xref: /openbmc/linux/drivers/cpufreq/intel_pstate.c (revision a0ae2562c6c4b2721d9fddba63b7286c13517d9f)
1 /*
2  * intel_pstate.c: Native P state management for Intel processors
3  *
4  * (C) Copyright 2012 Intel Corporation
5  * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; version 2
10  * of the License.
11  */
12 
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 
15 #include <linux/kernel.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/module.h>
18 #include <linux/ktime.h>
19 #include <linux/hrtimer.h>
20 #include <linux/tick.h>
21 #include <linux/slab.h>
22 #include <linux/sched/cpufreq.h>
23 #include <linux/list.h>
24 #include <linux/cpu.h>
25 #include <linux/cpufreq.h>
26 #include <linux/sysfs.h>
27 #include <linux/types.h>
28 #include <linux/fs.h>
29 #include <linux/acpi.h>
30 #include <linux/vmalloc.h>
31 #include <trace/events/power.h>
32 
33 #include <asm/div64.h>
34 #include <asm/msr.h>
35 #include <asm/cpu_device_id.h>
36 #include <asm/cpufeature.h>
37 #include <asm/intel-family.h>
38 
39 #define INTEL_PSTATE_SAMPLING_INTERVAL	(10 * NSEC_PER_MSEC)
40 
41 #define INTEL_CPUFREQ_TRANSITION_LATENCY	20000
42 #define INTEL_CPUFREQ_TRANSITION_DELAY		500
43 
44 #ifdef CONFIG_ACPI
45 #include <acpi/processor.h>
46 #include <acpi/cppc_acpi.h>
47 #endif
48 
49 #define FRAC_BITS 8
50 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
51 #define fp_toint(X) ((X) >> FRAC_BITS)
52 
53 #define EXT_BITS 6
54 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
55 #define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
56 #define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
57 
58 static inline int32_t mul_fp(int32_t x, int32_t y)
59 {
60 	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
61 }
62 
63 static inline int32_t div_fp(s64 x, s64 y)
64 {
65 	return div64_s64((int64_t)x << FRAC_BITS, y);
66 }
67 
68 static inline int ceiling_fp(int32_t x)
69 {
70 	int mask, ret;
71 
72 	ret = fp_toint(x);
73 	mask = (1 << FRAC_BITS) - 1;
74 	if (x & mask)
75 		ret += 1;
76 	return ret;
77 }
78 
79 static inline int32_t percent_fp(int percent)
80 {
81 	return div_fp(percent, 100);
82 }
83 
84 static inline u64 mul_ext_fp(u64 x, u64 y)
85 {
86 	return (x * y) >> EXT_FRAC_BITS;
87 }
88 
89 static inline u64 div_ext_fp(u64 x, u64 y)
90 {
91 	return div64_u64(x << EXT_FRAC_BITS, y);
92 }
93 
94 static inline int32_t percent_ext_fp(int percent)
95 {
96 	return div_ext_fp(percent, 100);
97 }
98 
99 /**
100  * struct sample -	Store performance sample
101  * @core_avg_perf:	Ratio of APERF/MPERF which is the actual average
102  *			performance during last sample period
103  * @busy_scaled:	Scaled busy value which is used to calculate next
104  *			P state. This can be different than core_avg_perf
105  *			to account for cpu idle period
106  * @aperf:		Difference of actual performance frequency clock count
107  *			read from APERF MSR between last and current sample
108  * @mperf:		Difference of maximum performance frequency clock count
109  *			read from MPERF MSR between last and current sample
110  * @tsc:		Difference of time stamp counter between last and
111  *			current sample
112  * @time:		Current time from scheduler
113  *
114  * This structure is used in the cpudata structure to store performance sample
115  * data for choosing next P State.
116  */
117 struct sample {
118 	int32_t core_avg_perf;
119 	int32_t busy_scaled;
120 	u64 aperf;
121 	u64 mperf;
122 	u64 tsc;
123 	u64 time;
124 };
125 
126 /**
127  * struct pstate_data - Store P state data
128  * @current_pstate:	Current requested P state
129  * @min_pstate:		Min P state possible for this platform
130  * @max_pstate:		Max P state possible for this platform
131  * @max_pstate_physical:This is physical Max P state for a processor
132  *			This can be higher than the max_pstate which can
133  *			be limited by platform thermal design power limits
134  * @scaling:		Scaling factor to  convert frequency to cpufreq
135  *			frequency units
136  * @turbo_pstate:	Max Turbo P state possible for this platform
137  * @max_freq:		@max_pstate frequency in cpufreq units
138  * @turbo_freq:		@turbo_pstate frequency in cpufreq units
139  *
140  * Stores the per cpu model P state limits and current P state.
141  */
142 struct pstate_data {
143 	int	current_pstate;
144 	int	min_pstate;
145 	int	max_pstate;
146 	int	max_pstate_physical;
147 	int	scaling;
148 	int	turbo_pstate;
149 	unsigned int max_freq;
150 	unsigned int turbo_freq;
151 };
152 
153 /**
154  * struct vid_data -	Stores voltage information data
155  * @min:		VID data for this platform corresponding to
156  *			the lowest P state
157  * @max:		VID data corresponding to the highest P State.
158  * @turbo:		VID data for turbo P state
159  * @ratio:		Ratio of (vid max - vid min) /
160  *			(max P state - Min P State)
161  *
162  * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
163  * This data is used in Atom platforms, where in addition to target P state,
164  * the voltage data needs to be specified to select next P State.
165  */
166 struct vid_data {
167 	int min;
168 	int max;
169 	int turbo;
170 	int32_t ratio;
171 };
172 
173 /**
174  * struct global_params - Global parameters, mostly tunable via sysfs.
175  * @no_turbo:		Whether or not to use turbo P-states.
176  * @turbo_disabled:	Whethet or not turbo P-states are available at all,
177  *			based on the MSR_IA32_MISC_ENABLE value and whether or
178  *			not the maximum reported turbo P-state is different from
179  *			the maximum reported non-turbo one.
180  * @min_perf_pct:	Minimum capacity limit in percent of the maximum turbo
181  *			P-state capacity.
182  * @max_perf_pct:	Maximum capacity limit in percent of the maximum turbo
183  *			P-state capacity.
184  */
185 struct global_params {
186 	bool no_turbo;
187 	bool turbo_disabled;
188 	int max_perf_pct;
189 	int min_perf_pct;
190 };
191 
192 /**
193  * struct cpudata -	Per CPU instance data storage
194  * @cpu:		CPU number for this instance data
195  * @policy:		CPUFreq policy value
196  * @update_util:	CPUFreq utility callback information
197  * @update_util_set:	CPUFreq utility callback is set
198  * @iowait_boost:	iowait-related boost fraction
199  * @last_update:	Time of the last update.
200  * @pstate:		Stores P state limits for this CPU
201  * @vid:		Stores VID limits for this CPU
202  * @last_sample_time:	Last Sample time
203  * @aperf_mperf_shift:	Number of clock cycles after aperf, merf is incremented
204  *			This shift is a multiplier to mperf delta to
205  *			calculate CPU busy.
206  * @prev_aperf:		Last APERF value read from APERF MSR
207  * @prev_mperf:		Last MPERF value read from MPERF MSR
208  * @prev_tsc:		Last timestamp counter (TSC) value
209  * @prev_cummulative_iowait: IO Wait time difference from last and
210  *			current sample
211  * @sample:		Storage for storing last Sample data
212  * @min_perf_ratio:	Minimum capacity in terms of PERF or HWP ratios
213  * @max_perf_ratio:	Maximum capacity in terms of PERF or HWP ratios
214  * @acpi_perf_data:	Stores ACPI perf information read from _PSS
215  * @valid_pss_table:	Set to true for valid ACPI _PSS entries found
216  * @epp_powersave:	Last saved HWP energy performance preference
217  *			(EPP) or energy performance bias (EPB),
218  *			when policy switched to performance
219  * @epp_policy:		Last saved policy used to set EPP/EPB
220  * @epp_default:	Power on default HWP energy performance
221  *			preference/bias
222  * @epp_saved:		Saved EPP/EPB during system suspend or CPU offline
223  *			operation
224  * @hwp_req_cached:	Cached value of the last HWP Request MSR
225  * @hwp_cap_cached:	Cached value of the last HWP Capabilities MSR
226  * @last_io_update:	Last time when IO wake flag was set
227  * @sched_flags:	Store scheduler flags for possible cross CPU update
228  * @hwp_boost_min:	Last HWP boosted min performance
229  *
230  * This structure stores per CPU instance data for all CPUs.
231  */
232 struct cpudata {
233 	int cpu;
234 
235 	unsigned int policy;
236 	struct update_util_data update_util;
237 	bool   update_util_set;
238 
239 	struct pstate_data pstate;
240 	struct vid_data vid;
241 
242 	u64	last_update;
243 	u64	last_sample_time;
244 	u64	aperf_mperf_shift;
245 	u64	prev_aperf;
246 	u64	prev_mperf;
247 	u64	prev_tsc;
248 	u64	prev_cummulative_iowait;
249 	struct sample sample;
250 	int32_t	min_perf_ratio;
251 	int32_t	max_perf_ratio;
252 #ifdef CONFIG_ACPI
253 	struct acpi_processor_performance acpi_perf_data;
254 	bool valid_pss_table;
255 #endif
256 	unsigned int iowait_boost;
257 	s16 epp_powersave;
258 	s16 epp_policy;
259 	s16 epp_default;
260 	s16 epp_saved;
261 	u64 hwp_req_cached;
262 	u64 hwp_cap_cached;
263 	u64 last_io_update;
264 	unsigned int sched_flags;
265 	u32 hwp_boost_min;
266 };
267 
268 static struct cpudata **all_cpu_data;
269 
270 /**
271  * struct pstate_funcs - Per CPU model specific callbacks
272  * @get_max:		Callback to get maximum non turbo effective P state
273  * @get_max_physical:	Callback to get maximum non turbo physical P state
274  * @get_min:		Callback to get minimum P state
275  * @get_turbo:		Callback to get turbo P state
276  * @get_scaling:	Callback to get frequency scaling factor
277  * @get_val:		Callback to convert P state to actual MSR write value
278  * @get_vid:		Callback to get VID data for Atom platforms
279  *
280  * Core and Atom CPU models have different way to get P State limits. This
281  * structure is used to store those callbacks.
282  */
283 struct pstate_funcs {
284 	int (*get_max)(void);
285 	int (*get_max_physical)(void);
286 	int (*get_min)(void);
287 	int (*get_turbo)(void);
288 	int (*get_scaling)(void);
289 	int (*get_aperf_mperf_shift)(void);
290 	u64 (*get_val)(struct cpudata*, int pstate);
291 	void (*get_vid)(struct cpudata *);
292 };
293 
294 static struct pstate_funcs pstate_funcs __read_mostly;
295 
296 static int hwp_active __read_mostly;
297 static int hwp_mode_bdw __read_mostly;
298 static bool per_cpu_limits __read_mostly;
299 static bool hwp_boost __read_mostly;
300 
301 static struct cpufreq_driver *intel_pstate_driver __read_mostly;
302 
303 #ifdef CONFIG_ACPI
304 static bool acpi_ppc;
305 #endif
306 
307 static struct global_params global;
308 
309 static DEFINE_MUTEX(intel_pstate_driver_lock);
310 static DEFINE_MUTEX(intel_pstate_limits_lock);
311 
312 #ifdef CONFIG_ACPI
313 
314 static bool intel_pstate_get_ppc_enable_status(void)
315 {
316 	if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
317 	    acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
318 		return true;
319 
320 	return acpi_ppc;
321 }
322 
323 #ifdef CONFIG_ACPI_CPPC_LIB
324 
325 /* The work item is needed to avoid CPU hotplug locking issues */
326 static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
327 {
328 	sched_set_itmt_support();
329 }
330 
331 static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);
332 
333 static void intel_pstate_set_itmt_prio(int cpu)
334 {
335 	struct cppc_perf_caps cppc_perf;
336 	static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
337 	int ret;
338 
339 	ret = cppc_get_perf_caps(cpu, &cppc_perf);
340 	if (ret)
341 		return;
342 
343 	/*
344 	 * The priorities can be set regardless of whether or not
345 	 * sched_set_itmt_support(true) has been called and it is valid to
346 	 * update them at any time after it has been called.
347 	 */
348 	sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);
349 
350 	if (max_highest_perf <= min_highest_perf) {
351 		if (cppc_perf.highest_perf > max_highest_perf)
352 			max_highest_perf = cppc_perf.highest_perf;
353 
354 		if (cppc_perf.highest_perf < min_highest_perf)
355 			min_highest_perf = cppc_perf.highest_perf;
356 
357 		if (max_highest_perf > min_highest_perf) {
358 			/*
359 			 * This code can be run during CPU online under the
360 			 * CPU hotplug locks, so sched_set_itmt_support()
361 			 * cannot be called from here.  Queue up a work item
362 			 * to invoke it.
363 			 */
364 			schedule_work(&sched_itmt_work);
365 		}
366 	}
367 }
368 #else
369 static void intel_pstate_set_itmt_prio(int cpu)
370 {
371 }
372 #endif
373 
374 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
375 {
376 	struct cpudata *cpu;
377 	int ret;
378 	int i;
379 
380 	if (hwp_active) {
381 		intel_pstate_set_itmt_prio(policy->cpu);
382 		return;
383 	}
384 
385 	if (!intel_pstate_get_ppc_enable_status())
386 		return;
387 
388 	cpu = all_cpu_data[policy->cpu];
389 
390 	ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
391 						  policy->cpu);
392 	if (ret)
393 		return;
394 
395 	/*
396 	 * Check if the control value in _PSS is for PERF_CTL MSR, which should
397 	 * guarantee that the states returned by it map to the states in our
398 	 * list directly.
399 	 */
400 	if (cpu->acpi_perf_data.control_register.space_id !=
401 						ACPI_ADR_SPACE_FIXED_HARDWARE)
402 		goto err;
403 
404 	/*
405 	 * If there is only one entry _PSS, simply ignore _PSS and continue as
406 	 * usual without taking _PSS into account
407 	 */
408 	if (cpu->acpi_perf_data.state_count < 2)
409 		goto err;
410 
411 	pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
412 	for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
413 		pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
414 			 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
415 			 (u32) cpu->acpi_perf_data.states[i].core_frequency,
416 			 (u32) cpu->acpi_perf_data.states[i].power,
417 			 (u32) cpu->acpi_perf_data.states[i].control);
418 	}
419 
420 	/*
421 	 * The _PSS table doesn't contain whole turbo frequency range.
422 	 * This just contains +1 MHZ above the max non turbo frequency,
423 	 * with control value corresponding to max turbo ratio. But
424 	 * when cpufreq set policy is called, it will call with this
425 	 * max frequency, which will cause a reduced performance as
426 	 * this driver uses real max turbo frequency as the max
427 	 * frequency. So correct this frequency in _PSS table to
428 	 * correct max turbo frequency based on the turbo state.
429 	 * Also need to convert to MHz as _PSS freq is in MHz.
430 	 */
431 	if (!global.turbo_disabled)
432 		cpu->acpi_perf_data.states[0].core_frequency =
433 					policy->cpuinfo.max_freq / 1000;
434 	cpu->valid_pss_table = true;
435 	pr_debug("_PPC limits will be enforced\n");
436 
437 	return;
438 
439  err:
440 	cpu->valid_pss_table = false;
441 	acpi_processor_unregister_performance(policy->cpu);
442 }
443 
444 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
445 {
446 	struct cpudata *cpu;
447 
448 	cpu = all_cpu_data[policy->cpu];
449 	if (!cpu->valid_pss_table)
450 		return;
451 
452 	acpi_processor_unregister_performance(policy->cpu);
453 }
454 #else
455 static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
456 {
457 }
458 
459 static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
460 {
461 }
462 #endif
463 
464 static inline void update_turbo_state(void)
465 {
466 	u64 misc_en;
467 	struct cpudata *cpu;
468 
469 	cpu = all_cpu_data[0];
470 	rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
471 	global.turbo_disabled =
472 		(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
473 		 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
474 }
475 
476 static int min_perf_pct_min(void)
477 {
478 	struct cpudata *cpu = all_cpu_data[0];
479 	int turbo_pstate = cpu->pstate.turbo_pstate;
480 
481 	return turbo_pstate ?
482 		(cpu->pstate.min_pstate * 100 / turbo_pstate) : 0;
483 }
484 
485 static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
486 {
487 	u64 epb;
488 	int ret;
489 
490 	if (!static_cpu_has(X86_FEATURE_EPB))
491 		return -ENXIO;
492 
493 	ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
494 	if (ret)
495 		return (s16)ret;
496 
497 	return (s16)(epb & 0x0f);
498 }
499 
500 static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
501 {
502 	s16 epp;
503 
504 	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
505 		/*
506 		 * When hwp_req_data is 0, means that caller didn't read
507 		 * MSR_HWP_REQUEST, so need to read and get EPP.
508 		 */
509 		if (!hwp_req_data) {
510 			epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
511 					    &hwp_req_data);
512 			if (epp)
513 				return epp;
514 		}
515 		epp = (hwp_req_data >> 24) & 0xff;
516 	} else {
517 		/* When there is no EPP present, HWP uses EPB settings */
518 		epp = intel_pstate_get_epb(cpu_data);
519 	}
520 
521 	return epp;
522 }
523 
524 static int intel_pstate_set_epb(int cpu, s16 pref)
525 {
526 	u64 epb;
527 	int ret;
528 
529 	if (!static_cpu_has(X86_FEATURE_EPB))
530 		return -ENXIO;
531 
532 	ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
533 	if (ret)
534 		return ret;
535 
536 	epb = (epb & ~0x0f) | pref;
537 	wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
538 
539 	return 0;
540 }
541 
542 /*
543  * EPP/EPB display strings corresponding to EPP index in the
544  * energy_perf_strings[]
545  *	index		String
546  *-------------------------------------
547  *	0		default
548  *	1		performance
549  *	2		balance_performance
550  *	3		balance_power
551  *	4		power
552  */
553 static const char * const energy_perf_strings[] = {
554 	"default",
555 	"performance",
556 	"balance_performance",
557 	"balance_power",
558 	"power",
559 	NULL
560 };
561 static const unsigned int epp_values[] = {
562 	HWP_EPP_PERFORMANCE,
563 	HWP_EPP_BALANCE_PERFORMANCE,
564 	HWP_EPP_BALANCE_POWERSAVE,
565 	HWP_EPP_POWERSAVE
566 };
567 
568 static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data)
569 {
570 	s16 epp;
571 	int index = -EINVAL;
572 
573 	epp = intel_pstate_get_epp(cpu_data, 0);
574 	if (epp < 0)
575 		return epp;
576 
577 	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
578 		if (epp == HWP_EPP_PERFORMANCE)
579 			return 1;
580 		if (epp <= HWP_EPP_BALANCE_PERFORMANCE)
581 			return 2;
582 		if (epp <= HWP_EPP_BALANCE_POWERSAVE)
583 			return 3;
584 		else
585 			return 4;
586 	} else if (static_cpu_has(X86_FEATURE_EPB)) {
587 		/*
588 		 * Range:
589 		 *	0x00-0x03	:	Performance
590 		 *	0x04-0x07	:	Balance performance
591 		 *	0x08-0x0B	:	Balance power
592 		 *	0x0C-0x0F	:	Power
593 		 * The EPB is a 4 bit value, but our ranges restrict the
594 		 * value which can be set. Here only using top two bits
595 		 * effectively.
596 		 */
597 		index = (epp >> 2) + 1;
598 	}
599 
600 	return index;
601 }
602 
603 static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
604 					      int pref_index)
605 {
606 	int epp = -EINVAL;
607 	int ret;
608 
609 	if (!pref_index)
610 		epp = cpu_data->epp_default;
611 
612 	mutex_lock(&intel_pstate_limits_lock);
613 
614 	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
615 		u64 value;
616 
617 		ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, &value);
618 		if (ret)
619 			goto return_pref;
620 
621 		value &= ~GENMASK_ULL(31, 24);
622 
623 		if (epp == -EINVAL)
624 			epp = epp_values[pref_index - 1];
625 
626 		value |= (u64)epp << 24;
627 		ret = wrmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, value);
628 	} else {
629 		if (epp == -EINVAL)
630 			epp = (pref_index - 1) << 2;
631 		ret = intel_pstate_set_epb(cpu_data->cpu, epp);
632 	}
633 return_pref:
634 	mutex_unlock(&intel_pstate_limits_lock);
635 
636 	return ret;
637 }
638 
639 static ssize_t show_energy_performance_available_preferences(
640 				struct cpufreq_policy *policy, char *buf)
641 {
642 	int i = 0;
643 	int ret = 0;
644 
645 	while (energy_perf_strings[i] != NULL)
646 		ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);
647 
648 	ret += sprintf(&buf[ret], "\n");
649 
650 	return ret;
651 }
652 
653 cpufreq_freq_attr_ro(energy_performance_available_preferences);
654 
655 static ssize_t store_energy_performance_preference(
656 		struct cpufreq_policy *policy, const char *buf, size_t count)
657 {
658 	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
659 	char str_preference[21];
660 	int ret, i = 0;
661 
662 	ret = sscanf(buf, "%20s", str_preference);
663 	if (ret != 1)
664 		return -EINVAL;
665 
666 	while (energy_perf_strings[i] != NULL) {
667 		if (!strcmp(str_preference, energy_perf_strings[i])) {
668 			intel_pstate_set_energy_pref_index(cpu_data, i);
669 			return count;
670 		}
671 		++i;
672 	}
673 
674 	return -EINVAL;
675 }
676 
677 static ssize_t show_energy_performance_preference(
678 				struct cpufreq_policy *policy, char *buf)
679 {
680 	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
681 	int preference;
682 
683 	preference = intel_pstate_get_energy_pref_index(cpu_data);
684 	if (preference < 0)
685 		return preference;
686 
687 	return  sprintf(buf, "%s\n", energy_perf_strings[preference]);
688 }
689 
690 cpufreq_freq_attr_rw(energy_performance_preference);
691 
692 static struct freq_attr *hwp_cpufreq_attrs[] = {
693 	&energy_performance_preference,
694 	&energy_performance_available_preferences,
695 	NULL,
696 };
697 
698 static void intel_pstate_get_hwp_max(unsigned int cpu, int *phy_max,
699 				     int *current_max)
700 {
701 	u64 cap;
702 
703 	rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
704 	WRITE_ONCE(all_cpu_data[cpu]->hwp_cap_cached, cap);
705 	if (global.no_turbo)
706 		*current_max = HWP_GUARANTEED_PERF(cap);
707 	else
708 		*current_max = HWP_HIGHEST_PERF(cap);
709 
710 	*phy_max = HWP_HIGHEST_PERF(cap);
711 }
712 
713 static void intel_pstate_hwp_set(unsigned int cpu)
714 {
715 	struct cpudata *cpu_data = all_cpu_data[cpu];
716 	int max, min;
717 	u64 value;
718 	s16 epp;
719 
720 	max = cpu_data->max_perf_ratio;
721 	min = cpu_data->min_perf_ratio;
722 
723 	if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
724 		min = max;
725 
726 	rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
727 
728 	value &= ~HWP_MIN_PERF(~0L);
729 	value |= HWP_MIN_PERF(min);
730 
731 	value &= ~HWP_MAX_PERF(~0L);
732 	value |= HWP_MAX_PERF(max);
733 
734 	if (cpu_data->epp_policy == cpu_data->policy)
735 		goto skip_epp;
736 
737 	cpu_data->epp_policy = cpu_data->policy;
738 
739 	if (cpu_data->epp_saved >= 0) {
740 		epp = cpu_data->epp_saved;
741 		cpu_data->epp_saved = -EINVAL;
742 		goto update_epp;
743 	}
744 
745 	if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
746 		epp = intel_pstate_get_epp(cpu_data, value);
747 		cpu_data->epp_powersave = epp;
748 		/* If EPP read was failed, then don't try to write */
749 		if (epp < 0)
750 			goto skip_epp;
751 
752 		epp = 0;
753 	} else {
754 		/* skip setting EPP, when saved value is invalid */
755 		if (cpu_data->epp_powersave < 0)
756 			goto skip_epp;
757 
758 		/*
759 		 * No need to restore EPP when it is not zero. This
760 		 * means:
761 		 *  - Policy is not changed
762 		 *  - user has manually changed
763 		 *  - Error reading EPB
764 		 */
765 		epp = intel_pstate_get_epp(cpu_data, value);
766 		if (epp)
767 			goto skip_epp;
768 
769 		epp = cpu_data->epp_powersave;
770 	}
771 update_epp:
772 	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
773 		value &= ~GENMASK_ULL(31, 24);
774 		value |= (u64)epp << 24;
775 	} else {
776 		intel_pstate_set_epb(cpu, epp);
777 	}
778 skip_epp:
779 	WRITE_ONCE(cpu_data->hwp_req_cached, value);
780 	wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
781 }
782 
783 static int intel_pstate_hwp_save_state(struct cpufreq_policy *policy)
784 {
785 	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
786 
787 	if (!hwp_active)
788 		return 0;
789 
790 	cpu_data->epp_saved = intel_pstate_get_epp(cpu_data, 0);
791 
792 	return 0;
793 }
794 
795 static void intel_pstate_hwp_enable(struct cpudata *cpudata);
796 
797 static int intel_pstate_resume(struct cpufreq_policy *policy)
798 {
799 	if (!hwp_active)
800 		return 0;
801 
802 	mutex_lock(&intel_pstate_limits_lock);
803 
804 	if (policy->cpu == 0)
805 		intel_pstate_hwp_enable(all_cpu_data[policy->cpu]);
806 
807 	all_cpu_data[policy->cpu]->epp_policy = 0;
808 	intel_pstate_hwp_set(policy->cpu);
809 
810 	mutex_unlock(&intel_pstate_limits_lock);
811 
812 	return 0;
813 }
814 
815 static void intel_pstate_update_policies(void)
816 {
817 	int cpu;
818 
819 	for_each_possible_cpu(cpu)
820 		cpufreq_update_policy(cpu);
821 }
822 
823 /************************** sysfs begin ************************/
824 #define show_one(file_name, object)					\
825 	static ssize_t show_##file_name					\
826 	(struct kobject *kobj, struct attribute *attr, char *buf)	\
827 	{								\
828 		return sprintf(buf, "%u\n", global.object);		\
829 	}
830 
831 static ssize_t intel_pstate_show_status(char *buf);
832 static int intel_pstate_update_status(const char *buf, size_t size);
833 
834 static ssize_t show_status(struct kobject *kobj,
835 			   struct attribute *attr, char *buf)
836 {
837 	ssize_t ret;
838 
839 	mutex_lock(&intel_pstate_driver_lock);
840 	ret = intel_pstate_show_status(buf);
841 	mutex_unlock(&intel_pstate_driver_lock);
842 
843 	return ret;
844 }
845 
846 static ssize_t store_status(struct kobject *a, struct attribute *b,
847 			    const char *buf, size_t count)
848 {
849 	char *p = memchr(buf, '\n', count);
850 	int ret;
851 
852 	mutex_lock(&intel_pstate_driver_lock);
853 	ret = intel_pstate_update_status(buf, p ? p - buf : count);
854 	mutex_unlock(&intel_pstate_driver_lock);
855 
856 	return ret < 0 ? ret : count;
857 }
858 
859 static ssize_t show_turbo_pct(struct kobject *kobj,
860 				struct attribute *attr, char *buf)
861 {
862 	struct cpudata *cpu;
863 	int total, no_turbo, turbo_pct;
864 	uint32_t turbo_fp;
865 
866 	mutex_lock(&intel_pstate_driver_lock);
867 
868 	if (!intel_pstate_driver) {
869 		mutex_unlock(&intel_pstate_driver_lock);
870 		return -EAGAIN;
871 	}
872 
873 	cpu = all_cpu_data[0];
874 
875 	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
876 	no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
877 	turbo_fp = div_fp(no_turbo, total);
878 	turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
879 
880 	mutex_unlock(&intel_pstate_driver_lock);
881 
882 	return sprintf(buf, "%u\n", turbo_pct);
883 }
884 
885 static ssize_t show_num_pstates(struct kobject *kobj,
886 				struct attribute *attr, char *buf)
887 {
888 	struct cpudata *cpu;
889 	int total;
890 
891 	mutex_lock(&intel_pstate_driver_lock);
892 
893 	if (!intel_pstate_driver) {
894 		mutex_unlock(&intel_pstate_driver_lock);
895 		return -EAGAIN;
896 	}
897 
898 	cpu = all_cpu_data[0];
899 	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
900 
901 	mutex_unlock(&intel_pstate_driver_lock);
902 
903 	return sprintf(buf, "%u\n", total);
904 }
905 
906 static ssize_t show_no_turbo(struct kobject *kobj,
907 			     struct attribute *attr, char *buf)
908 {
909 	ssize_t ret;
910 
911 	mutex_lock(&intel_pstate_driver_lock);
912 
913 	if (!intel_pstate_driver) {
914 		mutex_unlock(&intel_pstate_driver_lock);
915 		return -EAGAIN;
916 	}
917 
918 	update_turbo_state();
919 	if (global.turbo_disabled)
920 		ret = sprintf(buf, "%u\n", global.turbo_disabled);
921 	else
922 		ret = sprintf(buf, "%u\n", global.no_turbo);
923 
924 	mutex_unlock(&intel_pstate_driver_lock);
925 
926 	return ret;
927 }
928 
929 static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
930 			      const char *buf, size_t count)
931 {
932 	unsigned int input;
933 	int ret;
934 
935 	ret = sscanf(buf, "%u", &input);
936 	if (ret != 1)
937 		return -EINVAL;
938 
939 	mutex_lock(&intel_pstate_driver_lock);
940 
941 	if (!intel_pstate_driver) {
942 		mutex_unlock(&intel_pstate_driver_lock);
943 		return -EAGAIN;
944 	}
945 
946 	mutex_lock(&intel_pstate_limits_lock);
947 
948 	update_turbo_state();
949 	if (global.turbo_disabled) {
950 		pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
951 		mutex_unlock(&intel_pstate_limits_lock);
952 		mutex_unlock(&intel_pstate_driver_lock);
953 		return -EPERM;
954 	}
955 
956 	global.no_turbo = clamp_t(int, input, 0, 1);
957 
958 	if (global.no_turbo) {
959 		struct cpudata *cpu = all_cpu_data[0];
960 		int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;
961 
962 		/* Squash the global minimum into the permitted range. */
963 		if (global.min_perf_pct > pct)
964 			global.min_perf_pct = pct;
965 	}
966 
967 	mutex_unlock(&intel_pstate_limits_lock);
968 
969 	intel_pstate_update_policies();
970 
971 	mutex_unlock(&intel_pstate_driver_lock);
972 
973 	return count;
974 }
975 
976 static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
977 				  const char *buf, size_t count)
978 {
979 	unsigned int input;
980 	int ret;
981 
982 	ret = sscanf(buf, "%u", &input);
983 	if (ret != 1)
984 		return -EINVAL;
985 
986 	mutex_lock(&intel_pstate_driver_lock);
987 
988 	if (!intel_pstate_driver) {
989 		mutex_unlock(&intel_pstate_driver_lock);
990 		return -EAGAIN;
991 	}
992 
993 	mutex_lock(&intel_pstate_limits_lock);
994 
995 	global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
996 
997 	mutex_unlock(&intel_pstate_limits_lock);
998 
999 	intel_pstate_update_policies();
1000 
1001 	mutex_unlock(&intel_pstate_driver_lock);
1002 
1003 	return count;
1004 }
1005 
1006 static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
1007 				  const char *buf, size_t count)
1008 {
1009 	unsigned int input;
1010 	int ret;
1011 
1012 	ret = sscanf(buf, "%u", &input);
1013 	if (ret != 1)
1014 		return -EINVAL;
1015 
1016 	mutex_lock(&intel_pstate_driver_lock);
1017 
1018 	if (!intel_pstate_driver) {
1019 		mutex_unlock(&intel_pstate_driver_lock);
1020 		return -EAGAIN;
1021 	}
1022 
1023 	mutex_lock(&intel_pstate_limits_lock);
1024 
1025 	global.min_perf_pct = clamp_t(int, input,
1026 				      min_perf_pct_min(), global.max_perf_pct);
1027 
1028 	mutex_unlock(&intel_pstate_limits_lock);
1029 
1030 	intel_pstate_update_policies();
1031 
1032 	mutex_unlock(&intel_pstate_driver_lock);
1033 
1034 	return count;
1035 }
1036 
1037 static ssize_t show_hwp_dynamic_boost(struct kobject *kobj,
1038 				struct attribute *attr, char *buf)
1039 {
1040 	return sprintf(buf, "%u\n", hwp_boost);
1041 }
1042 
1043 static ssize_t store_hwp_dynamic_boost(struct kobject *a, struct attribute *b,
1044 				       const char *buf, size_t count)
1045 {
1046 	unsigned int input;
1047 	int ret;
1048 
1049 	ret = kstrtouint(buf, 10, &input);
1050 	if (ret)
1051 		return ret;
1052 
1053 	mutex_lock(&intel_pstate_driver_lock);
1054 	hwp_boost = !!input;
1055 	intel_pstate_update_policies();
1056 	mutex_unlock(&intel_pstate_driver_lock);
1057 
1058 	return count;
1059 }
1060 
1061 show_one(max_perf_pct, max_perf_pct);
1062 show_one(min_perf_pct, min_perf_pct);
1063 
1064 define_one_global_rw(status);
1065 define_one_global_rw(no_turbo);
1066 define_one_global_rw(max_perf_pct);
1067 define_one_global_rw(min_perf_pct);
1068 define_one_global_ro(turbo_pct);
1069 define_one_global_ro(num_pstates);
1070 define_one_global_rw(hwp_dynamic_boost);
1071 
1072 static struct attribute *intel_pstate_attributes[] = {
1073 	&status.attr,
1074 	&no_turbo.attr,
1075 	&turbo_pct.attr,
1076 	&num_pstates.attr,
1077 	NULL
1078 };
1079 
1080 static const struct attribute_group intel_pstate_attr_group = {
1081 	.attrs = intel_pstate_attributes,
1082 };
1083 
1084 static void __init intel_pstate_sysfs_expose_params(void)
1085 {
1086 	struct kobject *intel_pstate_kobject;
1087 	int rc;
1088 
1089 	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
1090 						&cpu_subsys.dev_root->kobj);
1091 	if (WARN_ON(!intel_pstate_kobject))
1092 		return;
1093 
1094 	rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1095 	if (WARN_ON(rc))
1096 		return;
1097 
1098 	/*
1099 	 * If per cpu limits are enforced there are no global limits, so
1100 	 * return without creating max/min_perf_pct attributes
1101 	 */
1102 	if (per_cpu_limits)
1103 		return;
1104 
1105 	rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
1106 	WARN_ON(rc);
1107 
1108 	rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
1109 	WARN_ON(rc);
1110 
1111 	if (hwp_active) {
1112 		rc = sysfs_create_file(intel_pstate_kobject,
1113 				       &hwp_dynamic_boost.attr);
1114 		WARN_ON(rc);
1115 	}
1116 }
1117 /************************** sysfs end ************************/
1118 
1119 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
1120 {
1121 	/* First disable HWP notification interrupt as we don't process them */
1122 	if (static_cpu_has(X86_FEATURE_HWP_NOTIFY))
1123 		wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1124 
1125 	wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1126 	cpudata->epp_policy = 0;
1127 	if (cpudata->epp_default == -EINVAL)
1128 		cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
1129 }
1130 
1131 #define MSR_IA32_POWER_CTL_BIT_EE	19
1132 
1133 /* Disable energy efficiency optimization */
1134 static void intel_pstate_disable_ee(int cpu)
1135 {
1136 	u64 power_ctl;
1137 	int ret;
1138 
1139 	ret = rdmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, &power_ctl);
1140 	if (ret)
1141 		return;
1142 
1143 	if (!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE))) {
1144 		pr_info("Disabling energy efficiency optimization\n");
1145 		power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
1146 		wrmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, power_ctl);
1147 	}
1148 }
1149 
1150 static int atom_get_min_pstate(void)
1151 {
1152 	u64 value;
1153 
1154 	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1155 	return (value >> 8) & 0x7F;
1156 }
1157 
1158 static int atom_get_max_pstate(void)
1159 {
1160 	u64 value;
1161 
1162 	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1163 	return (value >> 16) & 0x7F;
1164 }
1165 
1166 static int atom_get_turbo_pstate(void)
1167 {
1168 	u64 value;
1169 
1170 	rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
1171 	return value & 0x7F;
1172 }
1173 
1174 static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1175 {
1176 	u64 val;
1177 	int32_t vid_fp;
1178 	u32 vid;
1179 
1180 	val = (u64)pstate << 8;
1181 	if (global.no_turbo && !global.turbo_disabled)
1182 		val |= (u64)1 << 32;
1183 
1184 	vid_fp = cpudata->vid.min + mul_fp(
1185 		int_tofp(pstate - cpudata->pstate.min_pstate),
1186 		cpudata->vid.ratio);
1187 
1188 	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1189 	vid = ceiling_fp(vid_fp);
1190 
1191 	if (pstate > cpudata->pstate.max_pstate)
1192 		vid = cpudata->vid.turbo;
1193 
1194 	return val | vid;
1195 }
1196 
1197 static int silvermont_get_scaling(void)
1198 {
1199 	u64 value;
1200 	int i;
1201 	/* Defined in Table 35-6 from SDM (Sept 2015) */
1202 	static int silvermont_freq_table[] = {
1203 		83300, 100000, 133300, 116700, 80000};
1204 
1205 	rdmsrl(MSR_FSB_FREQ, value);
1206 	i = value & 0x7;
1207 	WARN_ON(i > 4);
1208 
1209 	return silvermont_freq_table[i];
1210 }
1211 
1212 static int airmont_get_scaling(void)
1213 {
1214 	u64 value;
1215 	int i;
1216 	/* Defined in Table 35-10 from SDM (Sept 2015) */
1217 	static int airmont_freq_table[] = {
1218 		83300, 100000, 133300, 116700, 80000,
1219 		93300, 90000, 88900, 87500};
1220 
1221 	rdmsrl(MSR_FSB_FREQ, value);
1222 	i = value & 0xF;
1223 	WARN_ON(i > 8);
1224 
1225 	return airmont_freq_table[i];
1226 }
1227 
1228 static void atom_get_vid(struct cpudata *cpudata)
1229 {
1230 	u64 value;
1231 
1232 	rdmsrl(MSR_ATOM_CORE_VIDS, value);
1233 	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
1234 	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1235 	cpudata->vid.ratio = div_fp(
1236 		cpudata->vid.max - cpudata->vid.min,
1237 		int_tofp(cpudata->pstate.max_pstate -
1238 			cpudata->pstate.min_pstate));
1239 
1240 	rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1241 	cpudata->vid.turbo = value & 0x7f;
1242 }
1243 
1244 static int core_get_min_pstate(void)
1245 {
1246 	u64 value;
1247 
1248 	rdmsrl(MSR_PLATFORM_INFO, value);
1249 	return (value >> 40) & 0xFF;
1250 }
1251 
1252 static int core_get_max_pstate_physical(void)
1253 {
1254 	u64 value;
1255 
1256 	rdmsrl(MSR_PLATFORM_INFO, value);
1257 	return (value >> 8) & 0xFF;
1258 }
1259 
1260 static int core_get_tdp_ratio(u64 plat_info)
1261 {
1262 	/* Check how many TDP levels present */
1263 	if (plat_info & 0x600000000) {
1264 		u64 tdp_ctrl;
1265 		u64 tdp_ratio;
1266 		int tdp_msr;
1267 		int err;
1268 
1269 		/* Get the TDP level (0, 1, 2) to get ratios */
1270 		err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
1271 		if (err)
1272 			return err;
1273 
1274 		/* TDP MSR are continuous starting at 0x648 */
1275 		tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
1276 		err = rdmsrl_safe(tdp_msr, &tdp_ratio);
1277 		if (err)
1278 			return err;
1279 
1280 		/* For level 1 and 2, bits[23:16] contain the ratio */
1281 		if (tdp_ctrl & 0x03)
1282 			tdp_ratio >>= 16;
1283 
1284 		tdp_ratio &= 0xff; /* ratios are only 8 bits long */
1285 		pr_debug("tdp_ratio %x\n", (int)tdp_ratio);
1286 
1287 		return (int)tdp_ratio;
1288 	}
1289 
1290 	return -ENXIO;
1291 }
1292 
1293 static int core_get_max_pstate(void)
1294 {
1295 	u64 tar;
1296 	u64 plat_info;
1297 	int max_pstate;
1298 	int tdp_ratio;
1299 	int err;
1300 
1301 	rdmsrl(MSR_PLATFORM_INFO, plat_info);
1302 	max_pstate = (plat_info >> 8) & 0xFF;
1303 
1304 	tdp_ratio = core_get_tdp_ratio(plat_info);
1305 	if (tdp_ratio <= 0)
1306 		return max_pstate;
1307 
1308 	if (hwp_active) {
1309 		/* Turbo activation ratio is not used on HWP platforms */
1310 		return tdp_ratio;
1311 	}
1312 
1313 	err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
1314 	if (!err) {
1315 		int tar_levels;
1316 
1317 		/* Do some sanity checking for safety */
1318 		tar_levels = tar & 0xff;
1319 		if (tdp_ratio - 1 == tar_levels) {
1320 			max_pstate = tar_levels;
1321 			pr_debug("max_pstate=TAC %x\n", max_pstate);
1322 		}
1323 	}
1324 
1325 	return max_pstate;
1326 }
1327 
1328 static int core_get_turbo_pstate(void)
1329 {
1330 	u64 value;
1331 	int nont, ret;
1332 
1333 	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1334 	nont = core_get_max_pstate();
1335 	ret = (value) & 255;
1336 	if (ret <= nont)
1337 		ret = nont;
1338 	return ret;
1339 }
1340 
1341 static inline int core_get_scaling(void)
1342 {
1343 	return 100000;
1344 }
1345 
1346 static u64 core_get_val(struct cpudata *cpudata, int pstate)
1347 {
1348 	u64 val;
1349 
1350 	val = (u64)pstate << 8;
1351 	if (global.no_turbo && !global.turbo_disabled)
1352 		val |= (u64)1 << 32;
1353 
1354 	return val;
1355 }
1356 
1357 static int knl_get_aperf_mperf_shift(void)
1358 {
1359 	return 10;
1360 }
1361 
1362 static int knl_get_turbo_pstate(void)
1363 {
1364 	u64 value;
1365 	int nont, ret;
1366 
1367 	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1368 	nont = core_get_max_pstate();
1369 	ret = (((value) >> 8) & 0xFF);
1370 	if (ret <= nont)
1371 		ret = nont;
1372 	return ret;
1373 }
1374 
1375 static int intel_pstate_get_base_pstate(struct cpudata *cpu)
1376 {
1377 	return global.no_turbo || global.turbo_disabled ?
1378 			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1379 }
1380 
1381 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1382 {
1383 	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1384 	cpu->pstate.current_pstate = pstate;
1385 	/*
1386 	 * Generally, there is no guarantee that this code will always run on
1387 	 * the CPU being updated, so force the register update to run on the
1388 	 * right CPU.
1389 	 */
1390 	wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1391 		      pstate_funcs.get_val(cpu, pstate));
1392 }
1393 
1394 static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1395 {
1396 	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
1397 }
1398 
1399 static void intel_pstate_max_within_limits(struct cpudata *cpu)
1400 {
1401 	int pstate;
1402 
1403 	update_turbo_state();
1404 	pstate = intel_pstate_get_base_pstate(cpu);
1405 	pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio);
1406 	intel_pstate_set_pstate(cpu, pstate);
1407 }
1408 
1409 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1410 {
1411 	cpu->pstate.min_pstate = pstate_funcs.get_min();
1412 	cpu->pstate.max_pstate = pstate_funcs.get_max();
1413 	cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1414 	cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1415 	cpu->pstate.scaling = pstate_funcs.get_scaling();
1416 	cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
1417 
1418 	if (hwp_active && !hwp_mode_bdw) {
1419 		unsigned int phy_max, current_max;
1420 
1421 		intel_pstate_get_hwp_max(cpu->cpu, &phy_max, &current_max);
1422 		cpu->pstate.turbo_freq = phy_max * cpu->pstate.scaling;
1423 	} else {
1424 		cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1425 	}
1426 
1427 	if (pstate_funcs.get_aperf_mperf_shift)
1428 		cpu->aperf_mperf_shift = pstate_funcs.get_aperf_mperf_shift();
1429 
1430 	if (pstate_funcs.get_vid)
1431 		pstate_funcs.get_vid(cpu);
1432 
1433 	intel_pstate_set_min_pstate(cpu);
1434 }
1435 
1436 /*
1437  * Long hold time will keep high perf limits for long time,
1438  * which negatively impacts perf/watt for some workloads,
1439  * like specpower. 3ms is based on experiements on some
1440  * workoads.
1441  */
1442 static int hwp_boost_hold_time_ns = 3 * NSEC_PER_MSEC;
1443 
1444 static inline void intel_pstate_hwp_boost_up(struct cpudata *cpu)
1445 {
1446 	u64 hwp_req = READ_ONCE(cpu->hwp_req_cached);
1447 	u32 max_limit = (hwp_req & 0xff00) >> 8;
1448 	u32 min_limit = (hwp_req & 0xff);
1449 	u32 boost_level1;
1450 
1451 	/*
1452 	 * Cases to consider (User changes via sysfs or boot time):
1453 	 * If, P0 (Turbo max) = P1 (Guaranteed max) = min:
1454 	 *	No boost, return.
1455 	 * If, P0 (Turbo max) > P1 (Guaranteed max) = min:
1456 	 *     Should result in one level boost only for P0.
1457 	 * If, P0 (Turbo max) = P1 (Guaranteed max) > min:
1458 	 *     Should result in two level boost:
1459 	 *         (min + p1)/2 and P1.
1460 	 * If, P0 (Turbo max) > P1 (Guaranteed max) > min:
1461 	 *     Should result in three level boost:
1462 	 *        (min + p1)/2, P1 and P0.
1463 	 */
1464 
1465 	/* If max and min are equal or already at max, nothing to boost */
1466 	if (max_limit == min_limit || cpu->hwp_boost_min >= max_limit)
1467 		return;
1468 
1469 	if (!cpu->hwp_boost_min)
1470 		cpu->hwp_boost_min = min_limit;
1471 
1472 	/* level at half way mark between min and guranteed */
1473 	boost_level1 = (HWP_GUARANTEED_PERF(cpu->hwp_cap_cached) + min_limit) >> 1;
1474 
1475 	if (cpu->hwp_boost_min < boost_level1)
1476 		cpu->hwp_boost_min = boost_level1;
1477 	else if (cpu->hwp_boost_min < HWP_GUARANTEED_PERF(cpu->hwp_cap_cached))
1478 		cpu->hwp_boost_min = HWP_GUARANTEED_PERF(cpu->hwp_cap_cached);
1479 	else if (cpu->hwp_boost_min == HWP_GUARANTEED_PERF(cpu->hwp_cap_cached) &&
1480 		 max_limit != HWP_GUARANTEED_PERF(cpu->hwp_cap_cached))
1481 		cpu->hwp_boost_min = max_limit;
1482 	else
1483 		return;
1484 
1485 	hwp_req = (hwp_req & ~GENMASK_ULL(7, 0)) | cpu->hwp_boost_min;
1486 	wrmsrl(MSR_HWP_REQUEST, hwp_req);
1487 	cpu->last_update = cpu->sample.time;
1488 }
1489 
1490 static inline void intel_pstate_hwp_boost_down(struct cpudata *cpu)
1491 {
1492 	if (cpu->hwp_boost_min) {
1493 		bool expired;
1494 
1495 		/* Check if we are idle for hold time to boost down */
1496 		expired = time_after64(cpu->sample.time, cpu->last_update +
1497 				       hwp_boost_hold_time_ns);
1498 		if (expired) {
1499 			wrmsrl(MSR_HWP_REQUEST, cpu->hwp_req_cached);
1500 			cpu->hwp_boost_min = 0;
1501 		}
1502 	}
1503 	cpu->last_update = cpu->sample.time;
1504 }
1505 
1506 static inline void intel_pstate_update_util_hwp_local(struct cpudata *cpu,
1507 						      u64 time)
1508 {
1509 	cpu->sample.time = time;
1510 
1511 	if (cpu->sched_flags & SCHED_CPUFREQ_IOWAIT) {
1512 		bool do_io = false;
1513 
1514 		cpu->sched_flags = 0;
1515 		/*
1516 		 * Set iowait_boost flag and update time. Since IO WAIT flag
1517 		 * is set all the time, we can't just conclude that there is
1518 		 * some IO bound activity is scheduled on this CPU with just
1519 		 * one occurrence. If we receive at least two in two
1520 		 * consecutive ticks, then we treat as boost candidate.
1521 		 */
1522 		if (time_before64(time, cpu->last_io_update + 2 * TICK_NSEC))
1523 			do_io = true;
1524 
1525 		cpu->last_io_update = time;
1526 
1527 		if (do_io)
1528 			intel_pstate_hwp_boost_up(cpu);
1529 
1530 	} else {
1531 		intel_pstate_hwp_boost_down(cpu);
1532 	}
1533 }
1534 
1535 static inline void intel_pstate_update_util_hwp(struct update_util_data *data,
1536 						u64 time, unsigned int flags)
1537 {
1538 	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1539 
1540 	cpu->sched_flags |= flags;
1541 
1542 	if (smp_processor_id() == cpu->cpu)
1543 		intel_pstate_update_util_hwp_local(cpu, time);
1544 }
1545 
1546 static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1547 {
1548 	struct sample *sample = &cpu->sample;
1549 
1550 	sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1551 }
1552 
1553 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1554 {
1555 	u64 aperf, mperf;
1556 	unsigned long flags;
1557 	u64 tsc;
1558 
1559 	local_irq_save(flags);
1560 	rdmsrl(MSR_IA32_APERF, aperf);
1561 	rdmsrl(MSR_IA32_MPERF, mperf);
1562 	tsc = rdtsc();
1563 	if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1564 		local_irq_restore(flags);
1565 		return false;
1566 	}
1567 	local_irq_restore(flags);
1568 
1569 	cpu->last_sample_time = cpu->sample.time;
1570 	cpu->sample.time = time;
1571 	cpu->sample.aperf = aperf;
1572 	cpu->sample.mperf = mperf;
1573 	cpu->sample.tsc =  tsc;
1574 	cpu->sample.aperf -= cpu->prev_aperf;
1575 	cpu->sample.mperf -= cpu->prev_mperf;
1576 	cpu->sample.tsc -= cpu->prev_tsc;
1577 
1578 	cpu->prev_aperf = aperf;
1579 	cpu->prev_mperf = mperf;
1580 	cpu->prev_tsc = tsc;
1581 	/*
1582 	 * First time this function is invoked in a given cycle, all of the
1583 	 * previous sample data fields are equal to zero or stale and they must
1584 	 * be populated with meaningful numbers for things to work, so assume
1585 	 * that sample.time will always be reset before setting the utilization
1586 	 * update hook and make the caller skip the sample then.
1587 	 */
1588 	if (cpu->last_sample_time) {
1589 		intel_pstate_calc_avg_perf(cpu);
1590 		return true;
1591 	}
1592 	return false;
1593 }
1594 
1595 static inline int32_t get_avg_frequency(struct cpudata *cpu)
1596 {
1597 	return mul_ext_fp(cpu->sample.core_avg_perf, cpu_khz);
1598 }
1599 
1600 static inline int32_t get_avg_pstate(struct cpudata *cpu)
1601 {
1602 	return mul_ext_fp(cpu->pstate.max_pstate_physical,
1603 			  cpu->sample.core_avg_perf);
1604 }
1605 
1606 static inline int32_t get_target_pstate(struct cpudata *cpu)
1607 {
1608 	struct sample *sample = &cpu->sample;
1609 	int32_t busy_frac, boost;
1610 	int target, avg_pstate;
1611 
1612 	busy_frac = div_fp(sample->mperf << cpu->aperf_mperf_shift,
1613 			   sample->tsc);
1614 
1615 	boost = cpu->iowait_boost;
1616 	cpu->iowait_boost >>= 1;
1617 
1618 	if (busy_frac < boost)
1619 		busy_frac = boost;
1620 
1621 	sample->busy_scaled = busy_frac * 100;
1622 
1623 	target = global.no_turbo || global.turbo_disabled ?
1624 			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1625 	target += target >> 2;
1626 	target = mul_fp(target, busy_frac);
1627 	if (target < cpu->pstate.min_pstate)
1628 		target = cpu->pstate.min_pstate;
1629 
1630 	/*
1631 	 * If the average P-state during the previous cycle was higher than the
1632 	 * current target, add 50% of the difference to the target to reduce
1633 	 * possible performance oscillations and offset possible performance
1634 	 * loss related to moving the workload from one CPU to another within
1635 	 * a package/module.
1636 	 */
1637 	avg_pstate = get_avg_pstate(cpu);
1638 	if (avg_pstate > target)
1639 		target += (avg_pstate - target) >> 1;
1640 
1641 	return target;
1642 }
1643 
1644 static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
1645 {
1646 	int max_pstate = intel_pstate_get_base_pstate(cpu);
1647 	int min_pstate;
1648 
1649 	min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio);
1650 	max_pstate = max(min_pstate, cpu->max_perf_ratio);
1651 	return clamp_t(int, pstate, min_pstate, max_pstate);
1652 }
1653 
1654 static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1655 {
1656 	if (pstate == cpu->pstate.current_pstate)
1657 		return;
1658 
1659 	cpu->pstate.current_pstate = pstate;
1660 	wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1661 }
1662 
1663 static void intel_pstate_adjust_pstate(struct cpudata *cpu)
1664 {
1665 	int from = cpu->pstate.current_pstate;
1666 	struct sample *sample;
1667 	int target_pstate;
1668 
1669 	update_turbo_state();
1670 
1671 	target_pstate = get_target_pstate(cpu);
1672 	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
1673 	trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
1674 	intel_pstate_update_pstate(cpu, target_pstate);
1675 
1676 	sample = &cpu->sample;
1677 	trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1678 		fp_toint(sample->busy_scaled),
1679 		from,
1680 		cpu->pstate.current_pstate,
1681 		sample->mperf,
1682 		sample->aperf,
1683 		sample->tsc,
1684 		get_avg_frequency(cpu),
1685 		fp_toint(cpu->iowait_boost * 100));
1686 }
1687 
1688 static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1689 				     unsigned int flags)
1690 {
1691 	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1692 	u64 delta_ns;
1693 
1694 	/* Don't allow remote callbacks */
1695 	if (smp_processor_id() != cpu->cpu)
1696 		return;
1697 
1698 	if (flags & SCHED_CPUFREQ_IOWAIT) {
1699 		cpu->iowait_boost = int_tofp(1);
1700 		cpu->last_update = time;
1701 		/*
1702 		 * The last time the busy was 100% so P-state was max anyway
1703 		 * so avoid overhead of computation.
1704 		 */
1705 		if (fp_toint(cpu->sample.busy_scaled) == 100)
1706 			return;
1707 
1708 		goto set_pstate;
1709 	} else if (cpu->iowait_boost) {
1710 		/* Clear iowait_boost if the CPU may have been idle. */
1711 		delta_ns = time - cpu->last_update;
1712 		if (delta_ns > TICK_NSEC)
1713 			cpu->iowait_boost = 0;
1714 	}
1715 	cpu->last_update = time;
1716 	delta_ns = time - cpu->sample.time;
1717 	if ((s64)delta_ns < INTEL_PSTATE_SAMPLING_INTERVAL)
1718 		return;
1719 
1720 set_pstate:
1721 	if (intel_pstate_sample(cpu, time))
1722 		intel_pstate_adjust_pstate(cpu);
1723 }
1724 
1725 static struct pstate_funcs core_funcs = {
1726 	.get_max = core_get_max_pstate,
1727 	.get_max_physical = core_get_max_pstate_physical,
1728 	.get_min = core_get_min_pstate,
1729 	.get_turbo = core_get_turbo_pstate,
1730 	.get_scaling = core_get_scaling,
1731 	.get_val = core_get_val,
1732 };
1733 
1734 static const struct pstate_funcs silvermont_funcs = {
1735 	.get_max = atom_get_max_pstate,
1736 	.get_max_physical = atom_get_max_pstate,
1737 	.get_min = atom_get_min_pstate,
1738 	.get_turbo = atom_get_turbo_pstate,
1739 	.get_val = atom_get_val,
1740 	.get_scaling = silvermont_get_scaling,
1741 	.get_vid = atom_get_vid,
1742 };
1743 
1744 static const struct pstate_funcs airmont_funcs = {
1745 	.get_max = atom_get_max_pstate,
1746 	.get_max_physical = atom_get_max_pstate,
1747 	.get_min = atom_get_min_pstate,
1748 	.get_turbo = atom_get_turbo_pstate,
1749 	.get_val = atom_get_val,
1750 	.get_scaling = airmont_get_scaling,
1751 	.get_vid = atom_get_vid,
1752 };
1753 
1754 static const struct pstate_funcs knl_funcs = {
1755 	.get_max = core_get_max_pstate,
1756 	.get_max_physical = core_get_max_pstate_physical,
1757 	.get_min = core_get_min_pstate,
1758 	.get_turbo = knl_get_turbo_pstate,
1759 	.get_aperf_mperf_shift = knl_get_aperf_mperf_shift,
1760 	.get_scaling = core_get_scaling,
1761 	.get_val = core_get_val,
1762 };
1763 
1764 #define ICPU(model, policy) \
1765 	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1766 			(unsigned long)&policy }
1767 
1768 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1769 	ICPU(INTEL_FAM6_SANDYBRIDGE, 		core_funcs),
1770 	ICPU(INTEL_FAM6_SANDYBRIDGE_X,		core_funcs),
1771 	ICPU(INTEL_FAM6_ATOM_SILVERMONT1,	silvermont_funcs),
1772 	ICPU(INTEL_FAM6_IVYBRIDGE,		core_funcs),
1773 	ICPU(INTEL_FAM6_HASWELL_CORE,		core_funcs),
1774 	ICPU(INTEL_FAM6_BROADWELL_CORE,		core_funcs),
1775 	ICPU(INTEL_FAM6_IVYBRIDGE_X,		core_funcs),
1776 	ICPU(INTEL_FAM6_HASWELL_X,		core_funcs),
1777 	ICPU(INTEL_FAM6_HASWELL_ULT,		core_funcs),
1778 	ICPU(INTEL_FAM6_HASWELL_GT3E,		core_funcs),
1779 	ICPU(INTEL_FAM6_BROADWELL_GT3E,		core_funcs),
1780 	ICPU(INTEL_FAM6_ATOM_AIRMONT,		airmont_funcs),
1781 	ICPU(INTEL_FAM6_SKYLAKE_MOBILE,		core_funcs),
1782 	ICPU(INTEL_FAM6_BROADWELL_X,		core_funcs),
1783 	ICPU(INTEL_FAM6_SKYLAKE_DESKTOP,	core_funcs),
1784 	ICPU(INTEL_FAM6_BROADWELL_XEON_D,	core_funcs),
1785 	ICPU(INTEL_FAM6_XEON_PHI_KNL,		knl_funcs),
1786 	ICPU(INTEL_FAM6_XEON_PHI_KNM,		knl_funcs),
1787 	ICPU(INTEL_FAM6_ATOM_GOLDMONT,		core_funcs),
1788 	ICPU(INTEL_FAM6_ATOM_GEMINI_LAKE,       core_funcs),
1789 	ICPU(INTEL_FAM6_SKYLAKE_X,		core_funcs),
1790 	{}
1791 };
1792 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1793 
1794 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
1795 	ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_funcs),
1796 	ICPU(INTEL_FAM6_BROADWELL_X, core_funcs),
1797 	ICPU(INTEL_FAM6_SKYLAKE_X, core_funcs),
1798 	{}
1799 };
1800 
1801 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
1802 	ICPU(INTEL_FAM6_KABYLAKE_DESKTOP, core_funcs),
1803 	{}
1804 };
1805 
1806 static const struct x86_cpu_id intel_pstate_hwp_boost_ids[] = {
1807 	ICPU(INTEL_FAM6_SKYLAKE_X, core_funcs),
1808 	ICPU(INTEL_FAM6_SKYLAKE_DESKTOP, core_funcs),
1809 	{}
1810 };
1811 
1812 static int intel_pstate_init_cpu(unsigned int cpunum)
1813 {
1814 	struct cpudata *cpu;
1815 
1816 	cpu = all_cpu_data[cpunum];
1817 
1818 	if (!cpu) {
1819 		cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
1820 		if (!cpu)
1821 			return -ENOMEM;
1822 
1823 		all_cpu_data[cpunum] = cpu;
1824 
1825 		cpu->epp_default = -EINVAL;
1826 		cpu->epp_powersave = -EINVAL;
1827 		cpu->epp_saved = -EINVAL;
1828 	}
1829 
1830 	cpu = all_cpu_data[cpunum];
1831 
1832 	cpu->cpu = cpunum;
1833 
1834 	if (hwp_active) {
1835 		const struct x86_cpu_id *id;
1836 
1837 		id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
1838 		if (id)
1839 			intel_pstate_disable_ee(cpunum);
1840 
1841 		intel_pstate_hwp_enable(cpu);
1842 
1843 		id = x86_match_cpu(intel_pstate_hwp_boost_ids);
1844 		if (id)
1845 			hwp_boost = true;
1846 	}
1847 
1848 	intel_pstate_get_cpu_pstates(cpu);
1849 
1850 	pr_debug("controlling: cpu %d\n", cpunum);
1851 
1852 	return 0;
1853 }
1854 
1855 static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
1856 {
1857 	struct cpudata *cpu = all_cpu_data[cpu_num];
1858 
1859 	if (hwp_active && !hwp_boost)
1860 		return;
1861 
1862 	if (cpu->update_util_set)
1863 		return;
1864 
1865 	/* Prevent intel_pstate_update_util() from using stale data. */
1866 	cpu->sample.time = 0;
1867 	cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
1868 				     (hwp_active ?
1869 				      intel_pstate_update_util_hwp :
1870 				      intel_pstate_update_util));
1871 	cpu->update_util_set = true;
1872 }
1873 
1874 static void intel_pstate_clear_update_util_hook(unsigned int cpu)
1875 {
1876 	struct cpudata *cpu_data = all_cpu_data[cpu];
1877 
1878 	if (!cpu_data->update_util_set)
1879 		return;
1880 
1881 	cpufreq_remove_update_util_hook(cpu);
1882 	cpu_data->update_util_set = false;
1883 	synchronize_sched();
1884 }
1885 
1886 static int intel_pstate_get_max_freq(struct cpudata *cpu)
1887 {
1888 	return global.turbo_disabled || global.no_turbo ?
1889 			cpu->pstate.max_freq : cpu->pstate.turbo_freq;
1890 }
1891 
1892 static void intel_pstate_update_perf_limits(struct cpufreq_policy *policy,
1893 					    struct cpudata *cpu)
1894 {
1895 	int max_freq = intel_pstate_get_max_freq(cpu);
1896 	int32_t max_policy_perf, min_policy_perf;
1897 	int max_state, turbo_max;
1898 
1899 	/*
1900 	 * HWP needs some special consideration, because on BDX the
1901 	 * HWP_REQUEST uses abstract value to represent performance
1902 	 * rather than pure ratios.
1903 	 */
1904 	if (hwp_active) {
1905 		intel_pstate_get_hwp_max(cpu->cpu, &turbo_max, &max_state);
1906 	} else {
1907 		max_state = intel_pstate_get_base_pstate(cpu);
1908 		turbo_max = cpu->pstate.turbo_pstate;
1909 	}
1910 
1911 	max_policy_perf = max_state * policy->max / max_freq;
1912 	if (policy->max == policy->min) {
1913 		min_policy_perf = max_policy_perf;
1914 	} else {
1915 		min_policy_perf = max_state * policy->min / max_freq;
1916 		min_policy_perf = clamp_t(int32_t, min_policy_perf,
1917 					  0, max_policy_perf);
1918 	}
1919 
1920 	pr_debug("cpu:%d max_state %d min_policy_perf:%d max_policy_perf:%d\n",
1921 		 policy->cpu, max_state,
1922 		 min_policy_perf, max_policy_perf);
1923 
1924 	/* Normalize user input to [min_perf, max_perf] */
1925 	if (per_cpu_limits) {
1926 		cpu->min_perf_ratio = min_policy_perf;
1927 		cpu->max_perf_ratio = max_policy_perf;
1928 	} else {
1929 		int32_t global_min, global_max;
1930 
1931 		/* Global limits are in percent of the maximum turbo P-state. */
1932 		global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
1933 		global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
1934 		global_min = clamp_t(int32_t, global_min, 0, global_max);
1935 
1936 		pr_debug("cpu:%d global_min:%d global_max:%d\n", policy->cpu,
1937 			 global_min, global_max);
1938 
1939 		cpu->min_perf_ratio = max(min_policy_perf, global_min);
1940 		cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf);
1941 		cpu->max_perf_ratio = min(max_policy_perf, global_max);
1942 		cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio);
1943 
1944 		/* Make sure min_perf <= max_perf */
1945 		cpu->min_perf_ratio = min(cpu->min_perf_ratio,
1946 					  cpu->max_perf_ratio);
1947 
1948 	}
1949 	pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", policy->cpu,
1950 		 cpu->max_perf_ratio,
1951 		 cpu->min_perf_ratio);
1952 }
1953 
1954 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
1955 {
1956 	struct cpudata *cpu;
1957 
1958 	if (!policy->cpuinfo.max_freq)
1959 		return -ENODEV;
1960 
1961 	pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
1962 		 policy->cpuinfo.max_freq, policy->max);
1963 
1964 	cpu = all_cpu_data[policy->cpu];
1965 	cpu->policy = policy->policy;
1966 
1967 	mutex_lock(&intel_pstate_limits_lock);
1968 
1969 	intel_pstate_update_perf_limits(policy, cpu);
1970 
1971 	if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
1972 		/*
1973 		 * NOHZ_FULL CPUs need this as the governor callback may not
1974 		 * be invoked on them.
1975 		 */
1976 		intel_pstate_clear_update_util_hook(policy->cpu);
1977 		intel_pstate_max_within_limits(cpu);
1978 	} else {
1979 		intel_pstate_set_update_util_hook(policy->cpu);
1980 	}
1981 
1982 	if (hwp_active) {
1983 		/*
1984 		 * When hwp_boost was active before and dynamically it
1985 		 * was turned off, in that case we need to clear the
1986 		 * update util hook.
1987 		 */
1988 		if (!hwp_boost)
1989 			intel_pstate_clear_update_util_hook(policy->cpu);
1990 		intel_pstate_hwp_set(policy->cpu);
1991 	}
1992 
1993 	mutex_unlock(&intel_pstate_limits_lock);
1994 
1995 	return 0;
1996 }
1997 
1998 static void intel_pstate_adjust_policy_max(struct cpufreq_policy *policy,
1999 					 struct cpudata *cpu)
2000 {
2001 	if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
2002 	    policy->max < policy->cpuinfo.max_freq &&
2003 	    policy->max > cpu->pstate.max_freq) {
2004 		pr_debug("policy->max > max non turbo frequency\n");
2005 		policy->max = policy->cpuinfo.max_freq;
2006 	}
2007 }
2008 
2009 static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
2010 {
2011 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2012 
2013 	update_turbo_state();
2014 	cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
2015 				     intel_pstate_get_max_freq(cpu));
2016 
2017 	if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
2018 	    policy->policy != CPUFREQ_POLICY_PERFORMANCE)
2019 		return -EINVAL;
2020 
2021 	intel_pstate_adjust_policy_max(policy, cpu);
2022 
2023 	return 0;
2024 }
2025 
2026 static void intel_cpufreq_stop_cpu(struct cpufreq_policy *policy)
2027 {
2028 	intel_pstate_set_min_pstate(all_cpu_data[policy->cpu]);
2029 }
2030 
2031 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
2032 {
2033 	pr_debug("CPU %d exiting\n", policy->cpu);
2034 
2035 	intel_pstate_clear_update_util_hook(policy->cpu);
2036 	if (hwp_active)
2037 		intel_pstate_hwp_save_state(policy);
2038 	else
2039 		intel_cpufreq_stop_cpu(policy);
2040 }
2041 
2042 static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
2043 {
2044 	intel_pstate_exit_perf_limits(policy);
2045 
2046 	policy->fast_switch_possible = false;
2047 
2048 	return 0;
2049 }
2050 
2051 static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2052 {
2053 	struct cpudata *cpu;
2054 	int rc;
2055 
2056 	rc = intel_pstate_init_cpu(policy->cpu);
2057 	if (rc)
2058 		return rc;
2059 
2060 	cpu = all_cpu_data[policy->cpu];
2061 
2062 	cpu->max_perf_ratio = 0xFF;
2063 	cpu->min_perf_ratio = 0;
2064 
2065 	policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
2066 	policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
2067 
2068 	/* cpuinfo and default policy values */
2069 	policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
2070 	update_turbo_state();
2071 	policy->cpuinfo.max_freq = global.turbo_disabled ?
2072 			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2073 	policy->cpuinfo.max_freq *= cpu->pstate.scaling;
2074 
2075 	intel_pstate_init_acpi_perf_limits(policy);
2076 
2077 	policy->fast_switch_possible = true;
2078 
2079 	return 0;
2080 }
2081 
2082 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2083 {
2084 	int ret = __intel_pstate_cpu_init(policy);
2085 
2086 	if (ret)
2087 		return ret;
2088 
2089 	if (IS_ENABLED(CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE))
2090 		policy->policy = CPUFREQ_POLICY_PERFORMANCE;
2091 	else
2092 		policy->policy = CPUFREQ_POLICY_POWERSAVE;
2093 
2094 	return 0;
2095 }
2096 
2097 static struct cpufreq_driver intel_pstate = {
2098 	.flags		= CPUFREQ_CONST_LOOPS,
2099 	.verify		= intel_pstate_verify_policy,
2100 	.setpolicy	= intel_pstate_set_policy,
2101 	.suspend	= intel_pstate_hwp_save_state,
2102 	.resume		= intel_pstate_resume,
2103 	.init		= intel_pstate_cpu_init,
2104 	.exit		= intel_pstate_cpu_exit,
2105 	.stop_cpu	= intel_pstate_stop_cpu,
2106 	.name		= "intel_pstate",
2107 };
2108 
2109 static int intel_cpufreq_verify_policy(struct cpufreq_policy *policy)
2110 {
2111 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2112 
2113 	update_turbo_state();
2114 	cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
2115 				     intel_pstate_get_max_freq(cpu));
2116 
2117 	intel_pstate_adjust_policy_max(policy, cpu);
2118 
2119 	intel_pstate_update_perf_limits(policy, cpu);
2120 
2121 	return 0;
2122 }
2123 
2124 /* Use of trace in passive mode:
2125  *
2126  * In passive mode the trace core_busy field (also known as the
2127  * performance field, and lablelled as such on the graphs; also known as
2128  * core_avg_perf) is not needed and so is re-assigned to indicate if the
2129  * driver call was via the normal or fast switch path. Various graphs
2130  * output from the intel_pstate_tracer.py utility that include core_busy
2131  * (or performance or core_avg_perf) have a fixed y-axis from 0 to 100%,
2132  * so we use 10 to indicate the the normal path through the driver, and
2133  * 90 to indicate the fast switch path through the driver.
2134  * The scaled_busy field is not used, and is set to 0.
2135  */
2136 
2137 #define	INTEL_PSTATE_TRACE_TARGET 10
2138 #define	INTEL_PSTATE_TRACE_FAST_SWITCH 90
2139 
2140 static void intel_cpufreq_trace(struct cpudata *cpu, unsigned int trace_type, int old_pstate)
2141 {
2142 	struct sample *sample;
2143 
2144 	if (!trace_pstate_sample_enabled())
2145 		return;
2146 
2147 	if (!intel_pstate_sample(cpu, ktime_get()))
2148 		return;
2149 
2150 	sample = &cpu->sample;
2151 	trace_pstate_sample(trace_type,
2152 		0,
2153 		old_pstate,
2154 		cpu->pstate.current_pstate,
2155 		sample->mperf,
2156 		sample->aperf,
2157 		sample->tsc,
2158 		get_avg_frequency(cpu),
2159 		fp_toint(cpu->iowait_boost * 100));
2160 }
2161 
2162 static int intel_cpufreq_target(struct cpufreq_policy *policy,
2163 				unsigned int target_freq,
2164 				unsigned int relation)
2165 {
2166 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2167 	struct cpufreq_freqs freqs;
2168 	int target_pstate, old_pstate;
2169 
2170 	update_turbo_state();
2171 
2172 	freqs.old = policy->cur;
2173 	freqs.new = target_freq;
2174 
2175 	cpufreq_freq_transition_begin(policy, &freqs);
2176 	switch (relation) {
2177 	case CPUFREQ_RELATION_L:
2178 		target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
2179 		break;
2180 	case CPUFREQ_RELATION_H:
2181 		target_pstate = freqs.new / cpu->pstate.scaling;
2182 		break;
2183 	default:
2184 		target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
2185 		break;
2186 	}
2187 	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2188 	old_pstate = cpu->pstate.current_pstate;
2189 	if (target_pstate != cpu->pstate.current_pstate) {
2190 		cpu->pstate.current_pstate = target_pstate;
2191 		wrmsrl_on_cpu(policy->cpu, MSR_IA32_PERF_CTL,
2192 			      pstate_funcs.get_val(cpu, target_pstate));
2193 	}
2194 	freqs.new = target_pstate * cpu->pstate.scaling;
2195 	intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_TARGET, old_pstate);
2196 	cpufreq_freq_transition_end(policy, &freqs, false);
2197 
2198 	return 0;
2199 }
2200 
2201 static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
2202 					      unsigned int target_freq)
2203 {
2204 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2205 	int target_pstate, old_pstate;
2206 
2207 	update_turbo_state();
2208 
2209 	target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
2210 	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2211 	old_pstate = cpu->pstate.current_pstate;
2212 	intel_pstate_update_pstate(cpu, target_pstate);
2213 	intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_FAST_SWITCH, old_pstate);
2214 	return target_pstate * cpu->pstate.scaling;
2215 }
2216 
2217 static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
2218 {
2219 	int ret = __intel_pstate_cpu_init(policy);
2220 
2221 	if (ret)
2222 		return ret;
2223 
2224 	policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
2225 	policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY;
2226 	/* This reflects the intel_pstate_get_cpu_pstates() setting. */
2227 	policy->cur = policy->cpuinfo.min_freq;
2228 
2229 	return 0;
2230 }
2231 
2232 static struct cpufreq_driver intel_cpufreq = {
2233 	.flags		= CPUFREQ_CONST_LOOPS,
2234 	.verify		= intel_cpufreq_verify_policy,
2235 	.target		= intel_cpufreq_target,
2236 	.fast_switch	= intel_cpufreq_fast_switch,
2237 	.init		= intel_cpufreq_cpu_init,
2238 	.exit		= intel_pstate_cpu_exit,
2239 	.stop_cpu	= intel_cpufreq_stop_cpu,
2240 	.name		= "intel_cpufreq",
2241 };
2242 
2243 static struct cpufreq_driver *default_driver = &intel_pstate;
2244 
2245 static void intel_pstate_driver_cleanup(void)
2246 {
2247 	unsigned int cpu;
2248 
2249 	get_online_cpus();
2250 	for_each_online_cpu(cpu) {
2251 		if (all_cpu_data[cpu]) {
2252 			if (intel_pstate_driver == &intel_pstate)
2253 				intel_pstate_clear_update_util_hook(cpu);
2254 
2255 			kfree(all_cpu_data[cpu]);
2256 			all_cpu_data[cpu] = NULL;
2257 		}
2258 	}
2259 	put_online_cpus();
2260 	intel_pstate_driver = NULL;
2261 }
2262 
2263 static int intel_pstate_register_driver(struct cpufreq_driver *driver)
2264 {
2265 	int ret;
2266 
2267 	memset(&global, 0, sizeof(global));
2268 	global.max_perf_pct = 100;
2269 
2270 	intel_pstate_driver = driver;
2271 	ret = cpufreq_register_driver(intel_pstate_driver);
2272 	if (ret) {
2273 		intel_pstate_driver_cleanup();
2274 		return ret;
2275 	}
2276 
2277 	global.min_perf_pct = min_perf_pct_min();
2278 
2279 	return 0;
2280 }
2281 
2282 static int intel_pstate_unregister_driver(void)
2283 {
2284 	if (hwp_active)
2285 		return -EBUSY;
2286 
2287 	cpufreq_unregister_driver(intel_pstate_driver);
2288 	intel_pstate_driver_cleanup();
2289 
2290 	return 0;
2291 }
2292 
2293 static ssize_t intel_pstate_show_status(char *buf)
2294 {
2295 	if (!intel_pstate_driver)
2296 		return sprintf(buf, "off\n");
2297 
2298 	return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
2299 					"active" : "passive");
2300 }
2301 
2302 static int intel_pstate_update_status(const char *buf, size_t size)
2303 {
2304 	int ret;
2305 
2306 	if (size == 3 && !strncmp(buf, "off", size))
2307 		return intel_pstate_driver ?
2308 			intel_pstate_unregister_driver() : -EINVAL;
2309 
2310 	if (size == 6 && !strncmp(buf, "active", size)) {
2311 		if (intel_pstate_driver) {
2312 			if (intel_pstate_driver == &intel_pstate)
2313 				return 0;
2314 
2315 			ret = intel_pstate_unregister_driver();
2316 			if (ret)
2317 				return ret;
2318 		}
2319 
2320 		return intel_pstate_register_driver(&intel_pstate);
2321 	}
2322 
2323 	if (size == 7 && !strncmp(buf, "passive", size)) {
2324 		if (intel_pstate_driver) {
2325 			if (intel_pstate_driver == &intel_cpufreq)
2326 				return 0;
2327 
2328 			ret = intel_pstate_unregister_driver();
2329 			if (ret)
2330 				return ret;
2331 		}
2332 
2333 		return intel_pstate_register_driver(&intel_cpufreq);
2334 	}
2335 
2336 	return -EINVAL;
2337 }
2338 
2339 static int no_load __initdata;
2340 static int no_hwp __initdata;
2341 static int hwp_only __initdata;
2342 static unsigned int force_load __initdata;
2343 
2344 static int __init intel_pstate_msrs_not_valid(void)
2345 {
2346 	if (!pstate_funcs.get_max() ||
2347 	    !pstate_funcs.get_min() ||
2348 	    !pstate_funcs.get_turbo())
2349 		return -ENODEV;
2350 
2351 	return 0;
2352 }
2353 
2354 static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
2355 {
2356 	pstate_funcs.get_max   = funcs->get_max;
2357 	pstate_funcs.get_max_physical = funcs->get_max_physical;
2358 	pstate_funcs.get_min   = funcs->get_min;
2359 	pstate_funcs.get_turbo = funcs->get_turbo;
2360 	pstate_funcs.get_scaling = funcs->get_scaling;
2361 	pstate_funcs.get_val   = funcs->get_val;
2362 	pstate_funcs.get_vid   = funcs->get_vid;
2363 	pstate_funcs.get_aperf_mperf_shift = funcs->get_aperf_mperf_shift;
2364 }
2365 
2366 #ifdef CONFIG_ACPI
2367 
2368 static bool __init intel_pstate_no_acpi_pss(void)
2369 {
2370 	int i;
2371 
2372 	for_each_possible_cpu(i) {
2373 		acpi_status status;
2374 		union acpi_object *pss;
2375 		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
2376 		struct acpi_processor *pr = per_cpu(processors, i);
2377 
2378 		if (!pr)
2379 			continue;
2380 
2381 		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
2382 		if (ACPI_FAILURE(status))
2383 			continue;
2384 
2385 		pss = buffer.pointer;
2386 		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
2387 			kfree(pss);
2388 			return false;
2389 		}
2390 
2391 		kfree(pss);
2392 	}
2393 
2394 	return true;
2395 }
2396 
2397 static bool __init intel_pstate_has_acpi_ppc(void)
2398 {
2399 	int i;
2400 
2401 	for_each_possible_cpu(i) {
2402 		struct acpi_processor *pr = per_cpu(processors, i);
2403 
2404 		if (!pr)
2405 			continue;
2406 		if (acpi_has_method(pr->handle, "_PPC"))
2407 			return true;
2408 	}
2409 	return false;
2410 }
2411 
2412 enum {
2413 	PSS,
2414 	PPC,
2415 };
2416 
2417 /* Hardware vendor-specific info that has its own power management modes */
2418 static struct acpi_platform_list plat_info[] __initdata = {
2419 	{"HP    ", "ProLiant", 0, ACPI_SIG_FADT, all_versions, 0, PSS},
2420 	{"ORACLE", "X4-2    ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2421 	{"ORACLE", "X4-2L   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2422 	{"ORACLE", "X4-2B   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2423 	{"ORACLE", "X3-2    ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2424 	{"ORACLE", "X3-2L   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2425 	{"ORACLE", "X3-2B   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2426 	{"ORACLE", "X4470M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2427 	{"ORACLE", "X4270M3 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2428 	{"ORACLE", "X4270M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2429 	{"ORACLE", "X4170M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2430 	{"ORACLE", "X4170 M3", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2431 	{"ORACLE", "X4275 M3", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2432 	{"ORACLE", "X6-2    ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2433 	{"ORACLE", "Sudbury ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2434 	{ } /* End */
2435 };
2436 
2437 static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
2438 {
2439 	const struct x86_cpu_id *id;
2440 	u64 misc_pwr;
2441 	int idx;
2442 
2443 	id = x86_match_cpu(intel_pstate_cpu_oob_ids);
2444 	if (id) {
2445 		rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
2446 		if ( misc_pwr & (1 << 8))
2447 			return true;
2448 	}
2449 
2450 	idx = acpi_match_platform_list(plat_info);
2451 	if (idx < 0)
2452 		return false;
2453 
2454 	switch (plat_info[idx].data) {
2455 	case PSS:
2456 		return intel_pstate_no_acpi_pss();
2457 	case PPC:
2458 		return intel_pstate_has_acpi_ppc() && !force_load;
2459 	}
2460 
2461 	return false;
2462 }
2463 
2464 static void intel_pstate_request_control_from_smm(void)
2465 {
2466 	/*
2467 	 * It may be unsafe to request P-states control from SMM if _PPC support
2468 	 * has not been enabled.
2469 	 */
2470 	if (acpi_ppc)
2471 		acpi_processor_pstate_control();
2472 }
2473 #else /* CONFIG_ACPI not enabled */
2474 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
2475 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
2476 static inline void intel_pstate_request_control_from_smm(void) {}
2477 #endif /* CONFIG_ACPI */
2478 
2479 #define INTEL_PSTATE_HWP_BROADWELL	0x01
2480 
2481 #define ICPU_HWP(model, hwp_mode) \
2482 	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_HWP, hwp_mode }
2483 
2484 static const struct x86_cpu_id hwp_support_ids[] __initconst = {
2485 	ICPU_HWP(INTEL_FAM6_BROADWELL_X, INTEL_PSTATE_HWP_BROADWELL),
2486 	ICPU_HWP(INTEL_FAM6_BROADWELL_XEON_D, INTEL_PSTATE_HWP_BROADWELL),
2487 	ICPU_HWP(X86_MODEL_ANY, 0),
2488 	{}
2489 };
2490 
2491 static int __init intel_pstate_init(void)
2492 {
2493 	const struct x86_cpu_id *id;
2494 	int rc;
2495 
2496 	if (no_load)
2497 		return -ENODEV;
2498 
2499 	id = x86_match_cpu(hwp_support_ids);
2500 	if (id) {
2501 		copy_cpu_funcs(&core_funcs);
2502 		if (!no_hwp) {
2503 			hwp_active++;
2504 			hwp_mode_bdw = id->driver_data;
2505 			intel_pstate.attr = hwp_cpufreq_attrs;
2506 			goto hwp_cpu_matched;
2507 		}
2508 	} else {
2509 		id = x86_match_cpu(intel_pstate_cpu_ids);
2510 		if (!id)
2511 			return -ENODEV;
2512 
2513 		copy_cpu_funcs((struct pstate_funcs *)id->driver_data);
2514 	}
2515 
2516 	if (intel_pstate_msrs_not_valid())
2517 		return -ENODEV;
2518 
2519 hwp_cpu_matched:
2520 	/*
2521 	 * The Intel pstate driver will be ignored if the platform
2522 	 * firmware has its own power management modes.
2523 	 */
2524 	if (intel_pstate_platform_pwr_mgmt_exists())
2525 		return -ENODEV;
2526 
2527 	if (!hwp_active && hwp_only)
2528 		return -ENOTSUPP;
2529 
2530 	pr_info("Intel P-state driver initializing\n");
2531 
2532 	all_cpu_data = vzalloc(array_size(sizeof(void *), num_possible_cpus()));
2533 	if (!all_cpu_data)
2534 		return -ENOMEM;
2535 
2536 	intel_pstate_request_control_from_smm();
2537 
2538 	intel_pstate_sysfs_expose_params();
2539 
2540 	mutex_lock(&intel_pstate_driver_lock);
2541 	rc = intel_pstate_register_driver(default_driver);
2542 	mutex_unlock(&intel_pstate_driver_lock);
2543 	if (rc)
2544 		return rc;
2545 
2546 	if (hwp_active)
2547 		pr_info("HWP enabled\n");
2548 
2549 	return 0;
2550 }
2551 device_initcall(intel_pstate_init);
2552 
2553 static int __init intel_pstate_setup(char *str)
2554 {
2555 	if (!str)
2556 		return -EINVAL;
2557 
2558 	if (!strcmp(str, "disable")) {
2559 		no_load = 1;
2560 	} else if (!strcmp(str, "passive")) {
2561 		pr_info("Passive mode enabled\n");
2562 		default_driver = &intel_cpufreq;
2563 		no_hwp = 1;
2564 	}
2565 	if (!strcmp(str, "no_hwp")) {
2566 		pr_info("HWP disabled\n");
2567 		no_hwp = 1;
2568 	}
2569 	if (!strcmp(str, "force"))
2570 		force_load = 1;
2571 	if (!strcmp(str, "hwp_only"))
2572 		hwp_only = 1;
2573 	if (!strcmp(str, "per_cpu_perf_limits"))
2574 		per_cpu_limits = true;
2575 
2576 #ifdef CONFIG_ACPI
2577 	if (!strcmp(str, "support_acpi_ppc"))
2578 		acpi_ppc = true;
2579 #endif
2580 
2581 	return 0;
2582 }
2583 early_param("intel_pstate", intel_pstate_setup);
2584 
2585 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
2586 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
2587 MODULE_LICENSE("GPL");
2588