1 /*
2  * intel_pstate.c: Native P state management for Intel processors
3  *
4  * (C) Copyright 2012 Intel Corporation
5  * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; version 2
10  * of the License.
11  */
12 
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 
15 #include <linux/kernel.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/module.h>
18 #include <linux/ktime.h>
19 #include <linux/hrtimer.h>
20 #include <linux/tick.h>
21 #include <linux/slab.h>
22 #include <linux/sched.h>
23 #include <linux/list.h>
24 #include <linux/cpu.h>
25 #include <linux/cpufreq.h>
26 #include <linux/sysfs.h>
27 #include <linux/types.h>
28 #include <linux/fs.h>
29 #include <linux/debugfs.h>
30 #include <linux/acpi.h>
31 #include <linux/vmalloc.h>
32 #include <trace/events/power.h>
33 
34 #include <asm/div64.h>
35 #include <asm/msr.h>
36 #include <asm/cpu_device_id.h>
37 #include <asm/cpufeature.h>
38 
39 #define ATOM_RATIOS		0x66a
40 #define ATOM_VIDS		0x66b
41 #define ATOM_TURBO_RATIOS	0x66c
42 #define ATOM_TURBO_VIDS		0x66d
43 
44 #ifdef CONFIG_ACPI
45 #include <acpi/processor.h>
46 #endif
47 
48 #define FRAC_BITS 8
49 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
50 #define fp_toint(X) ((X) >> FRAC_BITS)
51 
52 static inline int32_t mul_fp(int32_t x, int32_t y)
53 {
54 	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
55 }
56 
57 static inline int32_t div_fp(s64 x, s64 y)
58 {
59 	return div64_s64((int64_t)x << FRAC_BITS, y);
60 }
61 
62 static inline int ceiling_fp(int32_t x)
63 {
64 	int mask, ret;
65 
66 	ret = fp_toint(x);
67 	mask = (1 << FRAC_BITS) - 1;
68 	if (x & mask)
69 		ret += 1;
70 	return ret;
71 }
72 
73 /**
74  * struct sample -	Store performance sample
75  * @core_pct_busy:	Ratio of APERF/MPERF in percent, which is actual
76  *			performance during last sample period
77  * @busy_scaled:	Scaled busy value which is used to calculate next
78  *			P state. This can be different than core_pct_busy
79  *			to account for cpu idle period
80  * @aperf:		Difference of actual performance frequency clock count
81  *			read from APERF MSR between last and current sample
82  * @mperf:		Difference of maximum performance frequency clock count
83  *			read from MPERF MSR between last and current sample
84  * @tsc:		Difference of time stamp counter between last and
85  *			current sample
86  * @freq:		Effective frequency calculated from APERF/MPERF
87  * @time:		Current time from scheduler
88  *
89  * This structure is used in the cpudata structure to store performance sample
90  * data for choosing next P State.
91  */
92 struct sample {
93 	int32_t core_pct_busy;
94 	int32_t busy_scaled;
95 	u64 aperf;
96 	u64 mperf;
97 	u64 tsc;
98 	int freq;
99 	u64 time;
100 };
101 
102 /**
103  * struct pstate_data - Store P state data
104  * @current_pstate:	Current requested P state
105  * @min_pstate:		Min P state possible for this platform
106  * @max_pstate:		Max P state possible for this platform
107  * @max_pstate_physical:This is physical Max P state for a processor
108  *			This can be higher than the max_pstate which can
109  *			be limited by platform thermal design power limits
110  * @scaling:		Scaling factor to  convert frequency to cpufreq
111  *			frequency units
112  * @turbo_pstate:	Max Turbo P state possible for this platform
113  *
114  * Stores the per cpu model P state limits and current P state.
115  */
116 struct pstate_data {
117 	int	current_pstate;
118 	int	min_pstate;
119 	int	max_pstate;
120 	int	max_pstate_physical;
121 	int	scaling;
122 	int	turbo_pstate;
123 };
124 
125 /**
126  * struct vid_data -	Stores voltage information data
127  * @min:		VID data for this platform corresponding to
128  *			the lowest P state
129  * @max:		VID data corresponding to the highest P State.
130  * @turbo:		VID data for turbo P state
131  * @ratio:		Ratio of (vid max - vid min) /
132  *			(max P state - Min P State)
133  *
134  * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
135  * This data is used in Atom platforms, where in addition to target P state,
136  * the voltage data needs to be specified to select next P State.
137  */
138 struct vid_data {
139 	int min;
140 	int max;
141 	int turbo;
142 	int32_t ratio;
143 };
144 
145 /**
146  * struct _pid -	Stores PID data
147  * @setpoint:		Target set point for busyness or performance
148  * @integral:		Storage for accumulated error values
149  * @p_gain:		PID proportional gain
150  * @i_gain:		PID integral gain
151  * @d_gain:		PID derivative gain
152  * @deadband:		PID deadband
153  * @last_err:		Last error storage for integral part of PID calculation
154  *
155  * Stores PID coefficients and last error for PID controller.
156  */
157 struct _pid {
158 	int setpoint;
159 	int32_t integral;
160 	int32_t p_gain;
161 	int32_t i_gain;
162 	int32_t d_gain;
163 	int deadband;
164 	int32_t last_err;
165 };
166 
167 /**
168  * struct cpudata -	Per CPU instance data storage
169  * @cpu:		CPU number for this instance data
170  * @update_util:	CPUFreq utility callback information
171  * @pstate:		Stores P state limits for this CPU
172  * @vid:		Stores VID limits for this CPU
173  * @pid:		Stores PID parameters for this CPU
174  * @last_sample_time:	Last Sample time
175  * @prev_aperf:		Last APERF value read from APERF MSR
176  * @prev_mperf:		Last MPERF value read from MPERF MSR
177  * @prev_tsc:		Last timestamp counter (TSC) value
178  * @prev_cummulative_iowait: IO Wait time difference from last and
179  *			current sample
180  * @sample:		Storage for storing last Sample data
181  * @acpi_perf_data:	Stores ACPI perf information read from _PSS
182  * @valid_pss_table:	Set to true for valid ACPI _PSS entries found
183  *
184  * This structure stores per CPU instance data for all CPUs.
185  */
186 struct cpudata {
187 	int cpu;
188 
189 	struct update_util_data update_util;
190 
191 	struct pstate_data pstate;
192 	struct vid_data vid;
193 	struct _pid pid;
194 
195 	u64	last_sample_time;
196 	u64	prev_aperf;
197 	u64	prev_mperf;
198 	u64	prev_tsc;
199 	u64	prev_cummulative_iowait;
200 	struct sample sample;
201 #ifdef CONFIG_ACPI
202 	struct acpi_processor_performance acpi_perf_data;
203 	bool valid_pss_table;
204 #endif
205 };
206 
207 static struct cpudata **all_cpu_data;
208 
209 /**
210  * struct pid_adjust_policy - Stores static PID configuration data
211  * @sample_rate_ms:	PID calculation sample rate in ms
212  * @sample_rate_ns:	Sample rate calculation in ns
213  * @deadband:		PID deadband
214  * @setpoint:		PID Setpoint
215  * @p_gain_pct:		PID proportional gain
216  * @i_gain_pct:		PID integral gain
217  * @d_gain_pct:		PID derivative gain
218  *
219  * Stores per CPU model static PID configuration data.
220  */
221 struct pstate_adjust_policy {
222 	int sample_rate_ms;
223 	s64 sample_rate_ns;
224 	int deadband;
225 	int setpoint;
226 	int p_gain_pct;
227 	int d_gain_pct;
228 	int i_gain_pct;
229 };
230 
231 /**
232  * struct pstate_funcs - Per CPU model specific callbacks
233  * @get_max:		Callback to get maximum non turbo effective P state
234  * @get_max_physical:	Callback to get maximum non turbo physical P state
235  * @get_min:		Callback to get minimum P state
236  * @get_turbo:		Callback to get turbo P state
237  * @get_scaling:	Callback to get frequency scaling factor
238  * @get_val:		Callback to convert P state to actual MSR write value
239  * @get_vid:		Callback to get VID data for Atom platforms
240  * @get_target_pstate:	Callback to a function to calculate next P state to use
241  *
242  * Core and Atom CPU models have different way to get P State limits. This
243  * structure is used to store those callbacks.
244  */
245 struct pstate_funcs {
246 	int (*get_max)(void);
247 	int (*get_max_physical)(void);
248 	int (*get_min)(void);
249 	int (*get_turbo)(void);
250 	int (*get_scaling)(void);
251 	u64 (*get_val)(struct cpudata*, int pstate);
252 	void (*get_vid)(struct cpudata *);
253 	int32_t (*get_target_pstate)(struct cpudata *);
254 };
255 
256 /**
257  * struct cpu_defaults- Per CPU model default config data
258  * @pid_policy:	PID config data
259  * @funcs:		Callback function data
260  */
261 struct cpu_defaults {
262 	struct pstate_adjust_policy pid_policy;
263 	struct pstate_funcs funcs;
264 };
265 
266 static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu);
267 static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu);
268 
269 static struct pstate_adjust_policy pid_params;
270 static struct pstate_funcs pstate_funcs;
271 static int hwp_active;
272 
273 #ifdef CONFIG_ACPI
274 static bool acpi_ppc;
275 #endif
276 
277 /**
278  * struct perf_limits - Store user and policy limits
279  * @no_turbo:		User requested turbo state from intel_pstate sysfs
280  * @turbo_disabled:	Platform turbo status either from msr
281  *			MSR_IA32_MISC_ENABLE or when maximum available pstate
282  *			matches the maximum turbo pstate
283  * @max_perf_pct:	Effective maximum performance limit in percentage, this
284  *			is minimum of either limits enforced by cpufreq policy
285  *			or limits from user set limits via intel_pstate sysfs
286  * @min_perf_pct:	Effective minimum performance limit in percentage, this
287  *			is maximum of either limits enforced by cpufreq policy
288  *			or limits from user set limits via intel_pstate sysfs
289  * @max_perf:		This is a scaled value between 0 to 255 for max_perf_pct
290  *			This value is used to limit max pstate
291  * @min_perf:		This is a scaled value between 0 to 255 for min_perf_pct
292  *			This value is used to limit min pstate
293  * @max_policy_pct:	The maximum performance in percentage enforced by
294  *			cpufreq setpolicy interface
295  * @max_sysfs_pct:	The maximum performance in percentage enforced by
296  *			intel pstate sysfs interface
297  * @min_policy_pct:	The minimum performance in percentage enforced by
298  *			cpufreq setpolicy interface
299  * @min_sysfs_pct:	The minimum performance in percentage enforced by
300  *			intel pstate sysfs interface
301  *
302  * Storage for user and policy defined limits.
303  */
304 struct perf_limits {
305 	int no_turbo;
306 	int turbo_disabled;
307 	int max_perf_pct;
308 	int min_perf_pct;
309 	int32_t max_perf;
310 	int32_t min_perf;
311 	int max_policy_pct;
312 	int max_sysfs_pct;
313 	int min_policy_pct;
314 	int min_sysfs_pct;
315 };
316 
317 static struct perf_limits performance_limits = {
318 	.no_turbo = 0,
319 	.turbo_disabled = 0,
320 	.max_perf_pct = 100,
321 	.max_perf = int_tofp(1),
322 	.min_perf_pct = 100,
323 	.min_perf = int_tofp(1),
324 	.max_policy_pct = 100,
325 	.max_sysfs_pct = 100,
326 	.min_policy_pct = 0,
327 	.min_sysfs_pct = 0,
328 };
329 
330 static struct perf_limits powersave_limits = {
331 	.no_turbo = 0,
332 	.turbo_disabled = 0,
333 	.max_perf_pct = 100,
334 	.max_perf = int_tofp(1),
335 	.min_perf_pct = 0,
336 	.min_perf = 0,
337 	.max_policy_pct = 100,
338 	.max_sysfs_pct = 100,
339 	.min_policy_pct = 0,
340 	.min_sysfs_pct = 0,
341 };
342 
343 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE
344 static struct perf_limits *limits = &performance_limits;
345 #else
346 static struct perf_limits *limits = &powersave_limits;
347 #endif
348 
349 #ifdef CONFIG_ACPI
350 /*
351  * The max target pstate ratio is a 8 bit value in both PLATFORM_INFO MSR and
352  * in TURBO_RATIO_LIMIT MSR, which pstate driver stores in max_pstate and
353  * max_turbo_pstate fields. The PERF_CTL MSR contains 16 bit value for P state
354  * ratio, out of it only high 8 bits are used. For example 0x1700 is setting
355  * target ratio 0x17. The _PSS control value stores in a format which can be
356  * directly written to PERF_CTL MSR. But in intel_pstate driver this shift
357  * occurs during write to PERF_CTL (E.g. for cores core_set_pstate()).
358  * This function converts the _PSS control value to intel pstate driver format
359  * for comparison and assignment.
360  */
361 static int convert_to_native_pstate_format(struct cpudata *cpu, int index)
362 {
363 	return cpu->acpi_perf_data.states[index].control >> 8;
364 }
365 
366 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
367 {
368 	struct cpudata *cpu;
369 	int turbo_pss_ctl;
370 	int ret;
371 	int i;
372 
373 	if (!acpi_ppc)
374 		return;
375 
376 	cpu = all_cpu_data[policy->cpu];
377 
378 	ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
379 						  policy->cpu);
380 	if (ret)
381 		return;
382 
383 	/*
384 	 * Check if the control value in _PSS is for PERF_CTL MSR, which should
385 	 * guarantee that the states returned by it map to the states in our
386 	 * list directly.
387 	 */
388 	if (cpu->acpi_perf_data.control_register.space_id !=
389 						ACPI_ADR_SPACE_FIXED_HARDWARE)
390 		goto err;
391 
392 	/*
393 	 * If there is only one entry _PSS, simply ignore _PSS and continue as
394 	 * usual without taking _PSS into account
395 	 */
396 	if (cpu->acpi_perf_data.state_count < 2)
397 		goto err;
398 
399 	pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
400 	for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
401 		pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
402 			 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
403 			 (u32) cpu->acpi_perf_data.states[i].core_frequency,
404 			 (u32) cpu->acpi_perf_data.states[i].power,
405 			 (u32) cpu->acpi_perf_data.states[i].control);
406 	}
407 
408 	/*
409 	 * The _PSS table doesn't contain whole turbo frequency range.
410 	 * This just contains +1 MHZ above the max non turbo frequency,
411 	 * with control value corresponding to max turbo ratio. But
412 	 * when cpufreq set policy is called, it will call with this
413 	 * max frequency, which will cause a reduced performance as
414 	 * this driver uses real max turbo frequency as the max
415 	 * frequency. So correct this frequency in _PSS table to
416 	 * correct max turbo frequency based on the turbo ratio.
417 	 * Also need to convert to MHz as _PSS freq is in MHz.
418 	 */
419 	turbo_pss_ctl = convert_to_native_pstate_format(cpu, 0);
420 	if (turbo_pss_ctl > cpu->pstate.max_pstate)
421 		cpu->acpi_perf_data.states[0].core_frequency =
422 					policy->cpuinfo.max_freq / 1000;
423 	cpu->valid_pss_table = true;
424 	pr_info("_PPC limits will be enforced\n");
425 
426 	return;
427 
428  err:
429 	cpu->valid_pss_table = false;
430 	acpi_processor_unregister_performance(policy->cpu);
431 }
432 
433 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
434 {
435 	struct cpudata *cpu;
436 
437 	cpu = all_cpu_data[policy->cpu];
438 	if (!cpu->valid_pss_table)
439 		return;
440 
441 	acpi_processor_unregister_performance(policy->cpu);
442 }
443 
444 #else
445 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
446 {
447 }
448 
449 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
450 {
451 }
452 #endif
453 
454 static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
455 			     int deadband, int integral) {
456 	pid->setpoint = int_tofp(setpoint);
457 	pid->deadband  = int_tofp(deadband);
458 	pid->integral  = int_tofp(integral);
459 	pid->last_err  = int_tofp(setpoint) - int_tofp(busy);
460 }
461 
462 static inline void pid_p_gain_set(struct _pid *pid, int percent)
463 {
464 	pid->p_gain = div_fp(percent, 100);
465 }
466 
467 static inline void pid_i_gain_set(struct _pid *pid, int percent)
468 {
469 	pid->i_gain = div_fp(percent, 100);
470 }
471 
472 static inline void pid_d_gain_set(struct _pid *pid, int percent)
473 {
474 	pid->d_gain = div_fp(percent, 100);
475 }
476 
477 static signed int pid_calc(struct _pid *pid, int32_t busy)
478 {
479 	signed int result;
480 	int32_t pterm, dterm, fp_error;
481 	int32_t integral_limit;
482 
483 	fp_error = pid->setpoint - busy;
484 
485 	if (abs(fp_error) <= pid->deadband)
486 		return 0;
487 
488 	pterm = mul_fp(pid->p_gain, fp_error);
489 
490 	pid->integral += fp_error;
491 
492 	/*
493 	 * We limit the integral here so that it will never
494 	 * get higher than 30.  This prevents it from becoming
495 	 * too large an input over long periods of time and allows
496 	 * it to get factored out sooner.
497 	 *
498 	 * The value of 30 was chosen through experimentation.
499 	 */
500 	integral_limit = int_tofp(30);
501 	if (pid->integral > integral_limit)
502 		pid->integral = integral_limit;
503 	if (pid->integral < -integral_limit)
504 		pid->integral = -integral_limit;
505 
506 	dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
507 	pid->last_err = fp_error;
508 
509 	result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
510 	result = result + (1 << (FRAC_BITS-1));
511 	return (signed int)fp_toint(result);
512 }
513 
514 static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
515 {
516 	pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
517 	pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
518 	pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
519 
520 	pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
521 }
522 
523 static inline void intel_pstate_reset_all_pid(void)
524 {
525 	unsigned int cpu;
526 
527 	for_each_online_cpu(cpu) {
528 		if (all_cpu_data[cpu])
529 			intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
530 	}
531 }
532 
533 static inline void update_turbo_state(void)
534 {
535 	u64 misc_en;
536 	struct cpudata *cpu;
537 
538 	cpu = all_cpu_data[0];
539 	rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
540 	limits->turbo_disabled =
541 		(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
542 		 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
543 }
544 
545 static void intel_pstate_hwp_set(const struct cpumask *cpumask)
546 {
547 	int min, hw_min, max, hw_max, cpu, range, adj_range;
548 	u64 value, cap;
549 
550 	rdmsrl(MSR_HWP_CAPABILITIES, cap);
551 	hw_min = HWP_LOWEST_PERF(cap);
552 	hw_max = HWP_HIGHEST_PERF(cap);
553 	range = hw_max - hw_min;
554 
555 	for_each_cpu(cpu, cpumask) {
556 		rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
557 		adj_range = limits->min_perf_pct * range / 100;
558 		min = hw_min + adj_range;
559 		value &= ~HWP_MIN_PERF(~0L);
560 		value |= HWP_MIN_PERF(min);
561 
562 		adj_range = limits->max_perf_pct * range / 100;
563 		max = hw_min + adj_range;
564 		if (limits->no_turbo) {
565 			hw_max = HWP_GUARANTEED_PERF(cap);
566 			if (hw_max < max)
567 				max = hw_max;
568 		}
569 
570 		value &= ~HWP_MAX_PERF(~0L);
571 		value |= HWP_MAX_PERF(max);
572 		wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
573 	}
574 }
575 
576 static void intel_pstate_hwp_set_online_cpus(void)
577 {
578 	get_online_cpus();
579 	intel_pstate_hwp_set(cpu_online_mask);
580 	put_online_cpus();
581 }
582 
583 /************************** debugfs begin ************************/
584 static int pid_param_set(void *data, u64 val)
585 {
586 	*(u32 *)data = val;
587 	intel_pstate_reset_all_pid();
588 	return 0;
589 }
590 
591 static int pid_param_get(void *data, u64 *val)
592 {
593 	*val = *(u32 *)data;
594 	return 0;
595 }
596 DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
597 
598 struct pid_param {
599 	char *name;
600 	void *value;
601 };
602 
603 static struct pid_param pid_files[] = {
604 	{"sample_rate_ms", &pid_params.sample_rate_ms},
605 	{"d_gain_pct", &pid_params.d_gain_pct},
606 	{"i_gain_pct", &pid_params.i_gain_pct},
607 	{"deadband", &pid_params.deadband},
608 	{"setpoint", &pid_params.setpoint},
609 	{"p_gain_pct", &pid_params.p_gain_pct},
610 	{NULL, NULL}
611 };
612 
613 static void __init intel_pstate_debug_expose_params(void)
614 {
615 	struct dentry *debugfs_parent;
616 	int i = 0;
617 
618 	if (hwp_active)
619 		return;
620 	debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
621 	if (IS_ERR_OR_NULL(debugfs_parent))
622 		return;
623 	while (pid_files[i].name) {
624 		debugfs_create_file(pid_files[i].name, 0660,
625 				    debugfs_parent, pid_files[i].value,
626 				    &fops_pid_param);
627 		i++;
628 	}
629 }
630 
631 /************************** debugfs end ************************/
632 
633 /************************** sysfs begin ************************/
634 #define show_one(file_name, object)					\
635 	static ssize_t show_##file_name					\
636 	(struct kobject *kobj, struct attribute *attr, char *buf)	\
637 	{								\
638 		return sprintf(buf, "%u\n", limits->object);		\
639 	}
640 
641 static ssize_t show_turbo_pct(struct kobject *kobj,
642 				struct attribute *attr, char *buf)
643 {
644 	struct cpudata *cpu;
645 	int total, no_turbo, turbo_pct;
646 	uint32_t turbo_fp;
647 
648 	cpu = all_cpu_data[0];
649 
650 	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
651 	no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
652 	turbo_fp = div_fp(no_turbo, total);
653 	turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
654 	return sprintf(buf, "%u\n", turbo_pct);
655 }
656 
657 static ssize_t show_num_pstates(struct kobject *kobj,
658 				struct attribute *attr, char *buf)
659 {
660 	struct cpudata *cpu;
661 	int total;
662 
663 	cpu = all_cpu_data[0];
664 	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
665 	return sprintf(buf, "%u\n", total);
666 }
667 
668 static ssize_t show_no_turbo(struct kobject *kobj,
669 			     struct attribute *attr, char *buf)
670 {
671 	ssize_t ret;
672 
673 	update_turbo_state();
674 	if (limits->turbo_disabled)
675 		ret = sprintf(buf, "%u\n", limits->turbo_disabled);
676 	else
677 		ret = sprintf(buf, "%u\n", limits->no_turbo);
678 
679 	return ret;
680 }
681 
682 static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
683 			      const char *buf, size_t count)
684 {
685 	unsigned int input;
686 	int ret;
687 
688 	ret = sscanf(buf, "%u", &input);
689 	if (ret != 1)
690 		return -EINVAL;
691 
692 	update_turbo_state();
693 	if (limits->turbo_disabled) {
694 		pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
695 		return -EPERM;
696 	}
697 
698 	limits->no_turbo = clamp_t(int, input, 0, 1);
699 
700 	if (hwp_active)
701 		intel_pstate_hwp_set_online_cpus();
702 
703 	return count;
704 }
705 
706 static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
707 				  const char *buf, size_t count)
708 {
709 	unsigned int input;
710 	int ret;
711 
712 	ret = sscanf(buf, "%u", &input);
713 	if (ret != 1)
714 		return -EINVAL;
715 
716 	limits->max_sysfs_pct = clamp_t(int, input, 0 , 100);
717 	limits->max_perf_pct = min(limits->max_policy_pct,
718 				   limits->max_sysfs_pct);
719 	limits->max_perf_pct = max(limits->min_policy_pct,
720 				   limits->max_perf_pct);
721 	limits->max_perf_pct = max(limits->min_perf_pct,
722 				   limits->max_perf_pct);
723 	limits->max_perf = div_fp(limits->max_perf_pct, 100);
724 
725 	if (hwp_active)
726 		intel_pstate_hwp_set_online_cpus();
727 	return count;
728 }
729 
730 static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
731 				  const char *buf, size_t count)
732 {
733 	unsigned int input;
734 	int ret;
735 
736 	ret = sscanf(buf, "%u", &input);
737 	if (ret != 1)
738 		return -EINVAL;
739 
740 	limits->min_sysfs_pct = clamp_t(int, input, 0 , 100);
741 	limits->min_perf_pct = max(limits->min_policy_pct,
742 				   limits->min_sysfs_pct);
743 	limits->min_perf_pct = min(limits->max_policy_pct,
744 				   limits->min_perf_pct);
745 	limits->min_perf_pct = min(limits->max_perf_pct,
746 				   limits->min_perf_pct);
747 	limits->min_perf = div_fp(limits->min_perf_pct, 100);
748 
749 	if (hwp_active)
750 		intel_pstate_hwp_set_online_cpus();
751 	return count;
752 }
753 
754 show_one(max_perf_pct, max_perf_pct);
755 show_one(min_perf_pct, min_perf_pct);
756 
757 define_one_global_rw(no_turbo);
758 define_one_global_rw(max_perf_pct);
759 define_one_global_rw(min_perf_pct);
760 define_one_global_ro(turbo_pct);
761 define_one_global_ro(num_pstates);
762 
763 static struct attribute *intel_pstate_attributes[] = {
764 	&no_turbo.attr,
765 	&max_perf_pct.attr,
766 	&min_perf_pct.attr,
767 	&turbo_pct.attr,
768 	&num_pstates.attr,
769 	NULL
770 };
771 
772 static struct attribute_group intel_pstate_attr_group = {
773 	.attrs = intel_pstate_attributes,
774 };
775 
776 static void __init intel_pstate_sysfs_expose_params(void)
777 {
778 	struct kobject *intel_pstate_kobject;
779 	int rc;
780 
781 	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
782 						&cpu_subsys.dev_root->kobj);
783 	BUG_ON(!intel_pstate_kobject);
784 	rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
785 	BUG_ON(rc);
786 }
787 /************************** sysfs end ************************/
788 
789 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
790 {
791 	/* First disable HWP notification interrupt as we don't process them */
792 	wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
793 
794 	wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
795 }
796 
797 static int atom_get_min_pstate(void)
798 {
799 	u64 value;
800 
801 	rdmsrl(ATOM_RATIOS, value);
802 	return (value >> 8) & 0x7F;
803 }
804 
805 static int atom_get_max_pstate(void)
806 {
807 	u64 value;
808 
809 	rdmsrl(ATOM_RATIOS, value);
810 	return (value >> 16) & 0x7F;
811 }
812 
813 static int atom_get_turbo_pstate(void)
814 {
815 	u64 value;
816 
817 	rdmsrl(ATOM_TURBO_RATIOS, value);
818 	return value & 0x7F;
819 }
820 
821 static u64 atom_get_val(struct cpudata *cpudata, int pstate)
822 {
823 	u64 val;
824 	int32_t vid_fp;
825 	u32 vid;
826 
827 	val = (u64)pstate << 8;
828 	if (limits->no_turbo && !limits->turbo_disabled)
829 		val |= (u64)1 << 32;
830 
831 	vid_fp = cpudata->vid.min + mul_fp(
832 		int_tofp(pstate - cpudata->pstate.min_pstate),
833 		cpudata->vid.ratio);
834 
835 	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
836 	vid = ceiling_fp(vid_fp);
837 
838 	if (pstate > cpudata->pstate.max_pstate)
839 		vid = cpudata->vid.turbo;
840 
841 	return val | vid;
842 }
843 
844 static int silvermont_get_scaling(void)
845 {
846 	u64 value;
847 	int i;
848 	/* Defined in Table 35-6 from SDM (Sept 2015) */
849 	static int silvermont_freq_table[] = {
850 		83300, 100000, 133300, 116700, 80000};
851 
852 	rdmsrl(MSR_FSB_FREQ, value);
853 	i = value & 0x7;
854 	WARN_ON(i > 4);
855 
856 	return silvermont_freq_table[i];
857 }
858 
859 static int airmont_get_scaling(void)
860 {
861 	u64 value;
862 	int i;
863 	/* Defined in Table 35-10 from SDM (Sept 2015) */
864 	static int airmont_freq_table[] = {
865 		83300, 100000, 133300, 116700, 80000,
866 		93300, 90000, 88900, 87500};
867 
868 	rdmsrl(MSR_FSB_FREQ, value);
869 	i = value & 0xF;
870 	WARN_ON(i > 8);
871 
872 	return airmont_freq_table[i];
873 }
874 
875 static void atom_get_vid(struct cpudata *cpudata)
876 {
877 	u64 value;
878 
879 	rdmsrl(ATOM_VIDS, value);
880 	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
881 	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
882 	cpudata->vid.ratio = div_fp(
883 		cpudata->vid.max - cpudata->vid.min,
884 		int_tofp(cpudata->pstate.max_pstate -
885 			cpudata->pstate.min_pstate));
886 
887 	rdmsrl(ATOM_TURBO_VIDS, value);
888 	cpudata->vid.turbo = value & 0x7f;
889 }
890 
891 static int core_get_min_pstate(void)
892 {
893 	u64 value;
894 
895 	rdmsrl(MSR_PLATFORM_INFO, value);
896 	return (value >> 40) & 0xFF;
897 }
898 
899 static int core_get_max_pstate_physical(void)
900 {
901 	u64 value;
902 
903 	rdmsrl(MSR_PLATFORM_INFO, value);
904 	return (value >> 8) & 0xFF;
905 }
906 
907 static int core_get_max_pstate(void)
908 {
909 	u64 tar;
910 	u64 plat_info;
911 	int max_pstate;
912 	int err;
913 
914 	rdmsrl(MSR_PLATFORM_INFO, plat_info);
915 	max_pstate = (plat_info >> 8) & 0xFF;
916 
917 	err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
918 	if (!err) {
919 		/* Do some sanity checking for safety */
920 		if (plat_info & 0x600000000) {
921 			u64 tdp_ctrl;
922 			u64 tdp_ratio;
923 			int tdp_msr;
924 
925 			err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
926 			if (err)
927 				goto skip_tar;
928 
929 			tdp_msr = MSR_CONFIG_TDP_NOMINAL + tdp_ctrl;
930 			err = rdmsrl_safe(tdp_msr, &tdp_ratio);
931 			if (err)
932 				goto skip_tar;
933 
934 			if (tdp_ratio - 1 == tar) {
935 				max_pstate = tar;
936 				pr_debug("max_pstate=TAC %x\n", max_pstate);
937 			} else {
938 				goto skip_tar;
939 			}
940 		}
941 	}
942 
943 skip_tar:
944 	return max_pstate;
945 }
946 
947 static int core_get_turbo_pstate(void)
948 {
949 	u64 value;
950 	int nont, ret;
951 
952 	rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
953 	nont = core_get_max_pstate();
954 	ret = (value) & 255;
955 	if (ret <= nont)
956 		ret = nont;
957 	return ret;
958 }
959 
960 static inline int core_get_scaling(void)
961 {
962 	return 100000;
963 }
964 
965 static u64 core_get_val(struct cpudata *cpudata, int pstate)
966 {
967 	u64 val;
968 
969 	val = (u64)pstate << 8;
970 	if (limits->no_turbo && !limits->turbo_disabled)
971 		val |= (u64)1 << 32;
972 
973 	return val;
974 }
975 
976 static int knl_get_turbo_pstate(void)
977 {
978 	u64 value;
979 	int nont, ret;
980 
981 	rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
982 	nont = core_get_max_pstate();
983 	ret = (((value) >> 8) & 0xFF);
984 	if (ret <= nont)
985 		ret = nont;
986 	return ret;
987 }
988 
989 static struct cpu_defaults core_params = {
990 	.pid_policy = {
991 		.sample_rate_ms = 10,
992 		.deadband = 0,
993 		.setpoint = 97,
994 		.p_gain_pct = 20,
995 		.d_gain_pct = 0,
996 		.i_gain_pct = 0,
997 	},
998 	.funcs = {
999 		.get_max = core_get_max_pstate,
1000 		.get_max_physical = core_get_max_pstate_physical,
1001 		.get_min = core_get_min_pstate,
1002 		.get_turbo = core_get_turbo_pstate,
1003 		.get_scaling = core_get_scaling,
1004 		.get_val = core_get_val,
1005 		.get_target_pstate = get_target_pstate_use_performance,
1006 	},
1007 };
1008 
1009 static struct cpu_defaults silvermont_params = {
1010 	.pid_policy = {
1011 		.sample_rate_ms = 10,
1012 		.deadband = 0,
1013 		.setpoint = 60,
1014 		.p_gain_pct = 14,
1015 		.d_gain_pct = 0,
1016 		.i_gain_pct = 4,
1017 	},
1018 	.funcs = {
1019 		.get_max = atom_get_max_pstate,
1020 		.get_max_physical = atom_get_max_pstate,
1021 		.get_min = atom_get_min_pstate,
1022 		.get_turbo = atom_get_turbo_pstate,
1023 		.get_val = atom_get_val,
1024 		.get_scaling = silvermont_get_scaling,
1025 		.get_vid = atom_get_vid,
1026 		.get_target_pstate = get_target_pstate_use_cpu_load,
1027 	},
1028 };
1029 
1030 static struct cpu_defaults airmont_params = {
1031 	.pid_policy = {
1032 		.sample_rate_ms = 10,
1033 		.deadband = 0,
1034 		.setpoint = 60,
1035 		.p_gain_pct = 14,
1036 		.d_gain_pct = 0,
1037 		.i_gain_pct = 4,
1038 	},
1039 	.funcs = {
1040 		.get_max = atom_get_max_pstate,
1041 		.get_max_physical = atom_get_max_pstate,
1042 		.get_min = atom_get_min_pstate,
1043 		.get_turbo = atom_get_turbo_pstate,
1044 		.get_val = atom_get_val,
1045 		.get_scaling = airmont_get_scaling,
1046 		.get_vid = atom_get_vid,
1047 		.get_target_pstate = get_target_pstate_use_cpu_load,
1048 	},
1049 };
1050 
1051 static struct cpu_defaults knl_params = {
1052 	.pid_policy = {
1053 		.sample_rate_ms = 10,
1054 		.deadband = 0,
1055 		.setpoint = 97,
1056 		.p_gain_pct = 20,
1057 		.d_gain_pct = 0,
1058 		.i_gain_pct = 0,
1059 	},
1060 	.funcs = {
1061 		.get_max = core_get_max_pstate,
1062 		.get_max_physical = core_get_max_pstate_physical,
1063 		.get_min = core_get_min_pstate,
1064 		.get_turbo = knl_get_turbo_pstate,
1065 		.get_scaling = core_get_scaling,
1066 		.get_val = core_get_val,
1067 		.get_target_pstate = get_target_pstate_use_performance,
1068 	},
1069 };
1070 
1071 static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
1072 {
1073 	int max_perf = cpu->pstate.turbo_pstate;
1074 	int max_perf_adj;
1075 	int min_perf;
1076 
1077 	if (limits->no_turbo || limits->turbo_disabled)
1078 		max_perf = cpu->pstate.max_pstate;
1079 
1080 	/*
1081 	 * performance can be limited by user through sysfs, by cpufreq
1082 	 * policy, or by cpu specific default values determined through
1083 	 * experimentation.
1084 	 */
1085 	max_perf_adj = fp_toint(max_perf * limits->max_perf);
1086 	*max = clamp_t(int, max_perf_adj,
1087 			cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
1088 
1089 	min_perf = fp_toint(max_perf * limits->min_perf);
1090 	*min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
1091 }
1092 
1093 static inline void intel_pstate_record_pstate(struct cpudata *cpu, int pstate)
1094 {
1095 	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1096 	cpu->pstate.current_pstate = pstate;
1097 }
1098 
1099 static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1100 {
1101 	int pstate = cpu->pstate.min_pstate;
1102 
1103 	intel_pstate_record_pstate(cpu, pstate);
1104 	/*
1105 	 * Generally, there is no guarantee that this code will always run on
1106 	 * the CPU being updated, so force the register update to run on the
1107 	 * right CPU.
1108 	 */
1109 	wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1110 		      pstate_funcs.get_val(cpu, pstate));
1111 }
1112 
1113 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1114 {
1115 	cpu->pstate.min_pstate = pstate_funcs.get_min();
1116 	cpu->pstate.max_pstate = pstate_funcs.get_max();
1117 	cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1118 	cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1119 	cpu->pstate.scaling = pstate_funcs.get_scaling();
1120 
1121 	if (pstate_funcs.get_vid)
1122 		pstate_funcs.get_vid(cpu);
1123 
1124 	intel_pstate_set_min_pstate(cpu);
1125 }
1126 
1127 static inline void intel_pstate_calc_busy(struct cpudata *cpu)
1128 {
1129 	struct sample *sample = &cpu->sample;
1130 	int64_t core_pct;
1131 
1132 	core_pct = sample->aperf * int_tofp(100);
1133 	core_pct = div64_u64(core_pct, sample->mperf);
1134 
1135 	sample->core_pct_busy = (int32_t)core_pct;
1136 }
1137 
1138 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1139 {
1140 	u64 aperf, mperf;
1141 	unsigned long flags;
1142 	u64 tsc;
1143 
1144 	local_irq_save(flags);
1145 	rdmsrl(MSR_IA32_APERF, aperf);
1146 	rdmsrl(MSR_IA32_MPERF, mperf);
1147 	tsc = rdtsc();
1148 	if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1149 		local_irq_restore(flags);
1150 		return false;
1151 	}
1152 	local_irq_restore(flags);
1153 
1154 	cpu->last_sample_time = cpu->sample.time;
1155 	cpu->sample.time = time;
1156 	cpu->sample.aperf = aperf;
1157 	cpu->sample.mperf = mperf;
1158 	cpu->sample.tsc =  tsc;
1159 	cpu->sample.aperf -= cpu->prev_aperf;
1160 	cpu->sample.mperf -= cpu->prev_mperf;
1161 	cpu->sample.tsc -= cpu->prev_tsc;
1162 
1163 	cpu->prev_aperf = aperf;
1164 	cpu->prev_mperf = mperf;
1165 	cpu->prev_tsc = tsc;
1166 	/*
1167 	 * First time this function is invoked in a given cycle, all of the
1168 	 * previous sample data fields are equal to zero or stale and they must
1169 	 * be populated with meaningful numbers for things to work, so assume
1170 	 * that sample.time will always be reset before setting the utilization
1171 	 * update hook and make the caller skip the sample then.
1172 	 */
1173 	return !!cpu->last_sample_time;
1174 }
1175 
1176 static inline int32_t get_avg_frequency(struct cpudata *cpu)
1177 {
1178 	return div64_u64(cpu->pstate.max_pstate_physical * cpu->sample.aperf *
1179 		cpu->pstate.scaling, cpu->sample.mperf);
1180 }
1181 
1182 static inline int32_t get_avg_pstate(struct cpudata *cpu)
1183 {
1184 	return div64_u64(cpu->pstate.max_pstate_physical * cpu->sample.aperf,
1185 			 cpu->sample.mperf);
1186 }
1187 
1188 static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
1189 {
1190 	struct sample *sample = &cpu->sample;
1191 	u64 cummulative_iowait, delta_iowait_us;
1192 	u64 delta_iowait_mperf;
1193 	u64 mperf, now;
1194 	int32_t cpu_load;
1195 
1196 	cummulative_iowait = get_cpu_iowait_time_us(cpu->cpu, &now);
1197 
1198 	/*
1199 	 * Convert iowait time into number of IO cycles spent at max_freq.
1200 	 * IO is considered as busy only for the cpu_load algorithm. For
1201 	 * performance this is not needed since we always try to reach the
1202 	 * maximum P-State, so we are already boosting the IOs.
1203 	 */
1204 	delta_iowait_us = cummulative_iowait - cpu->prev_cummulative_iowait;
1205 	delta_iowait_mperf = div64_u64(delta_iowait_us * cpu->pstate.scaling *
1206 		cpu->pstate.max_pstate, MSEC_PER_SEC);
1207 
1208 	mperf = cpu->sample.mperf + delta_iowait_mperf;
1209 	cpu->prev_cummulative_iowait = cummulative_iowait;
1210 
1211 	/*
1212 	 * The load can be estimated as the ratio of the mperf counter
1213 	 * running at a constant frequency during active periods
1214 	 * (C0) and the time stamp counter running at the same frequency
1215 	 * also during C-states.
1216 	 */
1217 	cpu_load = div64_u64(int_tofp(100) * mperf, sample->tsc);
1218 	cpu->sample.busy_scaled = cpu_load;
1219 
1220 	return get_avg_pstate(cpu) - pid_calc(&cpu->pid, cpu_load);
1221 }
1222 
1223 static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
1224 {
1225 	int32_t core_busy, max_pstate, current_pstate, sample_ratio;
1226 	u64 duration_ns;
1227 
1228 	intel_pstate_calc_busy(cpu);
1229 
1230 	/*
1231 	 * core_busy is the ratio of actual performance to max
1232 	 * max_pstate is the max non turbo pstate available
1233 	 * current_pstate was the pstate that was requested during
1234 	 * 	the last sample period.
1235 	 *
1236 	 * We normalize core_busy, which was our actual percent
1237 	 * performance to what we requested during the last sample
1238 	 * period. The result will be a percentage of busy at a
1239 	 * specified pstate.
1240 	 */
1241 	core_busy = cpu->sample.core_pct_busy;
1242 	max_pstate = cpu->pstate.max_pstate_physical;
1243 	current_pstate = cpu->pstate.current_pstate;
1244 	core_busy = mul_fp(core_busy, div_fp(max_pstate, current_pstate));
1245 
1246 	/*
1247 	 * Since our utilization update callback will not run unless we are
1248 	 * in C0, check if the actual elapsed time is significantly greater (3x)
1249 	 * than our sample interval.  If it is, then we were idle for a long
1250 	 * enough period of time to adjust our busyness.
1251 	 */
1252 	duration_ns = cpu->sample.time - cpu->last_sample_time;
1253 	if ((s64)duration_ns > pid_params.sample_rate_ns * 3) {
1254 		sample_ratio = div_fp(pid_params.sample_rate_ns, duration_ns);
1255 		core_busy = mul_fp(core_busy, sample_ratio);
1256 	} else {
1257 		sample_ratio = div_fp(100 * cpu->sample.mperf, cpu->sample.tsc);
1258 		if (sample_ratio < int_tofp(1))
1259 			core_busy = 0;
1260 	}
1261 
1262 	cpu->sample.busy_scaled = core_busy;
1263 	return cpu->pstate.current_pstate - pid_calc(&cpu->pid, core_busy);
1264 }
1265 
1266 static inline void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1267 {
1268 	int max_perf, min_perf;
1269 
1270 	update_turbo_state();
1271 
1272 	intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
1273 	pstate = clamp_t(int, pstate, min_perf, max_perf);
1274 	if (pstate == cpu->pstate.current_pstate)
1275 		return;
1276 
1277 	intel_pstate_record_pstate(cpu, pstate);
1278 	wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1279 }
1280 
1281 static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
1282 {
1283 	int from, target_pstate;
1284 	struct sample *sample;
1285 
1286 	from = cpu->pstate.current_pstate;
1287 
1288 	target_pstate = pstate_funcs.get_target_pstate(cpu);
1289 
1290 	intel_pstate_update_pstate(cpu, target_pstate);
1291 
1292 	sample = &cpu->sample;
1293 	trace_pstate_sample(fp_toint(sample->core_pct_busy),
1294 		fp_toint(sample->busy_scaled),
1295 		from,
1296 		cpu->pstate.current_pstate,
1297 		sample->mperf,
1298 		sample->aperf,
1299 		sample->tsc,
1300 		get_avg_frequency(cpu));
1301 }
1302 
1303 static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1304 				     unsigned long util, unsigned long max)
1305 {
1306 	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1307 	u64 delta_ns = time - cpu->sample.time;
1308 
1309 	if ((s64)delta_ns >= pid_params.sample_rate_ns) {
1310 		bool sample_taken = intel_pstate_sample(cpu, time);
1311 
1312 		if (sample_taken && !hwp_active)
1313 			intel_pstate_adjust_busy_pstate(cpu);
1314 	}
1315 }
1316 
1317 #define ICPU(model, policy) \
1318 	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1319 			(unsigned long)&policy }
1320 
1321 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1322 	ICPU(0x2a, core_params),
1323 	ICPU(0x2d, core_params),
1324 	ICPU(0x37, silvermont_params),
1325 	ICPU(0x3a, core_params),
1326 	ICPU(0x3c, core_params),
1327 	ICPU(0x3d, core_params),
1328 	ICPU(0x3e, core_params),
1329 	ICPU(0x3f, core_params),
1330 	ICPU(0x45, core_params),
1331 	ICPU(0x46, core_params),
1332 	ICPU(0x47, core_params),
1333 	ICPU(0x4c, airmont_params),
1334 	ICPU(0x4e, core_params),
1335 	ICPU(0x4f, core_params),
1336 	ICPU(0x5e, core_params),
1337 	ICPU(0x56, core_params),
1338 	ICPU(0x57, knl_params),
1339 	{}
1340 };
1341 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1342 
1343 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] = {
1344 	ICPU(0x56, core_params),
1345 	{}
1346 };
1347 
1348 static int intel_pstate_init_cpu(unsigned int cpunum)
1349 {
1350 	struct cpudata *cpu;
1351 
1352 	if (!all_cpu_data[cpunum])
1353 		all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata),
1354 					       GFP_KERNEL);
1355 	if (!all_cpu_data[cpunum])
1356 		return -ENOMEM;
1357 
1358 	cpu = all_cpu_data[cpunum];
1359 
1360 	cpu->cpu = cpunum;
1361 
1362 	if (hwp_active) {
1363 		intel_pstate_hwp_enable(cpu);
1364 		pid_params.sample_rate_ms = 50;
1365 		pid_params.sample_rate_ns = 50 * NSEC_PER_MSEC;
1366 	}
1367 
1368 	intel_pstate_get_cpu_pstates(cpu);
1369 
1370 	intel_pstate_busy_pid_reset(cpu);
1371 
1372 	pr_debug("controlling: cpu %d\n", cpunum);
1373 
1374 	return 0;
1375 }
1376 
1377 static unsigned int intel_pstate_get(unsigned int cpu_num)
1378 {
1379 	struct sample *sample;
1380 	struct cpudata *cpu;
1381 
1382 	cpu = all_cpu_data[cpu_num];
1383 	if (!cpu)
1384 		return 0;
1385 	sample = &cpu->sample;
1386 	return get_avg_frequency(cpu);
1387 }
1388 
1389 static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
1390 {
1391 	struct cpudata *cpu = all_cpu_data[cpu_num];
1392 
1393 	/* Prevent intel_pstate_update_util() from using stale data. */
1394 	cpu->sample.time = 0;
1395 	cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
1396 				     intel_pstate_update_util);
1397 }
1398 
1399 static void intel_pstate_clear_update_util_hook(unsigned int cpu)
1400 {
1401 	cpufreq_remove_update_util_hook(cpu);
1402 	synchronize_sched();
1403 }
1404 
1405 static void intel_pstate_set_performance_limits(struct perf_limits *limits)
1406 {
1407 	limits->no_turbo = 0;
1408 	limits->turbo_disabled = 0;
1409 	limits->max_perf_pct = 100;
1410 	limits->max_perf = int_tofp(1);
1411 	limits->min_perf_pct = 100;
1412 	limits->min_perf = int_tofp(1);
1413 	limits->max_policy_pct = 100;
1414 	limits->max_sysfs_pct = 100;
1415 	limits->min_policy_pct = 0;
1416 	limits->min_sysfs_pct = 0;
1417 }
1418 
1419 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
1420 {
1421 	if (!policy->cpuinfo.max_freq)
1422 		return -ENODEV;
1423 
1424 	intel_pstate_clear_update_util_hook(policy->cpu);
1425 
1426 	if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) {
1427 		limits = &performance_limits;
1428 		if (policy->max >= policy->cpuinfo.max_freq) {
1429 			pr_debug("set performance\n");
1430 			intel_pstate_set_performance_limits(limits);
1431 			goto out;
1432 		}
1433 	} else {
1434 		pr_debug("set powersave\n");
1435 		limits = &powersave_limits;
1436 	}
1437 
1438 	limits->min_policy_pct = (policy->min * 100) / policy->cpuinfo.max_freq;
1439 	limits->min_policy_pct = clamp_t(int, limits->min_policy_pct, 0 , 100);
1440 	limits->max_policy_pct = DIV_ROUND_UP(policy->max * 100,
1441 					      policy->cpuinfo.max_freq);
1442 	limits->max_policy_pct = clamp_t(int, limits->max_policy_pct, 0 , 100);
1443 
1444 	/* Normalize user input to [min_policy_pct, max_policy_pct] */
1445 	limits->min_perf_pct = max(limits->min_policy_pct,
1446 				   limits->min_sysfs_pct);
1447 	limits->min_perf_pct = min(limits->max_policy_pct,
1448 				   limits->min_perf_pct);
1449 	limits->max_perf_pct = min(limits->max_policy_pct,
1450 				   limits->max_sysfs_pct);
1451 	limits->max_perf_pct = max(limits->min_policy_pct,
1452 				   limits->max_perf_pct);
1453 	limits->max_perf = round_up(limits->max_perf, FRAC_BITS);
1454 
1455 	/* Make sure min_perf_pct <= max_perf_pct */
1456 	limits->min_perf_pct = min(limits->max_perf_pct, limits->min_perf_pct);
1457 
1458 	limits->min_perf = div_fp(limits->min_perf_pct, 100);
1459 	limits->max_perf = div_fp(limits->max_perf_pct, 100);
1460 
1461  out:
1462 	intel_pstate_set_update_util_hook(policy->cpu);
1463 
1464 	if (hwp_active)
1465 		intel_pstate_hwp_set(policy->cpus);
1466 
1467 	return 0;
1468 }
1469 
1470 static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
1471 {
1472 	cpufreq_verify_within_cpu_limits(policy);
1473 
1474 	if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
1475 	    policy->policy != CPUFREQ_POLICY_PERFORMANCE)
1476 		return -EINVAL;
1477 
1478 	return 0;
1479 }
1480 
1481 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
1482 {
1483 	int cpu_num = policy->cpu;
1484 	struct cpudata *cpu = all_cpu_data[cpu_num];
1485 
1486 	pr_debug("CPU %d exiting\n", cpu_num);
1487 
1488 	intel_pstate_clear_update_util_hook(cpu_num);
1489 
1490 	if (hwp_active)
1491 		return;
1492 
1493 	intel_pstate_set_min_pstate(cpu);
1494 }
1495 
1496 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
1497 {
1498 	struct cpudata *cpu;
1499 	int rc;
1500 
1501 	rc = intel_pstate_init_cpu(policy->cpu);
1502 	if (rc)
1503 		return rc;
1504 
1505 	cpu = all_cpu_data[policy->cpu];
1506 
1507 	if (limits->min_perf_pct == 100 && limits->max_perf_pct == 100)
1508 		policy->policy = CPUFREQ_POLICY_PERFORMANCE;
1509 	else
1510 		policy->policy = CPUFREQ_POLICY_POWERSAVE;
1511 
1512 	policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
1513 	policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1514 
1515 	/* cpuinfo and default policy values */
1516 	policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
1517 	policy->cpuinfo.max_freq =
1518 		cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1519 	intel_pstate_init_acpi_perf_limits(policy);
1520 	policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
1521 	cpumask_set_cpu(policy->cpu, policy->cpus);
1522 
1523 	return 0;
1524 }
1525 
1526 static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
1527 {
1528 	intel_pstate_exit_perf_limits(policy);
1529 
1530 	return 0;
1531 }
1532 
1533 static struct cpufreq_driver intel_pstate_driver = {
1534 	.flags		= CPUFREQ_CONST_LOOPS,
1535 	.verify		= intel_pstate_verify_policy,
1536 	.setpolicy	= intel_pstate_set_policy,
1537 	.get		= intel_pstate_get,
1538 	.init		= intel_pstate_cpu_init,
1539 	.exit		= intel_pstate_cpu_exit,
1540 	.stop_cpu	= intel_pstate_stop_cpu,
1541 	.name		= "intel_pstate",
1542 };
1543 
1544 static int __initdata no_load;
1545 static int __initdata no_hwp;
1546 static int __initdata hwp_only;
1547 static unsigned int force_load;
1548 
1549 static int intel_pstate_msrs_not_valid(void)
1550 {
1551 	if (!pstate_funcs.get_max() ||
1552 	    !pstate_funcs.get_min() ||
1553 	    !pstate_funcs.get_turbo())
1554 		return -ENODEV;
1555 
1556 	return 0;
1557 }
1558 
1559 static void copy_pid_params(struct pstate_adjust_policy *policy)
1560 {
1561 	pid_params.sample_rate_ms = policy->sample_rate_ms;
1562 	pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
1563 	pid_params.p_gain_pct = policy->p_gain_pct;
1564 	pid_params.i_gain_pct = policy->i_gain_pct;
1565 	pid_params.d_gain_pct = policy->d_gain_pct;
1566 	pid_params.deadband = policy->deadband;
1567 	pid_params.setpoint = policy->setpoint;
1568 }
1569 
1570 static void copy_cpu_funcs(struct pstate_funcs *funcs)
1571 {
1572 	pstate_funcs.get_max   = funcs->get_max;
1573 	pstate_funcs.get_max_physical = funcs->get_max_physical;
1574 	pstate_funcs.get_min   = funcs->get_min;
1575 	pstate_funcs.get_turbo = funcs->get_turbo;
1576 	pstate_funcs.get_scaling = funcs->get_scaling;
1577 	pstate_funcs.get_val   = funcs->get_val;
1578 	pstate_funcs.get_vid   = funcs->get_vid;
1579 	pstate_funcs.get_target_pstate = funcs->get_target_pstate;
1580 
1581 }
1582 
1583 #ifdef CONFIG_ACPI
1584 
1585 static bool intel_pstate_no_acpi_pss(void)
1586 {
1587 	int i;
1588 
1589 	for_each_possible_cpu(i) {
1590 		acpi_status status;
1591 		union acpi_object *pss;
1592 		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
1593 		struct acpi_processor *pr = per_cpu(processors, i);
1594 
1595 		if (!pr)
1596 			continue;
1597 
1598 		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
1599 		if (ACPI_FAILURE(status))
1600 			continue;
1601 
1602 		pss = buffer.pointer;
1603 		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
1604 			kfree(pss);
1605 			return false;
1606 		}
1607 
1608 		kfree(pss);
1609 	}
1610 
1611 	return true;
1612 }
1613 
1614 static bool intel_pstate_has_acpi_ppc(void)
1615 {
1616 	int i;
1617 
1618 	for_each_possible_cpu(i) {
1619 		struct acpi_processor *pr = per_cpu(processors, i);
1620 
1621 		if (!pr)
1622 			continue;
1623 		if (acpi_has_method(pr->handle, "_PPC"))
1624 			return true;
1625 	}
1626 	return false;
1627 }
1628 
1629 enum {
1630 	PSS,
1631 	PPC,
1632 };
1633 
1634 struct hw_vendor_info {
1635 	u16  valid;
1636 	char oem_id[ACPI_OEM_ID_SIZE];
1637 	char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
1638 	int  oem_pwr_table;
1639 };
1640 
1641 /* Hardware vendor-specific info that has its own power management modes */
1642 static struct hw_vendor_info vendor_info[] = {
1643 	{1, "HP    ", "ProLiant", PSS},
1644 	{1, "ORACLE", "X4-2    ", PPC},
1645 	{1, "ORACLE", "X4-2L   ", PPC},
1646 	{1, "ORACLE", "X4-2B   ", PPC},
1647 	{1, "ORACLE", "X3-2    ", PPC},
1648 	{1, "ORACLE", "X3-2L   ", PPC},
1649 	{1, "ORACLE", "X3-2B   ", PPC},
1650 	{1, "ORACLE", "X4470M2 ", PPC},
1651 	{1, "ORACLE", "X4270M3 ", PPC},
1652 	{1, "ORACLE", "X4270M2 ", PPC},
1653 	{1, "ORACLE", "X4170M2 ", PPC},
1654 	{1, "ORACLE", "X4170 M3", PPC},
1655 	{1, "ORACLE", "X4275 M3", PPC},
1656 	{1, "ORACLE", "X6-2    ", PPC},
1657 	{1, "ORACLE", "Sudbury ", PPC},
1658 	{0, "", ""},
1659 };
1660 
1661 static bool intel_pstate_platform_pwr_mgmt_exists(void)
1662 {
1663 	struct acpi_table_header hdr;
1664 	struct hw_vendor_info *v_info;
1665 	const struct x86_cpu_id *id;
1666 	u64 misc_pwr;
1667 
1668 	id = x86_match_cpu(intel_pstate_cpu_oob_ids);
1669 	if (id) {
1670 		rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
1671 		if ( misc_pwr & (1 << 8))
1672 			return true;
1673 	}
1674 
1675 	if (acpi_disabled ||
1676 	    ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
1677 		return false;
1678 
1679 	for (v_info = vendor_info; v_info->valid; v_info++) {
1680 		if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
1681 			!strncmp(hdr.oem_table_id, v_info->oem_table_id,
1682 						ACPI_OEM_TABLE_ID_SIZE))
1683 			switch (v_info->oem_pwr_table) {
1684 			case PSS:
1685 				return intel_pstate_no_acpi_pss();
1686 			case PPC:
1687 				return intel_pstate_has_acpi_ppc() &&
1688 					(!force_load);
1689 			}
1690 	}
1691 
1692 	return false;
1693 }
1694 #else /* CONFIG_ACPI not enabled */
1695 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
1696 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
1697 #endif /* CONFIG_ACPI */
1698 
1699 static const struct x86_cpu_id hwp_support_ids[] __initconst = {
1700 	{ X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
1701 	{}
1702 };
1703 
1704 static int __init intel_pstate_init(void)
1705 {
1706 	int cpu, rc = 0;
1707 	const struct x86_cpu_id *id;
1708 	struct cpu_defaults *cpu_def;
1709 
1710 	if (no_load)
1711 		return -ENODEV;
1712 
1713 	if (x86_match_cpu(hwp_support_ids) && !no_hwp) {
1714 		copy_cpu_funcs(&core_params.funcs);
1715 		hwp_active++;
1716 		goto hwp_cpu_matched;
1717 	}
1718 
1719 	id = x86_match_cpu(intel_pstate_cpu_ids);
1720 	if (!id)
1721 		return -ENODEV;
1722 
1723 	cpu_def = (struct cpu_defaults *)id->driver_data;
1724 
1725 	copy_pid_params(&cpu_def->pid_policy);
1726 	copy_cpu_funcs(&cpu_def->funcs);
1727 
1728 	if (intel_pstate_msrs_not_valid())
1729 		return -ENODEV;
1730 
1731 hwp_cpu_matched:
1732 	/*
1733 	 * The Intel pstate driver will be ignored if the platform
1734 	 * firmware has its own power management modes.
1735 	 */
1736 	if (intel_pstate_platform_pwr_mgmt_exists())
1737 		return -ENODEV;
1738 
1739 	pr_info("Intel P-state driver initializing\n");
1740 
1741 	all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
1742 	if (!all_cpu_data)
1743 		return -ENOMEM;
1744 
1745 	if (!hwp_active && hwp_only)
1746 		goto out;
1747 
1748 	rc = cpufreq_register_driver(&intel_pstate_driver);
1749 	if (rc)
1750 		goto out;
1751 
1752 	intel_pstate_debug_expose_params();
1753 	intel_pstate_sysfs_expose_params();
1754 
1755 	if (hwp_active)
1756 		pr_info("HWP enabled\n");
1757 
1758 	return rc;
1759 out:
1760 	get_online_cpus();
1761 	for_each_online_cpu(cpu) {
1762 		if (all_cpu_data[cpu]) {
1763 			intel_pstate_clear_update_util_hook(cpu);
1764 			kfree(all_cpu_data[cpu]);
1765 		}
1766 	}
1767 
1768 	put_online_cpus();
1769 	vfree(all_cpu_data);
1770 	return -ENODEV;
1771 }
1772 device_initcall(intel_pstate_init);
1773 
1774 static int __init intel_pstate_setup(char *str)
1775 {
1776 	if (!str)
1777 		return -EINVAL;
1778 
1779 	if (!strcmp(str, "disable"))
1780 		no_load = 1;
1781 	if (!strcmp(str, "no_hwp")) {
1782 		pr_info("HWP disabled\n");
1783 		no_hwp = 1;
1784 	}
1785 	if (!strcmp(str, "force"))
1786 		force_load = 1;
1787 	if (!strcmp(str, "hwp_only"))
1788 		hwp_only = 1;
1789 
1790 #ifdef CONFIG_ACPI
1791 	if (!strcmp(str, "support_acpi_ppc"))
1792 		acpi_ppc = true;
1793 #endif
1794 
1795 	return 0;
1796 }
1797 early_param("intel_pstate", intel_pstate_setup);
1798 
1799 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
1800 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
1801 MODULE_LICENSE("GPL");
1802