1 /* 2 * intel_pstate.c: Native P state management for Intel processors 3 * 4 * (C) Copyright 2012 Intel Corporation 5 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com> 6 * 7 * This program is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU General Public License 9 * as published by the Free Software Foundation; version 2 10 * of the License. 11 */ 12 13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 14 15 #include <linux/kernel.h> 16 #include <linux/kernel_stat.h> 17 #include <linux/module.h> 18 #include <linux/ktime.h> 19 #include <linux/hrtimer.h> 20 #include <linux/tick.h> 21 #include <linux/slab.h> 22 #include <linux/sched/cpufreq.h> 23 #include <linux/list.h> 24 #include <linux/cpu.h> 25 #include <linux/cpufreq.h> 26 #include <linux/sysfs.h> 27 #include <linux/types.h> 28 #include <linux/fs.h> 29 #include <linux/acpi.h> 30 #include <linux/vmalloc.h> 31 #include <trace/events/power.h> 32 33 #include <asm/div64.h> 34 #include <asm/msr.h> 35 #include <asm/cpu_device_id.h> 36 #include <asm/cpufeature.h> 37 #include <asm/intel-family.h> 38 39 #define INTEL_PSTATE_SAMPLING_INTERVAL (10 * NSEC_PER_MSEC) 40 41 #define INTEL_CPUFREQ_TRANSITION_LATENCY 20000 42 #define INTEL_CPUFREQ_TRANSITION_DELAY 500 43 44 #ifdef CONFIG_ACPI 45 #include <acpi/processor.h> 46 #include <acpi/cppc_acpi.h> 47 #endif 48 49 #define FRAC_BITS 8 50 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS) 51 #define fp_toint(X) ((X) >> FRAC_BITS) 52 53 #define EXT_BITS 6 54 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS) 55 #define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS) 56 #define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS) 57 58 static inline int32_t mul_fp(int32_t x, int32_t y) 59 { 60 return ((int64_t)x * (int64_t)y) >> FRAC_BITS; 61 } 62 63 static inline int32_t div_fp(s64 x, s64 y) 64 { 65 return div64_s64((int64_t)x << FRAC_BITS, y); 66 } 67 68 static inline int ceiling_fp(int32_t x) 69 { 70 int mask, ret; 71 72 ret = fp_toint(x); 73 mask = (1 << FRAC_BITS) - 1; 74 if (x & mask) 75 ret += 1; 76 return ret; 77 } 78 79 static inline int32_t percent_fp(int percent) 80 { 81 return div_fp(percent, 100); 82 } 83 84 static inline u64 mul_ext_fp(u64 x, u64 y) 85 { 86 return (x * y) >> EXT_FRAC_BITS; 87 } 88 89 static inline u64 div_ext_fp(u64 x, u64 y) 90 { 91 return div64_u64(x << EXT_FRAC_BITS, y); 92 } 93 94 static inline int32_t percent_ext_fp(int percent) 95 { 96 return div_ext_fp(percent, 100); 97 } 98 99 /** 100 * struct sample - Store performance sample 101 * @core_avg_perf: Ratio of APERF/MPERF which is the actual average 102 * performance during last sample period 103 * @busy_scaled: Scaled busy value which is used to calculate next 104 * P state. This can be different than core_avg_perf 105 * to account for cpu idle period 106 * @aperf: Difference of actual performance frequency clock count 107 * read from APERF MSR between last and current sample 108 * @mperf: Difference of maximum performance frequency clock count 109 * read from MPERF MSR between last and current sample 110 * @tsc: Difference of time stamp counter between last and 111 * current sample 112 * @time: Current time from scheduler 113 * 114 * This structure is used in the cpudata structure to store performance sample 115 * data for choosing next P State. 116 */ 117 struct sample { 118 int32_t core_avg_perf; 119 int32_t busy_scaled; 120 u64 aperf; 121 u64 mperf; 122 u64 tsc; 123 u64 time; 124 }; 125 126 /** 127 * struct pstate_data - Store P state data 128 * @current_pstate: Current requested P state 129 * @min_pstate: Min P state possible for this platform 130 * @max_pstate: Max P state possible for this platform 131 * @max_pstate_physical:This is physical Max P state for a processor 132 * This can be higher than the max_pstate which can 133 * be limited by platform thermal design power limits 134 * @scaling: Scaling factor to convert frequency to cpufreq 135 * frequency units 136 * @turbo_pstate: Max Turbo P state possible for this platform 137 * @max_freq: @max_pstate frequency in cpufreq units 138 * @turbo_freq: @turbo_pstate frequency in cpufreq units 139 * 140 * Stores the per cpu model P state limits and current P state. 141 */ 142 struct pstate_data { 143 int current_pstate; 144 int min_pstate; 145 int max_pstate; 146 int max_pstate_physical; 147 int scaling; 148 int turbo_pstate; 149 unsigned int max_freq; 150 unsigned int turbo_freq; 151 }; 152 153 /** 154 * struct vid_data - Stores voltage information data 155 * @min: VID data for this platform corresponding to 156 * the lowest P state 157 * @max: VID data corresponding to the highest P State. 158 * @turbo: VID data for turbo P state 159 * @ratio: Ratio of (vid max - vid min) / 160 * (max P state - Min P State) 161 * 162 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling) 163 * This data is used in Atom platforms, where in addition to target P state, 164 * the voltage data needs to be specified to select next P State. 165 */ 166 struct vid_data { 167 int min; 168 int max; 169 int turbo; 170 int32_t ratio; 171 }; 172 173 /** 174 * struct global_params - Global parameters, mostly tunable via sysfs. 175 * @no_turbo: Whether or not to use turbo P-states. 176 * @turbo_disabled: Whethet or not turbo P-states are available at all, 177 * based on the MSR_IA32_MISC_ENABLE value and whether or 178 * not the maximum reported turbo P-state is different from 179 * the maximum reported non-turbo one. 180 * @min_perf_pct: Minimum capacity limit in percent of the maximum turbo 181 * P-state capacity. 182 * @max_perf_pct: Maximum capacity limit in percent of the maximum turbo 183 * P-state capacity. 184 */ 185 struct global_params { 186 bool no_turbo; 187 bool turbo_disabled; 188 int max_perf_pct; 189 int min_perf_pct; 190 }; 191 192 /** 193 * struct cpudata - Per CPU instance data storage 194 * @cpu: CPU number for this instance data 195 * @policy: CPUFreq policy value 196 * @update_util: CPUFreq utility callback information 197 * @update_util_set: CPUFreq utility callback is set 198 * @iowait_boost: iowait-related boost fraction 199 * @last_update: Time of the last update. 200 * @pstate: Stores P state limits for this CPU 201 * @vid: Stores VID limits for this CPU 202 * @last_sample_time: Last Sample time 203 * @aperf_mperf_shift: Number of clock cycles after aperf, merf is incremented 204 * This shift is a multiplier to mperf delta to 205 * calculate CPU busy. 206 * @prev_aperf: Last APERF value read from APERF MSR 207 * @prev_mperf: Last MPERF value read from MPERF MSR 208 * @prev_tsc: Last timestamp counter (TSC) value 209 * @prev_cummulative_iowait: IO Wait time difference from last and 210 * current sample 211 * @sample: Storage for storing last Sample data 212 * @min_perf_ratio: Minimum capacity in terms of PERF or HWP ratios 213 * @max_perf_ratio: Maximum capacity in terms of PERF or HWP ratios 214 * @acpi_perf_data: Stores ACPI perf information read from _PSS 215 * @valid_pss_table: Set to true for valid ACPI _PSS entries found 216 * @epp_powersave: Last saved HWP energy performance preference 217 * (EPP) or energy performance bias (EPB), 218 * when policy switched to performance 219 * @epp_policy: Last saved policy used to set EPP/EPB 220 * @epp_default: Power on default HWP energy performance 221 * preference/bias 222 * @epp_saved: Saved EPP/EPB during system suspend or CPU offline 223 * operation 224 * 225 * This structure stores per CPU instance data for all CPUs. 226 */ 227 struct cpudata { 228 int cpu; 229 230 unsigned int policy; 231 struct update_util_data update_util; 232 bool update_util_set; 233 234 struct pstate_data pstate; 235 struct vid_data vid; 236 237 u64 last_update; 238 u64 last_sample_time; 239 u64 aperf_mperf_shift; 240 u64 prev_aperf; 241 u64 prev_mperf; 242 u64 prev_tsc; 243 u64 prev_cummulative_iowait; 244 struct sample sample; 245 int32_t min_perf_ratio; 246 int32_t max_perf_ratio; 247 #ifdef CONFIG_ACPI 248 struct acpi_processor_performance acpi_perf_data; 249 bool valid_pss_table; 250 #endif 251 unsigned int iowait_boost; 252 s16 epp_powersave; 253 s16 epp_policy; 254 s16 epp_default; 255 s16 epp_saved; 256 }; 257 258 static struct cpudata **all_cpu_data; 259 260 /** 261 * struct pstate_funcs - Per CPU model specific callbacks 262 * @get_max: Callback to get maximum non turbo effective P state 263 * @get_max_physical: Callback to get maximum non turbo physical P state 264 * @get_min: Callback to get minimum P state 265 * @get_turbo: Callback to get turbo P state 266 * @get_scaling: Callback to get frequency scaling factor 267 * @get_val: Callback to convert P state to actual MSR write value 268 * @get_vid: Callback to get VID data for Atom platforms 269 * 270 * Core and Atom CPU models have different way to get P State limits. This 271 * structure is used to store those callbacks. 272 */ 273 struct pstate_funcs { 274 int (*get_max)(void); 275 int (*get_max_physical)(void); 276 int (*get_min)(void); 277 int (*get_turbo)(void); 278 int (*get_scaling)(void); 279 int (*get_aperf_mperf_shift)(void); 280 u64 (*get_val)(struct cpudata*, int pstate); 281 void (*get_vid)(struct cpudata *); 282 }; 283 284 static struct pstate_funcs pstate_funcs __read_mostly; 285 286 static int hwp_active __read_mostly; 287 static bool per_cpu_limits __read_mostly; 288 289 static struct cpufreq_driver *intel_pstate_driver __read_mostly; 290 291 #ifdef CONFIG_ACPI 292 static bool acpi_ppc; 293 #endif 294 295 static struct global_params global; 296 297 static DEFINE_MUTEX(intel_pstate_driver_lock); 298 static DEFINE_MUTEX(intel_pstate_limits_lock); 299 300 #ifdef CONFIG_ACPI 301 302 static bool intel_pstate_get_ppc_enable_status(void) 303 { 304 if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER || 305 acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER) 306 return true; 307 308 return acpi_ppc; 309 } 310 311 #ifdef CONFIG_ACPI_CPPC_LIB 312 313 /* The work item is needed to avoid CPU hotplug locking issues */ 314 static void intel_pstste_sched_itmt_work_fn(struct work_struct *work) 315 { 316 sched_set_itmt_support(); 317 } 318 319 static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn); 320 321 static void intel_pstate_set_itmt_prio(int cpu) 322 { 323 struct cppc_perf_caps cppc_perf; 324 static u32 max_highest_perf = 0, min_highest_perf = U32_MAX; 325 int ret; 326 327 ret = cppc_get_perf_caps(cpu, &cppc_perf); 328 if (ret) 329 return; 330 331 /* 332 * The priorities can be set regardless of whether or not 333 * sched_set_itmt_support(true) has been called and it is valid to 334 * update them at any time after it has been called. 335 */ 336 sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu); 337 338 if (max_highest_perf <= min_highest_perf) { 339 if (cppc_perf.highest_perf > max_highest_perf) 340 max_highest_perf = cppc_perf.highest_perf; 341 342 if (cppc_perf.highest_perf < min_highest_perf) 343 min_highest_perf = cppc_perf.highest_perf; 344 345 if (max_highest_perf > min_highest_perf) { 346 /* 347 * This code can be run during CPU online under the 348 * CPU hotplug locks, so sched_set_itmt_support() 349 * cannot be called from here. Queue up a work item 350 * to invoke it. 351 */ 352 schedule_work(&sched_itmt_work); 353 } 354 } 355 } 356 #else 357 static void intel_pstate_set_itmt_prio(int cpu) 358 { 359 } 360 #endif 361 362 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy) 363 { 364 struct cpudata *cpu; 365 int ret; 366 int i; 367 368 if (hwp_active) { 369 intel_pstate_set_itmt_prio(policy->cpu); 370 return; 371 } 372 373 if (!intel_pstate_get_ppc_enable_status()) 374 return; 375 376 cpu = all_cpu_data[policy->cpu]; 377 378 ret = acpi_processor_register_performance(&cpu->acpi_perf_data, 379 policy->cpu); 380 if (ret) 381 return; 382 383 /* 384 * Check if the control value in _PSS is for PERF_CTL MSR, which should 385 * guarantee that the states returned by it map to the states in our 386 * list directly. 387 */ 388 if (cpu->acpi_perf_data.control_register.space_id != 389 ACPI_ADR_SPACE_FIXED_HARDWARE) 390 goto err; 391 392 /* 393 * If there is only one entry _PSS, simply ignore _PSS and continue as 394 * usual without taking _PSS into account 395 */ 396 if (cpu->acpi_perf_data.state_count < 2) 397 goto err; 398 399 pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu); 400 for (i = 0; i < cpu->acpi_perf_data.state_count; i++) { 401 pr_debug(" %cP%d: %u MHz, %u mW, 0x%x\n", 402 (i == cpu->acpi_perf_data.state ? '*' : ' '), i, 403 (u32) cpu->acpi_perf_data.states[i].core_frequency, 404 (u32) cpu->acpi_perf_data.states[i].power, 405 (u32) cpu->acpi_perf_data.states[i].control); 406 } 407 408 /* 409 * The _PSS table doesn't contain whole turbo frequency range. 410 * This just contains +1 MHZ above the max non turbo frequency, 411 * with control value corresponding to max turbo ratio. But 412 * when cpufreq set policy is called, it will call with this 413 * max frequency, which will cause a reduced performance as 414 * this driver uses real max turbo frequency as the max 415 * frequency. So correct this frequency in _PSS table to 416 * correct max turbo frequency based on the turbo state. 417 * Also need to convert to MHz as _PSS freq is in MHz. 418 */ 419 if (!global.turbo_disabled) 420 cpu->acpi_perf_data.states[0].core_frequency = 421 policy->cpuinfo.max_freq / 1000; 422 cpu->valid_pss_table = true; 423 pr_debug("_PPC limits will be enforced\n"); 424 425 return; 426 427 err: 428 cpu->valid_pss_table = false; 429 acpi_processor_unregister_performance(policy->cpu); 430 } 431 432 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy) 433 { 434 struct cpudata *cpu; 435 436 cpu = all_cpu_data[policy->cpu]; 437 if (!cpu->valid_pss_table) 438 return; 439 440 acpi_processor_unregister_performance(policy->cpu); 441 } 442 #else 443 static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy) 444 { 445 } 446 447 static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy) 448 { 449 } 450 #endif 451 452 static inline void update_turbo_state(void) 453 { 454 u64 misc_en; 455 struct cpudata *cpu; 456 457 cpu = all_cpu_data[0]; 458 rdmsrl(MSR_IA32_MISC_ENABLE, misc_en); 459 global.turbo_disabled = 460 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE || 461 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate); 462 } 463 464 static int min_perf_pct_min(void) 465 { 466 struct cpudata *cpu = all_cpu_data[0]; 467 int turbo_pstate = cpu->pstate.turbo_pstate; 468 469 return turbo_pstate ? 470 (cpu->pstate.min_pstate * 100 / turbo_pstate) : 0; 471 } 472 473 static s16 intel_pstate_get_epb(struct cpudata *cpu_data) 474 { 475 u64 epb; 476 int ret; 477 478 if (!static_cpu_has(X86_FEATURE_EPB)) 479 return -ENXIO; 480 481 ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb); 482 if (ret) 483 return (s16)ret; 484 485 return (s16)(epb & 0x0f); 486 } 487 488 static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data) 489 { 490 s16 epp; 491 492 if (static_cpu_has(X86_FEATURE_HWP_EPP)) { 493 /* 494 * When hwp_req_data is 0, means that caller didn't read 495 * MSR_HWP_REQUEST, so need to read and get EPP. 496 */ 497 if (!hwp_req_data) { 498 epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, 499 &hwp_req_data); 500 if (epp) 501 return epp; 502 } 503 epp = (hwp_req_data >> 24) & 0xff; 504 } else { 505 /* When there is no EPP present, HWP uses EPB settings */ 506 epp = intel_pstate_get_epb(cpu_data); 507 } 508 509 return epp; 510 } 511 512 static int intel_pstate_set_epb(int cpu, s16 pref) 513 { 514 u64 epb; 515 int ret; 516 517 if (!static_cpu_has(X86_FEATURE_EPB)) 518 return -ENXIO; 519 520 ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb); 521 if (ret) 522 return ret; 523 524 epb = (epb & ~0x0f) | pref; 525 wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb); 526 527 return 0; 528 } 529 530 /* 531 * EPP/EPB display strings corresponding to EPP index in the 532 * energy_perf_strings[] 533 * index String 534 *------------------------------------- 535 * 0 default 536 * 1 performance 537 * 2 balance_performance 538 * 3 balance_power 539 * 4 power 540 */ 541 static const char * const energy_perf_strings[] = { 542 "default", 543 "performance", 544 "balance_performance", 545 "balance_power", 546 "power", 547 NULL 548 }; 549 static const unsigned int epp_values[] = { 550 HWP_EPP_PERFORMANCE, 551 HWP_EPP_BALANCE_PERFORMANCE, 552 HWP_EPP_BALANCE_POWERSAVE, 553 HWP_EPP_POWERSAVE 554 }; 555 556 static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data) 557 { 558 s16 epp; 559 int index = -EINVAL; 560 561 epp = intel_pstate_get_epp(cpu_data, 0); 562 if (epp < 0) 563 return epp; 564 565 if (static_cpu_has(X86_FEATURE_HWP_EPP)) { 566 if (epp == HWP_EPP_PERFORMANCE) 567 return 1; 568 if (epp <= HWP_EPP_BALANCE_PERFORMANCE) 569 return 2; 570 if (epp <= HWP_EPP_BALANCE_POWERSAVE) 571 return 3; 572 else 573 return 4; 574 } else if (static_cpu_has(X86_FEATURE_EPB)) { 575 /* 576 * Range: 577 * 0x00-0x03 : Performance 578 * 0x04-0x07 : Balance performance 579 * 0x08-0x0B : Balance power 580 * 0x0C-0x0F : Power 581 * The EPB is a 4 bit value, but our ranges restrict the 582 * value which can be set. Here only using top two bits 583 * effectively. 584 */ 585 index = (epp >> 2) + 1; 586 } 587 588 return index; 589 } 590 591 static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data, 592 int pref_index) 593 { 594 int epp = -EINVAL; 595 int ret; 596 597 if (!pref_index) 598 epp = cpu_data->epp_default; 599 600 mutex_lock(&intel_pstate_limits_lock); 601 602 if (static_cpu_has(X86_FEATURE_HWP_EPP)) { 603 u64 value; 604 605 ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, &value); 606 if (ret) 607 goto return_pref; 608 609 value &= ~GENMASK_ULL(31, 24); 610 611 if (epp == -EINVAL) 612 epp = epp_values[pref_index - 1]; 613 614 value |= (u64)epp << 24; 615 ret = wrmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, value); 616 } else { 617 if (epp == -EINVAL) 618 epp = (pref_index - 1) << 2; 619 ret = intel_pstate_set_epb(cpu_data->cpu, epp); 620 } 621 return_pref: 622 mutex_unlock(&intel_pstate_limits_lock); 623 624 return ret; 625 } 626 627 static ssize_t show_energy_performance_available_preferences( 628 struct cpufreq_policy *policy, char *buf) 629 { 630 int i = 0; 631 int ret = 0; 632 633 while (energy_perf_strings[i] != NULL) 634 ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]); 635 636 ret += sprintf(&buf[ret], "\n"); 637 638 return ret; 639 } 640 641 cpufreq_freq_attr_ro(energy_performance_available_preferences); 642 643 static ssize_t store_energy_performance_preference( 644 struct cpufreq_policy *policy, const char *buf, size_t count) 645 { 646 struct cpudata *cpu_data = all_cpu_data[policy->cpu]; 647 char str_preference[21]; 648 int ret, i = 0; 649 650 ret = sscanf(buf, "%20s", str_preference); 651 if (ret != 1) 652 return -EINVAL; 653 654 while (energy_perf_strings[i] != NULL) { 655 if (!strcmp(str_preference, energy_perf_strings[i])) { 656 intel_pstate_set_energy_pref_index(cpu_data, i); 657 return count; 658 } 659 ++i; 660 } 661 662 return -EINVAL; 663 } 664 665 static ssize_t show_energy_performance_preference( 666 struct cpufreq_policy *policy, char *buf) 667 { 668 struct cpudata *cpu_data = all_cpu_data[policy->cpu]; 669 int preference; 670 671 preference = intel_pstate_get_energy_pref_index(cpu_data); 672 if (preference < 0) 673 return preference; 674 675 return sprintf(buf, "%s\n", energy_perf_strings[preference]); 676 } 677 678 cpufreq_freq_attr_rw(energy_performance_preference); 679 680 static struct freq_attr *hwp_cpufreq_attrs[] = { 681 &energy_performance_preference, 682 &energy_performance_available_preferences, 683 NULL, 684 }; 685 686 static void intel_pstate_get_hwp_max(unsigned int cpu, int *phy_max, 687 int *current_max) 688 { 689 u64 cap; 690 691 rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap); 692 if (global.no_turbo) 693 *current_max = HWP_GUARANTEED_PERF(cap); 694 else 695 *current_max = HWP_HIGHEST_PERF(cap); 696 697 *phy_max = HWP_HIGHEST_PERF(cap); 698 } 699 700 static void intel_pstate_hwp_set(unsigned int cpu) 701 { 702 struct cpudata *cpu_data = all_cpu_data[cpu]; 703 int max, min; 704 u64 value; 705 s16 epp; 706 707 max = cpu_data->max_perf_ratio; 708 min = cpu_data->min_perf_ratio; 709 710 if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) 711 min = max; 712 713 rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value); 714 715 value &= ~HWP_MIN_PERF(~0L); 716 value |= HWP_MIN_PERF(min); 717 718 value &= ~HWP_MAX_PERF(~0L); 719 value |= HWP_MAX_PERF(max); 720 721 if (cpu_data->epp_policy == cpu_data->policy) 722 goto skip_epp; 723 724 cpu_data->epp_policy = cpu_data->policy; 725 726 if (cpu_data->epp_saved >= 0) { 727 epp = cpu_data->epp_saved; 728 cpu_data->epp_saved = -EINVAL; 729 goto update_epp; 730 } 731 732 if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) { 733 epp = intel_pstate_get_epp(cpu_data, value); 734 cpu_data->epp_powersave = epp; 735 /* If EPP read was failed, then don't try to write */ 736 if (epp < 0) 737 goto skip_epp; 738 739 epp = 0; 740 } else { 741 /* skip setting EPP, when saved value is invalid */ 742 if (cpu_data->epp_powersave < 0) 743 goto skip_epp; 744 745 /* 746 * No need to restore EPP when it is not zero. This 747 * means: 748 * - Policy is not changed 749 * - user has manually changed 750 * - Error reading EPB 751 */ 752 epp = intel_pstate_get_epp(cpu_data, value); 753 if (epp) 754 goto skip_epp; 755 756 epp = cpu_data->epp_powersave; 757 } 758 update_epp: 759 if (static_cpu_has(X86_FEATURE_HWP_EPP)) { 760 value &= ~GENMASK_ULL(31, 24); 761 value |= (u64)epp << 24; 762 } else { 763 intel_pstate_set_epb(cpu, epp); 764 } 765 skip_epp: 766 wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value); 767 } 768 769 static int intel_pstate_hwp_save_state(struct cpufreq_policy *policy) 770 { 771 struct cpudata *cpu_data = all_cpu_data[policy->cpu]; 772 773 if (!hwp_active) 774 return 0; 775 776 cpu_data->epp_saved = intel_pstate_get_epp(cpu_data, 0); 777 778 return 0; 779 } 780 781 static void intel_pstate_hwp_enable(struct cpudata *cpudata); 782 783 static int intel_pstate_resume(struct cpufreq_policy *policy) 784 { 785 if (!hwp_active) 786 return 0; 787 788 mutex_lock(&intel_pstate_limits_lock); 789 790 if (policy->cpu == 0) 791 intel_pstate_hwp_enable(all_cpu_data[policy->cpu]); 792 793 all_cpu_data[policy->cpu]->epp_policy = 0; 794 intel_pstate_hwp_set(policy->cpu); 795 796 mutex_unlock(&intel_pstate_limits_lock); 797 798 return 0; 799 } 800 801 static void intel_pstate_update_policies(void) 802 { 803 int cpu; 804 805 for_each_possible_cpu(cpu) 806 cpufreq_update_policy(cpu); 807 } 808 809 /************************** sysfs begin ************************/ 810 #define show_one(file_name, object) \ 811 static ssize_t show_##file_name \ 812 (struct kobject *kobj, struct attribute *attr, char *buf) \ 813 { \ 814 return sprintf(buf, "%u\n", global.object); \ 815 } 816 817 static ssize_t intel_pstate_show_status(char *buf); 818 static int intel_pstate_update_status(const char *buf, size_t size); 819 820 static ssize_t show_status(struct kobject *kobj, 821 struct attribute *attr, char *buf) 822 { 823 ssize_t ret; 824 825 mutex_lock(&intel_pstate_driver_lock); 826 ret = intel_pstate_show_status(buf); 827 mutex_unlock(&intel_pstate_driver_lock); 828 829 return ret; 830 } 831 832 static ssize_t store_status(struct kobject *a, struct attribute *b, 833 const char *buf, size_t count) 834 { 835 char *p = memchr(buf, '\n', count); 836 int ret; 837 838 mutex_lock(&intel_pstate_driver_lock); 839 ret = intel_pstate_update_status(buf, p ? p - buf : count); 840 mutex_unlock(&intel_pstate_driver_lock); 841 842 return ret < 0 ? ret : count; 843 } 844 845 static ssize_t show_turbo_pct(struct kobject *kobj, 846 struct attribute *attr, char *buf) 847 { 848 struct cpudata *cpu; 849 int total, no_turbo, turbo_pct; 850 uint32_t turbo_fp; 851 852 mutex_lock(&intel_pstate_driver_lock); 853 854 if (!intel_pstate_driver) { 855 mutex_unlock(&intel_pstate_driver_lock); 856 return -EAGAIN; 857 } 858 859 cpu = all_cpu_data[0]; 860 861 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1; 862 no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1; 863 turbo_fp = div_fp(no_turbo, total); 864 turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100))); 865 866 mutex_unlock(&intel_pstate_driver_lock); 867 868 return sprintf(buf, "%u\n", turbo_pct); 869 } 870 871 static ssize_t show_num_pstates(struct kobject *kobj, 872 struct attribute *attr, char *buf) 873 { 874 struct cpudata *cpu; 875 int total; 876 877 mutex_lock(&intel_pstate_driver_lock); 878 879 if (!intel_pstate_driver) { 880 mutex_unlock(&intel_pstate_driver_lock); 881 return -EAGAIN; 882 } 883 884 cpu = all_cpu_data[0]; 885 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1; 886 887 mutex_unlock(&intel_pstate_driver_lock); 888 889 return sprintf(buf, "%u\n", total); 890 } 891 892 static ssize_t show_no_turbo(struct kobject *kobj, 893 struct attribute *attr, char *buf) 894 { 895 ssize_t ret; 896 897 mutex_lock(&intel_pstate_driver_lock); 898 899 if (!intel_pstate_driver) { 900 mutex_unlock(&intel_pstate_driver_lock); 901 return -EAGAIN; 902 } 903 904 update_turbo_state(); 905 if (global.turbo_disabled) 906 ret = sprintf(buf, "%u\n", global.turbo_disabled); 907 else 908 ret = sprintf(buf, "%u\n", global.no_turbo); 909 910 mutex_unlock(&intel_pstate_driver_lock); 911 912 return ret; 913 } 914 915 static ssize_t store_no_turbo(struct kobject *a, struct attribute *b, 916 const char *buf, size_t count) 917 { 918 unsigned int input; 919 int ret; 920 921 ret = sscanf(buf, "%u", &input); 922 if (ret != 1) 923 return -EINVAL; 924 925 mutex_lock(&intel_pstate_driver_lock); 926 927 if (!intel_pstate_driver) { 928 mutex_unlock(&intel_pstate_driver_lock); 929 return -EAGAIN; 930 } 931 932 mutex_lock(&intel_pstate_limits_lock); 933 934 update_turbo_state(); 935 if (global.turbo_disabled) { 936 pr_warn("Turbo disabled by BIOS or unavailable on processor\n"); 937 mutex_unlock(&intel_pstate_limits_lock); 938 mutex_unlock(&intel_pstate_driver_lock); 939 return -EPERM; 940 } 941 942 global.no_turbo = clamp_t(int, input, 0, 1); 943 944 if (global.no_turbo) { 945 struct cpudata *cpu = all_cpu_data[0]; 946 int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate; 947 948 /* Squash the global minimum into the permitted range. */ 949 if (global.min_perf_pct > pct) 950 global.min_perf_pct = pct; 951 } 952 953 mutex_unlock(&intel_pstate_limits_lock); 954 955 intel_pstate_update_policies(); 956 957 mutex_unlock(&intel_pstate_driver_lock); 958 959 return count; 960 } 961 962 static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b, 963 const char *buf, size_t count) 964 { 965 unsigned int input; 966 int ret; 967 968 ret = sscanf(buf, "%u", &input); 969 if (ret != 1) 970 return -EINVAL; 971 972 mutex_lock(&intel_pstate_driver_lock); 973 974 if (!intel_pstate_driver) { 975 mutex_unlock(&intel_pstate_driver_lock); 976 return -EAGAIN; 977 } 978 979 mutex_lock(&intel_pstate_limits_lock); 980 981 global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100); 982 983 mutex_unlock(&intel_pstate_limits_lock); 984 985 intel_pstate_update_policies(); 986 987 mutex_unlock(&intel_pstate_driver_lock); 988 989 return count; 990 } 991 992 static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b, 993 const char *buf, size_t count) 994 { 995 unsigned int input; 996 int ret; 997 998 ret = sscanf(buf, "%u", &input); 999 if (ret != 1) 1000 return -EINVAL; 1001 1002 mutex_lock(&intel_pstate_driver_lock); 1003 1004 if (!intel_pstate_driver) { 1005 mutex_unlock(&intel_pstate_driver_lock); 1006 return -EAGAIN; 1007 } 1008 1009 mutex_lock(&intel_pstate_limits_lock); 1010 1011 global.min_perf_pct = clamp_t(int, input, 1012 min_perf_pct_min(), global.max_perf_pct); 1013 1014 mutex_unlock(&intel_pstate_limits_lock); 1015 1016 intel_pstate_update_policies(); 1017 1018 mutex_unlock(&intel_pstate_driver_lock); 1019 1020 return count; 1021 } 1022 1023 show_one(max_perf_pct, max_perf_pct); 1024 show_one(min_perf_pct, min_perf_pct); 1025 1026 define_one_global_rw(status); 1027 define_one_global_rw(no_turbo); 1028 define_one_global_rw(max_perf_pct); 1029 define_one_global_rw(min_perf_pct); 1030 define_one_global_ro(turbo_pct); 1031 define_one_global_ro(num_pstates); 1032 1033 static struct attribute *intel_pstate_attributes[] = { 1034 &status.attr, 1035 &no_turbo.attr, 1036 &turbo_pct.attr, 1037 &num_pstates.attr, 1038 NULL 1039 }; 1040 1041 static const struct attribute_group intel_pstate_attr_group = { 1042 .attrs = intel_pstate_attributes, 1043 }; 1044 1045 static void __init intel_pstate_sysfs_expose_params(void) 1046 { 1047 struct kobject *intel_pstate_kobject; 1048 int rc; 1049 1050 intel_pstate_kobject = kobject_create_and_add("intel_pstate", 1051 &cpu_subsys.dev_root->kobj); 1052 if (WARN_ON(!intel_pstate_kobject)) 1053 return; 1054 1055 rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group); 1056 if (WARN_ON(rc)) 1057 return; 1058 1059 /* 1060 * If per cpu limits are enforced there are no global limits, so 1061 * return without creating max/min_perf_pct attributes 1062 */ 1063 if (per_cpu_limits) 1064 return; 1065 1066 rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr); 1067 WARN_ON(rc); 1068 1069 rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr); 1070 WARN_ON(rc); 1071 1072 } 1073 /************************** sysfs end ************************/ 1074 1075 static void intel_pstate_hwp_enable(struct cpudata *cpudata) 1076 { 1077 /* First disable HWP notification interrupt as we don't process them */ 1078 if (static_cpu_has(X86_FEATURE_HWP_NOTIFY)) 1079 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00); 1080 1081 wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1); 1082 cpudata->epp_policy = 0; 1083 if (cpudata->epp_default == -EINVAL) 1084 cpudata->epp_default = intel_pstate_get_epp(cpudata, 0); 1085 } 1086 1087 #define MSR_IA32_POWER_CTL_BIT_EE 19 1088 1089 /* Disable energy efficiency optimization */ 1090 static void intel_pstate_disable_ee(int cpu) 1091 { 1092 u64 power_ctl; 1093 int ret; 1094 1095 ret = rdmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, &power_ctl); 1096 if (ret) 1097 return; 1098 1099 if (!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE))) { 1100 pr_info("Disabling energy efficiency optimization\n"); 1101 power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE); 1102 wrmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, power_ctl); 1103 } 1104 } 1105 1106 static int atom_get_min_pstate(void) 1107 { 1108 u64 value; 1109 1110 rdmsrl(MSR_ATOM_CORE_RATIOS, value); 1111 return (value >> 8) & 0x7F; 1112 } 1113 1114 static int atom_get_max_pstate(void) 1115 { 1116 u64 value; 1117 1118 rdmsrl(MSR_ATOM_CORE_RATIOS, value); 1119 return (value >> 16) & 0x7F; 1120 } 1121 1122 static int atom_get_turbo_pstate(void) 1123 { 1124 u64 value; 1125 1126 rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value); 1127 return value & 0x7F; 1128 } 1129 1130 static u64 atom_get_val(struct cpudata *cpudata, int pstate) 1131 { 1132 u64 val; 1133 int32_t vid_fp; 1134 u32 vid; 1135 1136 val = (u64)pstate << 8; 1137 if (global.no_turbo && !global.turbo_disabled) 1138 val |= (u64)1 << 32; 1139 1140 vid_fp = cpudata->vid.min + mul_fp( 1141 int_tofp(pstate - cpudata->pstate.min_pstate), 1142 cpudata->vid.ratio); 1143 1144 vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max); 1145 vid = ceiling_fp(vid_fp); 1146 1147 if (pstate > cpudata->pstate.max_pstate) 1148 vid = cpudata->vid.turbo; 1149 1150 return val | vid; 1151 } 1152 1153 static int silvermont_get_scaling(void) 1154 { 1155 u64 value; 1156 int i; 1157 /* Defined in Table 35-6 from SDM (Sept 2015) */ 1158 static int silvermont_freq_table[] = { 1159 83300, 100000, 133300, 116700, 80000}; 1160 1161 rdmsrl(MSR_FSB_FREQ, value); 1162 i = value & 0x7; 1163 WARN_ON(i > 4); 1164 1165 return silvermont_freq_table[i]; 1166 } 1167 1168 static int airmont_get_scaling(void) 1169 { 1170 u64 value; 1171 int i; 1172 /* Defined in Table 35-10 from SDM (Sept 2015) */ 1173 static int airmont_freq_table[] = { 1174 83300, 100000, 133300, 116700, 80000, 1175 93300, 90000, 88900, 87500}; 1176 1177 rdmsrl(MSR_FSB_FREQ, value); 1178 i = value & 0xF; 1179 WARN_ON(i > 8); 1180 1181 return airmont_freq_table[i]; 1182 } 1183 1184 static void atom_get_vid(struct cpudata *cpudata) 1185 { 1186 u64 value; 1187 1188 rdmsrl(MSR_ATOM_CORE_VIDS, value); 1189 cpudata->vid.min = int_tofp((value >> 8) & 0x7f); 1190 cpudata->vid.max = int_tofp((value >> 16) & 0x7f); 1191 cpudata->vid.ratio = div_fp( 1192 cpudata->vid.max - cpudata->vid.min, 1193 int_tofp(cpudata->pstate.max_pstate - 1194 cpudata->pstate.min_pstate)); 1195 1196 rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value); 1197 cpudata->vid.turbo = value & 0x7f; 1198 } 1199 1200 static int core_get_min_pstate(void) 1201 { 1202 u64 value; 1203 1204 rdmsrl(MSR_PLATFORM_INFO, value); 1205 return (value >> 40) & 0xFF; 1206 } 1207 1208 static int core_get_max_pstate_physical(void) 1209 { 1210 u64 value; 1211 1212 rdmsrl(MSR_PLATFORM_INFO, value); 1213 return (value >> 8) & 0xFF; 1214 } 1215 1216 static int core_get_tdp_ratio(u64 plat_info) 1217 { 1218 /* Check how many TDP levels present */ 1219 if (plat_info & 0x600000000) { 1220 u64 tdp_ctrl; 1221 u64 tdp_ratio; 1222 int tdp_msr; 1223 int err; 1224 1225 /* Get the TDP level (0, 1, 2) to get ratios */ 1226 err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl); 1227 if (err) 1228 return err; 1229 1230 /* TDP MSR are continuous starting at 0x648 */ 1231 tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03); 1232 err = rdmsrl_safe(tdp_msr, &tdp_ratio); 1233 if (err) 1234 return err; 1235 1236 /* For level 1 and 2, bits[23:16] contain the ratio */ 1237 if (tdp_ctrl & 0x03) 1238 tdp_ratio >>= 16; 1239 1240 tdp_ratio &= 0xff; /* ratios are only 8 bits long */ 1241 pr_debug("tdp_ratio %x\n", (int)tdp_ratio); 1242 1243 return (int)tdp_ratio; 1244 } 1245 1246 return -ENXIO; 1247 } 1248 1249 static int core_get_max_pstate(void) 1250 { 1251 u64 tar; 1252 u64 plat_info; 1253 int max_pstate; 1254 int tdp_ratio; 1255 int err; 1256 1257 rdmsrl(MSR_PLATFORM_INFO, plat_info); 1258 max_pstate = (plat_info >> 8) & 0xFF; 1259 1260 tdp_ratio = core_get_tdp_ratio(plat_info); 1261 if (tdp_ratio <= 0) 1262 return max_pstate; 1263 1264 if (hwp_active) { 1265 /* Turbo activation ratio is not used on HWP platforms */ 1266 return tdp_ratio; 1267 } 1268 1269 err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar); 1270 if (!err) { 1271 int tar_levels; 1272 1273 /* Do some sanity checking for safety */ 1274 tar_levels = tar & 0xff; 1275 if (tdp_ratio - 1 == tar_levels) { 1276 max_pstate = tar_levels; 1277 pr_debug("max_pstate=TAC %x\n", max_pstate); 1278 } 1279 } 1280 1281 return max_pstate; 1282 } 1283 1284 static int core_get_turbo_pstate(void) 1285 { 1286 u64 value; 1287 int nont, ret; 1288 1289 rdmsrl(MSR_TURBO_RATIO_LIMIT, value); 1290 nont = core_get_max_pstate(); 1291 ret = (value) & 255; 1292 if (ret <= nont) 1293 ret = nont; 1294 return ret; 1295 } 1296 1297 static inline int core_get_scaling(void) 1298 { 1299 return 100000; 1300 } 1301 1302 static u64 core_get_val(struct cpudata *cpudata, int pstate) 1303 { 1304 u64 val; 1305 1306 val = (u64)pstate << 8; 1307 if (global.no_turbo && !global.turbo_disabled) 1308 val |= (u64)1 << 32; 1309 1310 return val; 1311 } 1312 1313 static int knl_get_aperf_mperf_shift(void) 1314 { 1315 return 10; 1316 } 1317 1318 static int knl_get_turbo_pstate(void) 1319 { 1320 u64 value; 1321 int nont, ret; 1322 1323 rdmsrl(MSR_TURBO_RATIO_LIMIT, value); 1324 nont = core_get_max_pstate(); 1325 ret = (((value) >> 8) & 0xFF); 1326 if (ret <= nont) 1327 ret = nont; 1328 return ret; 1329 } 1330 1331 static int intel_pstate_get_base_pstate(struct cpudata *cpu) 1332 { 1333 return global.no_turbo || global.turbo_disabled ? 1334 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate; 1335 } 1336 1337 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate) 1338 { 1339 trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu); 1340 cpu->pstate.current_pstate = pstate; 1341 /* 1342 * Generally, there is no guarantee that this code will always run on 1343 * the CPU being updated, so force the register update to run on the 1344 * right CPU. 1345 */ 1346 wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL, 1347 pstate_funcs.get_val(cpu, pstate)); 1348 } 1349 1350 static void intel_pstate_set_min_pstate(struct cpudata *cpu) 1351 { 1352 intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate); 1353 } 1354 1355 static void intel_pstate_max_within_limits(struct cpudata *cpu) 1356 { 1357 int pstate; 1358 1359 update_turbo_state(); 1360 pstate = intel_pstate_get_base_pstate(cpu); 1361 pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio); 1362 intel_pstate_set_pstate(cpu, pstate); 1363 } 1364 1365 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu) 1366 { 1367 cpu->pstate.min_pstate = pstate_funcs.get_min(); 1368 cpu->pstate.max_pstate = pstate_funcs.get_max(); 1369 cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical(); 1370 cpu->pstate.turbo_pstate = pstate_funcs.get_turbo(); 1371 cpu->pstate.scaling = pstate_funcs.get_scaling(); 1372 cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling; 1373 cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling; 1374 1375 if (pstate_funcs.get_aperf_mperf_shift) 1376 cpu->aperf_mperf_shift = pstate_funcs.get_aperf_mperf_shift(); 1377 1378 if (pstate_funcs.get_vid) 1379 pstate_funcs.get_vid(cpu); 1380 1381 intel_pstate_set_min_pstate(cpu); 1382 } 1383 1384 static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu) 1385 { 1386 struct sample *sample = &cpu->sample; 1387 1388 sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf); 1389 } 1390 1391 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time) 1392 { 1393 u64 aperf, mperf; 1394 unsigned long flags; 1395 u64 tsc; 1396 1397 local_irq_save(flags); 1398 rdmsrl(MSR_IA32_APERF, aperf); 1399 rdmsrl(MSR_IA32_MPERF, mperf); 1400 tsc = rdtsc(); 1401 if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) { 1402 local_irq_restore(flags); 1403 return false; 1404 } 1405 local_irq_restore(flags); 1406 1407 cpu->last_sample_time = cpu->sample.time; 1408 cpu->sample.time = time; 1409 cpu->sample.aperf = aperf; 1410 cpu->sample.mperf = mperf; 1411 cpu->sample.tsc = tsc; 1412 cpu->sample.aperf -= cpu->prev_aperf; 1413 cpu->sample.mperf -= cpu->prev_mperf; 1414 cpu->sample.tsc -= cpu->prev_tsc; 1415 1416 cpu->prev_aperf = aperf; 1417 cpu->prev_mperf = mperf; 1418 cpu->prev_tsc = tsc; 1419 /* 1420 * First time this function is invoked in a given cycle, all of the 1421 * previous sample data fields are equal to zero or stale and they must 1422 * be populated with meaningful numbers for things to work, so assume 1423 * that sample.time will always be reset before setting the utilization 1424 * update hook and make the caller skip the sample then. 1425 */ 1426 if (cpu->last_sample_time) { 1427 intel_pstate_calc_avg_perf(cpu); 1428 return true; 1429 } 1430 return false; 1431 } 1432 1433 static inline int32_t get_avg_frequency(struct cpudata *cpu) 1434 { 1435 return mul_ext_fp(cpu->sample.core_avg_perf, cpu_khz); 1436 } 1437 1438 static inline int32_t get_avg_pstate(struct cpudata *cpu) 1439 { 1440 return mul_ext_fp(cpu->pstate.max_pstate_physical, 1441 cpu->sample.core_avg_perf); 1442 } 1443 1444 static inline int32_t get_target_pstate(struct cpudata *cpu) 1445 { 1446 struct sample *sample = &cpu->sample; 1447 int32_t busy_frac, boost; 1448 int target, avg_pstate; 1449 1450 busy_frac = div_fp(sample->mperf << cpu->aperf_mperf_shift, 1451 sample->tsc); 1452 1453 boost = cpu->iowait_boost; 1454 cpu->iowait_boost >>= 1; 1455 1456 if (busy_frac < boost) 1457 busy_frac = boost; 1458 1459 sample->busy_scaled = busy_frac * 100; 1460 1461 target = global.no_turbo || global.turbo_disabled ? 1462 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate; 1463 target += target >> 2; 1464 target = mul_fp(target, busy_frac); 1465 if (target < cpu->pstate.min_pstate) 1466 target = cpu->pstate.min_pstate; 1467 1468 /* 1469 * If the average P-state during the previous cycle was higher than the 1470 * current target, add 50% of the difference to the target to reduce 1471 * possible performance oscillations and offset possible performance 1472 * loss related to moving the workload from one CPU to another within 1473 * a package/module. 1474 */ 1475 avg_pstate = get_avg_pstate(cpu); 1476 if (avg_pstate > target) 1477 target += (avg_pstate - target) >> 1; 1478 1479 return target; 1480 } 1481 1482 static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate) 1483 { 1484 int max_pstate = intel_pstate_get_base_pstate(cpu); 1485 int min_pstate; 1486 1487 min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio); 1488 max_pstate = max(min_pstate, cpu->max_perf_ratio); 1489 return clamp_t(int, pstate, min_pstate, max_pstate); 1490 } 1491 1492 static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate) 1493 { 1494 if (pstate == cpu->pstate.current_pstate) 1495 return; 1496 1497 cpu->pstate.current_pstate = pstate; 1498 wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate)); 1499 } 1500 1501 static void intel_pstate_adjust_pstate(struct cpudata *cpu) 1502 { 1503 int from = cpu->pstate.current_pstate; 1504 struct sample *sample; 1505 int target_pstate; 1506 1507 update_turbo_state(); 1508 1509 target_pstate = get_target_pstate(cpu); 1510 target_pstate = intel_pstate_prepare_request(cpu, target_pstate); 1511 trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu); 1512 intel_pstate_update_pstate(cpu, target_pstate); 1513 1514 sample = &cpu->sample; 1515 trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf), 1516 fp_toint(sample->busy_scaled), 1517 from, 1518 cpu->pstate.current_pstate, 1519 sample->mperf, 1520 sample->aperf, 1521 sample->tsc, 1522 get_avg_frequency(cpu), 1523 fp_toint(cpu->iowait_boost * 100)); 1524 } 1525 1526 static void intel_pstate_update_util(struct update_util_data *data, u64 time, 1527 unsigned int flags) 1528 { 1529 struct cpudata *cpu = container_of(data, struct cpudata, update_util); 1530 u64 delta_ns; 1531 1532 /* Don't allow remote callbacks */ 1533 if (smp_processor_id() != cpu->cpu) 1534 return; 1535 1536 if (flags & SCHED_CPUFREQ_IOWAIT) { 1537 cpu->iowait_boost = int_tofp(1); 1538 cpu->last_update = time; 1539 /* 1540 * The last time the busy was 100% so P-state was max anyway 1541 * so avoid overhead of computation. 1542 */ 1543 if (fp_toint(cpu->sample.busy_scaled) == 100) 1544 return; 1545 1546 goto set_pstate; 1547 } else if (cpu->iowait_boost) { 1548 /* Clear iowait_boost if the CPU may have been idle. */ 1549 delta_ns = time - cpu->last_update; 1550 if (delta_ns > TICK_NSEC) 1551 cpu->iowait_boost = 0; 1552 } 1553 cpu->last_update = time; 1554 delta_ns = time - cpu->sample.time; 1555 if ((s64)delta_ns < INTEL_PSTATE_SAMPLING_INTERVAL) 1556 return; 1557 1558 set_pstate: 1559 if (intel_pstate_sample(cpu, time)) 1560 intel_pstate_adjust_pstate(cpu); 1561 } 1562 1563 static struct pstate_funcs core_funcs = { 1564 .get_max = core_get_max_pstate, 1565 .get_max_physical = core_get_max_pstate_physical, 1566 .get_min = core_get_min_pstate, 1567 .get_turbo = core_get_turbo_pstate, 1568 .get_scaling = core_get_scaling, 1569 .get_val = core_get_val, 1570 }; 1571 1572 static const struct pstate_funcs silvermont_funcs = { 1573 .get_max = atom_get_max_pstate, 1574 .get_max_physical = atom_get_max_pstate, 1575 .get_min = atom_get_min_pstate, 1576 .get_turbo = atom_get_turbo_pstate, 1577 .get_val = atom_get_val, 1578 .get_scaling = silvermont_get_scaling, 1579 .get_vid = atom_get_vid, 1580 }; 1581 1582 static const struct pstate_funcs airmont_funcs = { 1583 .get_max = atom_get_max_pstate, 1584 .get_max_physical = atom_get_max_pstate, 1585 .get_min = atom_get_min_pstate, 1586 .get_turbo = atom_get_turbo_pstate, 1587 .get_val = atom_get_val, 1588 .get_scaling = airmont_get_scaling, 1589 .get_vid = atom_get_vid, 1590 }; 1591 1592 static const struct pstate_funcs knl_funcs = { 1593 .get_max = core_get_max_pstate, 1594 .get_max_physical = core_get_max_pstate_physical, 1595 .get_min = core_get_min_pstate, 1596 .get_turbo = knl_get_turbo_pstate, 1597 .get_aperf_mperf_shift = knl_get_aperf_mperf_shift, 1598 .get_scaling = core_get_scaling, 1599 .get_val = core_get_val, 1600 }; 1601 1602 #define ICPU(model, policy) \ 1603 { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\ 1604 (unsigned long)&policy } 1605 1606 static const struct x86_cpu_id intel_pstate_cpu_ids[] = { 1607 ICPU(INTEL_FAM6_SANDYBRIDGE, core_funcs), 1608 ICPU(INTEL_FAM6_SANDYBRIDGE_X, core_funcs), 1609 ICPU(INTEL_FAM6_ATOM_SILVERMONT1, silvermont_funcs), 1610 ICPU(INTEL_FAM6_IVYBRIDGE, core_funcs), 1611 ICPU(INTEL_FAM6_HASWELL_CORE, core_funcs), 1612 ICPU(INTEL_FAM6_BROADWELL_CORE, core_funcs), 1613 ICPU(INTEL_FAM6_IVYBRIDGE_X, core_funcs), 1614 ICPU(INTEL_FAM6_HASWELL_X, core_funcs), 1615 ICPU(INTEL_FAM6_HASWELL_ULT, core_funcs), 1616 ICPU(INTEL_FAM6_HASWELL_GT3E, core_funcs), 1617 ICPU(INTEL_FAM6_BROADWELL_GT3E, core_funcs), 1618 ICPU(INTEL_FAM6_ATOM_AIRMONT, airmont_funcs), 1619 ICPU(INTEL_FAM6_SKYLAKE_MOBILE, core_funcs), 1620 ICPU(INTEL_FAM6_BROADWELL_X, core_funcs), 1621 ICPU(INTEL_FAM6_SKYLAKE_DESKTOP, core_funcs), 1622 ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_funcs), 1623 ICPU(INTEL_FAM6_XEON_PHI_KNL, knl_funcs), 1624 ICPU(INTEL_FAM6_XEON_PHI_KNM, knl_funcs), 1625 ICPU(INTEL_FAM6_ATOM_GOLDMONT, core_funcs), 1626 ICPU(INTEL_FAM6_ATOM_GEMINI_LAKE, core_funcs), 1627 ICPU(INTEL_FAM6_SKYLAKE_X, core_funcs), 1628 {} 1629 }; 1630 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids); 1631 1632 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = { 1633 ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_funcs), 1634 ICPU(INTEL_FAM6_BROADWELL_X, core_funcs), 1635 ICPU(INTEL_FAM6_SKYLAKE_X, core_funcs), 1636 {} 1637 }; 1638 1639 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = { 1640 ICPU(INTEL_FAM6_KABYLAKE_DESKTOP, core_funcs), 1641 {} 1642 }; 1643 1644 static int intel_pstate_init_cpu(unsigned int cpunum) 1645 { 1646 struct cpudata *cpu; 1647 1648 cpu = all_cpu_data[cpunum]; 1649 1650 if (!cpu) { 1651 cpu = kzalloc(sizeof(*cpu), GFP_KERNEL); 1652 if (!cpu) 1653 return -ENOMEM; 1654 1655 all_cpu_data[cpunum] = cpu; 1656 1657 cpu->epp_default = -EINVAL; 1658 cpu->epp_powersave = -EINVAL; 1659 cpu->epp_saved = -EINVAL; 1660 } 1661 1662 cpu = all_cpu_data[cpunum]; 1663 1664 cpu->cpu = cpunum; 1665 1666 if (hwp_active) { 1667 const struct x86_cpu_id *id; 1668 1669 id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids); 1670 if (id) 1671 intel_pstate_disable_ee(cpunum); 1672 1673 intel_pstate_hwp_enable(cpu); 1674 } 1675 1676 intel_pstate_get_cpu_pstates(cpu); 1677 1678 pr_debug("controlling: cpu %d\n", cpunum); 1679 1680 return 0; 1681 } 1682 1683 static void intel_pstate_set_update_util_hook(unsigned int cpu_num) 1684 { 1685 struct cpudata *cpu = all_cpu_data[cpu_num]; 1686 1687 if (hwp_active) 1688 return; 1689 1690 if (cpu->update_util_set) 1691 return; 1692 1693 /* Prevent intel_pstate_update_util() from using stale data. */ 1694 cpu->sample.time = 0; 1695 cpufreq_add_update_util_hook(cpu_num, &cpu->update_util, 1696 intel_pstate_update_util); 1697 cpu->update_util_set = true; 1698 } 1699 1700 static void intel_pstate_clear_update_util_hook(unsigned int cpu) 1701 { 1702 struct cpudata *cpu_data = all_cpu_data[cpu]; 1703 1704 if (!cpu_data->update_util_set) 1705 return; 1706 1707 cpufreq_remove_update_util_hook(cpu); 1708 cpu_data->update_util_set = false; 1709 synchronize_sched(); 1710 } 1711 1712 static int intel_pstate_get_max_freq(struct cpudata *cpu) 1713 { 1714 return global.turbo_disabled || global.no_turbo ? 1715 cpu->pstate.max_freq : cpu->pstate.turbo_freq; 1716 } 1717 1718 static void intel_pstate_update_perf_limits(struct cpufreq_policy *policy, 1719 struct cpudata *cpu) 1720 { 1721 int max_freq = intel_pstate_get_max_freq(cpu); 1722 int32_t max_policy_perf, min_policy_perf; 1723 int max_state, turbo_max; 1724 1725 /* 1726 * HWP needs some special consideration, because on BDX the 1727 * HWP_REQUEST uses abstract value to represent performance 1728 * rather than pure ratios. 1729 */ 1730 if (hwp_active) { 1731 intel_pstate_get_hwp_max(cpu->cpu, &turbo_max, &max_state); 1732 } else { 1733 max_state = intel_pstate_get_base_pstate(cpu); 1734 turbo_max = cpu->pstate.turbo_pstate; 1735 } 1736 1737 max_policy_perf = max_state * policy->max / max_freq; 1738 if (policy->max == policy->min) { 1739 min_policy_perf = max_policy_perf; 1740 } else { 1741 min_policy_perf = max_state * policy->min / max_freq; 1742 min_policy_perf = clamp_t(int32_t, min_policy_perf, 1743 0, max_policy_perf); 1744 } 1745 1746 pr_debug("cpu:%d max_state %d min_policy_perf:%d max_policy_perf:%d\n", 1747 policy->cpu, max_state, 1748 min_policy_perf, max_policy_perf); 1749 1750 /* Normalize user input to [min_perf, max_perf] */ 1751 if (per_cpu_limits) { 1752 cpu->min_perf_ratio = min_policy_perf; 1753 cpu->max_perf_ratio = max_policy_perf; 1754 } else { 1755 int32_t global_min, global_max; 1756 1757 /* Global limits are in percent of the maximum turbo P-state. */ 1758 global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100); 1759 global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100); 1760 global_min = clamp_t(int32_t, global_min, 0, global_max); 1761 1762 pr_debug("cpu:%d global_min:%d global_max:%d\n", policy->cpu, 1763 global_min, global_max); 1764 1765 cpu->min_perf_ratio = max(min_policy_perf, global_min); 1766 cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf); 1767 cpu->max_perf_ratio = min(max_policy_perf, global_max); 1768 cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio); 1769 1770 /* Make sure min_perf <= max_perf */ 1771 cpu->min_perf_ratio = min(cpu->min_perf_ratio, 1772 cpu->max_perf_ratio); 1773 1774 } 1775 pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", policy->cpu, 1776 cpu->max_perf_ratio, 1777 cpu->min_perf_ratio); 1778 } 1779 1780 static int intel_pstate_set_policy(struct cpufreq_policy *policy) 1781 { 1782 struct cpudata *cpu; 1783 1784 if (!policy->cpuinfo.max_freq) 1785 return -ENODEV; 1786 1787 pr_debug("set_policy cpuinfo.max %u policy->max %u\n", 1788 policy->cpuinfo.max_freq, policy->max); 1789 1790 cpu = all_cpu_data[policy->cpu]; 1791 cpu->policy = policy->policy; 1792 1793 mutex_lock(&intel_pstate_limits_lock); 1794 1795 intel_pstate_update_perf_limits(policy, cpu); 1796 1797 if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) { 1798 /* 1799 * NOHZ_FULL CPUs need this as the governor callback may not 1800 * be invoked on them. 1801 */ 1802 intel_pstate_clear_update_util_hook(policy->cpu); 1803 intel_pstate_max_within_limits(cpu); 1804 } else { 1805 intel_pstate_set_update_util_hook(policy->cpu); 1806 } 1807 1808 if (hwp_active) 1809 intel_pstate_hwp_set(policy->cpu); 1810 1811 mutex_unlock(&intel_pstate_limits_lock); 1812 1813 return 0; 1814 } 1815 1816 static void intel_pstate_adjust_policy_max(struct cpufreq_policy *policy, 1817 struct cpudata *cpu) 1818 { 1819 if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate && 1820 policy->max < policy->cpuinfo.max_freq && 1821 policy->max > cpu->pstate.max_freq) { 1822 pr_debug("policy->max > max non turbo frequency\n"); 1823 policy->max = policy->cpuinfo.max_freq; 1824 } 1825 } 1826 1827 static int intel_pstate_verify_policy(struct cpufreq_policy *policy) 1828 { 1829 struct cpudata *cpu = all_cpu_data[policy->cpu]; 1830 1831 update_turbo_state(); 1832 cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq, 1833 intel_pstate_get_max_freq(cpu)); 1834 1835 if (policy->policy != CPUFREQ_POLICY_POWERSAVE && 1836 policy->policy != CPUFREQ_POLICY_PERFORMANCE) 1837 return -EINVAL; 1838 1839 intel_pstate_adjust_policy_max(policy, cpu); 1840 1841 return 0; 1842 } 1843 1844 static void intel_cpufreq_stop_cpu(struct cpufreq_policy *policy) 1845 { 1846 intel_pstate_set_min_pstate(all_cpu_data[policy->cpu]); 1847 } 1848 1849 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy) 1850 { 1851 pr_debug("CPU %d exiting\n", policy->cpu); 1852 1853 intel_pstate_clear_update_util_hook(policy->cpu); 1854 if (hwp_active) 1855 intel_pstate_hwp_save_state(policy); 1856 else 1857 intel_cpufreq_stop_cpu(policy); 1858 } 1859 1860 static int intel_pstate_cpu_exit(struct cpufreq_policy *policy) 1861 { 1862 intel_pstate_exit_perf_limits(policy); 1863 1864 policy->fast_switch_possible = false; 1865 1866 return 0; 1867 } 1868 1869 static int __intel_pstate_cpu_init(struct cpufreq_policy *policy) 1870 { 1871 struct cpudata *cpu; 1872 int rc; 1873 1874 rc = intel_pstate_init_cpu(policy->cpu); 1875 if (rc) 1876 return rc; 1877 1878 cpu = all_cpu_data[policy->cpu]; 1879 1880 cpu->max_perf_ratio = 0xFF; 1881 cpu->min_perf_ratio = 0; 1882 1883 policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling; 1884 policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling; 1885 1886 /* cpuinfo and default policy values */ 1887 policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling; 1888 update_turbo_state(); 1889 policy->cpuinfo.max_freq = global.turbo_disabled ? 1890 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate; 1891 policy->cpuinfo.max_freq *= cpu->pstate.scaling; 1892 1893 intel_pstate_init_acpi_perf_limits(policy); 1894 1895 policy->fast_switch_possible = true; 1896 1897 return 0; 1898 } 1899 1900 static int intel_pstate_cpu_init(struct cpufreq_policy *policy) 1901 { 1902 int ret = __intel_pstate_cpu_init(policy); 1903 1904 if (ret) 1905 return ret; 1906 1907 if (IS_ENABLED(CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE)) 1908 policy->policy = CPUFREQ_POLICY_PERFORMANCE; 1909 else 1910 policy->policy = CPUFREQ_POLICY_POWERSAVE; 1911 1912 return 0; 1913 } 1914 1915 static struct cpufreq_driver intel_pstate = { 1916 .flags = CPUFREQ_CONST_LOOPS, 1917 .verify = intel_pstate_verify_policy, 1918 .setpolicy = intel_pstate_set_policy, 1919 .suspend = intel_pstate_hwp_save_state, 1920 .resume = intel_pstate_resume, 1921 .init = intel_pstate_cpu_init, 1922 .exit = intel_pstate_cpu_exit, 1923 .stop_cpu = intel_pstate_stop_cpu, 1924 .name = "intel_pstate", 1925 }; 1926 1927 static int intel_cpufreq_verify_policy(struct cpufreq_policy *policy) 1928 { 1929 struct cpudata *cpu = all_cpu_data[policy->cpu]; 1930 1931 update_turbo_state(); 1932 cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq, 1933 intel_pstate_get_max_freq(cpu)); 1934 1935 intel_pstate_adjust_policy_max(policy, cpu); 1936 1937 intel_pstate_update_perf_limits(policy, cpu); 1938 1939 return 0; 1940 } 1941 1942 static int intel_cpufreq_target(struct cpufreq_policy *policy, 1943 unsigned int target_freq, 1944 unsigned int relation) 1945 { 1946 struct cpudata *cpu = all_cpu_data[policy->cpu]; 1947 struct cpufreq_freqs freqs; 1948 int target_pstate; 1949 1950 update_turbo_state(); 1951 1952 freqs.old = policy->cur; 1953 freqs.new = target_freq; 1954 1955 cpufreq_freq_transition_begin(policy, &freqs); 1956 switch (relation) { 1957 case CPUFREQ_RELATION_L: 1958 target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling); 1959 break; 1960 case CPUFREQ_RELATION_H: 1961 target_pstate = freqs.new / cpu->pstate.scaling; 1962 break; 1963 default: 1964 target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling); 1965 break; 1966 } 1967 target_pstate = intel_pstate_prepare_request(cpu, target_pstate); 1968 if (target_pstate != cpu->pstate.current_pstate) { 1969 cpu->pstate.current_pstate = target_pstate; 1970 wrmsrl_on_cpu(policy->cpu, MSR_IA32_PERF_CTL, 1971 pstate_funcs.get_val(cpu, target_pstate)); 1972 } 1973 freqs.new = target_pstate * cpu->pstate.scaling; 1974 cpufreq_freq_transition_end(policy, &freqs, false); 1975 1976 return 0; 1977 } 1978 1979 static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy, 1980 unsigned int target_freq) 1981 { 1982 struct cpudata *cpu = all_cpu_data[policy->cpu]; 1983 int target_pstate; 1984 1985 update_turbo_state(); 1986 1987 target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling); 1988 target_pstate = intel_pstate_prepare_request(cpu, target_pstate); 1989 intel_pstate_update_pstate(cpu, target_pstate); 1990 return target_pstate * cpu->pstate.scaling; 1991 } 1992 1993 static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy) 1994 { 1995 int ret = __intel_pstate_cpu_init(policy); 1996 1997 if (ret) 1998 return ret; 1999 2000 policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY; 2001 policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY; 2002 /* This reflects the intel_pstate_get_cpu_pstates() setting. */ 2003 policy->cur = policy->cpuinfo.min_freq; 2004 2005 return 0; 2006 } 2007 2008 static struct cpufreq_driver intel_cpufreq = { 2009 .flags = CPUFREQ_CONST_LOOPS, 2010 .verify = intel_cpufreq_verify_policy, 2011 .target = intel_cpufreq_target, 2012 .fast_switch = intel_cpufreq_fast_switch, 2013 .init = intel_cpufreq_cpu_init, 2014 .exit = intel_pstate_cpu_exit, 2015 .stop_cpu = intel_cpufreq_stop_cpu, 2016 .name = "intel_cpufreq", 2017 }; 2018 2019 static struct cpufreq_driver *default_driver = &intel_pstate; 2020 2021 static void intel_pstate_driver_cleanup(void) 2022 { 2023 unsigned int cpu; 2024 2025 get_online_cpus(); 2026 for_each_online_cpu(cpu) { 2027 if (all_cpu_data[cpu]) { 2028 if (intel_pstate_driver == &intel_pstate) 2029 intel_pstate_clear_update_util_hook(cpu); 2030 2031 kfree(all_cpu_data[cpu]); 2032 all_cpu_data[cpu] = NULL; 2033 } 2034 } 2035 put_online_cpus(); 2036 intel_pstate_driver = NULL; 2037 } 2038 2039 static int intel_pstate_register_driver(struct cpufreq_driver *driver) 2040 { 2041 int ret; 2042 2043 memset(&global, 0, sizeof(global)); 2044 global.max_perf_pct = 100; 2045 2046 intel_pstate_driver = driver; 2047 ret = cpufreq_register_driver(intel_pstate_driver); 2048 if (ret) { 2049 intel_pstate_driver_cleanup(); 2050 return ret; 2051 } 2052 2053 global.min_perf_pct = min_perf_pct_min(); 2054 2055 return 0; 2056 } 2057 2058 static int intel_pstate_unregister_driver(void) 2059 { 2060 if (hwp_active) 2061 return -EBUSY; 2062 2063 cpufreq_unregister_driver(intel_pstate_driver); 2064 intel_pstate_driver_cleanup(); 2065 2066 return 0; 2067 } 2068 2069 static ssize_t intel_pstate_show_status(char *buf) 2070 { 2071 if (!intel_pstate_driver) 2072 return sprintf(buf, "off\n"); 2073 2074 return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ? 2075 "active" : "passive"); 2076 } 2077 2078 static int intel_pstate_update_status(const char *buf, size_t size) 2079 { 2080 int ret; 2081 2082 if (size == 3 && !strncmp(buf, "off", size)) 2083 return intel_pstate_driver ? 2084 intel_pstate_unregister_driver() : -EINVAL; 2085 2086 if (size == 6 && !strncmp(buf, "active", size)) { 2087 if (intel_pstate_driver) { 2088 if (intel_pstate_driver == &intel_pstate) 2089 return 0; 2090 2091 ret = intel_pstate_unregister_driver(); 2092 if (ret) 2093 return ret; 2094 } 2095 2096 return intel_pstate_register_driver(&intel_pstate); 2097 } 2098 2099 if (size == 7 && !strncmp(buf, "passive", size)) { 2100 if (intel_pstate_driver) { 2101 if (intel_pstate_driver == &intel_cpufreq) 2102 return 0; 2103 2104 ret = intel_pstate_unregister_driver(); 2105 if (ret) 2106 return ret; 2107 } 2108 2109 return intel_pstate_register_driver(&intel_cpufreq); 2110 } 2111 2112 return -EINVAL; 2113 } 2114 2115 static int no_load __initdata; 2116 static int no_hwp __initdata; 2117 static int hwp_only __initdata; 2118 static unsigned int force_load __initdata; 2119 2120 static int __init intel_pstate_msrs_not_valid(void) 2121 { 2122 if (!pstate_funcs.get_max() || 2123 !pstate_funcs.get_min() || 2124 !pstate_funcs.get_turbo()) 2125 return -ENODEV; 2126 2127 return 0; 2128 } 2129 2130 static void __init copy_cpu_funcs(struct pstate_funcs *funcs) 2131 { 2132 pstate_funcs.get_max = funcs->get_max; 2133 pstate_funcs.get_max_physical = funcs->get_max_physical; 2134 pstate_funcs.get_min = funcs->get_min; 2135 pstate_funcs.get_turbo = funcs->get_turbo; 2136 pstate_funcs.get_scaling = funcs->get_scaling; 2137 pstate_funcs.get_val = funcs->get_val; 2138 pstate_funcs.get_vid = funcs->get_vid; 2139 pstate_funcs.get_aperf_mperf_shift = funcs->get_aperf_mperf_shift; 2140 } 2141 2142 #ifdef CONFIG_ACPI 2143 2144 static bool __init intel_pstate_no_acpi_pss(void) 2145 { 2146 int i; 2147 2148 for_each_possible_cpu(i) { 2149 acpi_status status; 2150 union acpi_object *pss; 2151 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL }; 2152 struct acpi_processor *pr = per_cpu(processors, i); 2153 2154 if (!pr) 2155 continue; 2156 2157 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer); 2158 if (ACPI_FAILURE(status)) 2159 continue; 2160 2161 pss = buffer.pointer; 2162 if (pss && pss->type == ACPI_TYPE_PACKAGE) { 2163 kfree(pss); 2164 return false; 2165 } 2166 2167 kfree(pss); 2168 } 2169 2170 return true; 2171 } 2172 2173 static bool __init intel_pstate_has_acpi_ppc(void) 2174 { 2175 int i; 2176 2177 for_each_possible_cpu(i) { 2178 struct acpi_processor *pr = per_cpu(processors, i); 2179 2180 if (!pr) 2181 continue; 2182 if (acpi_has_method(pr->handle, "_PPC")) 2183 return true; 2184 } 2185 return false; 2186 } 2187 2188 enum { 2189 PSS, 2190 PPC, 2191 }; 2192 2193 /* Hardware vendor-specific info that has its own power management modes */ 2194 static struct acpi_platform_list plat_info[] __initdata = { 2195 {"HP ", "ProLiant", 0, ACPI_SIG_FADT, all_versions, 0, PSS}, 2196 {"ORACLE", "X4-2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC}, 2197 {"ORACLE", "X4-2L ", 0, ACPI_SIG_FADT, all_versions, 0, PPC}, 2198 {"ORACLE", "X4-2B ", 0, ACPI_SIG_FADT, all_versions, 0, PPC}, 2199 {"ORACLE", "X3-2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC}, 2200 {"ORACLE", "X3-2L ", 0, ACPI_SIG_FADT, all_versions, 0, PPC}, 2201 {"ORACLE", "X3-2B ", 0, ACPI_SIG_FADT, all_versions, 0, PPC}, 2202 {"ORACLE", "X4470M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC}, 2203 {"ORACLE", "X4270M3 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC}, 2204 {"ORACLE", "X4270M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC}, 2205 {"ORACLE", "X4170M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC}, 2206 {"ORACLE", "X4170 M3", 0, ACPI_SIG_FADT, all_versions, 0, PPC}, 2207 {"ORACLE", "X4275 M3", 0, ACPI_SIG_FADT, all_versions, 0, PPC}, 2208 {"ORACLE", "X6-2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC}, 2209 {"ORACLE", "Sudbury ", 0, ACPI_SIG_FADT, all_versions, 0, PPC}, 2210 { } /* End */ 2211 }; 2212 2213 static bool __init intel_pstate_platform_pwr_mgmt_exists(void) 2214 { 2215 const struct x86_cpu_id *id; 2216 u64 misc_pwr; 2217 int idx; 2218 2219 id = x86_match_cpu(intel_pstate_cpu_oob_ids); 2220 if (id) { 2221 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr); 2222 if ( misc_pwr & (1 << 8)) 2223 return true; 2224 } 2225 2226 idx = acpi_match_platform_list(plat_info); 2227 if (idx < 0) 2228 return false; 2229 2230 switch (plat_info[idx].data) { 2231 case PSS: 2232 return intel_pstate_no_acpi_pss(); 2233 case PPC: 2234 return intel_pstate_has_acpi_ppc() && !force_load; 2235 } 2236 2237 return false; 2238 } 2239 2240 static void intel_pstate_request_control_from_smm(void) 2241 { 2242 /* 2243 * It may be unsafe to request P-states control from SMM if _PPC support 2244 * has not been enabled. 2245 */ 2246 if (acpi_ppc) 2247 acpi_processor_pstate_control(); 2248 } 2249 #else /* CONFIG_ACPI not enabled */ 2250 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; } 2251 static inline bool intel_pstate_has_acpi_ppc(void) { return false; } 2252 static inline void intel_pstate_request_control_from_smm(void) {} 2253 #endif /* CONFIG_ACPI */ 2254 2255 static const struct x86_cpu_id hwp_support_ids[] __initconst = { 2256 { X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP }, 2257 {} 2258 }; 2259 2260 static int __init intel_pstate_init(void) 2261 { 2262 int rc; 2263 2264 if (no_load) 2265 return -ENODEV; 2266 2267 if (x86_match_cpu(hwp_support_ids)) { 2268 copy_cpu_funcs(&core_funcs); 2269 if (!no_hwp) { 2270 hwp_active++; 2271 intel_pstate.attr = hwp_cpufreq_attrs; 2272 goto hwp_cpu_matched; 2273 } 2274 } else { 2275 const struct x86_cpu_id *id; 2276 2277 id = x86_match_cpu(intel_pstate_cpu_ids); 2278 if (!id) 2279 return -ENODEV; 2280 2281 copy_cpu_funcs((struct pstate_funcs *)id->driver_data); 2282 } 2283 2284 if (intel_pstate_msrs_not_valid()) 2285 return -ENODEV; 2286 2287 hwp_cpu_matched: 2288 /* 2289 * The Intel pstate driver will be ignored if the platform 2290 * firmware has its own power management modes. 2291 */ 2292 if (intel_pstate_platform_pwr_mgmt_exists()) 2293 return -ENODEV; 2294 2295 if (!hwp_active && hwp_only) 2296 return -ENOTSUPP; 2297 2298 pr_info("Intel P-state driver initializing\n"); 2299 2300 all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus()); 2301 if (!all_cpu_data) 2302 return -ENOMEM; 2303 2304 intel_pstate_request_control_from_smm(); 2305 2306 intel_pstate_sysfs_expose_params(); 2307 2308 mutex_lock(&intel_pstate_driver_lock); 2309 rc = intel_pstate_register_driver(default_driver); 2310 mutex_unlock(&intel_pstate_driver_lock); 2311 if (rc) 2312 return rc; 2313 2314 if (hwp_active) 2315 pr_info("HWP enabled\n"); 2316 2317 return 0; 2318 } 2319 device_initcall(intel_pstate_init); 2320 2321 static int __init intel_pstate_setup(char *str) 2322 { 2323 if (!str) 2324 return -EINVAL; 2325 2326 if (!strcmp(str, "disable")) { 2327 no_load = 1; 2328 } else if (!strcmp(str, "passive")) { 2329 pr_info("Passive mode enabled\n"); 2330 default_driver = &intel_cpufreq; 2331 no_hwp = 1; 2332 } 2333 if (!strcmp(str, "no_hwp")) { 2334 pr_info("HWP disabled\n"); 2335 no_hwp = 1; 2336 } 2337 if (!strcmp(str, "force")) 2338 force_load = 1; 2339 if (!strcmp(str, "hwp_only")) 2340 hwp_only = 1; 2341 if (!strcmp(str, "per_cpu_perf_limits")) 2342 per_cpu_limits = true; 2343 2344 #ifdef CONFIG_ACPI 2345 if (!strcmp(str, "support_acpi_ppc")) 2346 acpi_ppc = true; 2347 #endif 2348 2349 return 0; 2350 } 2351 early_param("intel_pstate", intel_pstate_setup); 2352 2353 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>"); 2354 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors"); 2355 MODULE_LICENSE("GPL"); 2356