 	if (!intel_pstate_driver) {
1005 		mutex_unlock(&intel_pstate_driver_lock);
1006 		return -EAGAIN;
1007 	}
1008 
1009 	mutex_lock(&intel_pstate_limits_lock);
1010 
1011 	global.min_perf_pct = clamp_t(int, input,
1012 				      min_perf_pct_min(), global.max_perf_pct);
1013 
1014 	mutex_unlock(&intel_pstate_limits_lock);
1015 
1016 	intel_pstate_update_policies();
1017 
1018 	mutex_unlock(&intel_pstate_driver_lock);
1019 
1020 	return count;
1021 }
1022 
1023 show_one(max_perf_pct, max_perf_pct);
1024 show_one(min_perf_pct, min_perf_pct);
1025 
1026 define_one_global_rw(status);
1027 define_one_global_rw(no_turbo);
1028 define_one_global_rw(max_perf_pct);
1029 define_one_global_rw(min_perf_pct);
1030 define_one_global_ro(turbo_pct);
1031 define_one_global_ro(num_pstates);
1032 
1033 static struct attribute *intel_pstate_attributes[] = {
1034 	&status.attr,
1035 	&no_turbo.attr,
1036 	&turbo_pct.attr,
1037 	&num_pstates.attr,
1038 	NULL
1039 };
1040 
1041 static const struct attribute_group intel_pstate_attr_group = {
1042 	.attrs = intel_pstate_attributes,
1043 };
1044 
1045 static void __init intel_pstate_sysfs_expose_params(void)
1046 {
1047 	struct kobject *intel_pstate_kobject;
1048 	int rc;
1049 
1050 	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
1051 						&cpu_subsys.dev_root->kobj);
1052 	if (WARN_ON(!intel_pstate_kobject))
1053 		return;
1054 
1055 	rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1056 	if (WARN_ON(rc))
1057 		return;
1058 
1059 	/*
1060 	 * If per cpu limits are enforced there are no global limits, so
1061 	 * return without creating max/min_perf_pct attributes
1062 	 */
1063 	if (per_cpu_limits)
1064 		return;
1065 
1066 	rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
1067 	WARN_ON(rc);
1068 
1069 	rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
1070 	WARN_ON(rc);
1071 
1072 }
1073 /************************** sysfs end ************************/
1074 
1075 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
1076 {
1077 	/* First disable HWP notification interrupt as we don't process them */
1078 	if (static_cpu_has(X86_FEATURE_HWP_NOTIFY))
1079 		wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1080 
1081 	wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1082 	cpudata->epp_policy = 0;
1083 	if (cpudata->epp_default == -EINVAL)
1084 		cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
1085 }
1086 
1087 #define MSR_IA32_POWER_CTL_BIT_EE	19
1088 
1089 /* Disable energy efficiency optimization */
1090 static void intel_pstate_disable_ee(int cpu)
1091 {
1092 	u64 power_ctl;
1093 	int ret;
1094 
1095 	ret = rdmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, &power_ctl);
1096 	if (ret)
1097 		return;
1098 
1099 	if (!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE))) {
1100 		pr_info("Disabling energy efficiency optimization\n");
1101 		power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
1102 		wrmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, power_ctl);
1103 	}
1104 }
1105 
1106 static int atom_get_min_pstate(void)
1107 {
1108 	u64 value;
1109 
1110 	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1111 	return (value >> 8) & 0x7F;
1112 }
1113 
1114 static int atom_get_max_pstate(void)
1115 {
1116 	u64 value;
1117 
1118 	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1119 	return (value >> 16) & 0x7F;
1120 }
1121 
1122 static int atom_get_turbo_pstate(void)
1123 {
1124 	u64 value;
1125 
1126 	rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
1127 	return value & 0x7F;
1128 }
1129 
1130 static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1131 {
1132 	u64 val;
1133 	int32_t vid_fp;
1134 	u32 vid;
1135 
1136 	val = (u64)pstate << 8;
1137 	if (global.no_turbo && !global.turbo_disabled)
1138 		val |= (u64)1 << 32;
1139 
1140 	vid_fp = cpudata->vid.min + mul_fp(
1141 		int_tofp(pstate - cpudata->pstate.min_pstate),
1142 		cpudata->vid.ratio);
1143 
1144 	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1145 	vid = ceiling_fp(vid_fp);
1146 
1147 	if (pstate > cpudata->pstate.max_pstate)
1148 		vid = cpudata->vid.turbo;
1149 
1150 	return val | vid;
1151 }
1152 
1153 static int silvermont_get_scaling(void)
1154 {
1155 	u64 value;
1156 	int i;
1157 	/* Defined in Table 35-6 from SDM (Sept 2015) */
1158 	static int silvermont_freq_table[] = {
1159 		83300, 100000, 133300, 116700, 80000};
1160 
1161 	rdmsrl(MSR_FSB_FREQ, value);
1162 	i = value & 0x7;
1163 	WARN_ON(i > 4);
1164 
1165 	return silvermont_freq_table[i];
1166 }
1167 
1168 static int airmont_get_scaling(void)
1169 {
1170 	u64 value;
1171 	int i;
1172 	/* Defined in Table 35-10 from SDM (Sept 2015) */
1173 	static int airmont_freq_table[] = {
1174 		83300, 100000, 133300, 116700, 80000,
1175 		93300, 90000, 88900, 87500};
1176 
1177 	rdmsrl(MSR_FSB_FREQ, value);
1178 	i = value & 0xF;
1179 	WARN_ON(i > 8);
1180 
1181 	return airmont_freq_table[i];
1182 }
1183 
1184 static void atom_get_vid(struct cpudata *cpudata)
1185 {
1186 	u64 value;
1187 
1188 	rdmsrl(MSR_ATOM_CORE_VIDS, value);
1189 	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
1190 	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1191 	cpudata->vid.ratio = div_fp(
1192 		cpudata->vid.max - cpudata->vid.min,
1193 		int_tofp(cpudata->pstate.max_pstate -
1194 			cpudata->pstate.min_pstate));
1195 
1196 	rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1197 	cpudata->vid.turbo = value & 0x7f;
1198 }
1199 
1200 static int core_get_min_pstate(void)
1201 {
1202 	u64 value;
1203 
1204 	rdmsrl(MSR_PLATFORM_INFO, value);
1205 	return (value >> 40) & 0xFF;
1206 }
1207 
1208 static int core_get_max_pstate_physical(void)
1209 {
1210 	u64 value;
1211 
1212 	rdmsrl(MSR_PLATFORM_INFO, value);
1213 	return (value >> 8) & 0xFF;
1214 }
1215 
1216 static int core_get_tdp_ratio(u64 plat_info)
1217 {
1218 	/* Check how many TDP levels present */
1219 	if (plat_info & 0x600000000) {
1220 		u64 tdp_ctrl;
1221 		u64 tdp_ratio;
1222 		int tdp_msr;
1223 		int err;
1224 
1225 		/* Get the TDP level (0, 1, 2) to get ratios */
1226 		err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
1227 		if (err)
1228 			return err;
1229 
1230 		/* TDP MSR are continuous starting at 0x648 */
1231 		tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
1232 		err = rdmsrl_safe(tdp_msr, &tdp_ratio);
1233 		if (err)
1234 			return err;
1235 
1236 		/* For level 1 and 2, bits[23:16] contain the ratio */
1237 		if (tdp_ctrl & 0x03)
1238 			tdp_ratio >>= 16;
1239 
1240 		tdp_ratio &= 0xff; /* ratios are only 8 bits long */
1241 		pr_debug("tdp_ratio %x\n", (int)tdp_ratio);
1242 
1243 		return (int)tdp_ratio;
1244 	}
1245 
1246 	return -ENXIO;
1247 }
1248 
1249 static int core_get_max_pstate(void)
1250 {
1251 	u64 tar;
1252 	u64 plat_info;
1253 	int max_pstate;
1254 	int tdp_ratio;
1255 	int err;
1256 
1257 	rdmsrl(MSR_PLATFORM_INFO, plat_info);
1258 	max_pstate = (plat_info >> 8) & 0xFF;
1259 
1260 	tdp_ratio = core_get_tdp_ratio(plat_info);
1261 	if (tdp_ratio <= 0)
1262 		return max_pstate;
1263 
1264 	if (hwp_active) {
1265 		/* Turbo activation ratio is not used on HWP platforms */
1266 		return tdp_ratio;
1267 	}
1268 
1269 	err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
1270 	if (!err) {
1271 		int tar_levels;
1272 
1273 		/* Do some sanity checking for safety */
1274 		tar_levels = tar & 0xff;
1275 		if (tdp_ratio - 1 == tar_levels) {
1276 			max_pstate = tar_levels;
1277 			pr_debug("max_pstate=TAC %x\n", max_pstate);
1278 		}
1279 	}
1280 
1281 	return max_pstate;
1282 }
1283 
1284 static int core_get_turbo_pstate(void)
1285 {
1286 	u64 value;
1287 	int nont, ret;
1288 
1289 	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1290 	nont = core_get_max_pstate();
1291 	ret = (value) & 255;
1292 	if (ret <= nont)
1293 		ret = nont;
1294 	return ret;
1295 }
1296 
1297 static inline int core_get_scaling(void)
1298 {
1299 	return 100000;
1300 }
1301 
1302 static u64 core_get_val(struct cpudata *cpudata, int pstate)
1303 {
1304 	u64 val;
1305 
1306 	val = (u64)pstate << 8;
1307 	if (global.no_turbo && !global.turbo_disabled)
1308 		val |= (u64)1 << 32;
1309 
1310 	return val;
1311 }
1312 
1313 static int knl_get_aperf_mperf_shift(void)
1314 {
1315 	return 10;
1316 }
1317 
1318 static int knl_get_turbo_pstate(void)
1319 {
1320 	u64 value;
1321 	int nont, ret;
1322 
1323 	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1324 	nont = core_get_max_pstate();
1325 	ret = (((value) >> 8) & 0xFF);
1326 	if (ret <= nont)
1327 		ret = nont;
1328 	return ret;
1329 }
1330 
1331 static int intel_pstate_get_base_pstate(struct cpudata *cpu)
1332 {
1333 	return global.no_turbo || global.turbo_disabled ?
1334 			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1335 }
1336 
1337 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1338 {
1339 	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1340 	cpu->pstate.current_pstate = pstate;
1341 	/*
1342 	 * Generally, there is no guarantee that this code will always run on
1343 	 * the CPU being updated, so force the register update to run on the
1344 	 * right CPU.
1345 	 */
1346 	wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1347 		      pstate_funcs.get_val(cpu, pstate));
1348 }
1349 
1350 static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1351 {
1352 	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
1353 }
1354 
1355 static void intel_pstate_max_within_limits(struct cpudata *cpu)
1356 {
1357 	int pstate;
1358 
1359 	update_turbo_state();
1360 	pstate = intel_pstate_get_base_pstate(cpu);
1361 	pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio);
1362 	intel_pstate_set_pstate(cpu, pstate);
1363 }
1364 
1365 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1366 {
1367 	cpu->pstate.min_pstate = pstate_funcs.get_min();
1368 	cpu->pstate.max_pstate = pstate_funcs.get_max();
1369 	cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1370 	cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1371 	cpu->pstate.scaling = pstate_funcs.get_scaling();
1372 	cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
1373 	cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1374 
1375 	if (pstate_funcs.get_aperf_mperf_shift)
1376 		cpu->aperf_mperf_shift = pstate_funcs.get_aperf_mperf_shift();
1377 
1378 	if (pstate_funcs.get_vid)
1379 		pstate_funcs.get_vid(cpu);
1380 
1381 	intel_pstate_set_min_pstate(cpu);
1382 }
1383 
1384 static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1385 {
1386 	struct sample *sample = &cpu->sample;
1387 
1388 	sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1389 }
1390 
1391 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1392 {
1393 	u64 aperf, mperf;
1394 	unsigned long flags;
1395 	u64 tsc;
1396 
1397 	local_irq_save(flags);
1398 	rdmsrl(MSR_IA32_APERF, aperf);
1399 	rdmsrl(MSR_IA32_MPERF, mperf);
1400 	tsc = rdtsc();
1401 	if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1402 		local_irq_restore(flags);
1403 		return false;
1404 	}
1405 	local_irq_restore(flags);
1406 
1407 	cpu->last_sample_time = cpu->sample.time;
1408 	cpu->sample.time = time;
1409 	cpu->sample.aperf = aperf;
1410 	cpu->sample.mperf = mperf;
1411 	cpu->sample.tsc =  tsc;
1412 	cpu->sample.aperf -= cpu->prev_aperf;
1413 	cpu->sample.mperf -= cpu->prev_mperf;
1414 	cpu->sample.tsc -= cpu->prev_tsc;
1415 
1416 	cpu->prev_aperf = aperf;
1417 	cpu->prev_mperf = mperf;
1418 	cpu->prev_tsc = tsc;
1419 	/*
1420 	 * First time this function is invoked in a given cycle, all of the
1421 	 * previous sample data fields are equal to zero or stale and they must
1422 	 * be populated with meaningful numbers for things to work, so assume
1423 	 * that sample.time will always be reset before setting the utilization
1424 	 * update hook and make the caller skip the sample then.
1425 	 */
1426 	if (cpu->last_sample_time) {
1427 		intel_pstate_calc_avg_perf(cpu);
1428 		return true;
1429 	}
1430 	return false;
1431 }
1432 
1433 static inline int32_t get_avg_frequency(struct cpudata *cpu)
1434 {
1435 	return mul_ext_fp(cpu->sample.core_avg_perf, cpu_khz);
1436 }
1437 
1438 static inline int32_t get_avg_pstate(struct cpudata *cpu)
1439 {
1440 	return mul_ext_fp(cpu->pstate.max_pstate_physical,
1441 			  cpu->sample.core_avg_perf);
1442 }
1443 
1444 static inline int32_t get_target_pstate(struct cpudata *cpu)
1445 {
1446 	struct sample *sample = &cpu->sample;
1447 	int32_t busy_frac, boost;
1448 	int target, avg_pstate;
1449 
1450 	busy_frac = div_fp(sample->mperf << cpu->aperf_mperf_shift,
1451 			   sample->tsc);
1452 
1453 	boost = cpu->iowait_boost;
1454 	cpu->iowait_boost >>= 1;
1455 
1456 	if (busy_frac < boost)
1457 		busy_frac = boost;
1458 
1459 	sample->busy_scaled = busy_frac * 100;
1460 
1461 	target = global.no_turbo || global.turbo_disabled ?
1462 			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1463 	target += target >> 2;
1464 	target = mul_fp(target, busy_frac);
1465 	if (target < cpu->pstate.min_pstate)
1466 		target = cpu->pstate.min_pstate;
1467 
1468 	/*
1469 	 * If the average P-state during the previous cycle was higher than the
1470 	 * current target, add 50% of the difference to the target to reduce
1471 	 * possible performance oscillations and offset possible performance
1472 	 * loss related to moving the workload from one CPU to another within
1473 	 * a package/module.
1474 	 */
1475 	avg_pstate = get_avg_pstate(cpu);
1476 	if (avg_pstate > target)
1477 		target += (avg_pstate - target) >> 1;
1478 
1479 	return target;
1480 }
1481 
1482 static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
1483 {
1484 	int max_pstate = intel_pstate_get_base_pstate(cpu);
1485 	int min_pstate;
1486 
1487 	min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio);
1488 	max_pstate = max(min_pstate, cpu->max_perf_ratio);
1489 	return clamp_t(int, pstate, min_pstate, max_pstate);
1490 }
1491 
1492 static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1493 {
1494 	if (pstate == cpu->pstate.current_pstate)
1495 		return;
1496 
1497 	cpu->pstate.current_pstate = pstate;
1498 	wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1499 }
1500 
1501 static void intel_pstate_adjust_pstate(struct cpudata *cpu)
1502 {
1503 	int from = cpu->pstate.current_pstate;
1504 	struct sample *sample;
1505 	int target_pstate;
1506 
1507 	update_turbo_state();
1508 
1509 	target_pstate = get_target_pstate(cpu);
1510 	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
1511 	trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
1512 	intel_pstate_update_pstate(cpu, target_pstate);
1513 
1514 	sample = &cpu->sample;
1515 	trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1516 		fp_toint(sample->busy_scaled),
1517 		from,
1518 		cpu->pstate.current_pstate,
1519 		sample->mperf,
1520 		sample->aperf,
1521 		sample->tsc,
1522 		get_avg_frequency(cpu),
1523 		fp_toint(cpu->iowait_boost * 100));
1524 }
1525 
1526 static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1527 				     unsigned int flags)
1528 {
1529 	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1530 	u64 delta_ns;
1531 
1532 	/* Don't allow remote callbacks */
1533 	if (smp_processor_id() != cpu->cpu)
1534 		return;
1535 
1536 	if (flags & SCHED_CPUFREQ_IOWAIT) {
1537 		cpu->iowait_boost = int_tofp(1);
1538 		cpu->last_update = time;
1539 		/*
1540 		 * The last time the busy was 100% so P-state was max anyway
1541 		 * so avoid overhead of computation.
1542 		 */
1543 		if (fp_toint(cpu->sample.busy_scaled) == 100)
1544 			return;
1545 
1546 		goto set_pstate;
1547 	} else if (cpu->iowait_boost) {
1548 		/* Clear iowait_boost if the CPU may have been idle. */
1549 		delta_ns = time - cpu->last_update;
1550 		if (delta_ns > TICK_NSEC)
1551 			cpu->iowait_boost = 0;
1552 	}
1553 	cpu->last_update = time;
1554 	delta_ns = time - cpu->sample.time;
1555 	if ((s64)delta_ns < INTEL_PSTATE_SAMPLING_INTERVAL)
1556 		return;
1557 
1558 set_pstate:
1559 	if (intel_pstate_sample(cpu, time))
1560 		intel_pstate_adjust_pstate(cpu);
1561 }
1562 
1563 static struct pstate_funcs core_funcs = {
1564 	.get_max = core_get_max_pstate,
1565 	.get_max_physical = core_get_max_pstate_physical,
1566 	.get_min = core_get_min_pstate,
1567 	.get_turbo = core_get_turbo_pstate,
1568 	.get_scaling = core_get_scaling,
1569 	.get_val = core_get_val,
1570 };
1571 
1572 static const struct pstate_funcs silvermont_funcs = {
1573 	.get_max = atom_get_max_pstate,
1574 	.get_max_physical = atom_get_max_pstate,
1575 	.get_min = atom_get_min_pstate,
1576 	.get_turbo = atom_get_turbo_pstate,
1577 	.get_val = atom_get_val,
1578 	.get_scaling = silvermont_get_scaling,
1579 	.get_vid = atom_get_vid,
1580 };
1581 
1582 static const struct pstate_funcs airmont_funcs = {
1583 	.get_max = atom_get_max_pstate,
1584 	.get_max_physical = atom_get_max_pstate,
1585 	.get_min = atom_get_min_pstate,
1586 	.get_turbo = atom_get_turbo_pstate,
1587 	.get_val = atom_get_val,
1588 	.get_scaling = airmont_get_scaling,
1589 	.get_vid = atom_get_vid,
1590 };
1591 
1592 static const struct pstate_funcs knl_funcs = {
1593 	.get_max = core_get_max_pstate,
1594 	.get_max_physical = core_get_max_pstate_physical,
1595 	.get_min = core_get_min_pstate,
1596 	.get_turbo = knl_get_turbo_pstate,
1597 	.get_aperf_mperf_shift = knl_get_aperf_mperf_shift,
1598 	.get_scaling = core_get_scaling,
1599 	.get_val = core_get_val,
1600 };
1601 
1602 #define ICPU(model, policy) \
1603 	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1604 			(unsigned long)&policy }
1605 
1606 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1607 	ICPU(INTEL_FAM6_SANDYBRIDGE, 		core_funcs),
1608 	ICPU(INTEL_FAM6_SANDYBRIDGE_X,		core_funcs),
1609 	ICPU(INTEL_FAM6_ATOM_SILVERMONT1,	silvermont_funcs),
1610 	ICPU(INTEL_FAM6_IVYBRIDGE,		core_funcs),
1611 	ICPU(INTEL_FAM6_HASWELL_CORE,		core_funcs),
1612 	ICPU(INTEL_FAM6_BROADWELL_CORE,		core_funcs),
1613 	ICPU(INTEL_FAM6_IVYBRIDGE_X,		core_funcs),
1614 	ICPU(INTEL_FAM6_HASWELL_X,		core_funcs),
1615 	ICPU(INTEL_FAM6_HASWELL_ULT,		core_funcs),
1616 	ICPU(INTEL_FAM6_HASWELL_GT3E,		core_funcs),
1617 	ICPU(INTEL_FAM6_BROADWELL_GT3E,		core_funcs),
1618 	ICPU(INTEL_FAM6_ATOM_AIRMONT,		airmont_funcs),
1619 	ICPU(INTEL_FAM6_SKYLAKE_MOBILE,		core_funcs),
1620 	ICPU(INTEL_FAM6_BROADWELL_X,		core_funcs),
1621 	ICPU(INTEL_FAM6_SKYLAKE_DESKTOP,	core_funcs),
1622 	ICPU(INTEL_FAM6_BROADWELL_XEON_D,	core_funcs),
1623 	ICPU(INTEL_FAM6_XEON_PHI_KNL,		knl_funcs),
1624 	ICPU(INTEL_FAM6_XEON_PHI_KNM,		knl_funcs),
1625 	ICPU(INTEL_FAM6_ATOM_GOLDMONT,		core_funcs),
1626 	ICPU(INTEL_FAM6_ATOM_GEMINI_LAKE,       core_funcs),
1627 	ICPU(INTEL_FAM6_SKYLAKE_X,		core_funcs),
1628 	{}
1629 };
1630 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1631 
1632 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
1633 	ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_funcs),
1634 	ICPU(INTEL_FAM6_BROADWELL_X, core_funcs),
1635 	ICPU(INTEL_FAM6_SKYLAKE_X, core_funcs),
1636 	{}
1637 };
1638 
1639 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
1640 	ICPU(INTEL_FAM6_KABYLAKE_DESKTOP, core_funcs),
1641 	{}
1642 };
1643 
1644 static int intel_pstate_init_cpu(unsigned int cpunum)
1645 {
1646 	struct cpudata *cpu;
1647 
1648 	cpu = all_cpu_data[cpunum];
1649 
1650 	if (!cpu) {
1651 		cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
1652 		if (!cpu)
1653 			return -ENOMEM;
1654 
1655 		all_cpu_data[cpunum] = cpu;
1656 
1657 		cpu->epp_default = -EINVAL;
1658 		cpu->epp_powersave = -EINVAL;
1659 		cpu->epp_saved = -EINVAL;
1660 	}
1661 
1662 	cpu = all_cpu_data[cpunum];
1663 
1664 	cpu->cpu = cpunum;
1665 
1666 	if (hwp_active) {
1667 		const struct x86_cpu_id *id;
1668 
1669 		id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
1670 		if (id)
1671 			intel_pstate_disable_ee(cpunum);
1672 
1673 		intel_pstate_hwp_enable(cpu);
1674 	}
1675 
1676 	intel_pstate_get_cpu_pstates(cpu);
1677 
1678 	pr_debug("controlling: cpu %d\n", cpunum);
1679 
1680 	return 0;
1681 }
1682 
1683 static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
1684 {
1685 	struct cpudata *cpu = all_cpu_data[cpu_num];
1686 
1687 	if (hwp_active)
1688 		return;
1689 
1690 	if (cpu->update_util_set)
1691 		return;
1692 
1693 	/* Prevent intel_pstate_update_util() from using stale data. */
1694 	cpu->sample.time = 0;
1695 	cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
1696 				     intel_pstate_update_util);
1697 	cpu->update_util_set = true;
1698 }
1699 
1700 static void intel_pstate_clear_update_util_hook(unsigned int cpu)
1701 {
1702 	struct cpudata *cpu_data = all_cpu_data[cpu];
1703 
1704 	if (!cpu_data->update_util_set)
1705 		return;
1706 
1707 	cpufreq_remove_update_util_hook(cpu);
1708 	cpu_data->update_util_set = false;
1709 	synchronize_sched();
1710 }
1711 
1712 static int intel_pstate_get_max_freq(struct cpudata *cpu)
1713 {
1714 	return global.turbo_disabled || global.no_turbo ?
1715 			cpu->pstate.max_freq : cpu->pstate.turbo_freq;
1716 }
1717 
1718 static void intel_pstate_update_perf_limits(struct cpufreq_policy *policy,
1719 					    struct cpudata *cpu)
1720 {
1721 	int max_freq = intel_pstate_get_max_freq(cpu);
1722 	int32_t max_policy_perf, min_policy_perf;
1723 	int max_state, turbo_max;
1724 
1725 	/*
1726 	 * HWP needs some special consideration, because on BDX the
1727 	 * HWP_REQUEST uses abstract value to represent performance
1728 	 * rather than pure ratios.
1729 	 */
1730 	if (hwp_active) {
1731 		intel_pstate_get_hwp_max(cpu->cpu, &turbo_max, &max_state);
1732 	} else {
1733 		max_state = intel_pstate_get_base_pstate(cpu);
1734 		turbo_max = cpu->pstate.turbo_pstate;
1735 	}
1736 
1737 	max_policy_perf = max_state * policy->max / max_freq;
1738 	if (policy->max == policy->min) {
1739 		min_policy_perf = max_policy_perf;
1740 	} else {
1741 		min_policy_perf = max_state * policy->min / max_freq;
1742 		min_policy_perf = clamp_t(int32_t, min_policy_perf,
1743 					  0, max_policy_perf);
1744 	}
1745 
1746 	pr_debug("cpu:%d max_state %d min_policy_perf:%d max_policy_perf:%d\n",
1747 		 policy->cpu, max_state,
1748 		 min_policy_perf, max_policy_perf);
1749 
1750 	/* Normalize user input to [min_perf, max_perf] */
1751 	if (per_cpu_limits) {
1752 		cpu->min_perf_ratio = min_policy_perf;
1753 		cpu->max_perf_ratio = max_policy_perf;
1754 	} else {
1755 		int32_t global_min, global_max;
1756 
1757 		/* Global limits are in percent of the maximum turbo P-state. */
1758 		global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
1759 		global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
1760 		global_min = clamp_t(int32_t, global_min, 0, global_max);
1761 
1762 		pr_debug("cpu:%d global_min:%d global_max:%d\n", policy->cpu,
1763 			 global_min, global_max);
1764 
1765 		cpu->min_perf_ratio = max(min_policy_perf, global_min);
1766 		cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf);
1767 		cpu->max_perf_ratio = min(max_policy_perf, global_max);
1768 		cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio);
1769 
1770 		/* Make sure min_perf <= max_perf */
1771 		cpu->min_perf_ratio = min(cpu->min_perf_ratio,
1772 					  cpu->max_perf_ratio);
1773 
1774 	}
1775 	pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", policy->cpu,
1776 		 cpu->max_perf_ratio,
1777 		 cpu->min_perf_ratio);
1778 }
1779 
1780 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
1781 {
1782 	struct cpudata *cpu;
1783 
1784 	if (!policy->cpuinfo.max_freq)
1785 		return -ENODEV;
1786 
1787 	pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
1788 		 policy->cpuinfo.max_freq, policy->max);
1789 
1790 	cpu = all_cpu_data[policy->cpu];
1791 	cpu->policy = policy->policy;
1792 
1793 	mutex_lock(&intel_pstate_limits_lock);
1794 
1795 	intel_pstate_update_perf_limits(policy, cpu);
1796 
1797 	if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
1798 		/*
1799 		 * NOHZ_FULL CPUs need this as the governor callback may not
1800 		 * be invoked on them.
1801 		 */
1802 		intel_pstate_clear_update_util_hook(policy->cpu);
1803 		intel_pstate_max_within_limits(cpu);
1804 	} else {
1805 		intel_pstate_set_update_util_hook(policy->cpu);
1806 	}
1807 
1808 	if (hwp_active)
1809 		intel_pstate_hwp_set(policy->cpu);
1810 
1811 	mutex_unlock(&intel_pstate_limits_lock);
1812 
1813 	return 0;
1814 }
1815 
1816 static void intel_pstate_adjust_policy_max(struct cpufreq_policy *policy,
1817 					 struct cpudata *cpu)
1818 {
1819 	if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
1820 	    policy->max < policy->cpuinfo.max_freq &&
1821 	    policy->max > cpu->pstate.max_freq) {
1822 		pr_debug("policy->max > max non turbo frequency\n");
1823 		policy->max = policy->cpuinfo.max_freq;
1824 	}
1825 }
1826 
1827 static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
1828 {
1829 	struct cpudata *cpu = all_cpu_data[policy->cpu];
1830 
1831 	update_turbo_state();
1832 	cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
1833 				     intel_pstate_get_max_freq(cpu));
1834 
1835 	if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
1836 	    policy->policy != CPUFREQ_POLICY_PERFORMANCE)
1837 		return -EINVAL;
1838 
1839 	intel_pstate_adjust_policy_max(policy, cpu);
1840 
1841 	return 0;
1842 }
1843 
1844 static void intel_cpufreq_stop_cpu(struct cpufreq_policy *policy)
1845 {
1846 	intel_pstate_set_min_pstate(all_cpu_data[policy->cpu]);
1847 }
1848 
1849 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
1850 {
1851 	pr_debug("CPU %d exiting\n", policy->cpu);
1852 
1853 	intel_pstate_clear_update_util_hook(policy->cpu);
1854 	if (hwp_active)
1855 		intel_pstate_hwp_save_state(policy);
1856 	else
1857 		intel_cpufreq_stop_cpu(policy);
1858 }
1859 
1860 static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
1861 {
1862 	intel_pstate_exit_perf_limits(policy);
1863 
1864 	policy->fast_switch_possible = false;
1865 
1866 	return 0;
1867 }
1868 
1869 static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
1870 {
1871 	struct cpudata *cpu;
1872 	int rc;
1873 
1874 	rc = intel_pstate_init_cpu(policy->cpu);
1875 	if (rc)
1876 		return rc;
1877 
1878 	cpu = all_cpu_data[policy->cpu];
1879 
1880 	cpu->max_perf_ratio = 0xFF;
1881 	cpu->min_perf_ratio = 0;
1882 
1883 	policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
1884 	policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1885 
1886 	/* cpuinfo and default policy values */
1887 	policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
1888 	update_turbo_state();
1889 	policy->cpuinfo.max_freq = global.turbo_disabled ?
1890 			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1891 	policy->cpuinfo.max_freq *= cpu->pstate.scaling;
1892 
1893 	intel_pstate_init_acpi_perf_limits(policy);
1894 
1895 	policy->fast_switch_possible = true;
1896 
1897 	return 0;
1898 }
1899 
1900 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
1901 {
1902 	int ret = __intel_pstate_cpu_init(policy);
1903 
1904 	if (ret)
1905 		return ret;
1906 
1907 	if (IS_ENABLED(CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE))
1908 		policy->policy = CPUFREQ_POLICY_PERFORMANCE;
1909 	else
1910 		policy->policy = CPUFREQ_POLICY_POWERSAVE;
1911 
1912 	return 0;
1913 }
1914 
1915 static struct cpufreq_driver intel_pstate = {
1916 	.flags		= CPUFREQ_CONST_LOOPS,
1917 	.verify		= intel_pstate_verify_policy,
1918 	.setpolicy	= intel_pstate_set_policy,
1919 	.suspend	= intel_pstate_hwp_save_state,
1920 	.resume		= intel_pstate_resume,
1921 	.init		= intel_pstate_cpu_init,
1922 	.exit		= intel_pstate_cpu_exit,
1923 	.stop_cpu	= intel_pstate_stop_cpu,
1924 	.name		= "intel_pstate",
1925 };
1926 
1927 static int intel_cpufreq_verify_policy(struct cpufreq_policy *policy)
1928 {
1929 	struct cpudata *cpu = all_cpu_data[policy->cpu];
1930 
1931 	update_turbo_state();
1932 	cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
1933 				     intel_pstate_get_max_freq(cpu));
1934 
1935 	intel_pstate_adjust_policy_max(policy, cpu);
1936 
1937 	intel_pstate_update_perf_limits(policy, cpu);
1938 
1939 	return 0;
1940 }
1941 
1942 static int intel_cpufreq_target(struct cpufreq_policy *policy,
1943 				unsigned int target_freq,
1944 				unsigned int relation)
1945 {
1946 	struct cpudata *cpu = all_cpu_data[policy->cpu];
1947 	struct cpufreq_freqs freqs;
1948 	int target_pstate;
1949 
1950 	update_turbo_state();
1951 
1952 	freqs.old = policy->cur;
1953 	freqs.new = target_freq;
1954 
1955 	cpufreq_freq_transition_begin(policy, &freqs);
1956 	switch (relation) {
1957 	case CPUFREQ_RELATION_L:
1958 		target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
1959 		break;
1960 	case CPUFREQ_RELATION_H:
1961 		target_pstate = freqs.new / cpu->pstate.scaling;
1962 		break;
1963 	default:
1964 		target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
1965 		break;
1966 	}
1967 	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
1968 	if (target_pstate != cpu->pstate.current_pstate) {
1969 		cpu->pstate.current_pstate = target_pstate;
1970 		wrmsrl_on_cpu(policy->cpu, MSR_IA32_PERF_CTL,
1971 			      pstate_funcs.get_val(cpu, target_pstate));
1972 	}
1973 	freqs.new = target_pstate * cpu->pstate.scaling;
1974 	cpufreq_freq_transition_end(policy, &freqs, false);
1975 
1976 	return 0;
1977 }
1978 
1979 static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
1980 					      unsigned int target_freq)
1981 {
1982 	struct cpudata *cpu = all_cpu_data[policy->cpu];
1983 	int target_pstate;
1984 
1985 	update_turbo_state();
1986 
1987 	target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
1988 	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
1989 	intel_pstate_update_pstate(cpu, target_pstate);
1990 	return target_pstate * cpu->pstate.scaling;
1991 }
1992 
1993 static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
1994 {
1995 	int ret = __intel_pstate_cpu_init(policy);
1996 
1997 	if (ret)
1998 		return ret;
1999 
2000 	policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
2001 	policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY;
2002 	/* This reflects the intel_pstate_get_cpu_pstates() setting. */
2003 	policy->cur = policy->cpuinfo.min_freq;
2004 
2005 	return 0;
2006 }
2007 
2008 static struct cpufreq_driver intel_cpufreq = {
2009 	.flags		= CPUFREQ_CONST_LOOPS,
2010 	.verify		= intel_cpufreq_verify_policy,
2011 	.target		= intel_cpufreq_target,
2012 	.fast_switch	= intel_cpufreq_fast_switch,
2013 	.init		= intel_cpufreq_cpu_init,
2014 	.exit		= intel_pstate_cpu_exit,
2015 	.stop_cpu	= intel_cpufreq_stop_cpu,
2016 	.name		= "intel_cpufreq",
2017 };
2018 
2019 static struct cpufreq_driver *default_driver = &intel_pstate;
2020 
2021 static void intel_pstate_driver_cleanup(void)
2022 {
2023 	unsigned int cpu;
2024 
2025 	get_online_cpus();
2026 	for_each_online_cpu(cpu) {
2027 		if (all_cpu_data[cpu]) {
2028 			if (intel_pstate_driver == &intel_pstate)
2029 				intel_pstate_clear_update_util_hook(cpu);
2030 
2031 			kfree(all_cpu_data[cpu]);
2032 			all_cpu_data[cpu] = NULL;
2033 		}
2034 	}
2035 	put_online_cpus();
2036 	intel_pstate_driver = NULL;
2037 }
2038 
2039 static int intel_pstate_register_driver(struct cpufreq_driver *driver)
2040 {
2041 	int ret;
2042 
2043 	memset(&global, 0, sizeof(global));
2044 	global.max_perf_pct = 100;
2045 
2046 	intel_pstate_driver = driver;
2047 	ret = cpufreq_register_driver(intel_pstate_driver);
2048 	if (ret) {
2049 		intel_pstate_driver_cleanup();
2050 		return ret;
2051 	}
2052 
2053 	global.min_perf_pct = min_perf_pct_min();
2054 
2055 	return 0;
2056 }
2057 
2058 static int intel_pstate_unregister_driver(void)
2059 {
2060 	if (hwp_active)
2061 		return -EBUSY;
2062 
2063 	cpufreq_unregister_driver(intel_pstate_driver);
2064 	intel_pstate_driver_cleanup();
2065 
2066 	return 0;
2067 }
2068 
2069 static ssize_t intel_pstate_show_status(char *buf)
2070 {
2071 	if (!intel_pstate_driver)
2072 		return sprintf(buf, "off\n");
2073 
2074 	return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
2075 					"active" : "passive");
2076 }
2077 
2078 static int intel_pstate_update_status(const char *buf, size_t size)
2079 {
2080 	int ret;
2081 
2082 	if (size == 3 && !strncmp(buf, "off", size))
2083 		return intel_pstate_driver ?
2084 			intel_pstate_unregister_driver() : -EINVAL;
2085 
2086 	if (size == 6 && !strncmp(buf, "active", size)) {
2087 		if (intel_pstate_driver) {
2088 			if (intel_pstate_driver == &intel_pstate)
2089 				return 0;
2090 
2091 			ret = intel_pstate_unregister_driver();
2092 			if (ret)
2093 				return ret;
2094 		}
2095 
2096 		return intel_pstate_register_driver(&intel_pstate);
2097 	}
2098 
2099 	if (size == 7 && !strncmp(buf, "passive", size)) {
2100 		if (intel_pstate_driver) {
2101 			if (intel_pstate_driver == &intel_cpufreq)
2102 				return 0;
2103 
2104 			ret = intel_pstate_unregister_driver();
2105 			if (ret)
2106 				return ret;
2107 		}
2108 
2109 		return intel_pstate_register_driver(&intel_cpufreq);
2110 	}
2111 
2112 	return -EINVAL;
2113 }
2114 
2115 static int no_load __initdata;
2116 static int no_hwp __initdata;
2117 static int hwp_only __initdata;
2118 static unsigned int force_load __initdata;
2119 
2120 static int __init intel_pstate_msrs_not_valid(void)
2121 {
2122 	if (!pstate_funcs.get_max() ||
2123 	    !pstate_funcs.get_min() ||
2124 	    !pstate_funcs.get_turbo())
2125 		return -ENODEV;
2126 
2127 	return 0;
2128 }
2129 
2130 static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
2131 {
2132 	pstate_funcs.get_max   = funcs->get_max;
2133 	pstate_funcs.get_max_physical = funcs->get_max_physical;
2134 	pstate_funcs.get_min   = funcs->get_min;
2135 	pstate_funcs.get_turbo = funcs->get_turbo;
2136 	pstate_funcs.get_scaling = funcs->get_scaling;
2137 	pstate_funcs.get_val   = funcs->get_val;
2138 	pstate_funcs.get_vid   = funcs->get_vid;
2139 	pstate_funcs.get_aperf_mperf_shift = funcs->get_aperf_mperf_shift;
2140 }
2141 
2142 #ifdef CONFIG_ACPI
2143 
2144 static bool __init intel_pstate_no_acpi_pss(void)
2145 {
2146 	int i;
2147 
2148 	for_each_possible_cpu(i) {
2149 		acpi_status status;
2150 		union acpi_object *pss;
2151 		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
2152 		struct acpi_processor *pr = per_cpu(processors, i);
2153 
2154 		if (!pr)
2155 			continue;
2156 
2157 		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
2158 		if (ACPI_FAILURE(status))
2159 			continue;
2160 
2161 		pss = buffer.pointer;
2162 		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
2163 			kfree(pss);
2164 			return false;
2165 		}
2166 
2167 		kfree(pss);
2168 	}
2169 
2170 	return true;
2171 }
2172 
2173 static bool __init intel_pstate_has_acpi_ppc(void)
2174 {
2175 	int i;
2176 
2177 	for_each_possible_cpu(i) {
2178 		struct acpi_processor *pr = per_cpu(processors, i);
2179 
2180 		if (!pr)
2181 			continue;
2182 		if (acpi_has_method(pr->handle, "_PPC"))
2183 			return true;
2184 	}
2185 	return false;
2186 }
2187 
2188 enum {
2189 	PSS,
2190 	PPC,
2191 };
2192 
2193 /* Hardware vendor-specific info that has its own power management modes */
2194 static struct acpi_platform_list plat_info[] __initdata = {
2195 	{"HP    ", "ProLiant", 0, ACPI_SIG_FADT, all_versions, 0, PSS},
2196 	{"ORACLE", "X4-2    ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2197 	{"ORACLE", "X4-2L   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2198 	{"ORACLE", "X4-2B   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2199 	{"ORACLE", "X3-2    ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2200 	{"ORACLE", "X3-2L   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2201 	{"ORACLE", "X3-2B   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2202 	{"ORACLE", "X4470M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2203 	{"ORACLE", "X4270M3 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2204 	{"ORACLE", "X4270M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2205 	{"ORACLE", "X4170M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2206 	{"ORACLE", "X4170 M3", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2207 	{"ORACLE", "X4275 M3", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2208 	{"ORACLE", "X6-2    ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2209 	{"ORACLE", "Sudbury ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2210 	{ } /* End */
2211 };
2212 
2213 static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
2214 {
2215 	const struct x86_cpu_id *id;
2216 	u64 misc_pwr;
2217 	int idx;
2218 
2219 	id = x86_match_cpu(intel_pstate_cpu_oob_ids);
2220 	if (id) {
2221 		rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
2222 		if ( misc_pwr & (1 << 8))
2223 			return true;
2224 	}
2225 
2226 	idx = acpi_match_platform_list(plat_info);
2227 	if (idx < 0)
2228 		return false;
2229 
2230 	switch (plat_info[idx].data) {
2231 	case PSS:
2232 		return intel_pstate_no_acpi_pss();
2233 	case PPC:
2234 		return intel_pstate_has_acpi_ppc() && !force_load;
2235 	}
2236 
2237 	return false;
2238 }
2239 
2240 static void intel_pstate_request_control_from_smm(void)
2241 {
2242 	/*
2243 	 * It may be unsafe to request P-states control from SMM if _PPC support
2244 	 * has not been enabled.
2245 	 */
2246 	if (acpi_ppc)
2247 		acpi_processor_pstate_control();
2248 }
2249 #else /* CONFIG_ACPI not enabled */
2250 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
2251 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
2252 static inline void intel_pstate_request_control_from_smm(void) {}
2253 #endif /* CONFIG_ACPI */
2254 
2255 static const struct x86_cpu_id hwp_support_ids[] __initconst = {
2256 	{ X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
2257 	{}
2258 };
2259 
2260 static int __init intel_pstate_init(void)
2261 {
2262 	int rc;
2263 
2264 	if (no_load)
2265 		return -ENODEV;
2266 
2267 	if (x86_match_cpu(hwp_support_ids)) {
2268 		copy_cpu_funcs(&core_funcs);
2269 		if (!no_hwp) {
2270 			hwp_active++;
2271 			intel_pstate.attr = hwp_cpufreq_attrs;
2272 			goto hwp_cpu_matched;
2273 		}
2274 	} else {
2275 		const struct x86_cpu_id *id;
2276 
2277 		id = x86_match_cpu(intel_pstate_cpu_ids);
2278 		if (!id)
2279 			return -ENODEV;
2280 
2281 		copy_cpu_funcs((struct pstate_funcs *)id->driver_data);
2282 	}
2283 
2284 	if (intel_pstate_msrs_not_valid())
2285 		return -ENODEV;
2286 
2287 hwp_cpu_matched:
2288 	/*
2289 	 * The Intel pstate driver will be ignored if the platform
2290 	 * firmware has its own power management modes.
2291 	 */
2292 	if (intel_pstate_platform_pwr_mgmt_exists())
2293 		return -ENODEV;
2294 
2295 	if (!hwp_active && hwp_only)
2296 		return -ENOTSUPP;
2297 
2298 	pr_info("Intel P-state driver initializing\n");
2299 
2300 	all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
2301 	if (!all_cpu_data)
2302 		return -ENOMEM;
2303 
2304 	intel_pstate_request_control_from_smm();
2305 
2306 	intel_pstate_sysfs_expose_params();
2307 
2308 	mutex_lock(&intel_pstate_driver_lock);
2309 	rc = intel_pstate_register_driver(default_driver);
2310 	mutex_unlock(&intel_pstate_driver_lock);
2311 	if (rc)
2312 		return rc;
2313 
2314 	if (hwp_active)
2315 		pr_info("HWP enabled\n");
2316 
2317 	return 0;
2318 }
2319 device_initcall(intel_pstate_init);
2320 
2321 static int __init intel_pstate_setup(char *str)
2322 {
2323 	if (!str)
2324 		return -EINVAL;
2325 
2326 	if (!strcmp(str, "disable")) {
2327 		no_load = 1;
2328 	} else if (!strcmp(str, "passive")) {
2329 		pr_info("Passive mode enabled\n");
2330 		default_driver = &intel_cpufreq;
2331 		no_hwp = 1;
2332 	}
2333 	if (!strcmp(str, "no_hwp")) {
2334 		pr_info("HWP disabled\n");
2335 		no_hwp = 1;
2336 	}
2337 	if (!strcmp(str, "force"))
2338 		force_load = 1;
2339 	if (!strcmp(str, "hwp_only"))
2340 		hwp_only = 1;
2341 	if (!strcmp(str, "per_cpu_perf_limits"))
2342 		per_cpu_limits = true;
2343 
2344 #ifdef CONFIG_ACPI
2345 	if (!strcmp(str, "support_acpi_ppc"))
2346 		acpi_ppc = true;
2347 #endif
2348 
2349 	return 0;
2350 }
2351 early_param("intel_pstate", intel_pstate_setup);
2352 
2353 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
2354 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
2355 MODULE_LICENSE("GPL");
2356