1 /*
2  * intel_pstate.c: Native P state management for Intel processors
3  *
4  * (C) Copyright 2012 Intel Corporation
5  * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; version 2
10  * of the License.
11  */
12 
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 
15 #include <linux/kernel.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/module.h>
18 #include <linux/ktime.h>
19 #include <linux/hrtimer.h>
20 #include <linux/tick.h>
21 #include <linux/slab.h>
22 #include <linux/sched/cpufreq.h>
23 #include <linux/list.h>
24 #include <linux/cpu.h>
25 #include <linux/cpufreq.h>
26 #include <linux/sysfs.h>
27 #include <linux/types.h>
28 #include <linux/fs.h>
29 #include <linux/debugfs.h>
30 #include <linux/acpi.h>
31 #include <linux/vmalloc.h>
32 #include <trace/events/power.h>
33 
34 #include <asm/div64.h>
35 #include <asm/msr.h>
36 #include <asm/cpu_device_id.h>
37 #include <asm/cpufeature.h>
38 #include <asm/intel-family.h>
39 
40 #define INTEL_PSTATE_DEFAULT_SAMPLING_INTERVAL	(10 * NSEC_PER_MSEC)
41 #define INTEL_PSTATE_HWP_SAMPLING_INTERVAL	(50 * NSEC_PER_MSEC)
42 
43 #define INTEL_CPUFREQ_TRANSITION_LATENCY	20000
44 #define INTEL_CPUFREQ_TRANSITION_DELAY		500
45 
46 #ifdef CONFIG_ACPI
47 #include <acpi/processor.h>
48 #include <acpi/cppc_acpi.h>
49 #endif
50 
51 #define FRAC_BITS 8
52 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
53 #define fp_toint(X) ((X) >> FRAC_BITS)
54 
55 #define EXT_BITS 6
56 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
57 #define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
58 #define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
59 
60 static inline int32_t mul_fp(int32_t x, int32_t y)
61 {
62 	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
63 }
64 
65 static inline int32_t div_fp(s64 x, s64 y)
66 {
67 	return div64_s64((int64_t)x << FRAC_BITS, y);
68 }
69 
70 static inline int ceiling_fp(int32_t x)
71 {
72 	int mask, ret;
73 
74 	ret = fp_toint(x);
75 	mask = (1 << FRAC_BITS) - 1;
76 	if (x & mask)
77 		ret += 1;
78 	return ret;
79 }
80 
81 static inline int32_t percent_fp(int percent)
82 {
83 	return div_fp(percent, 100);
84 }
85 
86 static inline u64 mul_ext_fp(u64 x, u64 y)
87 {
88 	return (x * y) >> EXT_FRAC_BITS;
89 }
90 
91 static inline u64 div_ext_fp(u64 x, u64 y)
92 {
93 	return div64_u64(x << EXT_FRAC_BITS, y);
94 }
95 
96 static inline int32_t percent_ext_fp(int percent)
97 {
98 	return div_ext_fp(percent, 100);
99 }
100 
101 /**
102  * struct sample -	Store performance sample
103  * @core_avg_perf:	Ratio of APERF/MPERF which is the actual average
104  *			performance during last sample period
105  * @busy_scaled:	Scaled busy value which is used to calculate next
106  *			P state. This can be different than core_avg_perf
107  *			to account for cpu idle period
108  * @aperf:		Difference of actual performance frequency clock count
109  *			read from APERF MSR between last and current sample
110  * @mperf:		Difference of maximum performance frequency clock count
111  *			read from MPERF MSR between last and current sample
112  * @tsc:		Difference of time stamp counter between last and
113  *			current sample
114  * @time:		Current time from scheduler
115  *
116  * This structure is used in the cpudata structure to store performance sample
117  * data for choosing next P State.
118  */
119 struct sample {
120 	int32_t core_avg_perf;
121 	int32_t busy_scaled;
122 	u64 aperf;
123 	u64 mperf;
124 	u64 tsc;
125 	u64 time;
126 };
127 
128 /**
129  * struct pstate_data - Store P state data
130  * @current_pstate:	Current requested P state
131  * @min_pstate:		Min P state possible for this platform
132  * @max_pstate:		Max P state possible for this platform
133  * @max_pstate_physical:This is physical Max P state for a processor
134  *			This can be higher than the max_pstate which can
135  *			be limited by platform thermal design power limits
136  * @scaling:		Scaling factor to  convert frequency to cpufreq
137  *			frequency units
138  * @turbo_pstate:	Max Turbo P state possible for this platform
139  * @max_freq:		@max_pstate frequency in cpufreq units
140  * @turbo_freq:		@turbo_pstate frequency in cpufreq units
141  *
142  * Stores the per cpu model P state limits and current P state.
143  */
144 struct pstate_data {
145 	int	current_pstate;
146 	int	min_pstate;
147 	int	max_pstate;
148 	int	max_pstate_physical;
149 	int	scaling;
150 	int	turbo_pstate;
151 	unsigned int max_freq;
152 	unsigned int turbo_freq;
153 };
154 
155 /**
156  * struct vid_data -	Stores voltage information data
157  * @min:		VID data for this platform corresponding to
158  *			the lowest P state
159  * @max:		VID data corresponding to the highest P State.
160  * @turbo:		VID data for turbo P state
161  * @ratio:		Ratio of (vid max - vid min) /
162  *			(max P state - Min P State)
163  *
164  * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
165  * This data is used in Atom platforms, where in addition to target P state,
166  * the voltage data needs to be specified to select next P State.
167  */
168 struct vid_data {
169 	int min;
170 	int max;
171 	int turbo;
172 	int32_t ratio;
173 };
174 
175 /**
176  * struct _pid -	Stores PID data
177  * @setpoint:		Target set point for busyness or performance
178  * @integral:		Storage for accumulated error values
179  * @p_gain:		PID proportional gain
180  * @i_gain:		PID integral gain
181  * @d_gain:		PID derivative gain
182  * @deadband:		PID deadband
183  * @last_err:		Last error storage for integral part of PID calculation
184  *
185  * Stores PID coefficients and last error for PID controller.
186  */
187 struct _pid {
188 	int setpoint;
189 	int32_t integral;
190 	int32_t p_gain;
191 	int32_t i_gain;
192 	int32_t d_gain;
193 	int deadband;
194 	int32_t last_err;
195 };
196 
197 /**
198  * struct global_params - Global parameters, mostly tunable via sysfs.
199  * @no_turbo:		Whether or not to use turbo P-states.
200  * @turbo_disabled:	Whethet or not turbo P-states are available at all,
201  *			based on the MSR_IA32_MISC_ENABLE value and whether or
202  *			not the maximum reported turbo P-state is different from
203  *			the maximum reported non-turbo one.
204  * @min_perf_pct:	Minimum capacity limit in percent of the maximum turbo
205  *			P-state capacity.
206  * @max_perf_pct:	Maximum capacity limit in percent of the maximum turbo
207  *			P-state capacity.
208  */
209 struct global_params {
210 	bool no_turbo;
211 	bool turbo_disabled;
212 	int max_perf_pct;
213 	int min_perf_pct;
214 };
215 
216 /**
217  * struct cpudata -	Per CPU instance data storage
218  * @cpu:		CPU number for this instance data
219  * @policy:		CPUFreq policy value
220  * @update_util:	CPUFreq utility callback information
221  * @update_util_set:	CPUFreq utility callback is set
222  * @iowait_boost:	iowait-related boost fraction
223  * @last_update:	Time of the last update.
224  * @pstate:		Stores P state limits for this CPU
225  * @vid:		Stores VID limits for this CPU
226  * @pid:		Stores PID parameters for this CPU
227  * @last_sample_time:	Last Sample time
228  * @prev_aperf:		Last APERF value read from APERF MSR
229  * @prev_mperf:		Last MPERF value read from MPERF MSR
230  * @prev_tsc:		Last timestamp counter (TSC) value
231  * @prev_cummulative_iowait: IO Wait time difference from last and
232  *			current sample
233  * @sample:		Storage for storing last Sample data
234  * @min_perf:		Minimum capacity limit as a fraction of the maximum
235  *			turbo P-state capacity.
236  * @max_perf:		Maximum capacity limit as a fraction of the maximum
237  *			turbo P-state capacity.
238  * @acpi_perf_data:	Stores ACPI perf information read from _PSS
239  * @valid_pss_table:	Set to true for valid ACPI _PSS entries found
240  * @epp_powersave:	Last saved HWP energy performance preference
241  *			(EPP) or energy performance bias (EPB),
242  *			when policy switched to performance
243  * @epp_policy:		Last saved policy used to set EPP/EPB
244  * @epp_default:	Power on default HWP energy performance
245  *			preference/bias
246  * @epp_saved:		Saved EPP/EPB during system suspend or CPU offline
247  *			operation
248  *
249  * This structure stores per CPU instance data for all CPUs.
250  */
251 struct cpudata {
252 	int cpu;
253 
254 	unsigned int policy;
255 	struct update_util_data update_util;
256 	bool   update_util_set;
257 
258 	struct pstate_data pstate;
259 	struct vid_data vid;
260 	struct _pid pid;
261 
262 	u64	last_update;
263 	u64	last_sample_time;
264 	u64	prev_aperf;
265 	u64	prev_mperf;
266 	u64	prev_tsc;
267 	u64	prev_cummulative_iowait;
268 	struct sample sample;
269 	int32_t	min_perf;
270 	int32_t	max_perf;
271 #ifdef CONFIG_ACPI
272 	struct acpi_processor_performance acpi_perf_data;
273 	bool valid_pss_table;
274 #endif
275 	unsigned int iowait_boost;
276 	s16 epp_powersave;
277 	s16 epp_policy;
278 	s16 epp_default;
279 	s16 epp_saved;
280 };
281 
282 static struct cpudata **all_cpu_data;
283 
284 /**
285  * struct pstate_adjust_policy - Stores static PID configuration data
286  * @sample_rate_ms:	PID calculation sample rate in ms
287  * @sample_rate_ns:	Sample rate calculation in ns
288  * @deadband:		PID deadband
289  * @setpoint:		PID Setpoint
290  * @p_gain_pct:		PID proportional gain
291  * @i_gain_pct:		PID integral gain
292  * @d_gain_pct:		PID derivative gain
293  *
294  * Stores per CPU model static PID configuration data.
295  */
296 struct pstate_adjust_policy {
297 	int sample_rate_ms;
298 	s64 sample_rate_ns;
299 	int deadband;
300 	int setpoint;
301 	int p_gain_pct;
302 	int d_gain_pct;
303 	int i_gain_pct;
304 };
305 
306 /**
307  * struct pstate_funcs - Per CPU model specific callbacks
308  * @get_max:		Callback to get maximum non turbo effective P state
309  * @get_max_physical:	Callback to get maximum non turbo physical P state
310  * @get_min:		Callback to get minimum P state
311  * @get_turbo:		Callback to get turbo P state
312  * @get_scaling:	Callback to get frequency scaling factor
313  * @get_val:		Callback to convert P state to actual MSR write value
314  * @get_vid:		Callback to get VID data for Atom platforms
315  * @update_util:	Active mode utilization update callback.
316  *
317  * Core and Atom CPU models have different way to get P State limits. This
318  * structure is used to store those callbacks.
319  */
320 struct pstate_funcs {
321 	int (*get_max)(void);
322 	int (*get_max_physical)(void);
323 	int (*get_min)(void);
324 	int (*get_turbo)(void);
325 	int (*get_scaling)(void);
326 	u64 (*get_val)(struct cpudata*, int pstate);
327 	void (*get_vid)(struct cpudata *);
328 	void (*update_util)(struct update_util_data *data, u64 time,
329 			    unsigned int flags);
330 };
331 
332 static struct pstate_funcs pstate_funcs __read_mostly;
333 static struct pstate_adjust_policy pid_params __read_mostly = {
334 	.sample_rate_ms = 10,
335 	.sample_rate_ns = 10 * NSEC_PER_MSEC,
336 	.deadband = 0,
337 	.setpoint = 97,
338 	.p_gain_pct = 20,
339 	.d_gain_pct = 0,
340 	.i_gain_pct = 0,
341 };
342 
343 static int hwp_active __read_mostly;
344 static bool per_cpu_limits __read_mostly;
345 
346 static struct cpufreq_driver *intel_pstate_driver __read_mostly;
347 
348 #ifdef CONFIG_ACPI
349 static bool acpi_ppc;
350 #endif
351 
352 static struct global_params global;
353 
354 static DEFINE_MUTEX(intel_pstate_driver_lock);
355 static DEFINE_MUTEX(intel_pstate_limits_lock);
356 
357 #ifdef CONFIG_ACPI
358 
359 static bool intel_pstate_get_ppc_enable_status(void)
360 {
361 	if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
362 	    acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
363 		return true;
364 
365 	return acpi_ppc;
366 }
367 
368 #ifdef CONFIG_ACPI_CPPC_LIB
369 
370 /* The work item is needed to avoid CPU hotplug locking issues */
371 static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
372 {
373 	sched_set_itmt_support();
374 }
375 
376 static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);
377 
378 static void intel_pstate_set_itmt_prio(int cpu)
379 {
380 	struct cppc_perf_caps cppc_perf;
381 	static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
382 	int ret;
383 
384 	ret = cppc_get_perf_caps(cpu, &cppc_perf);
385 	if (ret)
386 		return;
387 
388 	/*
389 	 * The priorities can be set regardless of whether or not
390 	 * sched_set_itmt_support(true) has been called and it is valid to
391 	 * update them at any time after it has been called.
392 	 */
393 	sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);
394 
395 	if (max_highest_perf <= min_highest_perf) {
396 		if (cppc_perf.highest_perf > max_highest_perf)
397 			max_highest_perf = cppc_perf.highest_perf;
398 
399 		if (cppc_perf.highest_perf < min_highest_perf)
400 			min_highest_perf = cppc_perf.highest_perf;
401 
402 		if (max_highest_perf > min_highest_perf) {
403 			/*
404 			 * This code can be run during CPU online under the
405 			 * CPU hotplug locks, so sched_set_itmt_support()
406 			 * cannot be called from here.  Queue up a work item
407 			 * to invoke it.
408 			 */
409 			schedule_work(&sched_itmt_work);
410 		}
411 	}
412 }
413 #else
414 static void intel_pstate_set_itmt_prio(int cpu)
415 {
416 }
417 #endif
418 
419 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
420 {
421 	struct cpudata *cpu;
422 	int ret;
423 	int i;
424 
425 	if (hwp_active) {
426 		intel_pstate_set_itmt_prio(policy->cpu);
427 		return;
428 	}
429 
430 	if (!intel_pstate_get_ppc_enable_status())
431 		return;
432 
433 	cpu = all_cpu_data[policy->cpu];
434 
435 	ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
436 						  policy->cpu);
437 	if (ret)
438 		return;
439 
440 	/*
441 	 * Check if the control value in _PSS is for PERF_CTL MSR, which should
442 	 * guarantee that the states returned by it map to the states in our
443 	 * list directly.
444 	 */
445 	if (cpu->acpi_perf_data.control_register.space_id !=
446 						ACPI_ADR_SPACE_FIXED_HARDWARE)
447 		goto err;
448 
449 	/*
450 	 * If there is only one entry _PSS, simply ignore _PSS and continue as
451 	 * usual without taking _PSS into account
452 	 */
453 	if (cpu->acpi_perf_data.state_count < 2)
454 		goto err;
455 
456 	pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
457 	for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
458 		pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
459 			 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
460 			 (u32) cpu->acpi_perf_data.states[i].core_frequency,
461 			 (u32) cpu->acpi_perf_data.states[i].power,
462 			 (u32) cpu->acpi_perf_data.states[i].control);
463 	}
464 
465 	/*
466 	 * The _PSS table doesn't contain whole turbo frequency range.
467 	 * This just contains +1 MHZ above the max non turbo frequency,
468 	 * with control value corresponding to max turbo ratio. But
469 	 * when cpufreq set policy is called, it will call with this
470 	 * max frequency, which will cause a reduced performance as
471 	 * this driver uses real max turbo frequency as the max
472 	 * frequency. So correct this frequency in _PSS table to
473 	 * correct max turbo frequency based on the turbo state.
474 	 * Also need to convert to MHz as _PSS freq is in MHz.
475 	 */
476 	if (!global.turbo_disabled)
477 		cpu->acpi_perf_data.states[0].core_frequency =
478 					policy->cpuinfo.max_freq / 1000;
479 	cpu->valid_pss_table = true;
480 	pr_debug("_PPC limits will be enforced\n");
481 
482 	return;
483 
484  err:
485 	cpu->valid_pss_table = false;
486 	acpi_processor_unregister_performance(policy->cpu);
487 }
488 
489 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
490 {
491 	struct cpudata *cpu;
492 
493 	cpu = all_cpu_data[policy->cpu];
494 	if (!cpu->valid_pss_table)
495 		return;
496 
497 	acpi_processor_unregister_performance(policy->cpu);
498 }
499 #else
500 static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
501 {
502 }
503 
504 static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
505 {
506 }
507 #endif
508 
509 static signed int pid_calc(struct _pid *pid, int32_t busy)
510 {
511 	signed int result;
512 	int32_t pterm, dterm, fp_error;
513 	int32_t integral_limit;
514 
515 	fp_error = pid->setpoint - busy;
516 
517 	if (abs(fp_error) <= pid->deadband)
518 		return 0;
519 
520 	pterm = mul_fp(pid->p_gain, fp_error);
521 
522 	pid->integral += fp_error;
523 
524 	/*
525 	 * We limit the integral here so that it will never
526 	 * get higher than 30.  This prevents it from becoming
527 	 * too large an input over long periods of time and allows
528 	 * it to get factored out sooner.
529 	 *
530 	 * The value of 30 was chosen through experimentation.
531 	 */
532 	integral_limit = int_tofp(30);
533 	if (pid->integral > integral_limit)
534 		pid->integral = integral_limit;
535 	if (pid->integral < -integral_limit)
536 		pid->integral = -integral_limit;
537 
538 	dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
539 	pid->last_err = fp_error;
540 
541 	result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
542 	result = result + (1 << (FRAC_BITS-1));
543 	return (signed int)fp_toint(result);
544 }
545 
546 static inline void intel_pstate_pid_reset(struct cpudata *cpu)
547 {
548 	struct _pid *pid = &cpu->pid;
549 
550 	pid->p_gain = percent_fp(pid_params.p_gain_pct);
551 	pid->d_gain = percent_fp(pid_params.d_gain_pct);
552 	pid->i_gain = percent_fp(pid_params.i_gain_pct);
553 	pid->setpoint = int_tofp(pid_params.setpoint);
554 	pid->last_err  = pid->setpoint - int_tofp(100);
555 	pid->deadband  = int_tofp(pid_params.deadband);
556 	pid->integral  = 0;
557 }
558 
559 static inline void update_turbo_state(void)
560 {
561 	u64 misc_en;
562 	struct cpudata *cpu;
563 
564 	cpu = all_cpu_data[0];
565 	rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
566 	global.turbo_disabled =
567 		(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
568 		 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
569 }
570 
571 static int min_perf_pct_min(void)
572 {
573 	struct cpudata *cpu = all_cpu_data[0];
574 
575 	return DIV_ROUND_UP(cpu->pstate.min_pstate * 100,
576 			    cpu->pstate.turbo_pstate);
577 }
578 
579 static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
580 {
581 	u64 epb;
582 	int ret;
583 
584 	if (!static_cpu_has(X86_FEATURE_EPB))
585 		return -ENXIO;
586 
587 	ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
588 	if (ret)
589 		return (s16)ret;
590 
591 	return (s16)(epb & 0x0f);
592 }
593 
594 static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
595 {
596 	s16 epp;
597 
598 	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
599 		/*
600 		 * When hwp_req_data is 0, means that caller didn't read
601 		 * MSR_HWP_REQUEST, so need to read and get EPP.
602 		 */
603 		if (!hwp_req_data) {
604 			epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
605 					    &hwp_req_data);
606 			if (epp)
607 				return epp;
608 		}
609 		epp = (hwp_req_data >> 24) & 0xff;
610 	} else {
611 		/* When there is no EPP present, HWP uses EPB settings */
612 		epp = intel_pstate_get_epb(cpu_data);
613 	}
614 
615 	return epp;
616 }
617 
618 static int intel_pstate_set_epb(int cpu, s16 pref)
619 {
620 	u64 epb;
621 	int ret;
622 
623 	if (!static_cpu_has(X86_FEATURE_EPB))
624 		return -ENXIO;
625 
626 	ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
627 	if (ret)
628 		return ret;
629 
630 	epb = (epb & ~0x0f) | pref;
631 	wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
632 
633 	return 0;
634 }
635 
636 /*
637  * EPP/EPB display strings corresponding to EPP index in the
638  * energy_perf_strings[]
639  *	index		String
640  *-------------------------------------
641  *	0		default
642  *	1		performance
643  *	2		balance_performance
644  *	3		balance_power
645  *	4		power
646  */
647 static const char * const energy_perf_strings[] = {
648 	"default",
649 	"performance",
650 	"balance_performance",
651 	"balance_power",
652 	"power",
653 	NULL
654 };
655 
656 static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data)
657 {
658 	s16 epp;
659 	int index = -EINVAL;
660 
661 	epp = intel_pstate_get_epp(cpu_data, 0);
662 	if (epp < 0)
663 		return epp;
664 
665 	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
666 		/*
667 		 * Range:
668 		 *	0x00-0x3F	:	Performance
669 		 *	0x40-0x7F	:	Balance performance
670 		 *	0x80-0xBF	:	Balance power
671 		 *	0xC0-0xFF	:	Power
672 		 * The EPP is a 8 bit value, but our ranges restrict the
673 		 * value which can be set. Here only using top two bits
674 		 * effectively.
675 		 */
676 		index = (epp >> 6) + 1;
677 	} else if (static_cpu_has(X86_FEATURE_EPB)) {
678 		/*
679 		 * Range:
680 		 *	0x00-0x03	:	Performance
681 		 *	0x04-0x07	:	Balance performance
682 		 *	0x08-0x0B	:	Balance power
683 		 *	0x0C-0x0F	:	Power
684 		 * The EPB is a 4 bit value, but our ranges restrict the
685 		 * value which can be set. Here only using top two bits
686 		 * effectively.
687 		 */
688 		index = (epp >> 2) + 1;
689 	}
690 
691 	return index;
692 }
693 
694 static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
695 					      int pref_index)
696 {
697 	int epp = -EINVAL;
698 	int ret;
699 
700 	if (!pref_index)
701 		epp = cpu_data->epp_default;
702 
703 	mutex_lock(&intel_pstate_limits_lock);
704 
705 	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
706 		u64 value;
707 
708 		ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, &value);
709 		if (ret)
710 			goto return_pref;
711 
712 		value &= ~GENMASK_ULL(31, 24);
713 
714 		/*
715 		 * If epp is not default, convert from index into
716 		 * energy_perf_strings to epp value, by shifting 6
717 		 * bits left to use only top two bits in epp.
718 		 * The resultant epp need to shifted by 24 bits to
719 		 * epp position in MSR_HWP_REQUEST.
720 		 */
721 		if (epp == -EINVAL)
722 			epp = (pref_index - 1) << 6;
723 
724 		value |= (u64)epp << 24;
725 		ret = wrmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, value);
726 	} else {
727 		if (epp == -EINVAL)
728 			epp = (pref_index - 1) << 2;
729 		ret = intel_pstate_set_epb(cpu_data->cpu, epp);
730 	}
731 return_pref:
732 	mutex_unlock(&intel_pstate_limits_lock);
733 
734 	return ret;
735 }
736 
737 static ssize_t show_energy_performance_available_preferences(
738 				struct cpufreq_policy *policy, char *buf)
739 {
740 	int i = 0;
741 	int ret = 0;
742 
743 	while (energy_perf_strings[i] != NULL)
744 		ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);
745 
746 	ret += sprintf(&buf[ret], "\n");
747 
748 	return ret;
749 }
750 
751 cpufreq_freq_attr_ro(energy_performance_available_preferences);
752 
753 static ssize_t store_energy_performance_preference(
754 		struct cpufreq_policy *policy, const char *buf, size_t count)
755 {
756 	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
757 	char str_preference[21];
758 	int ret, i = 0;
759 
760 	ret = sscanf(buf, "%20s", str_preference);
761 	if (ret != 1)
762 		return -EINVAL;
763 
764 	while (energy_perf_strings[i] != NULL) {
765 		if (!strcmp(str_preference, energy_perf_strings[i])) {
766 			intel_pstate_set_energy_pref_index(cpu_data, i);
767 			return count;
768 		}
769 		++i;
770 	}
771 
772 	return -EINVAL;
773 }
774 
775 static ssize_t show_energy_performance_preference(
776 				struct cpufreq_policy *policy, char *buf)
777 {
778 	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
779 	int preference;
780 
781 	preference = intel_pstate_get_energy_pref_index(cpu_data);
782 	if (preference < 0)
783 		return preference;
784 
785 	return  sprintf(buf, "%s\n", energy_perf_strings[preference]);
786 }
787 
788 cpufreq_freq_attr_rw(energy_performance_preference);
789 
790 static struct freq_attr *hwp_cpufreq_attrs[] = {
791 	&energy_performance_preference,
792 	&energy_performance_available_preferences,
793 	NULL,
794 };
795 
796 static void intel_pstate_hwp_set(unsigned int cpu)
797 {
798 	struct cpudata *cpu_data = all_cpu_data[cpu];
799 	int min, hw_min, max, hw_max;
800 	u64 value, cap;
801 	s16 epp;
802 
803 	rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
804 	hw_min = HWP_LOWEST_PERF(cap);
805 	if (global.no_turbo)
806 		hw_max = HWP_GUARANTEED_PERF(cap);
807 	else
808 		hw_max = HWP_HIGHEST_PERF(cap);
809 
810 	max = fp_ext_toint(hw_max * cpu_data->max_perf);
811 	if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
812 		min = max;
813 	else
814 		min = fp_ext_toint(hw_max * cpu_data->min_perf);
815 
816 	rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
817 
818 	value &= ~HWP_MIN_PERF(~0L);
819 	value |= HWP_MIN_PERF(min);
820 
821 	value &= ~HWP_MAX_PERF(~0L);
822 	value |= HWP_MAX_PERF(max);
823 
824 	if (cpu_data->epp_policy == cpu_data->policy)
825 		goto skip_epp;
826 
827 	cpu_data->epp_policy = cpu_data->policy;
828 
829 	if (cpu_data->epp_saved >= 0) {
830 		epp = cpu_data->epp_saved;
831 		cpu_data->epp_saved = -EINVAL;
832 		goto update_epp;
833 	}
834 
835 	if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
836 		epp = intel_pstate_get_epp(cpu_data, value);
837 		cpu_data->epp_powersave = epp;
838 		/* If EPP read was failed, then don't try to write */
839 		if (epp < 0)
840 			goto skip_epp;
841 
842 		epp = 0;
843 	} else {
844 		/* skip setting EPP, when saved value is invalid */
845 		if (cpu_data->epp_powersave < 0)
846 			goto skip_epp;
847 
848 		/*
849 		 * No need to restore EPP when it is not zero. This
850 		 * means:
851 		 *  - Policy is not changed
852 		 *  - user has manually changed
853 		 *  - Error reading EPB
854 		 */
855 		epp = intel_pstate_get_epp(cpu_data, value);
856 		if (epp)
857 			goto skip_epp;
858 
859 		epp = cpu_data->epp_powersave;
860 	}
861 update_epp:
862 	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
863 		value &= ~GENMASK_ULL(31, 24);
864 		value |= (u64)epp << 24;
865 	} else {
866 		intel_pstate_set_epb(cpu, epp);
867 	}
868 skip_epp:
869 	wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
870 }
871 
872 static int intel_pstate_hwp_save_state(struct cpufreq_policy *policy)
873 {
874 	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
875 
876 	if (!hwp_active)
877 		return 0;
878 
879 	cpu_data->epp_saved = intel_pstate_get_epp(cpu_data, 0);
880 
881 	return 0;
882 }
883 
884 static int intel_pstate_resume(struct cpufreq_policy *policy)
885 {
886 	if (!hwp_active)
887 		return 0;
888 
889 	mutex_lock(&intel_pstate_limits_lock);
890 
891 	all_cpu_data[policy->cpu]->epp_policy = 0;
892 	intel_pstate_hwp_set(policy->cpu);
893 
894 	mutex_unlock(&intel_pstate_limits_lock);
895 
896 	return 0;
897 }
898 
899 static void intel_pstate_update_policies(void)
900 {
901 	int cpu;
902 
903 	for_each_possible_cpu(cpu)
904 		cpufreq_update_policy(cpu);
905 }
906 
907 /************************** debugfs begin ************************/
908 static int pid_param_set(void *data, u64 val)
909 {
910 	unsigned int cpu;
911 
912 	*(u32 *)data = val;
913 	pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
914 	for_each_possible_cpu(cpu)
915 		if (all_cpu_data[cpu])
916 			intel_pstate_pid_reset(all_cpu_data[cpu]);
917 
918 	return 0;
919 }
920 
921 static int pid_param_get(void *data, u64 *val)
922 {
923 	*val = *(u32 *)data;
924 	return 0;
925 }
926 DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
927 
928 static struct dentry *debugfs_parent;
929 
930 struct pid_param {
931 	char *name;
932 	void *value;
933 	struct dentry *dentry;
934 };
935 
936 static struct pid_param pid_files[] = {
937 	{"sample_rate_ms", &pid_params.sample_rate_ms, },
938 	{"d_gain_pct", &pid_params.d_gain_pct, },
939 	{"i_gain_pct", &pid_params.i_gain_pct, },
940 	{"deadband", &pid_params.deadband, },
941 	{"setpoint", &pid_params.setpoint, },
942 	{"p_gain_pct", &pid_params.p_gain_pct, },
943 	{NULL, NULL, }
944 };
945 
946 static void intel_pstate_debug_expose_params(void)
947 {
948 	int i;
949 
950 	debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
951 	if (IS_ERR_OR_NULL(debugfs_parent))
952 		return;
953 
954 	for (i = 0; pid_files[i].name; i++) {
955 		struct dentry *dentry;
956 
957 		dentry = debugfs_create_file(pid_files[i].name, 0660,
958 					     debugfs_parent, pid_files[i].value,
959 					     &fops_pid_param);
960 		if (!IS_ERR(dentry))
961 			pid_files[i].dentry = dentry;
962 	}
963 }
964 
965 static void intel_pstate_debug_hide_params(void)
966 {
967 	int i;
968 
969 	if (IS_ERR_OR_NULL(debugfs_parent))
970 		return;
971 
972 	for (i = 0; pid_files[i].name; i++) {
973 		debugfs_remove(pid_files[i].dentry);
974 		pid_files[i].dentry = NULL;
975 	}
976 
977 	debugfs_remove(debugfs_parent);
978 	debugfs_parent = NULL;
979 }
980 
981 /************************** debugfs end ************************/
982 
983 /************************** sysfs begin ************************/
984 #define show_one(file_name, object)					\
985 	static ssize_t show_##file_name					\
986 	(struct kobject *kobj, struct attribute *attr, char *buf)	\
987 	{								\
988 		return sprintf(buf, "%u\n", global.object);		\
989 	}
990 
991 static ssize_t intel_pstate_show_status(char *buf);
992 static int intel_pstate_update_status(const char *buf, size_t size);
993 
994 static ssize_t show_status(struct kobject *kobj,
995 			   struct attribute *attr, char *buf)
996 {
997 	ssize_t ret;
998 
999 	mutex_lock(&intel_pstate_driver_lock);
1000 	ret = intel_pstate_show_status(buf);
1001 	mutex_unlock(&intel_pstate_driver_lock);
1002 
1003 	return ret;
1004 }
1005 
1006 static ssize_t store_status(struct kobject *a, struct attribute *b,
1007 			    const char *buf, size_t count)
1008 {
1009 	char *p = memchr(buf, '\n', count);
1010 	int ret;
1011 
1012 	mutex_lock(&intel_pstate_driver_lock);
1013 	ret = intel_pstate_update_status(buf, p ? p - buf : count);
1014 	mutex_unlock(&intel_pstate_driver_lock);
1015 
1016 	return ret < 0 ? ret : count;
1017 }
1018 
1019 static ssize_t show_turbo_pct(struct kobject *kobj,
1020 				struct attribute *attr, char *buf)
1021 {
1022 	struct cpudata *cpu;
1023 	int total, no_turbo, turbo_pct;
1024 	uint32_t turbo_fp;
1025 
1026 	mutex_lock(&intel_pstate_driver_lock);
1027 
1028 	if (!intel_pstate_driver) {
1029 		mutex_unlock(&intel_pstate_driver_lock);
1030 		return -EAGAIN;
1031 	}
1032 
1033 	cpu = all_cpu_data[0];
1034 
1035 	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1036 	no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
1037 	turbo_fp = div_fp(no_turbo, total);
1038 	turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
1039 
1040 	mutex_unlock(&intel_pstate_driver_lock);
1041 
1042 	return sprintf(buf, "%u\n", turbo_pct);
1043 }
1044 
1045 static ssize_t show_num_pstates(struct kobject *kobj,
1046 				struct attribute *attr, char *buf)
1047 {
1048 	struct cpudata *cpu;
1049 	int total;
1050 
1051 	mutex_lock(&intel_pstate_driver_lock);
1052 
1053 	if (!intel_pstate_driver) {
1054 		mutex_unlock(&intel_pstate_driver_lock);
1055 		return -EAGAIN;
1056 	}
1057 
1058 	cpu = all_cpu_data[0];
1059 	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1060 
1061 	mutex_unlock(&intel_pstate_driver_lock);
1062 
1063 	return sprintf(buf, "%u\n", total);
1064 }
1065 
1066 static ssize_t show_no_turbo(struct kobject *kobj,
1067 			     struct attribute *attr, char *buf)
1068 {
1069 	ssize_t ret;
1070 
1071 	mutex_lock(&intel_pstate_driver_lock);
1072 
1073 	if (!intel_pstate_driver) {
1074 		mutex_unlock(&intel_pstate_driver_lock);
1075 		return -EAGAIN;
1076 	}
1077 
1078 	update_turbo_state();
1079 	if (global.turbo_disabled)
1080 		ret = sprintf(buf, "%u\n", global.turbo_disabled);
1081 	else
1082 		ret = sprintf(buf, "%u\n", global.no_turbo);
1083 
1084 	mutex_unlock(&intel_pstate_driver_lock);
1085 
1086 	return ret;
1087 }
1088 
1089 static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
1090 			      const char *buf, size_t count)
1091 {
1092 	unsigned int input;
1093 	int ret;
1094 
1095 	ret = sscanf(buf, "%u", &input);
1096 	if (ret != 1)
1097 		return -EINVAL;
1098 
1099 	mutex_lock(&intel_pstate_driver_lock);
1100 
1101 	if (!intel_pstate_driver) {
1102 		mutex_unlock(&intel_pstate_driver_lock);
1103 		return -EAGAIN;
1104 	}
1105 
1106 	mutex_lock(&intel_pstate_limits_lock);
1107 
1108 	update_turbo_state();
1109 	if (global.turbo_disabled) {
1110 		pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
1111 		mutex_unlock(&intel_pstate_limits_lock);
1112 		mutex_unlock(&intel_pstate_driver_lock);
1113 		return -EPERM;
1114 	}
1115 
1116 	global.no_turbo = clamp_t(int, input, 0, 1);
1117 
1118 	if (global.no_turbo) {
1119 		struct cpudata *cpu = all_cpu_data[0];
1120 		int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;
1121 
1122 		/* Squash the global minimum into the permitted range. */
1123 		if (global.min_perf_pct > pct)
1124 			global.min_perf_pct = pct;
1125 	}
1126 
1127 	mutex_unlock(&intel_pstate_limits_lock);
1128 
1129 	intel_pstate_update_policies();
1130 
1131 	mutex_unlock(&intel_pstate_driver_lock);
1132 
1133 	return count;
1134 }
1135 
1136 static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
1137 				  const char *buf, size_t count)
1138 {
1139 	unsigned int input;
1140 	int ret;
1141 
1142 	ret = sscanf(buf, "%u", &input);
1143 	if (ret != 1)
1144 		return -EINVAL;
1145 
1146 	mutex_lock(&intel_pstate_driver_lock);
1147 
1148 	if (!intel_pstate_driver) {
1149 		mutex_unlock(&intel_pstate_driver_lock);
1150 		return -EAGAIN;
1151 	}
1152 
1153 	mutex_lock(&intel_pstate_limits_lock);
1154 
1155 	global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
1156 
1157 	mutex_unlock(&intel_pstate_limits_lock);
1158 
1159 	intel_pstate_update_policies();
1160 
1161 	mutex_unlock(&intel_pstate_driver_lock);
1162 
1163 	return count;
1164 }
1165 
1166 static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
1167 				  const char *buf, size_t count)
1168 {
1169 	unsigned int input;
1170 	int ret;
1171 
1172 	ret = sscanf(buf, "%u", &input);
1173 	if (ret != 1)
1174 		return -EINVAL;
1175 
1176 	mutex_lock(&intel_pstate_driver_lock);
1177 
1178 	if (!intel_pstate_driver) {
1179 		mutex_unlock(&intel_pstate_driver_lock);
1180 		return -EAGAIN;
1181 	}
1182 
1183 	mutex_lock(&intel_pstate_limits_lock);
1184 
1185 	global.min_perf_pct = clamp_t(int, input,
1186 				      min_perf_pct_min(), global.max_perf_pct);
1187 
1188 	mutex_unlock(&intel_pstate_limits_lock);
1189 
1190 	intel_pstate_update_policies();
1191 
1192 	mutex_unlock(&intel_pstate_driver_lock);
1193 
1194 	return count;
1195 }
1196 
1197 show_one(max_perf_pct, max_perf_pct);
1198 show_one(min_perf_pct, min_perf_pct);
1199 
1200 define_one_global_rw(status);
1201 define_one_global_rw(no_turbo);
1202 define_one_global_rw(max_perf_pct);
1203 define_one_global_rw(min_perf_pct);
1204 define_one_global_ro(turbo_pct);
1205 define_one_global_ro(num_pstates);
1206 
1207 static struct attribute *intel_pstate_attributes[] = {
1208 	&status.attr,
1209 	&no_turbo.attr,
1210 	&turbo_pct.attr,
1211 	&num_pstates.attr,
1212 	NULL
1213 };
1214 
1215 static struct attribute_group intel_pstate_attr_group = {
1216 	.attrs = intel_pstate_attributes,
1217 };
1218 
1219 static void __init intel_pstate_sysfs_expose_params(void)
1220 {
1221 	struct kobject *intel_pstate_kobject;
1222 	int rc;
1223 
1224 	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
1225 						&cpu_subsys.dev_root->kobj);
1226 	if (WARN_ON(!intel_pstate_kobject))
1227 		return;
1228 
1229 	rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1230 	if (WARN_ON(rc))
1231 		return;
1232 
1233 	/*
1234 	 * If per cpu limits are enforced there are no global limits, so
1235 	 * return without creating max/min_perf_pct attributes
1236 	 */
1237 	if (per_cpu_limits)
1238 		return;
1239 
1240 	rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
1241 	WARN_ON(rc);
1242 
1243 	rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
1244 	WARN_ON(rc);
1245 
1246 }
1247 /************************** sysfs end ************************/
1248 
1249 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
1250 {
1251 	/* First disable HWP notification interrupt as we don't process them */
1252 	if (static_cpu_has(X86_FEATURE_HWP_NOTIFY))
1253 		wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1254 
1255 	wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1256 	cpudata->epp_policy = 0;
1257 	if (cpudata->epp_default == -EINVAL)
1258 		cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
1259 }
1260 
1261 #define MSR_IA32_POWER_CTL_BIT_EE	19
1262 
1263 /* Disable energy efficiency optimization */
1264 static void intel_pstate_disable_ee(int cpu)
1265 {
1266 	u64 power_ctl;
1267 	int ret;
1268 
1269 	ret = rdmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, &power_ctl);
1270 	if (ret)
1271 		return;
1272 
1273 	if (!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE))) {
1274 		pr_info("Disabling energy efficiency optimization\n");
1275 		power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
1276 		wrmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, power_ctl);
1277 	}
1278 }
1279 
1280 static int atom_get_min_pstate(void)
1281 {
1282 	u64 value;
1283 
1284 	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1285 	return (value >> 8) & 0x7F;
1286 }
1287 
1288 static int atom_get_max_pstate(void)
1289 {
1290 	u64 value;
1291 
1292 	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1293 	return (value >> 16) & 0x7F;
1294 }
1295 
1296 static int atom_get_turbo_pstate(void)
1297 {
1298 	u64 value;
1299 
1300 	rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
1301 	return value & 0x7F;
1302 }
1303 
1304 static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1305 {
1306 	u64 val;
1307 	int32_t vid_fp;
1308 	u32 vid;
1309 
1310 	val = (u64)pstate << 8;
1311 	if (global.no_turbo && !global.turbo_disabled)
1312 		val |= (u64)1 << 32;
1313 
1314 	vid_fp = cpudata->vid.min + mul_fp(
1315 		int_tofp(pstate - cpudata->pstate.min_pstate),
1316 		cpudata->vid.ratio);
1317 
1318 	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1319 	vid = ceiling_fp(vid_fp);
1320 
1321 	if (pstate > cpudata->pstate.max_pstate)
1322 		vid = cpudata->vid.turbo;
1323 
1324 	return val | vid;
1325 }
1326 
1327 static int silvermont_get_scaling(void)
1328 {
1329 	u64 value;
1330 	int i;
1331 	/* Defined in Table 35-6 from SDM (Sept 2015) */
1332 	static int silvermont_freq_table[] = {
1333 		83300, 100000, 133300, 116700, 80000};
1334 
1335 	rdmsrl(MSR_FSB_FREQ, value);
1336 	i = value & 0x7;
1337 	WARN_ON(i > 4);
1338 
1339 	return silvermont_freq_table[i];
1340 }
1341 
1342 static int airmont_get_scaling(void)
1343 {
1344 	u64 value;
1345 	int i;
1346 	/* Defined in Table 35-10 from SDM (Sept 2015) */
1347 	static int airmont_freq_table[] = {
1348 		83300, 100000, 133300, 116700, 80000,
1349 		93300, 90000, 88900, 87500};
1350 
1351 	rdmsrl(MSR_FSB_FREQ, value);
1352 	i = value & 0xF;
1353 	WARN_ON(i > 8);
1354 
1355 	return airmont_freq_table[i];
1356 }
1357 
1358 static void atom_get_vid(struct cpudata *cpudata)
1359 {
1360 	u64 value;
1361 
1362 	rdmsrl(MSR_ATOM_CORE_VIDS, value);
1363 	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
1364 	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1365 	cpudata->vid.ratio = div_fp(
1366 		cpudata->vid.max - cpudata->vid.min,
1367 		int_tofp(cpudata->pstate.max_pstate -
1368 			cpudata->pstate.min_pstate));
1369 
1370 	rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1371 	cpudata->vid.turbo = value & 0x7f;
1372 }
1373 
1374 static int core_get_min_pstate(void)
1375 {
1376 	u64 value;
1377 
1378 	rdmsrl(MSR_PLATFORM_INFO, value);
1379 	return (value >> 40) & 0xFF;
1380 }
1381 
1382 static int core_get_max_pstate_physical(void)
1383 {
1384 	u64 value;
1385 
1386 	rdmsrl(MSR_PLATFORM_INFO, value);
1387 	return (value >> 8) & 0xFF;
1388 }
1389 
1390 static int core_get_tdp_ratio(u64 plat_info)
1391 {
1392 	/* Check how many TDP levels present */
1393 	if (plat_info & 0x600000000) {
1394 		u64 tdp_ctrl;
1395 		u64 tdp_ratio;
1396 		int tdp_msr;
1397 		int err;
1398 
1399 		/* Get the TDP level (0, 1, 2) to get ratios */
1400 		err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
1401 		if (err)
1402 			return err;
1403 
1404 		/* TDP MSR are continuous starting at 0x648 */
1405 		tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
1406 		err = rdmsrl_safe(tdp_msr, &tdp_ratio);
1407 		if (err)
1408 			return err;
1409 
1410 		/* For level 1 and 2, bits[23:16] contain the ratio */
1411 		if (tdp_ctrl & 0x03)
1412 			tdp_ratio >>= 16;
1413 
1414 		tdp_ratio &= 0xff; /* ratios are only 8 bits long */
1415 		pr_debug("tdp_ratio %x\n", (int)tdp_ratio);
1416 
1417 		return (int)tdp_ratio;
1418 	}
1419 
1420 	return -ENXIO;
1421 }
1422 
1423 static int core_get_max_pstate(void)
1424 {
1425 	u64 tar;
1426 	u64 plat_info;
1427 	int max_pstate;
1428 	int tdp_ratio;
1429 	int err;
1430 
1431 	rdmsrl(MSR_PLATFORM_INFO, plat_info);
1432 	max_pstate = (plat_info >> 8) & 0xFF;
1433 
1434 	tdp_ratio = core_get_tdp_ratio(plat_info);
1435 	if (tdp_ratio <= 0)
1436 		return max_pstate;
1437 
1438 	if (hwp_active) {
1439 		/* Turbo activation ratio is not used on HWP platforms */
1440 		return tdp_ratio;
1441 	}
1442 
1443 	err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
1444 	if (!err) {
1445 		int tar_levels;
1446 
1447 		/* Do some sanity checking for safety */
1448 		tar_levels = tar & 0xff;
1449 		if (tdp_ratio - 1 == tar_levels) {
1450 			max_pstate = tar_levels;
1451 			pr_debug("max_pstate=TAC %x\n", max_pstate);
1452 		}
1453 	}
1454 
1455 	return max_pstate;
1456 }
1457 
1458 static int core_get_turbo_pstate(void)
1459 {
1460 	u64 value;
1461 	int nont, ret;
1462 
1463 	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1464 	nont = core_get_max_pstate();
1465 	ret = (value) & 255;
1466 	if (ret <= nont)
1467 		ret = nont;
1468 	return ret;
1469 }
1470 
1471 static inline int core_get_scaling(void)
1472 {
1473 	return 100000;
1474 }
1475 
1476 static u64 core_get_val(struct cpudata *cpudata, int pstate)
1477 {
1478 	u64 val;
1479 
1480 	val = (u64)pstate << 8;
1481 	if (global.no_turbo && !global.turbo_disabled)
1482 		val |= (u64)1 << 32;
1483 
1484 	return val;
1485 }
1486 
1487 static int knl_get_turbo_pstate(void)
1488 {
1489 	u64 value;
1490 	int nont, ret;
1491 
1492 	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1493 	nont = core_get_max_pstate();
1494 	ret = (((value) >> 8) & 0xFF);
1495 	if (ret <= nont)
1496 		ret = nont;
1497 	return ret;
1498 }
1499 
1500 static int intel_pstate_get_base_pstate(struct cpudata *cpu)
1501 {
1502 	return global.no_turbo || global.turbo_disabled ?
1503 			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1504 }
1505 
1506 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1507 {
1508 	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1509 	cpu->pstate.current_pstate = pstate;
1510 	/*
1511 	 * Generally, there is no guarantee that this code will always run on
1512 	 * the CPU being updated, so force the register update to run on the
1513 	 * right CPU.
1514 	 */
1515 	wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1516 		      pstate_funcs.get_val(cpu, pstate));
1517 }
1518 
1519 static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1520 {
1521 	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
1522 }
1523 
1524 static void intel_pstate_max_within_limits(struct cpudata *cpu)
1525 {
1526 	int pstate;
1527 
1528 	update_turbo_state();
1529 	pstate = intel_pstate_get_base_pstate(cpu);
1530 	pstate = max(cpu->pstate.min_pstate,
1531 		     fp_ext_toint(pstate * cpu->max_perf));
1532 	intel_pstate_set_pstate(cpu, pstate);
1533 }
1534 
1535 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1536 {
1537 	cpu->pstate.min_pstate = pstate_funcs.get_min();
1538 	cpu->pstate.max_pstate = pstate_funcs.get_max();
1539 	cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1540 	cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1541 	cpu->pstate.scaling = pstate_funcs.get_scaling();
1542 	cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
1543 	cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1544 
1545 	if (pstate_funcs.get_vid)
1546 		pstate_funcs.get_vid(cpu);
1547 
1548 	intel_pstate_set_min_pstate(cpu);
1549 }
1550 
1551 static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1552 {
1553 	struct sample *sample = &cpu->sample;
1554 
1555 	sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1556 }
1557 
1558 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1559 {
1560 	u64 aperf, mperf;
1561 	unsigned long flags;
1562 	u64 tsc;
1563 
1564 	local_irq_save(flags);
1565 	rdmsrl(MSR_IA32_APERF, aperf);
1566 	rdmsrl(MSR_IA32_MPERF, mperf);
1567 	tsc = rdtsc();
1568 	if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1569 		local_irq_restore(flags);
1570 		return false;
1571 	}
1572 	local_irq_restore(flags);
1573 
1574 	cpu->last_sample_time = cpu->sample.time;
1575 	cpu->sample.time = time;
1576 	cpu->sample.aperf = aperf;
1577 	cpu->sample.mperf = mperf;
1578 	cpu->sample.tsc =  tsc;
1579 	cpu->sample.aperf -= cpu->prev_aperf;
1580 	cpu->sample.mperf -= cpu->prev_mperf;
1581 	cpu->sample.tsc -= cpu->prev_tsc;
1582 
1583 	cpu->prev_aperf = aperf;
1584 	cpu->prev_mperf = mperf;
1585 	cpu->prev_tsc = tsc;
1586 	/*
1587 	 * First time this function is invoked in a given cycle, all of the
1588 	 * previous sample data fields are equal to zero or stale and they must
1589 	 * be populated with meaningful numbers for things to work, so assume
1590 	 * that sample.time will always be reset before setting the utilization
1591 	 * update hook and make the caller skip the sample then.
1592 	 */
1593 	if (cpu->last_sample_time) {
1594 		intel_pstate_calc_avg_perf(cpu);
1595 		return true;
1596 	}
1597 	return false;
1598 }
1599 
1600 static inline int32_t get_avg_frequency(struct cpudata *cpu)
1601 {
1602 	return mul_ext_fp(cpu->sample.core_avg_perf,
1603 			  cpu->pstate.max_pstate_physical * cpu->pstate.scaling);
1604 }
1605 
1606 static inline int32_t get_avg_pstate(struct cpudata *cpu)
1607 {
1608 	return mul_ext_fp(cpu->pstate.max_pstate_physical,
1609 			  cpu->sample.core_avg_perf);
1610 }
1611 
1612 static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
1613 {
1614 	struct sample *sample = &cpu->sample;
1615 	int32_t busy_frac, boost;
1616 	int target, avg_pstate;
1617 
1618 	if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE)
1619 		return cpu->pstate.turbo_pstate;
1620 
1621 	busy_frac = div_fp(sample->mperf, sample->tsc);
1622 
1623 	boost = cpu->iowait_boost;
1624 	cpu->iowait_boost >>= 1;
1625 
1626 	if (busy_frac < boost)
1627 		busy_frac = boost;
1628 
1629 	sample->busy_scaled = busy_frac * 100;
1630 
1631 	target = global.no_turbo || global.turbo_disabled ?
1632 			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1633 	target += target >> 2;
1634 	target = mul_fp(target, busy_frac);
1635 	if (target < cpu->pstate.min_pstate)
1636 		target = cpu->pstate.min_pstate;
1637 
1638 	/*
1639 	 * If the average P-state during the previous cycle was higher than the
1640 	 * current target, add 50% of the difference to the target to reduce
1641 	 * possible performance oscillations and offset possible performance
1642 	 * loss related to moving the workload from one CPU to another within
1643 	 * a package/module.
1644 	 */
1645 	avg_pstate = get_avg_pstate(cpu);
1646 	if (avg_pstate > target)
1647 		target += (avg_pstate - target) >> 1;
1648 
1649 	return target;
1650 }
1651 
1652 static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
1653 {
1654 	int32_t perf_scaled, max_pstate, current_pstate, sample_ratio;
1655 	u64 duration_ns;
1656 
1657 	if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE)
1658 		return cpu->pstate.turbo_pstate;
1659 
1660 	/*
1661 	 * perf_scaled is the ratio of the average P-state during the last
1662 	 * sampling period to the P-state requested last time (in percent).
1663 	 *
1664 	 * That measures the system's response to the previous P-state
1665 	 * selection.
1666 	 */
1667 	max_pstate = cpu->pstate.max_pstate_physical;
1668 	current_pstate = cpu->pstate.current_pstate;
1669 	perf_scaled = mul_ext_fp(cpu->sample.core_avg_perf,
1670 			       div_fp(100 * max_pstate, current_pstate));
1671 
1672 	/*
1673 	 * Since our utilization update callback will not run unless we are
1674 	 * in C0, check if the actual elapsed time is significantly greater (3x)
1675 	 * than our sample interval.  If it is, then we were idle for a long
1676 	 * enough period of time to adjust our performance metric.
1677 	 */
1678 	duration_ns = cpu->sample.time - cpu->last_sample_time;
1679 	if ((s64)duration_ns > pid_params.sample_rate_ns * 3) {
1680 		sample_ratio = div_fp(pid_params.sample_rate_ns, duration_ns);
1681 		perf_scaled = mul_fp(perf_scaled, sample_ratio);
1682 	} else {
1683 		sample_ratio = div_fp(100 * cpu->sample.mperf, cpu->sample.tsc);
1684 		if (sample_ratio < int_tofp(1))
1685 			perf_scaled = 0;
1686 	}
1687 
1688 	cpu->sample.busy_scaled = perf_scaled;
1689 	return cpu->pstate.current_pstate - pid_calc(&cpu->pid, perf_scaled);
1690 }
1691 
1692 static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
1693 {
1694 	int max_pstate = intel_pstate_get_base_pstate(cpu);
1695 	int min_pstate;
1696 
1697 	min_pstate = max(cpu->pstate.min_pstate,
1698 			 fp_ext_toint(max_pstate * cpu->min_perf));
1699 	max_pstate = max(min_pstate, fp_ext_toint(max_pstate * cpu->max_perf));
1700 	return clamp_t(int, pstate, min_pstate, max_pstate);
1701 }
1702 
1703 static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1704 {
1705 	if (pstate == cpu->pstate.current_pstate)
1706 		return;
1707 
1708 	cpu->pstate.current_pstate = pstate;
1709 	wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1710 }
1711 
1712 static void intel_pstate_adjust_pstate(struct cpudata *cpu, int target_pstate)
1713 {
1714 	int from = cpu->pstate.current_pstate;
1715 	struct sample *sample;
1716 
1717 	update_turbo_state();
1718 
1719 	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
1720 	trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
1721 	intel_pstate_update_pstate(cpu, target_pstate);
1722 
1723 	sample = &cpu->sample;
1724 	trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1725 		fp_toint(sample->busy_scaled),
1726 		from,
1727 		cpu->pstate.current_pstate,
1728 		sample->mperf,
1729 		sample->aperf,
1730 		sample->tsc,
1731 		get_avg_frequency(cpu),
1732 		fp_toint(cpu->iowait_boost * 100));
1733 }
1734 
1735 static void intel_pstate_update_util_hwp(struct update_util_data *data,
1736 					 u64 time, unsigned int flags)
1737 {
1738 	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1739 	u64 delta_ns = time - cpu->sample.time;
1740 
1741 	if ((s64)delta_ns >= INTEL_PSTATE_HWP_SAMPLING_INTERVAL)
1742 		intel_pstate_sample(cpu, time);
1743 }
1744 
1745 static void intel_pstate_update_util_pid(struct update_util_data *data,
1746 					 u64 time, unsigned int flags)
1747 {
1748 	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1749 	u64 delta_ns = time - cpu->sample.time;
1750 
1751 	if ((s64)delta_ns < pid_params.sample_rate_ns)
1752 		return;
1753 
1754 	if (intel_pstate_sample(cpu, time)) {
1755 		int target_pstate;
1756 
1757 		target_pstate = get_target_pstate_use_performance(cpu);
1758 		intel_pstate_adjust_pstate(cpu, target_pstate);
1759 	}
1760 }
1761 
1762 static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1763 				     unsigned int flags)
1764 {
1765 	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1766 	u64 delta_ns;
1767 
1768 	if (flags & SCHED_CPUFREQ_IOWAIT) {
1769 		cpu->iowait_boost = int_tofp(1);
1770 	} else if (cpu->iowait_boost) {
1771 		/* Clear iowait_boost if the CPU may have been idle. */
1772 		delta_ns = time - cpu->last_update;
1773 		if (delta_ns > TICK_NSEC)
1774 			cpu->iowait_boost = 0;
1775 	}
1776 	cpu->last_update = time;
1777 	delta_ns = time - cpu->sample.time;
1778 	if ((s64)delta_ns < INTEL_PSTATE_DEFAULT_SAMPLING_INTERVAL)
1779 		return;
1780 
1781 	if (intel_pstate_sample(cpu, time)) {
1782 		int target_pstate;
1783 
1784 		target_pstate = get_target_pstate_use_cpu_load(cpu);
1785 		intel_pstate_adjust_pstate(cpu, target_pstate);
1786 	}
1787 }
1788 
1789 static struct pstate_funcs core_funcs = {
1790 	.get_max = core_get_max_pstate,
1791 	.get_max_physical = core_get_max_pstate_physical,
1792 	.get_min = core_get_min_pstate,
1793 	.get_turbo = core_get_turbo_pstate,
1794 	.get_scaling = core_get_scaling,
1795 	.get_val = core_get_val,
1796 	.update_util = intel_pstate_update_util_pid,
1797 };
1798 
1799 static const struct pstate_funcs silvermont_funcs = {
1800 	.get_max = atom_get_max_pstate,
1801 	.get_max_physical = atom_get_max_pstate,
1802 	.get_min = atom_get_min_pstate,
1803 	.get_turbo = atom_get_turbo_pstate,
1804 	.get_val = atom_get_val,
1805 	.get_scaling = silvermont_get_scaling,
1806 	.get_vid = atom_get_vid,
1807 	.update_util = intel_pstate_update_util,
1808 };
1809 
1810 static const struct pstate_funcs airmont_funcs = {
1811 	.get_max = atom_get_max_pstate,
1812 	.get_max_physical = atom_get_max_pstate,
1813 	.get_min = atom_get_min_pstate,
1814 	.get_turbo = atom_get_turbo_pstate,
1815 	.get_val = atom_get_val,
1816 	.get_scaling = airmont_get_scaling,
1817 	.get_vid = atom_get_vid,
1818 	.update_util = intel_pstate_update_util,
1819 };
1820 
1821 static const struct pstate_funcs knl_funcs = {
1822 	.get_max = core_get_max_pstate,
1823 	.get_max_physical = core_get_max_pstate_physical,
1824 	.get_min = core_get_min_pstate,
1825 	.get_turbo = knl_get_turbo_pstate,
1826 	.get_scaling = core_get_scaling,
1827 	.get_val = core_get_val,
1828 	.update_util = intel_pstate_update_util_pid,
1829 };
1830 
1831 static const struct pstate_funcs bxt_funcs = {
1832 	.get_max = core_get_max_pstate,
1833 	.get_max_physical = core_get_max_pstate_physical,
1834 	.get_min = core_get_min_pstate,
1835 	.get_turbo = core_get_turbo_pstate,
1836 	.get_scaling = core_get_scaling,
1837 	.get_val = core_get_val,
1838 	.update_util = intel_pstate_update_util,
1839 };
1840 
1841 #define ICPU(model, policy) \
1842 	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1843 			(unsigned long)&policy }
1844 
1845 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1846 	ICPU(INTEL_FAM6_SANDYBRIDGE, 		core_funcs),
1847 	ICPU(INTEL_FAM6_SANDYBRIDGE_X,		core_funcs),
1848 	ICPU(INTEL_FAM6_ATOM_SILVERMONT1,	silvermont_funcs),
1849 	ICPU(INTEL_FAM6_IVYBRIDGE,		core_funcs),
1850 	ICPU(INTEL_FAM6_HASWELL_CORE,		core_funcs),
1851 	ICPU(INTEL_FAM6_BROADWELL_CORE,		core_funcs),
1852 	ICPU(INTEL_FAM6_IVYBRIDGE_X,		core_funcs),
1853 	ICPU(INTEL_FAM6_HASWELL_X,		core_funcs),
1854 	ICPU(INTEL_FAM6_HASWELL_ULT,		core_funcs),
1855 	ICPU(INTEL_FAM6_HASWELL_GT3E,		core_funcs),
1856 	ICPU(INTEL_FAM6_BROADWELL_GT3E,		core_funcs),
1857 	ICPU(INTEL_FAM6_ATOM_AIRMONT,		airmont_funcs),
1858 	ICPU(INTEL_FAM6_SKYLAKE_MOBILE,		core_funcs),
1859 	ICPU(INTEL_FAM6_BROADWELL_X,		core_funcs),
1860 	ICPU(INTEL_FAM6_SKYLAKE_DESKTOP,	core_funcs),
1861 	ICPU(INTEL_FAM6_BROADWELL_XEON_D,	core_funcs),
1862 	ICPU(INTEL_FAM6_XEON_PHI_KNL,		knl_funcs),
1863 	ICPU(INTEL_FAM6_XEON_PHI_KNM,		knl_funcs),
1864 	ICPU(INTEL_FAM6_ATOM_GOLDMONT,		bxt_funcs),
1865 	ICPU(INTEL_FAM6_ATOM_GEMINI_LAKE,       bxt_funcs),
1866 	{}
1867 };
1868 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1869 
1870 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
1871 	ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_funcs),
1872 	ICPU(INTEL_FAM6_BROADWELL_X, core_funcs),
1873 	ICPU(INTEL_FAM6_SKYLAKE_X, core_funcs),
1874 	{}
1875 };
1876 
1877 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
1878 	ICPU(INTEL_FAM6_KABYLAKE_DESKTOP, core_funcs),
1879 	{}
1880 };
1881 
1882 static bool pid_in_use(void);
1883 
1884 static int intel_pstate_init_cpu(unsigned int cpunum)
1885 {
1886 	struct cpudata *cpu;
1887 
1888 	cpu = all_cpu_data[cpunum];
1889 
1890 	if (!cpu) {
1891 		cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
1892 		if (!cpu)
1893 			return -ENOMEM;
1894 
1895 		all_cpu_data[cpunum] = cpu;
1896 
1897 		cpu->epp_default = -EINVAL;
1898 		cpu->epp_powersave = -EINVAL;
1899 		cpu->epp_saved = -EINVAL;
1900 	}
1901 
1902 	cpu = all_cpu_data[cpunum];
1903 
1904 	cpu->cpu = cpunum;
1905 
1906 	if (hwp_active) {
1907 		const struct x86_cpu_id *id;
1908 
1909 		id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
1910 		if (id)
1911 			intel_pstate_disable_ee(cpunum);
1912 
1913 		intel_pstate_hwp_enable(cpu);
1914 	} else if (pid_in_use()) {
1915 		intel_pstate_pid_reset(cpu);
1916 	}
1917 
1918 	intel_pstate_get_cpu_pstates(cpu);
1919 
1920 	pr_debug("controlling: cpu %d\n", cpunum);
1921 
1922 	return 0;
1923 }
1924 
1925 static unsigned int intel_pstate_get(unsigned int cpu_num)
1926 {
1927 	struct cpudata *cpu = all_cpu_data[cpu_num];
1928 
1929 	return cpu ? get_avg_frequency(cpu) : 0;
1930 }
1931 
1932 static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
1933 {
1934 	struct cpudata *cpu = all_cpu_data[cpu_num];
1935 
1936 	if (cpu->update_util_set)
1937 		return;
1938 
1939 	/* Prevent intel_pstate_update_util() from using stale data. */
1940 	cpu->sample.time = 0;
1941 	cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
1942 				     pstate_funcs.update_util);
1943 	cpu->update_util_set = true;
1944 }
1945 
1946 static void intel_pstate_clear_update_util_hook(unsigned int cpu)
1947 {
1948 	struct cpudata *cpu_data = all_cpu_data[cpu];
1949 
1950 	if (!cpu_data->update_util_set)
1951 		return;
1952 
1953 	cpufreq_remove_update_util_hook(cpu);
1954 	cpu_data->update_util_set = false;
1955 	synchronize_sched();
1956 }
1957 
1958 static int intel_pstate_get_max_freq(struct cpudata *cpu)
1959 {
1960 	return global.turbo_disabled || global.no_turbo ?
1961 			cpu->pstate.max_freq : cpu->pstate.turbo_freq;
1962 }
1963 
1964 static void intel_pstate_update_perf_limits(struct cpufreq_policy *policy,
1965 					    struct cpudata *cpu)
1966 {
1967 	int max_freq = intel_pstate_get_max_freq(cpu);
1968 	int32_t max_policy_perf, min_policy_perf;
1969 
1970 	max_policy_perf = div_ext_fp(policy->max, max_freq);
1971 	max_policy_perf = clamp_t(int32_t, max_policy_perf, 0, int_ext_tofp(1));
1972 	if (policy->max == policy->min) {
1973 		min_policy_perf = max_policy_perf;
1974 	} else {
1975 		min_policy_perf = div_ext_fp(policy->min, max_freq);
1976 		min_policy_perf = clamp_t(int32_t, min_policy_perf,
1977 					  0, max_policy_perf);
1978 	}
1979 
1980 	/* Normalize user input to [min_perf, max_perf] */
1981 	if (per_cpu_limits) {
1982 		cpu->min_perf = min_policy_perf;
1983 		cpu->max_perf = max_policy_perf;
1984 	} else {
1985 		int32_t global_min, global_max;
1986 
1987 		/* Global limits are in percent of the maximum turbo P-state. */
1988 		global_max = percent_ext_fp(global.max_perf_pct);
1989 		global_min = percent_ext_fp(global.min_perf_pct);
1990 		if (max_freq != cpu->pstate.turbo_freq) {
1991 			int32_t turbo_factor;
1992 
1993 			turbo_factor = div_ext_fp(cpu->pstate.turbo_pstate,
1994 						  cpu->pstate.max_pstate);
1995 			global_min = mul_ext_fp(global_min, turbo_factor);
1996 			global_max = mul_ext_fp(global_max, turbo_factor);
1997 		}
1998 		global_min = clamp_t(int32_t, global_min, 0, global_max);
1999 
2000 		cpu->min_perf = max(min_policy_perf, global_min);
2001 		cpu->min_perf = min(cpu->min_perf, max_policy_perf);
2002 		cpu->max_perf = min(max_policy_perf, global_max);
2003 		cpu->max_perf = max(min_policy_perf, cpu->max_perf);
2004 
2005 		/* Make sure min_perf <= max_perf */
2006 		cpu->min_perf = min(cpu->min_perf, cpu->max_perf);
2007 	}
2008 
2009 	cpu->max_perf = round_up(cpu->max_perf, EXT_FRAC_BITS);
2010 	cpu->min_perf = round_up(cpu->min_perf, EXT_FRAC_BITS);
2011 
2012 	pr_debug("cpu:%d max_perf_pct:%d min_perf_pct:%d\n", policy->cpu,
2013 		 fp_ext_toint(cpu->max_perf * 100),
2014 		 fp_ext_toint(cpu->min_perf * 100));
2015 }
2016 
2017 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
2018 {
2019 	struct cpudata *cpu;
2020 
2021 	if (!policy->cpuinfo.max_freq)
2022 		return -ENODEV;
2023 
2024 	pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
2025 		 policy->cpuinfo.max_freq, policy->max);
2026 
2027 	cpu = all_cpu_data[policy->cpu];
2028 	cpu->policy = policy->policy;
2029 
2030 	mutex_lock(&intel_pstate_limits_lock);
2031 
2032 	intel_pstate_update_perf_limits(policy, cpu);
2033 
2034 	if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
2035 		/*
2036 		 * NOHZ_FULL CPUs need this as the governor callback may not
2037 		 * be invoked on them.
2038 		 */
2039 		intel_pstate_clear_update_util_hook(policy->cpu);
2040 		intel_pstate_max_within_limits(cpu);
2041 	}
2042 
2043 	intel_pstate_set_update_util_hook(policy->cpu);
2044 
2045 	if (hwp_active)
2046 		intel_pstate_hwp_set(policy->cpu);
2047 
2048 	mutex_unlock(&intel_pstate_limits_lock);
2049 
2050 	return 0;
2051 }
2052 
2053 static void intel_pstate_adjust_policy_max(struct cpufreq_policy *policy,
2054 					 struct cpudata *cpu)
2055 {
2056 	if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
2057 	    policy->max < policy->cpuinfo.max_freq &&
2058 	    policy->max > cpu->pstate.max_freq) {
2059 		pr_debug("policy->max > max non turbo frequency\n");
2060 		policy->max = policy->cpuinfo.max_freq;
2061 	}
2062 }
2063 
2064 static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
2065 {
2066 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2067 
2068 	update_turbo_state();
2069 	cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
2070 				     intel_pstate_get_max_freq(cpu));
2071 
2072 	if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
2073 	    policy->policy != CPUFREQ_POLICY_PERFORMANCE)
2074 		return -EINVAL;
2075 
2076 	intel_pstate_adjust_policy_max(policy, cpu);
2077 
2078 	return 0;
2079 }
2080 
2081 static void intel_cpufreq_stop_cpu(struct cpufreq_policy *policy)
2082 {
2083 	intel_pstate_set_min_pstate(all_cpu_data[policy->cpu]);
2084 }
2085 
2086 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
2087 {
2088 	pr_debug("CPU %d exiting\n", policy->cpu);
2089 
2090 	intel_pstate_clear_update_util_hook(policy->cpu);
2091 	if (hwp_active)
2092 		intel_pstate_hwp_save_state(policy);
2093 	else
2094 		intel_cpufreq_stop_cpu(policy);
2095 }
2096 
2097 static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
2098 {
2099 	intel_pstate_exit_perf_limits(policy);
2100 
2101 	policy->fast_switch_possible = false;
2102 
2103 	return 0;
2104 }
2105 
2106 static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2107 {
2108 	struct cpudata *cpu;
2109 	int rc;
2110 
2111 	rc = intel_pstate_init_cpu(policy->cpu);
2112 	if (rc)
2113 		return rc;
2114 
2115 	cpu = all_cpu_data[policy->cpu];
2116 
2117 	cpu->max_perf = int_ext_tofp(1);
2118 	cpu->min_perf = 0;
2119 
2120 	policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
2121 	policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
2122 
2123 	/* cpuinfo and default policy values */
2124 	policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
2125 	update_turbo_state();
2126 	policy->cpuinfo.max_freq = global.turbo_disabled ?
2127 			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2128 	policy->cpuinfo.max_freq *= cpu->pstate.scaling;
2129 
2130 	intel_pstate_init_acpi_perf_limits(policy);
2131 	cpumask_set_cpu(policy->cpu, policy->cpus);
2132 
2133 	policy->fast_switch_possible = true;
2134 
2135 	return 0;
2136 }
2137 
2138 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2139 {
2140 	int ret = __intel_pstate_cpu_init(policy);
2141 
2142 	if (ret)
2143 		return ret;
2144 
2145 	policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
2146 	if (IS_ENABLED(CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE))
2147 		policy->policy = CPUFREQ_POLICY_PERFORMANCE;
2148 	else
2149 		policy->policy = CPUFREQ_POLICY_POWERSAVE;
2150 
2151 	return 0;
2152 }
2153 
2154 static struct cpufreq_driver intel_pstate = {
2155 	.flags		= CPUFREQ_CONST_LOOPS,
2156 	.verify		= intel_pstate_verify_policy,
2157 	.setpolicy	= intel_pstate_set_policy,
2158 	.suspend	= intel_pstate_hwp_save_state,
2159 	.resume		= intel_pstate_resume,
2160 	.get		= intel_pstate_get,
2161 	.init		= intel_pstate_cpu_init,
2162 	.exit		= intel_pstate_cpu_exit,
2163 	.stop_cpu	= intel_pstate_stop_cpu,
2164 	.name		= "intel_pstate",
2165 };
2166 
2167 static int intel_cpufreq_verify_policy(struct cpufreq_policy *policy)
2168 {
2169 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2170 
2171 	update_turbo_state();
2172 	cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
2173 				     intel_pstate_get_max_freq(cpu));
2174 
2175 	intel_pstate_adjust_policy_max(policy, cpu);
2176 
2177 	intel_pstate_update_perf_limits(policy, cpu);
2178 
2179 	return 0;
2180 }
2181 
2182 static int intel_cpufreq_target(struct cpufreq_policy *policy,
2183 				unsigned int target_freq,
2184 				unsigned int relation)
2185 {
2186 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2187 	struct cpufreq_freqs freqs;
2188 	int target_pstate;
2189 
2190 	update_turbo_state();
2191 
2192 	freqs.old = policy->cur;
2193 	freqs.new = target_freq;
2194 
2195 	cpufreq_freq_transition_begin(policy, &freqs);
2196 	switch (relation) {
2197 	case CPUFREQ_RELATION_L:
2198 		target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
2199 		break;
2200 	case CPUFREQ_RELATION_H:
2201 		target_pstate = freqs.new / cpu->pstate.scaling;
2202 		break;
2203 	default:
2204 		target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
2205 		break;
2206 	}
2207 	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2208 	if (target_pstate != cpu->pstate.current_pstate) {
2209 		cpu->pstate.current_pstate = target_pstate;
2210 		wrmsrl_on_cpu(policy->cpu, MSR_IA32_PERF_CTL,
2211 			      pstate_funcs.get_val(cpu, target_pstate));
2212 	}
2213 	freqs.new = target_pstate * cpu->pstate.scaling;
2214 	cpufreq_freq_transition_end(policy, &freqs, false);
2215 
2216 	return 0;
2217 }
2218 
2219 static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
2220 					      unsigned int target_freq)
2221 {
2222 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2223 	int target_pstate;
2224 
2225 	update_turbo_state();
2226 
2227 	target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
2228 	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2229 	intel_pstate_update_pstate(cpu, target_pstate);
2230 	return target_pstate * cpu->pstate.scaling;
2231 }
2232 
2233 static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
2234 {
2235 	int ret = __intel_pstate_cpu_init(policy);
2236 
2237 	if (ret)
2238 		return ret;
2239 
2240 	policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
2241 	policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY;
2242 	/* This reflects the intel_pstate_get_cpu_pstates() setting. */
2243 	policy->cur = policy->cpuinfo.min_freq;
2244 
2245 	return 0;
2246 }
2247 
2248 static struct cpufreq_driver intel_cpufreq = {
2249 	.flags		= CPUFREQ_CONST_LOOPS,
2250 	.verify		= intel_cpufreq_verify_policy,
2251 	.target		= intel_cpufreq_target,
2252 	.fast_switch	= intel_cpufreq_fast_switch,
2253 	.init		= intel_cpufreq_cpu_init,
2254 	.exit		= intel_pstate_cpu_exit,
2255 	.stop_cpu	= intel_cpufreq_stop_cpu,
2256 	.name		= "intel_cpufreq",
2257 };
2258 
2259 static struct cpufreq_driver *default_driver = &intel_pstate;
2260 
2261 static bool pid_in_use(void)
2262 {
2263 	return intel_pstate_driver == &intel_pstate &&
2264 		pstate_funcs.update_util == intel_pstate_update_util_pid;
2265 }
2266 
2267 static void intel_pstate_driver_cleanup(void)
2268 {
2269 	unsigned int cpu;
2270 
2271 	get_online_cpus();
2272 	for_each_online_cpu(cpu) {
2273 		if (all_cpu_data[cpu]) {
2274 			if (intel_pstate_driver == &intel_pstate)
2275 				intel_pstate_clear_update_util_hook(cpu);
2276 
2277 			kfree(all_cpu_data[cpu]);
2278 			all_cpu_data[cpu] = NULL;
2279 		}
2280 	}
2281 	put_online_cpus();
2282 	intel_pstate_driver = NULL;
2283 }
2284 
2285 static int intel_pstate_register_driver(struct cpufreq_driver *driver)
2286 {
2287 	int ret;
2288 
2289 	memset(&global, 0, sizeof(global));
2290 	global.max_perf_pct = 100;
2291 
2292 	intel_pstate_driver = driver;
2293 	ret = cpufreq_register_driver(intel_pstate_driver);
2294 	if (ret) {
2295 		intel_pstate_driver_cleanup();
2296 		return ret;
2297 	}
2298 
2299 	global.min_perf_pct = min_perf_pct_min();
2300 
2301 	if (pid_in_use())
2302 		intel_pstate_debug_expose_params();
2303 
2304 	return 0;
2305 }
2306 
2307 static int intel_pstate_unregister_driver(void)
2308 {
2309 	if (hwp_active)
2310 		return -EBUSY;
2311 
2312 	if (pid_in_use())
2313 		intel_pstate_debug_hide_params();
2314 
2315 	cpufreq_unregister_driver(intel_pstate_driver);
2316 	intel_pstate_driver_cleanup();
2317 
2318 	return 0;
2319 }
2320 
2321 static ssize_t intel_pstate_show_status(char *buf)
2322 {
2323 	if (!intel_pstate_driver)
2324 		return sprintf(buf, "off\n");
2325 
2326 	return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
2327 					"active" : "passive");
2328 }
2329 
2330 static int intel_pstate_update_status(const char *buf, size_t size)
2331 {
2332 	int ret;
2333 
2334 	if (size == 3 && !strncmp(buf, "off", size))
2335 		return intel_pstate_driver ?
2336 			intel_pstate_unregister_driver() : -EINVAL;
2337 
2338 	if (size == 6 && !strncmp(buf, "active", size)) {
2339 		if (intel_pstate_driver) {
2340 			if (intel_pstate_driver == &intel_pstate)
2341 				return 0;
2342 
2343 			ret = intel_pstate_unregister_driver();
2344 			if (ret)
2345 				return ret;
2346 		}
2347 
2348 		return intel_pstate_register_driver(&intel_pstate);
2349 	}
2350 
2351 	if (size == 7 && !strncmp(buf, "passive", size)) {
2352 		if (intel_pstate_driver) {
2353 			if (intel_pstate_driver == &intel_cpufreq)
2354 				return 0;
2355 
2356 			ret = intel_pstate_unregister_driver();
2357 			if (ret)
2358 				return ret;
2359 		}
2360 
2361 		return intel_pstate_register_driver(&intel_cpufreq);
2362 	}
2363 
2364 	return -EINVAL;
2365 }
2366 
2367 static int no_load __initdata;
2368 static int no_hwp __initdata;
2369 static int hwp_only __initdata;
2370 static unsigned int force_load __initdata;
2371 
2372 static int __init intel_pstate_msrs_not_valid(void)
2373 {
2374 	if (!pstate_funcs.get_max() ||
2375 	    !pstate_funcs.get_min() ||
2376 	    !pstate_funcs.get_turbo())
2377 		return -ENODEV;
2378 
2379 	return 0;
2380 }
2381 
2382 #ifdef CONFIG_ACPI
2383 static void intel_pstate_use_acpi_profile(void)
2384 {
2385 	switch (acpi_gbl_FADT.preferred_profile) {
2386 	case PM_MOBILE:
2387 	case PM_TABLET:
2388 	case PM_APPLIANCE_PC:
2389 	case PM_DESKTOP:
2390 	case PM_WORKSTATION:
2391 		pstate_funcs.update_util = intel_pstate_update_util;
2392 	}
2393 }
2394 #else
2395 static void intel_pstate_use_acpi_profile(void)
2396 {
2397 }
2398 #endif
2399 
2400 static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
2401 {
2402 	pstate_funcs.get_max   = funcs->get_max;
2403 	pstate_funcs.get_max_physical = funcs->get_max_physical;
2404 	pstate_funcs.get_min   = funcs->get_min;
2405 	pstate_funcs.get_turbo = funcs->get_turbo;
2406 	pstate_funcs.get_scaling = funcs->get_scaling;
2407 	pstate_funcs.get_val   = funcs->get_val;
2408 	pstate_funcs.get_vid   = funcs->get_vid;
2409 	pstate_funcs.update_util = funcs->update_util;
2410 
2411 	intel_pstate_use_acpi_profile();
2412 }
2413 
2414 #ifdef CONFIG_ACPI
2415 
2416 static bool __init intel_pstate_no_acpi_pss(void)
2417 {
2418 	int i;
2419 
2420 	for_each_possible_cpu(i) {
2421 		acpi_status status;
2422 		union acpi_object *pss;
2423 		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
2424 		struct acpi_processor *pr = per_cpu(processors, i);
2425 
2426 		if (!pr)
2427 			continue;
2428 
2429 		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
2430 		if (ACPI_FAILURE(status))
2431 			continue;
2432 
2433 		pss = buffer.pointer;
2434 		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
2435 			kfree(pss);
2436 			return false;
2437 		}
2438 
2439 		kfree(pss);
2440 	}
2441 
2442 	return true;
2443 }
2444 
2445 static bool __init intel_pstate_has_acpi_ppc(void)
2446 {
2447 	int i;
2448 
2449 	for_each_possible_cpu(i) {
2450 		struct acpi_processor *pr = per_cpu(processors, i);
2451 
2452 		if (!pr)
2453 			continue;
2454 		if (acpi_has_method(pr->handle, "_PPC"))
2455 			return true;
2456 	}
2457 	return false;
2458 }
2459 
2460 enum {
2461 	PSS,
2462 	PPC,
2463 };
2464 
2465 struct hw_vendor_info {
2466 	u16  valid;
2467 	char oem_id[ACPI_OEM_ID_SIZE];
2468 	char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
2469 	int  oem_pwr_table;
2470 };
2471 
2472 /* Hardware vendor-specific info that has its own power management modes */
2473 static struct hw_vendor_info vendor_info[] __initdata = {
2474 	{1, "HP    ", "ProLiant", PSS},
2475 	{1, "ORACLE", "X4-2    ", PPC},
2476 	{1, "ORACLE", "X4-2L   ", PPC},
2477 	{1, "ORACLE", "X4-2B   ", PPC},
2478 	{1, "ORACLE", "X3-2    ", PPC},
2479 	{1, "ORACLE", "X3-2L   ", PPC},
2480 	{1, "ORACLE", "X3-2B   ", PPC},
2481 	{1, "ORACLE", "X4470M2 ", PPC},
2482 	{1, "ORACLE", "X4270M3 ", PPC},
2483 	{1, "ORACLE", "X4270M2 ", PPC},
2484 	{1, "ORACLE", "X4170M2 ", PPC},
2485 	{1, "ORACLE", "X4170 M3", PPC},
2486 	{1, "ORACLE", "X4275 M3", PPC},
2487 	{1, "ORACLE", "X6-2    ", PPC},
2488 	{1, "ORACLE", "Sudbury ", PPC},
2489 	{0, "", ""},
2490 };
2491 
2492 static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
2493 {
2494 	struct acpi_table_header hdr;
2495 	struct hw_vendor_info *v_info;
2496 	const struct x86_cpu_id *id;
2497 	u64 misc_pwr;
2498 
2499 	id = x86_match_cpu(intel_pstate_cpu_oob_ids);
2500 	if (id) {
2501 		rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
2502 		if ( misc_pwr & (1 << 8))
2503 			return true;
2504 	}
2505 
2506 	if (acpi_disabled ||
2507 	    ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
2508 		return false;
2509 
2510 	for (v_info = vendor_info; v_info->valid; v_info++) {
2511 		if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
2512 			!strncmp(hdr.oem_table_id, v_info->oem_table_id,
2513 						ACPI_OEM_TABLE_ID_SIZE))
2514 			switch (v_info->oem_pwr_table) {
2515 			case PSS:
2516 				return intel_pstate_no_acpi_pss();
2517 			case PPC:
2518 				return intel_pstate_has_acpi_ppc() &&
2519 					(!force_load);
2520 			}
2521 	}
2522 
2523 	return false;
2524 }
2525 
2526 static void intel_pstate_request_control_from_smm(void)
2527 {
2528 	/*
2529 	 * It may be unsafe to request P-states control from SMM if _PPC support
2530 	 * has not been enabled.
2531 	 */
2532 	if (acpi_ppc)
2533 		acpi_processor_pstate_control();
2534 }
2535 #else /* CONFIG_ACPI not enabled */
2536 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
2537 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
2538 static inline void intel_pstate_request_control_from_smm(void) {}
2539 #endif /* CONFIG_ACPI */
2540 
2541 static const struct x86_cpu_id hwp_support_ids[] __initconst = {
2542 	{ X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
2543 	{}
2544 };
2545 
2546 static int __init intel_pstate_init(void)
2547 {
2548 	int rc;
2549 
2550 	if (no_load)
2551 		return -ENODEV;
2552 
2553 	if (x86_match_cpu(hwp_support_ids)) {
2554 		copy_cpu_funcs(&core_funcs);
2555 		if (no_hwp) {
2556 			pstate_funcs.update_util = intel_pstate_update_util;
2557 		} else {
2558 			hwp_active++;
2559 			intel_pstate.attr = hwp_cpufreq_attrs;
2560 			pstate_funcs.update_util = intel_pstate_update_util_hwp;
2561 			goto hwp_cpu_matched;
2562 		}
2563 	} else {
2564 		const struct x86_cpu_id *id;
2565 
2566 		id = x86_match_cpu(intel_pstate_cpu_ids);
2567 		if (!id)
2568 			return -ENODEV;
2569 
2570 		copy_cpu_funcs((struct pstate_funcs *)id->driver_data);
2571 	}
2572 
2573 	if (intel_pstate_msrs_not_valid())
2574 		return -ENODEV;
2575 
2576 hwp_cpu_matched:
2577 	/*
2578 	 * The Intel pstate driver will be ignored if the platform
2579 	 * firmware has its own power management modes.
2580 	 */
2581 	if (intel_pstate_platform_pwr_mgmt_exists())
2582 		return -ENODEV;
2583 
2584 	if (!hwp_active && hwp_only)
2585 		return -ENOTSUPP;
2586 
2587 	pr_info("Intel P-state driver initializing\n");
2588 
2589 	all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
2590 	if (!all_cpu_data)
2591 		return -ENOMEM;
2592 
2593 	intel_pstate_request_control_from_smm();
2594 
2595 	intel_pstate_sysfs_expose_params();
2596 
2597 	mutex_lock(&intel_pstate_driver_lock);
2598 	rc = intel_pstate_register_driver(default_driver);
2599 	mutex_unlock(&intel_pstate_driver_lock);
2600 	if (rc)
2601 		return rc;
2602 
2603 	if (hwp_active)
2604 		pr_info("HWP enabled\n");
2605 
2606 	return 0;
2607 }
2608 device_initcall(intel_pstate_init);
2609 
2610 static int __init intel_pstate_setup(char *str)
2611 {
2612 	if (!str)
2613 		return -EINVAL;
2614 
2615 	if (!strcmp(str, "disable")) {
2616 		no_load = 1;
2617 	} else if (!strcmp(str, "passive")) {
2618 		pr_info("Passive mode enabled\n");
2619 		default_driver = &intel_cpufreq;
2620 		no_hwp = 1;
2621 	}
2622 	if (!strcmp(str, "no_hwp")) {
2623 		pr_info("HWP disabled\n");
2624 		no_hwp = 1;
2625 	}
2626 	if (!strcmp(str, "force"))
2627 		force_load = 1;
2628 	if (!strcmp(str, "hwp_only"))
2629 		hwp_only = 1;
2630 	if (!strcmp(str, "per_cpu_perf_limits"))
2631 		per_cpu_limits = true;
2632 
2633 #ifdef CONFIG_ACPI
2634 	if (!strcmp(str, "support_acpi_ppc"))
2635 		acpi_ppc = true;
2636 #endif
2637 
2638 	return 0;
2639 }
2640 early_param("intel_pstate", intel_pstate_setup);
2641 
2642 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
2643 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
2644 MODULE_LICENSE("GPL");
2645