1 /*
2  * intel_pstate.c: Native P state management for Intel processors
3  *
4  * (C) Copyright 2012 Intel Corporation
5  * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; version 2
10  * of the License.
11  */
12 
13 #include <linux/kernel.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/module.h>
16 #include <linux/ktime.h>
17 #include <linux/hrtimer.h>
18 #include <linux/tick.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/list.h>
22 #include <linux/cpu.h>
23 #include <linux/cpufreq.h>
24 #include <linux/sysfs.h>
25 #include <linux/types.h>
26 #include <linux/fs.h>
27 #include <linux/debugfs.h>
28 #include <linux/acpi.h>
29 #include <trace/events/power.h>
30 
31 #include <asm/div64.h>
32 #include <asm/msr.h>
33 #include <asm/cpu_device_id.h>
34 
35 #define SAMPLE_COUNT		3
36 
37 #define BYT_RATIOS		0x66a
38 #define BYT_VIDS		0x66b
39 #define BYT_TURBO_RATIOS	0x66c
40 
41 
42 #define FRAC_BITS 6
43 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
44 #define fp_toint(X) ((X) >> FRAC_BITS)
45 #define FP_ROUNDUP(X) ((X) += 1 << FRAC_BITS)
46 
47 static inline int32_t mul_fp(int32_t x, int32_t y)
48 {
49 	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
50 }
51 
52 static inline int32_t div_fp(int32_t x, int32_t y)
53 {
54 	return div_s64((int64_t)x << FRAC_BITS, (int64_t)y);
55 }
56 
57 struct sample {
58 	int32_t core_pct_busy;
59 	u64 aperf;
60 	u64 mperf;
61 	unsigned long long tsc;
62 	int freq;
63 };
64 
65 struct pstate_data {
66 	int	current_pstate;
67 	int	min_pstate;
68 	int	max_pstate;
69 	int	turbo_pstate;
70 };
71 
72 struct vid_data {
73 	int32_t min;
74 	int32_t max;
75 	int32_t ratio;
76 };
77 
78 struct _pid {
79 	int setpoint;
80 	int32_t integral;
81 	int32_t p_gain;
82 	int32_t i_gain;
83 	int32_t d_gain;
84 	int deadband;
85 	int32_t last_err;
86 };
87 
88 struct cpudata {
89 	int cpu;
90 
91 	char name[64];
92 
93 	struct timer_list timer;
94 
95 	struct pstate_data pstate;
96 	struct vid_data vid;
97 	struct _pid pid;
98 
99 	u64	prev_aperf;
100 	u64	prev_mperf;
101 	unsigned long long prev_tsc;
102 	int	sample_ptr;
103 	struct sample samples[SAMPLE_COUNT];
104 };
105 
106 static struct cpudata **all_cpu_data;
107 struct pstate_adjust_policy {
108 	int sample_rate_ms;
109 	int deadband;
110 	int setpoint;
111 	int p_gain_pct;
112 	int d_gain_pct;
113 	int i_gain_pct;
114 };
115 
116 struct pstate_funcs {
117 	int (*get_max)(void);
118 	int (*get_min)(void);
119 	int (*get_turbo)(void);
120 	void (*set)(struct cpudata*, int pstate);
121 	void (*get_vid)(struct cpudata *);
122 };
123 
124 struct cpu_defaults {
125 	struct pstate_adjust_policy pid_policy;
126 	struct pstate_funcs funcs;
127 };
128 
129 static struct pstate_adjust_policy pid_params;
130 static struct pstate_funcs pstate_funcs;
131 
132 struct perf_limits {
133 	int no_turbo;
134 	int max_perf_pct;
135 	int min_perf_pct;
136 	int32_t max_perf;
137 	int32_t min_perf;
138 	int max_policy_pct;
139 	int max_sysfs_pct;
140 };
141 
142 static struct perf_limits limits = {
143 	.no_turbo = 0,
144 	.max_perf_pct = 100,
145 	.max_perf = int_tofp(1),
146 	.min_perf_pct = 0,
147 	.min_perf = 0,
148 	.max_policy_pct = 100,
149 	.max_sysfs_pct = 100,
150 };
151 
152 static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
153 			int deadband, int integral) {
154 	pid->setpoint = setpoint;
155 	pid->deadband  = deadband;
156 	pid->integral  = int_tofp(integral);
157 	pid->last_err  = setpoint - busy;
158 }
159 
160 static inline void pid_p_gain_set(struct _pid *pid, int percent)
161 {
162 	pid->p_gain = div_fp(int_tofp(percent), int_tofp(100));
163 }
164 
165 static inline void pid_i_gain_set(struct _pid *pid, int percent)
166 {
167 	pid->i_gain = div_fp(int_tofp(percent), int_tofp(100));
168 }
169 
170 static inline void pid_d_gain_set(struct _pid *pid, int percent)
171 {
172 
173 	pid->d_gain = div_fp(int_tofp(percent), int_tofp(100));
174 }
175 
176 static signed int pid_calc(struct _pid *pid, int32_t busy)
177 {
178 	signed int result;
179 	int32_t pterm, dterm, fp_error;
180 	int32_t integral_limit;
181 
182 	fp_error = int_tofp(pid->setpoint) - busy;
183 
184 	if (abs(fp_error) <= int_tofp(pid->deadband))
185 		return 0;
186 
187 	pterm = mul_fp(pid->p_gain, fp_error);
188 
189 	pid->integral += fp_error;
190 
191 	/* limit the integral term */
192 	integral_limit = int_tofp(30);
193 	if (pid->integral > integral_limit)
194 		pid->integral = integral_limit;
195 	if (pid->integral < -integral_limit)
196 		pid->integral = -integral_limit;
197 
198 	dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
199 	pid->last_err = fp_error;
200 
201 	result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
202 
203 	return (signed int)fp_toint(result);
204 }
205 
206 static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
207 {
208 	pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
209 	pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
210 	pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
211 
212 	pid_reset(&cpu->pid,
213 		pid_params.setpoint,
214 		100,
215 		pid_params.deadband,
216 		0);
217 }
218 
219 static inline void intel_pstate_reset_all_pid(void)
220 {
221 	unsigned int cpu;
222 	for_each_online_cpu(cpu) {
223 		if (all_cpu_data[cpu])
224 			intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
225 	}
226 }
227 
228 /************************** debugfs begin ************************/
229 static int pid_param_set(void *data, u64 val)
230 {
231 	*(u32 *)data = val;
232 	intel_pstate_reset_all_pid();
233 	return 0;
234 }
235 static int pid_param_get(void *data, u64 *val)
236 {
237 	*val = *(u32 *)data;
238 	return 0;
239 }
240 DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get,
241 			pid_param_set, "%llu\n");
242 
243 struct pid_param {
244 	char *name;
245 	void *value;
246 };
247 
248 static struct pid_param pid_files[] = {
249 	{"sample_rate_ms", &pid_params.sample_rate_ms},
250 	{"d_gain_pct", &pid_params.d_gain_pct},
251 	{"i_gain_pct", &pid_params.i_gain_pct},
252 	{"deadband", &pid_params.deadband},
253 	{"setpoint", &pid_params.setpoint},
254 	{"p_gain_pct", &pid_params.p_gain_pct},
255 	{NULL, NULL}
256 };
257 
258 static struct dentry *debugfs_parent;
259 static void intel_pstate_debug_expose_params(void)
260 {
261 	int i = 0;
262 
263 	debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
264 	if (IS_ERR_OR_NULL(debugfs_parent))
265 		return;
266 	while (pid_files[i].name) {
267 		debugfs_create_file(pid_files[i].name, 0660,
268 				debugfs_parent, pid_files[i].value,
269 				&fops_pid_param);
270 		i++;
271 	}
272 }
273 
274 /************************** debugfs end ************************/
275 
276 /************************** sysfs begin ************************/
277 #define show_one(file_name, object)					\
278 	static ssize_t show_##file_name					\
279 	(struct kobject *kobj, struct attribute *attr, char *buf)	\
280 	{								\
281 		return sprintf(buf, "%u\n", limits.object);		\
282 	}
283 
284 static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
285 				const char *buf, size_t count)
286 {
287 	unsigned int input;
288 	int ret;
289 	ret = sscanf(buf, "%u", &input);
290 	if (ret != 1)
291 		return -EINVAL;
292 	limits.no_turbo = clamp_t(int, input, 0 , 1);
293 
294 	return count;
295 }
296 
297 static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
298 				const char *buf, size_t count)
299 {
300 	unsigned int input;
301 	int ret;
302 	ret = sscanf(buf, "%u", &input);
303 	if (ret != 1)
304 		return -EINVAL;
305 
306 	limits.max_sysfs_pct = clamp_t(int, input, 0 , 100);
307 	limits.max_perf_pct = min(limits.max_policy_pct, limits.max_sysfs_pct);
308 	limits.max_perf = div_fp(int_tofp(limits.max_perf_pct), int_tofp(100));
309 	return count;
310 }
311 
312 static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
313 				const char *buf, size_t count)
314 {
315 	unsigned int input;
316 	int ret;
317 	ret = sscanf(buf, "%u", &input);
318 	if (ret != 1)
319 		return -EINVAL;
320 	limits.min_perf_pct = clamp_t(int, input, 0 , 100);
321 	limits.min_perf = div_fp(int_tofp(limits.min_perf_pct), int_tofp(100));
322 
323 	return count;
324 }
325 
326 show_one(no_turbo, no_turbo);
327 show_one(max_perf_pct, max_perf_pct);
328 show_one(min_perf_pct, min_perf_pct);
329 
330 define_one_global_rw(no_turbo);
331 define_one_global_rw(max_perf_pct);
332 define_one_global_rw(min_perf_pct);
333 
334 static struct attribute *intel_pstate_attributes[] = {
335 	&no_turbo.attr,
336 	&max_perf_pct.attr,
337 	&min_perf_pct.attr,
338 	NULL
339 };
340 
341 static struct attribute_group intel_pstate_attr_group = {
342 	.attrs = intel_pstate_attributes,
343 };
344 static struct kobject *intel_pstate_kobject;
345 
346 static void intel_pstate_sysfs_expose_params(void)
347 {
348 	int rc;
349 
350 	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
351 						&cpu_subsys.dev_root->kobj);
352 	BUG_ON(!intel_pstate_kobject);
353 	rc = sysfs_create_group(intel_pstate_kobject,
354 				&intel_pstate_attr_group);
355 	BUG_ON(rc);
356 }
357 
358 /************************** sysfs end ************************/
359 static int byt_get_min_pstate(void)
360 {
361 	u64 value;
362 	rdmsrl(BYT_RATIOS, value);
363 	return (value >> 8) & 0xFF;
364 }
365 
366 static int byt_get_max_pstate(void)
367 {
368 	u64 value;
369 	rdmsrl(BYT_RATIOS, value);
370 	return (value >> 16) & 0xFF;
371 }
372 
373 static int byt_get_turbo_pstate(void)
374 {
375 	u64 value;
376 	rdmsrl(BYT_TURBO_RATIOS, value);
377 	return value & 0x3F;
378 }
379 
380 static void byt_set_pstate(struct cpudata *cpudata, int pstate)
381 {
382 	u64 val;
383 	int32_t vid_fp;
384 	u32 vid;
385 
386 	val = pstate << 8;
387 	if (limits.no_turbo)
388 		val |= (u64)1 << 32;
389 
390 	vid_fp = cpudata->vid.min + mul_fp(
391 		int_tofp(pstate - cpudata->pstate.min_pstate),
392 		cpudata->vid.ratio);
393 
394 	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
395 	vid = fp_toint(vid_fp);
396 
397 	val |= vid;
398 
399 	wrmsrl(MSR_IA32_PERF_CTL, val);
400 }
401 
402 static void byt_get_vid(struct cpudata *cpudata)
403 {
404 	u64 value;
405 
406 	rdmsrl(BYT_VIDS, value);
407 	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
408 	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
409 	cpudata->vid.ratio = div_fp(
410 		cpudata->vid.max - cpudata->vid.min,
411 		int_tofp(cpudata->pstate.max_pstate -
412 			cpudata->pstate.min_pstate));
413 }
414 
415 
416 static int core_get_min_pstate(void)
417 {
418 	u64 value;
419 	rdmsrl(MSR_PLATFORM_INFO, value);
420 	return (value >> 40) & 0xFF;
421 }
422 
423 static int core_get_max_pstate(void)
424 {
425 	u64 value;
426 	rdmsrl(MSR_PLATFORM_INFO, value);
427 	return (value >> 8) & 0xFF;
428 }
429 
430 static int core_get_turbo_pstate(void)
431 {
432 	u64 value;
433 	int nont, ret;
434 	rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
435 	nont = core_get_max_pstate();
436 	ret = ((value) & 255);
437 	if (ret <= nont)
438 		ret = nont;
439 	return ret;
440 }
441 
442 static void core_set_pstate(struct cpudata *cpudata, int pstate)
443 {
444 	u64 val;
445 
446 	val = pstate << 8;
447 	if (limits.no_turbo)
448 		val |= (u64)1 << 32;
449 
450 	wrmsrl(MSR_IA32_PERF_CTL, val);
451 }
452 
453 static struct cpu_defaults core_params = {
454 	.pid_policy = {
455 		.sample_rate_ms = 10,
456 		.deadband = 0,
457 		.setpoint = 97,
458 		.p_gain_pct = 20,
459 		.d_gain_pct = 0,
460 		.i_gain_pct = 0,
461 	},
462 	.funcs = {
463 		.get_max = core_get_max_pstate,
464 		.get_min = core_get_min_pstate,
465 		.get_turbo = core_get_turbo_pstate,
466 		.set = core_set_pstate,
467 	},
468 };
469 
470 static struct cpu_defaults byt_params = {
471 	.pid_policy = {
472 		.sample_rate_ms = 10,
473 		.deadband = 0,
474 		.setpoint = 97,
475 		.p_gain_pct = 14,
476 		.d_gain_pct = 0,
477 		.i_gain_pct = 4,
478 	},
479 	.funcs = {
480 		.get_max = byt_get_max_pstate,
481 		.get_min = byt_get_min_pstate,
482 		.get_turbo = byt_get_turbo_pstate,
483 		.set = byt_set_pstate,
484 		.get_vid = byt_get_vid,
485 	},
486 };
487 
488 
489 static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
490 {
491 	int max_perf = cpu->pstate.turbo_pstate;
492 	int max_perf_adj;
493 	int min_perf;
494 	if (limits.no_turbo)
495 		max_perf = cpu->pstate.max_pstate;
496 
497 	max_perf_adj = fp_toint(mul_fp(int_tofp(max_perf), limits.max_perf));
498 	*max = clamp_t(int, max_perf_adj,
499 			cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
500 
501 	min_perf = fp_toint(mul_fp(int_tofp(max_perf), limits.min_perf));
502 	*min = clamp_t(int, min_perf,
503 			cpu->pstate.min_pstate, max_perf);
504 }
505 
506 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
507 {
508 	int max_perf, min_perf;
509 
510 	intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
511 
512 	pstate = clamp_t(int, pstate, min_perf, max_perf);
513 
514 	if (pstate == cpu->pstate.current_pstate)
515 		return;
516 
517 	trace_cpu_frequency(pstate * 100000, cpu->cpu);
518 
519 	cpu->pstate.current_pstate = pstate;
520 
521 	pstate_funcs.set(cpu, pstate);
522 }
523 
524 static inline void intel_pstate_pstate_increase(struct cpudata *cpu, int steps)
525 {
526 	int target;
527 	target = cpu->pstate.current_pstate + steps;
528 
529 	intel_pstate_set_pstate(cpu, target);
530 }
531 
532 static inline void intel_pstate_pstate_decrease(struct cpudata *cpu, int steps)
533 {
534 	int target;
535 	target = cpu->pstate.current_pstate - steps;
536 	intel_pstate_set_pstate(cpu, target);
537 }
538 
539 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
540 {
541 	sprintf(cpu->name, "Intel 2nd generation core");
542 
543 	cpu->pstate.min_pstate = pstate_funcs.get_min();
544 	cpu->pstate.max_pstate = pstate_funcs.get_max();
545 	cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
546 
547 	if (pstate_funcs.get_vid)
548 		pstate_funcs.get_vid(cpu);
549 
550 	/*
551 	 * goto max pstate so we don't slow up boot if we are built-in if we are
552 	 * a module we will take care of it during normal operation
553 	 */
554 	intel_pstate_set_pstate(cpu, cpu->pstate.max_pstate);
555 }
556 
557 static inline void intel_pstate_calc_busy(struct cpudata *cpu,
558 					struct sample *sample)
559 {
560 	int32_t core_pct;
561 	int32_t c0_pct;
562 
563 	core_pct = div_fp(int_tofp((sample->aperf)),
564 			int_tofp((sample->mperf)));
565 	core_pct = mul_fp(core_pct, int_tofp(100));
566 	FP_ROUNDUP(core_pct);
567 
568 	c0_pct = div_fp(int_tofp(sample->mperf), int_tofp(sample->tsc));
569 
570 	sample->freq = fp_toint(
571 		mul_fp(int_tofp(cpu->pstate.max_pstate * 1000), core_pct));
572 
573 	sample->core_pct_busy = mul_fp(core_pct, c0_pct);
574 }
575 
576 static inline void intel_pstate_sample(struct cpudata *cpu)
577 {
578 	u64 aperf, mperf;
579 	unsigned long long tsc;
580 
581 	rdmsrl(MSR_IA32_APERF, aperf);
582 	rdmsrl(MSR_IA32_MPERF, mperf);
583 	tsc = native_read_tsc();
584 
585 	aperf = aperf >> FRAC_BITS;
586 	mperf = mperf >> FRAC_BITS;
587 	tsc = tsc >> FRAC_BITS;
588 
589 	cpu->sample_ptr = (cpu->sample_ptr + 1) % SAMPLE_COUNT;
590 	cpu->samples[cpu->sample_ptr].aperf = aperf;
591 	cpu->samples[cpu->sample_ptr].mperf = mperf;
592 	cpu->samples[cpu->sample_ptr].tsc = tsc;
593 	cpu->samples[cpu->sample_ptr].aperf -= cpu->prev_aperf;
594 	cpu->samples[cpu->sample_ptr].mperf -= cpu->prev_mperf;
595 	cpu->samples[cpu->sample_ptr].tsc -= cpu->prev_tsc;
596 
597 	intel_pstate_calc_busy(cpu, &cpu->samples[cpu->sample_ptr]);
598 
599 	cpu->prev_aperf = aperf;
600 	cpu->prev_mperf = mperf;
601 	cpu->prev_tsc = tsc;
602 }
603 
604 static inline void intel_pstate_set_sample_time(struct cpudata *cpu)
605 {
606 	int sample_time, delay;
607 
608 	sample_time = pid_params.sample_rate_ms;
609 	delay = msecs_to_jiffies(sample_time);
610 	mod_timer_pinned(&cpu->timer, jiffies + delay);
611 }
612 
613 static inline int32_t intel_pstate_get_scaled_busy(struct cpudata *cpu)
614 {
615 	int32_t core_busy, max_pstate, current_pstate;
616 
617 	core_busy = cpu->samples[cpu->sample_ptr].core_pct_busy;
618 	max_pstate = int_tofp(cpu->pstate.max_pstate);
619 	current_pstate = int_tofp(cpu->pstate.current_pstate);
620 	core_busy = mul_fp(core_busy, div_fp(max_pstate, current_pstate));
621 	return FP_ROUNDUP(core_busy);
622 }
623 
624 static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
625 {
626 	int32_t busy_scaled;
627 	struct _pid *pid;
628 	signed int ctl = 0;
629 	int steps;
630 
631 	pid = &cpu->pid;
632 	busy_scaled = intel_pstate_get_scaled_busy(cpu);
633 
634 	ctl = pid_calc(pid, busy_scaled);
635 
636 	steps = abs(ctl);
637 
638 	if (ctl < 0)
639 		intel_pstate_pstate_increase(cpu, steps);
640 	else
641 		intel_pstate_pstate_decrease(cpu, steps);
642 }
643 
644 static void intel_pstate_timer_func(unsigned long __data)
645 {
646 	struct cpudata *cpu = (struct cpudata *) __data;
647 	struct sample *sample;
648 
649 	intel_pstate_sample(cpu);
650 
651 	sample = &cpu->samples[cpu->sample_ptr];
652 
653 	intel_pstate_adjust_busy_pstate(cpu);
654 
655 	trace_pstate_sample(fp_toint(sample->core_pct_busy),
656 			fp_toint(intel_pstate_get_scaled_busy(cpu)),
657 			cpu->pstate.current_pstate,
658 			sample->mperf,
659 			sample->aperf,
660 			sample->freq);
661 
662 	intel_pstate_set_sample_time(cpu);
663 }
664 
665 #define ICPU(model, policy) \
666 	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
667 			(unsigned long)&policy }
668 
669 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
670 	ICPU(0x2a, core_params),
671 	ICPU(0x2d, core_params),
672 	ICPU(0x37, byt_params),
673 	ICPU(0x3a, core_params),
674 	ICPU(0x3c, core_params),
675 	ICPU(0x3e, core_params),
676 	ICPU(0x3f, core_params),
677 	ICPU(0x45, core_params),
678 	ICPU(0x46, core_params),
679 	{}
680 };
681 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
682 
683 static int intel_pstate_init_cpu(unsigned int cpunum)
684 {
685 
686 	const struct x86_cpu_id *id;
687 	struct cpudata *cpu;
688 
689 	id = x86_match_cpu(intel_pstate_cpu_ids);
690 	if (!id)
691 		return -ENODEV;
692 
693 	all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata), GFP_KERNEL);
694 	if (!all_cpu_data[cpunum])
695 		return -ENOMEM;
696 
697 	cpu = all_cpu_data[cpunum];
698 
699 	intel_pstate_get_cpu_pstates(cpu);
700 	if (!cpu->pstate.current_pstate) {
701 		all_cpu_data[cpunum] = NULL;
702 		kfree(cpu);
703 		return -ENODATA;
704 	}
705 
706 	cpu->cpu = cpunum;
707 
708 	init_timer_deferrable(&cpu->timer);
709 	cpu->timer.function = intel_pstate_timer_func;
710 	cpu->timer.data =
711 		(unsigned long)cpu;
712 	cpu->timer.expires = jiffies + HZ/100;
713 	intel_pstate_busy_pid_reset(cpu);
714 	intel_pstate_sample(cpu);
715 	intel_pstate_set_pstate(cpu, cpu->pstate.max_pstate);
716 
717 	add_timer_on(&cpu->timer, cpunum);
718 
719 	pr_info("Intel pstate controlling: cpu %d\n", cpunum);
720 
721 	return 0;
722 }
723 
724 static unsigned int intel_pstate_get(unsigned int cpu_num)
725 {
726 	struct sample *sample;
727 	struct cpudata *cpu;
728 
729 	cpu = all_cpu_data[cpu_num];
730 	if (!cpu)
731 		return 0;
732 	sample = &cpu->samples[cpu->sample_ptr];
733 	return sample->freq;
734 }
735 
736 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
737 {
738 	struct cpudata *cpu;
739 
740 	cpu = all_cpu_data[policy->cpu];
741 
742 	if (!policy->cpuinfo.max_freq)
743 		return -ENODEV;
744 
745 	if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) {
746 		limits.min_perf_pct = 100;
747 		limits.min_perf = int_tofp(1);
748 		limits.max_perf_pct = 100;
749 		limits.max_perf = int_tofp(1);
750 		limits.no_turbo = 0;
751 		return 0;
752 	}
753 	limits.min_perf_pct = (policy->min * 100) / policy->cpuinfo.max_freq;
754 	limits.min_perf_pct = clamp_t(int, limits.min_perf_pct, 0 , 100);
755 	limits.min_perf = div_fp(int_tofp(limits.min_perf_pct), int_tofp(100));
756 
757 	limits.max_policy_pct = policy->max * 100 / policy->cpuinfo.max_freq;
758 	limits.max_policy_pct = clamp_t(int, limits.max_policy_pct, 0 , 100);
759 	limits.max_perf_pct = min(limits.max_policy_pct, limits.max_sysfs_pct);
760 	limits.max_perf = div_fp(int_tofp(limits.max_perf_pct), int_tofp(100));
761 
762 	return 0;
763 }
764 
765 static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
766 {
767 	cpufreq_verify_within_cpu_limits(policy);
768 
769 	if ((policy->policy != CPUFREQ_POLICY_POWERSAVE) &&
770 		(policy->policy != CPUFREQ_POLICY_PERFORMANCE))
771 		return -EINVAL;
772 
773 	return 0;
774 }
775 
776 static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
777 {
778 	int cpu = policy->cpu;
779 
780 	del_timer(&all_cpu_data[cpu]->timer);
781 	kfree(all_cpu_data[cpu]);
782 	all_cpu_data[cpu] = NULL;
783 	return 0;
784 }
785 
786 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
787 {
788 	struct cpudata *cpu;
789 	int rc;
790 
791 	rc = intel_pstate_init_cpu(policy->cpu);
792 	if (rc)
793 		return rc;
794 
795 	cpu = all_cpu_data[policy->cpu];
796 
797 	if (!limits.no_turbo &&
798 		limits.min_perf_pct == 100 && limits.max_perf_pct == 100)
799 		policy->policy = CPUFREQ_POLICY_PERFORMANCE;
800 	else
801 		policy->policy = CPUFREQ_POLICY_POWERSAVE;
802 
803 	policy->min = cpu->pstate.min_pstate * 100000;
804 	policy->max = cpu->pstate.turbo_pstate * 100000;
805 
806 	/* cpuinfo and default policy values */
807 	policy->cpuinfo.min_freq = cpu->pstate.min_pstate * 100000;
808 	policy->cpuinfo.max_freq = cpu->pstate.turbo_pstate * 100000;
809 	policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
810 	cpumask_set_cpu(policy->cpu, policy->cpus);
811 
812 	return 0;
813 }
814 
815 static struct cpufreq_driver intel_pstate_driver = {
816 	.flags		= CPUFREQ_CONST_LOOPS,
817 	.verify		= intel_pstate_verify_policy,
818 	.setpolicy	= intel_pstate_set_policy,
819 	.get		= intel_pstate_get,
820 	.init		= intel_pstate_cpu_init,
821 	.exit		= intel_pstate_cpu_exit,
822 	.name		= "intel_pstate",
823 };
824 
825 static int __initdata no_load;
826 
827 static int intel_pstate_msrs_not_valid(void)
828 {
829 	/* Check that all the msr's we are using are valid. */
830 	u64 aperf, mperf, tmp;
831 
832 	rdmsrl(MSR_IA32_APERF, aperf);
833 	rdmsrl(MSR_IA32_MPERF, mperf);
834 
835 	if (!pstate_funcs.get_max() ||
836 		!pstate_funcs.get_min() ||
837 		!pstate_funcs.get_turbo())
838 		return -ENODEV;
839 
840 	rdmsrl(MSR_IA32_APERF, tmp);
841 	if (!(tmp - aperf))
842 		return -ENODEV;
843 
844 	rdmsrl(MSR_IA32_MPERF, tmp);
845 	if (!(tmp - mperf))
846 		return -ENODEV;
847 
848 	return 0;
849 }
850 
851 static void copy_pid_params(struct pstate_adjust_policy *policy)
852 {
853 	pid_params.sample_rate_ms = policy->sample_rate_ms;
854 	pid_params.p_gain_pct = policy->p_gain_pct;
855 	pid_params.i_gain_pct = policy->i_gain_pct;
856 	pid_params.d_gain_pct = policy->d_gain_pct;
857 	pid_params.deadband = policy->deadband;
858 	pid_params.setpoint = policy->setpoint;
859 }
860 
861 static void copy_cpu_funcs(struct pstate_funcs *funcs)
862 {
863 	pstate_funcs.get_max   = funcs->get_max;
864 	pstate_funcs.get_min   = funcs->get_min;
865 	pstate_funcs.get_turbo = funcs->get_turbo;
866 	pstate_funcs.set       = funcs->set;
867 	pstate_funcs.get_vid   = funcs->get_vid;
868 }
869 
870 #if IS_ENABLED(CONFIG_ACPI)
871 #include <acpi/processor.h>
872 
873 static bool intel_pstate_no_acpi_pss(void)
874 {
875 	int i;
876 
877 	for_each_possible_cpu(i) {
878 		acpi_status status;
879 		union acpi_object *pss;
880 		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
881 		struct acpi_processor *pr = per_cpu(processors, i);
882 
883 		if (!pr)
884 			continue;
885 
886 		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
887 		if (ACPI_FAILURE(status))
888 			continue;
889 
890 		pss = buffer.pointer;
891 		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
892 			kfree(pss);
893 			return false;
894 		}
895 
896 		kfree(pss);
897 	}
898 
899 	return true;
900 }
901 
902 struct hw_vendor_info {
903 	u16  valid;
904 	char oem_id[ACPI_OEM_ID_SIZE];
905 	char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
906 };
907 
908 /* Hardware vendor-specific info that has its own power management modes */
909 static struct hw_vendor_info vendor_info[] = {
910 	{1, "HP    ", "ProLiant"},
911 	{0, "", ""},
912 };
913 
914 static bool intel_pstate_platform_pwr_mgmt_exists(void)
915 {
916 	struct acpi_table_header hdr;
917 	struct hw_vendor_info *v_info;
918 
919 	if (acpi_disabled
920 	    || ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
921 		return false;
922 
923 	for (v_info = vendor_info; v_info->valid; v_info++) {
924 		if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE)
925 		    && !strncmp(hdr.oem_table_id, v_info->oem_table_id, ACPI_OEM_TABLE_ID_SIZE)
926 		    && intel_pstate_no_acpi_pss())
927 			return true;
928 	}
929 
930 	return false;
931 }
932 #else /* CONFIG_ACPI not enabled */
933 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
934 #endif /* CONFIG_ACPI */
935 
936 static int __init intel_pstate_init(void)
937 {
938 	int cpu, rc = 0;
939 	const struct x86_cpu_id *id;
940 	struct cpu_defaults *cpu_info;
941 
942 	if (no_load)
943 		return -ENODEV;
944 
945 	id = x86_match_cpu(intel_pstate_cpu_ids);
946 	if (!id)
947 		return -ENODEV;
948 
949 	/*
950 	 * The Intel pstate driver will be ignored if the platform
951 	 * firmware has its own power management modes.
952 	 */
953 	if (intel_pstate_platform_pwr_mgmt_exists())
954 		return -ENODEV;
955 
956 	cpu_info = (struct cpu_defaults *)id->driver_data;
957 
958 	copy_pid_params(&cpu_info->pid_policy);
959 	copy_cpu_funcs(&cpu_info->funcs);
960 
961 	if (intel_pstate_msrs_not_valid())
962 		return -ENODEV;
963 
964 	pr_info("Intel P-state driver initializing.\n");
965 
966 	all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
967 	if (!all_cpu_data)
968 		return -ENOMEM;
969 
970 	rc = cpufreq_register_driver(&intel_pstate_driver);
971 	if (rc)
972 		goto out;
973 
974 	intel_pstate_debug_expose_params();
975 	intel_pstate_sysfs_expose_params();
976 
977 	return rc;
978 out:
979 	get_online_cpus();
980 	for_each_online_cpu(cpu) {
981 		if (all_cpu_data[cpu]) {
982 			del_timer_sync(&all_cpu_data[cpu]->timer);
983 			kfree(all_cpu_data[cpu]);
984 		}
985 	}
986 
987 	put_online_cpus();
988 	vfree(all_cpu_data);
989 	return -ENODEV;
990 }
991 device_initcall(intel_pstate_init);
992 
993 static int __init intel_pstate_setup(char *str)
994 {
995 	if (!str)
996 		return -EINVAL;
997 
998 	if (!strcmp(str, "disable"))
999 		no_load = 1;
1000 	return 0;
1001 }
1002 early_param("intel_pstate", intel_pstate_setup);
1003 
1004 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
1005 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
1006 MODULE_LICENSE("GPL");
1007